WO2021111761A1 - 積層フィルタ - Google Patents

積層フィルタ Download PDF

Info

Publication number
WO2021111761A1
WO2021111761A1 PCT/JP2020/040084 JP2020040084W WO2021111761A1 WO 2021111761 A1 WO2021111761 A1 WO 2021111761A1 JP 2020040084 W JP2020040084 W JP 2020040084W WO 2021111761 A1 WO2021111761 A1 WO 2021111761A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
capacitor
via conductor
laminated filter
line
Prior art date
Application number
PCT/JP2020/040084
Other languages
English (en)
French (fr)
Inventor
圭介 小川
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to CN202080056761.2A priority Critical patent/CN114208030A/zh
Priority to JP2021562493A priority patent/JP7251658B2/ja
Publication of WO2021111761A1 publication Critical patent/WO2021111761A1/ja
Priority to US17/715,995 priority patent/US12034426B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/01Frequency selective two-port networks
    • H03H7/0115Frequency selective two-port networks comprising only inductors and capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/40Structural combinations of fixed capacitors with other electric elements, the structure mainly consisting of a capacitor, e.g. RC combinations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/01Frequency selective two-port networks
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/01Frequency selective two-port networks
    • H03H7/09Filters comprising mutual inductance
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/01Frequency selective two-port networks
    • H03H7/17Structural details of sub-circuits of frequency selective networks
    • H03H7/1708Comprising bridging elements, i.e. elements in a series path without own reference to ground and spanning branching nodes of another series path
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/01Frequency selective two-port networks
    • H03H7/17Structural details of sub-circuits of frequency selective networks
    • H03H7/1741Comprising typical LC combinations, irrespective of presence and location of additional resistors
    • H03H7/1766Parallel LC in series path
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/01Frequency selective two-port networks
    • H03H7/17Structural details of sub-circuits of frequency selective networks
    • H03H7/1741Comprising typical LC combinations, irrespective of presence and location of additional resistors
    • H03H7/1775Parallel LC in shunt or branch path
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H1/00Constructional details of impedance networks whose electrical mode of operation is not specified or applicable to more than one type of network
    • H03H2001/0021Constructional details
    • H03H2001/0057Constructional details comprising magnetic material
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H1/00Constructional details of impedance networks whose electrical mode of operation is not specified or applicable to more than one type of network
    • H03H2001/0021Constructional details
    • H03H2001/0085Multilayer, e.g. LTCC, HTCC, green sheets

Definitions

  • the present invention relates to a laminated filter.
  • Patent Document 1 discloses a laminated bandpass filter.
  • the laminated bandpass filter two strip lines constituting the resonator are arranged in the same layer at regular intervals. By arranging the two striplines in parallel, it is possible to generate an electromagnetic coupling. As a result, the capacitance between the resonators can be omitted, and the height of the laminated body can be reduced.
  • Patent Document 2 the direction of the loop by the inductor electrode of the input side LC parallel resonator and the inductor of the LC parallel resonator adjacent to the inductor electrode of the input side LC parallel resonator are described.
  • a laminated band-passing filter in which the direction of the loop by the electrodes is opposite is disclosed.
  • a laminated band pass filter in which three ground electrodes separated from each other are formed on the ground electrode forming layer is also disclosed.
  • the electromagnetic coupling (electrical coupling and magnetic field coupling) between the resonators is balanced to change the amount of attenuation at the boundary of the passband. It is necessary to achieve both steepness and ensuring the amount of attenuation outside the pass band.
  • the laminated bandpass filter disclosed in Patent Document 1 the balance of electromagnetic coupling generated between two strip lines arranged in parallel is not considered.
  • the present invention has been made to solve the above problems, and an object of the present invention is to improve the attenuation characteristics of a laminated filter.
  • the laminated filter according to the present invention includes a first ground electrode, a second ground electrode, a first LC resonator, and a second LC resonator.
  • the first LC resonator is connected to the first ground electrode.
  • the second LC resonator is connected to the second ground electrode.
  • the first LC resonator includes a first line electrode, a first capacitor electrode, a first via conductor, and a second via conductor.
  • the first capacitor electrode is arranged between the first ground electrode and the first line electrode.
  • the first via conductor connects the first line electrode and the first capacitor electrode.
  • the second via conductor extends from the first line electrode to the side where the first capacitor electrode is arranged, and connects the first line electrode and the first ground electrode.
  • the second LC resonator includes a second line electrode, a second capacitor electrode, a third via conductor, and a fourth via conductor.
  • the second capacitor electrode is arranged between the second ground electrode and the second line electrode.
  • the third via conductor connects the second line electrode and the second capacitor electrode.
  • the fourth via conductor extends from the second line electrode to the side where the second capacitor electrode is arranged, and connects the second line electrode and the second ground electrode.
  • the attenuation characteristics can be improved by connecting the first LC resonator to the first ground electrode and connecting the second LC resonator to the second ground electrode. it can.
  • FIG. It is an external perspective view of the laminated filter of FIG. It is a figure which shows the plurality of electrodes formed in the laminated body of FIG.
  • FIG. 3 is a plan view of the laminated filter of FIG. 2 from the X-axis direction (second direction).
  • FIG. 3 is a plan view of the laminated filter of FIG. 2 from the Y-axis direction (first direction).
  • FIG. 5 is a view of the electrode structure inside the laminated body of the laminated filter according to the modified example of the first embodiment in a plan view from the Y-axis direction. It is an equivalent circuit diagram of the laminated filter which concerns on Embodiment 2.
  • FIG. It is a figure which looked at the electrode structure inside the laminated body of the laminated body of FIG. It is a figure which also shows the passing characteristic (solid line) of the laminated filter of FIG. 11 and the passing characteristic (dotted line) of the laminated filter of FIG.
  • solid line passing characteristic of the laminated filter of FIG. 11
  • FIG. 12 is an enlarged view of a portion of 4 GHz to 7 GHz in FIG. It is an equivalent circuit diagram of the laminated filter which concerns on Embodiment 3.
  • FIG. It is an equivalent circuit diagram of the laminated filter which concerns on Embodiment 4.
  • FIG. It is an equivalent circuit diagram of the laminated filter which concerns on the modification of Embodiment 4.
  • FIG. 1 is an equivalent circuit diagram of the laminated filter 1 according to the first embodiment.
  • the equivalent circuit shown in FIG. 1 is the same as the equivalent circuit of the laminated filter 1A according to the modification of the first embodiment described later.
  • the electric field coupling generated between two circuit elements is represented by a capacitor. That is, the two circuit elements are connected to each other via the capacitor. Further, when the two circuit elements are electrically connected, the two circuit elements may be directly connected, or the two circuit elements may be electrically coupled (capacitively coupled). included.
  • the laminated filter 1 includes an input / output terminal P1 (first terminal), an input / output terminal P2 (second terminal), an LC parallel resonator LC1 (first LC resonator), and an LC parallel.
  • Resonator LC2 (2nd LC resonator), LC parallel resonator LC3 (4th LC resonator), LC parallel resonator LC4 (3rd LC resonator), capacitors C10, C12, C14, C20, C23, C34 To be equipped.
  • the LC parallel resonators LC1 and LC2 are electromagnetically coupled to each other.
  • the magnetic field coupling M1 and the capacitor C12 represent the magnetic field coupling and the electric field coupling between the LC parallel resonators LC1 and LC2, respectively.
  • the LC parallel resonators LC2 and LC3 are electromagnetically coupled to each other.
  • the magnetic field coupling M2 and the capacitor C23 represent the magnetic field coupling and the electric field coupling between the LC parallel resonators LC2 and LC3, respectively.
  • the LC parallel resonators LC3 and LC4 are electromagnetically coupled to each other.
  • the magnetic field coupling M3 and the capacitor C34 represent the magnetic field coupling and the electric field coupling between the LC parallel resonators LC3 and LC4, respectively.
  • the electric field coupling may be connected via a capacitor.
  • the input / output terminal P1 is electrically connected to the LC parallel resonator LC1.
  • FIG. 1 shows a case where the input / output terminal P1 is connected to the LC parallel resonator LC1 via the capacitor C10.
  • the input / output terminal P1 may be directly connected to the LC parallel resonator LC1.
  • the input / output terminal P2 is electrically connected to the LC parallel resonator LC4.
  • FIG. 1 shows a case where the input / output terminal P2 is connected to the LC parallel resonator LC4 via the capacitor C20.
  • the input / output terminal P2 may be directly connected to the LC parallel resonator LC4.
  • the LC parallel resonators LC1 and LC2 are connected via a capacitor C12.
  • the LC parallel resonators LC2 and LC3 are connected via a capacitor C23.
  • the LC parallel resonators LC3 and LC4 are connected via a capacitor C34.
  • the LC parallel resonators LC1 and LC4 are connected via a capacitor C14.
  • the LC parallel resonator LC1 includes an inductor L1 and a capacitor C1.
  • the inductor L1 and the capacitor C1 are connected in parallel between the grounding point G1 and the connection points of the capacitors C10 and C12.
  • the LC parallel resonator LC2 includes an inductor L2 and a capacitor C2.
  • the inductor L2 and the capacitor C2 are connected in parallel between the grounding point G2 and the connection points of the capacitors C12 and C23.
  • the LC parallel resonator LC3 includes an inductor L3 and a capacitor C3.
  • the inductor L3 and the capacitor C3 are connected in parallel between the grounding point G2 and the connection points of the capacitors C23 and C34.
  • the LC parallel resonator LC4 includes an inductor L4 and a capacitor C4.
  • the inductor L4 and the capacitor C4 are connected in parallel between the grounding point G1 and the connection points of the capacitors C34 and C20.
  • FIG. 2 is an external perspective view of the laminated filter 1 of FIG.
  • the X-axis, Y-axis, and Z-axis are orthogonal to each other. The same applies to FIGS. 3 to 5, 9, and 11 which will be described later.
  • the laminated filter 1 is formed as a laminated body 100 in which a plurality of dielectric layers are laminated in the Z-axis direction.
  • the laminate 100 is, for example, a rectangular parallelepiped.
  • the outermost surface of the laminated body 100 perpendicular to the Z-axis direction is defined as the upper surface UF and the lower surface BF.
  • the top surface UF and the bottom surface BF face each other in the Z-axis direction.
  • Input / output terminals P1 and P2 and a ground terminal 110 are formed on the bottom surface BF.
  • the input / output terminals P1 and P2 and the ground terminal 110 are, for example, LGA (Land Grid Array) terminals in which planar electrodes are regularly arranged on the bottom surface BF.
  • the bottom surface BF is connected to a circuit board (not shown).
  • FIG. 3 is a diagram showing a plurality of electrodes formed inside the laminate 100 of FIG. 2.
  • FIG. 4 is a plan view of the laminated filter 1 of FIG. 2 from the X-axis direction (second direction).
  • FIG. 5 is a plan view of the laminated filter 1 of FIG. 2 from the Y-axis direction (first direction).
  • a ground electrode 111 (first ground electrode) and a ground electrode 112 (second ground electrode) are formed inside the laminated body 100.
  • the ground electrode 111 is arranged between the ground terminal 110 and the ground electrode 112.
  • the ground electrode 111 is connected to the ground terminal 110 by via conductors V1, V2, V3, V4, V5, V6 (second via conductor).
  • the ground electrode 112 is connected to the ground electrode 111 by each of the via conductor V81 (first ground via conductor) and the via conductor V82 (first ground via conductor).
  • the ground electrodes 111 and 112 correspond to the ground points G1 and G2 in FIG. 1, respectively.
  • the ground electrodes 111 and 112 are formed as conductors that are separate from each other.
  • the LC parallel resonator LC1 includes a line electrode 101 (first line electrode), a capacitor electrode 102 (first capacitor electrode), a capacitor electrode 103, a via conductor V11 (first via conductor), and a via conductor V12 (first via conductor). 2 via conductor) and included.
  • the line electrode 101 extends in the Y-axis direction.
  • the capacitor electrode 102 is arranged between the ground electrode 112 and the line electrode 101.
  • the via conductor V11 connects the line electrode 101 and the capacitor electrode 102.
  • the via conductor V12 extends from the line electrode 101 to the side where the capacitor electrode 102 is arranged, and connects the line electrode 101 and the ground electrode 111.
  • the capacitor electrode 103 is arranged between the capacitor electrode 102 and the ground electrode 112.
  • the capacitor electrode 103 is connected to the ground electrode 112 by the via conductor V13. In the extending direction of the via conductor V11, the distance between the line electrode 101 and the ground electrode 112 is shorter than the distance between the line electrode 101 and the ground electrode 111.
  • a capacitor electrode 104 (fifth capacitor electrode) is arranged between the input / output terminal P1 and the capacitor electrode 102.
  • the capacitor electrode 104 is connected to the input / output terminal P1 by the via conductor V10.
  • Capacitor C10 is formed by capacitor electrodes 102 and 104.
  • a loop-shaped inductor L1 is formed by the via conductor V12, the line electrode 101, and the via conductor V11.
  • Capacitor C1 is formed by capacitor electrodes 102 and 103.
  • the LC parallel resonator LC2 includes a line electrode 201 (second line electrode), a capacitor electrode 202 (second capacitor electrode), a capacitor electrode 203, a via conductor V21 (third via conductor), and a via conductor V22 (third via conductor). 4 via conductor) and included.
  • the line electrode 201 extends in the Y-axis direction.
  • the capacitor electrode 202 is arranged between the ground electrode 112 and the line electrode 201.
  • the via conductor V21 connects the line electrode 201 and the capacitor electrode 202.
  • the via conductor V22 extends from the line electrode 201 to the side where the capacitor electrode 202 is arranged, and connects the line electrode 201 and the ground electrode 112.
  • the capacitor electrode 203 is arranged between the capacitor electrode 202 and the ground electrode 112.
  • the capacitor electrode 203 is connected to the ground electrode 112 by the via conductor V23.
  • a loop-shaped inductor L2 is formed by the via conductor V22, the line electrode 201, and the via conductor V21.
  • Capacitor C2 is formed by capacitor electrodes 202 and 203.
  • a coupling electrode 121 (third coupling electrode) is connected to the via conductor V11 between the line electrode 101 and the capacitor electrode 102.
  • the coupling electrode 121 faces each of the capacitor electrodes 102 and 202.
  • the capacitor C12 is formed by the capacitor electrodes 102 and 202 and the coupling electrode 121.
  • the LC parallel resonator LC3 includes a line electrode 301 (second line electrode), a capacitor electrode 302 (second capacitor electrode), a capacitor electrode 303, a via conductor V31 (third via conductor), and a via conductor V32 (third via conductor). 4 via conductor) and included.
  • the line electrode 301 extends in the Y-axis direction.
  • the capacitor electrode 302 is arranged between the ground electrode 112 and the line electrode 301.
  • the via conductor V31 connects the line electrode 301 and the capacitor electrode 302.
  • the via conductor V32 extends from the line electrode 301 to the side where the capacitor electrode 302 is arranged, and connects the line electrode 301 and the ground electrode 112.
  • the capacitor electrode 303 is arranged between the capacitor electrode 302 and the ground electrode 112.
  • the capacitor electrode 303 is connected to the ground electrode 112 by the via conductor V33.
  • a loop-shaped inductor L3 is formed by the via conductor V32, the line electrode 301, and the via conductor V31.
  • Capacitor C3 is formed by capacitor electrodes 302 and 303.
  • a coupling electrode 222 is arranged between the line electrode 201 and the capacitor electrode 202.
  • the coupling electrode 222 faces each of the capacitor electrodes 202 and 302.
  • the capacitor C23 is formed by the capacitor electrodes 202 and 302 and the coupling electrode 222.
  • the LC parallel resonator LC4 includes a line electrode 401 (third line electrode), a capacitor electrode 402 (third capacitor electrode), a capacitor electrode 403, a via conductor V41 (fifth via conductor), and a via conductor V42 (third conductor V42). 6 via conductor) and included.
  • the line electrode 401 extends in the Y-axis direction.
  • the capacitor electrode 402 is arranged between the ground electrode 112 and the line electrode 401.
  • the via conductor V41 connects the line electrode 401 and the capacitor electrode 402.
  • the via conductor V42 extends from the line electrode 401 to the side where the capacitor electrode 402 is arranged, and connects the line electrode 401 and the ground electrode 111.
  • the capacitor electrode 403 is arranged between the capacitor electrode 402 and the ground electrode 112. The capacitor electrode 403 is connected to the ground electrode 112 by the via conductor V43.
  • a capacitor electrode 404 (sixth capacitor electrode) is arranged between the input / output terminal P2 and the capacitor electrode 402.
  • the capacitor electrode 404 is connected to the input / output terminal P2 by the via conductor V20.
  • Capacitor C20 is formed by capacitor electrodes 402 and 404.
  • a loop-shaped inductor L4 is formed by the via conductor V42, the line electrode 401, and the via conductor V41.
  • Capacitor C4 is formed by capacitor electrodes 402 and 403.
  • a coupling electrode 221 is arranged between the line electrode 201 and the capacitor electrode 202.
  • the coupling electrode 221 faces each of the coupling electrodes 121 and 122.
  • the capacitor C14 is formed by the coupling electrodes 121, 122, 221.
  • each of the via conductors V21, V31, and V41 is closer to the via conductor V11 than the via conductor V12 in the Y-axis direction.
  • the via conductors V22, V32, and V42 are closer to the via conductor V12 than the via conductor V11 in the Y-axis direction.
  • the winding direction of each of the inductors L1 to L4 from the ground electrode to the capacitor electrode is the same.
  • the air cores of the inductors L1 to L4 overlap each other.
  • the via conductors V81 and V82 are closer to the via conductor V11 than the via conductor V12 in the Y-axis direction.
  • FIG. 6 is an equivalent circuit diagram of the laminated filter 10 according to the comparative example.
  • the equivalent circuit of the laminated filter 10 is an equivalent circuit in which the grounding point G2 is removed from the equivalent circuit of the laminated filter 1 of FIG. 1 and each of the LC parallel resonators LC1 to LC4 is short-circuited to the grounding point G1. Other than these, the description is the same, so the description will not be repeated.
  • FIG. 7 is a diagram showing both the passing characteristics (solid line) of the laminated filter 1 of FIGS. 1 to 5 and the passing characteristics (dotted line) of the laminated filter 10 of FIG.
  • the pass characteristic is the frequency characteristic of the insertion loss.
  • the amount of attenuation on the vertical axis of FIG. 7 increases in the downward direction from 0 dB. The same applies to FIGS. 8, 12, and 13 which will be described later.
  • grounding point G1 (grounding electrode 111) at which each of the LC parallel resonators LC1 and LC4 is short-circuited and each of the LC parallel resonators LC2 and LC3 are short-circuited. Since the grounding point G2 (grounding electrode 112) is physically separated, the magnetic field couplings M1 and M3 are reduced. As a result, the attenuation characteristics of the laminated filter 1 are improved.
  • the minimum value of the insertion loss in the frequency band of 2 GHz to 4 GHz is larger in the laminated filter 1 than in the laminated filter 10.
  • the laminated filter 1 can secure a larger amount of attenuation than the laminated filter 10 in a frequency band (low frequency side) lower than the pass band. That is, the attenuation characteristic of the laminated filter 1 is improved more than the attenuation characteristic of the laminated filter 10.
  • the inductor component between the grounding points G1 and G2 of FIG. 1 changes.
  • the frequency of the attenuation pole generated on the high frequency side can be adjusted.
  • FIG. 8 is a diagram showing changes in the insertion loss of the laminated filter 1 when the via conductors V81 and V82 of FIG. 4 are moved in the Y-axis direction.
  • the passage characteristic A1 shows the passage characteristic when the via conductors V81 and V82 are arranged at the positions shown in FIG.
  • the passing characteristic A2 shows a passing characteristic when the via conductors V81 and V82 are closer to the via conductor V12 than in the case of the passing characteristic A1.
  • the passing characteristic A3 shows a passing characteristic when the via conductors V81 and V82 are closer to the via conductor V12 than in the case of the passing characteristic A2.
  • An attenuation pole is generated at a frequency f1 in a frequency band (high frequency side) higher than the pass band of the pass characteristic A1.
  • An attenuation pole is generated at a frequency f2 (> f1) on the high frequency side of the pass characteristic A2.
  • An attenuation pole is generated at a frequency f3 (> f2) on the high frequency side of the pass characteristic A3.
  • each of the capacitor electrodes 102, 202, 302, 402 may form a capacitor with the ground electrode 112.
  • FIG. 9 is a plan view of the electrode structure inside the laminated body of the laminated filter 1A according to the modified example of the first embodiment from the Y-axis direction.
  • the electrode structure of the laminated filter 1A is an electrode structure in which capacitor electrodes 103, 203, 303, 403 and via conductors V13, V23, V33, and V43 are removed from the electrode structure of the laminated filter 1 of FIG. Other than these, the description is the same, so the description will not be repeated.
  • the capacitor electrodes 102, 202, 302, and 402 face the ground electrode 112.
  • the capacitor electrodes 102, 202, 302, and 402 form the capacitors C1 to C4 together with the ground electrode 112, respectively.
  • the distance between the electrodes of the capacitors C1 to C4 can be adjusted by selecting either the first embodiment or the modified example according to the desired characteristics required for the laminated filter.
  • the damping characteristics can be improved.
  • FIG. 10 is an equivalent circuit diagram of the laminated filter 2 according to the second embodiment.
  • the equivalent circuit of the laminated filter 2 is an equivalent circuit in which the capacitor C22 is added to the equivalent circuit of the laminated filter 1 of FIG. Other than these, the description is the same, so the description will not be repeated.
  • the input / output terminals P1 and P2 are connected to each other via the capacitor C22.
  • FIG. 11 is a plan view of the electrode structure inside the laminated body of the laminated filter 2 of FIG. 10 from the Y-axis direction.
  • the electrode structure of the laminated filter 2 is an electrode structure in which a coupling electrode 231 (first coupling electrode) and a coupling electrode 232 (second coupling electrode) are added to the electrode structure of the laminated filter 1 of FIG. Other than these, the description is the same, so the description will not be repeated.
  • the coupling electrode 231 is connected to the via conductor V10 between the ground electrodes 111 and 112, and extends from the input / output terminals P1 to P2.
  • the coupling electrode 232 is connected to the via conductor V20 between the ground electrodes 111 and 112 and extends from the input / output terminals P2 to P1.
  • the side of the coupling electrode 231 faces the side of the coupling electrode 232 in the direction from the input / output terminals P1 to P2.
  • the coupling electrodes 231 and 232 form the capacitor C22 of FIG.
  • FIG. 12 is a diagram showing the passing characteristics (solid line) of the laminated filter 2 of FIG. 11 and the passing characteristics (dotted line) of the laminated filter 1 of FIG. 5 together.
  • an attenuation pole is generated near the frequency f21 on the low frequency side.
  • an attenuation pole is generated not only at the low frequency f21 but also at f22 ( ⁇ f21).
  • the minimum value of the insertion loss on the low frequency side of the laminated filter 2 is larger than that of the laminated filter 1.
  • the laminated filter 2 can secure a larger amount of attenuation than the laminated filter 1 on the low frequency side. That is, the attenuation characteristic of the laminated filter 2 is improved as compared with the attenuation characteristic of the laminated filter 1.
  • FIG. 13 is an enlarged view of the portion of FIG. 12 from 4 GHz to 7 GHz.
  • the minimum value of the insertion loss of the laminated filter 2 is substantially the same as the minimum value of the insertion loss of the laminated filter 1. That is, the pass characteristic in the pass band of the laminated filter 2 maintains the pass characteristic in the pass band of the laminated filter 1.
  • the attenuation characteristics can be further improved while maintaining the pass characteristics in the pass band.
  • a laminated filter including four LC resonators has been described.
  • the number of LC resonators included in the laminated filter according to the embodiment is not limited to 4.
  • the case where the number of LC resonators included in the laminated filter according to the embodiment is 3, 5, 6, 7 will be described in the third, fourth, fifth, and sixth embodiments, respectively.
  • FIG. 14 is an equivalent circuit diagram of the laminated filter 3 according to the third embodiment.
  • the equivalent circuit of the laminated filter 3 is an equivalent circuit in which the LC parallel resonator LC4 is removed from the LC parallel resonators LC1 to LC4 included in the laminated filter 1 of FIG. Since the same is true except for the change due to the removal of the LC parallel resonator LC4, the description will not be repeated.
  • the LC parallel resonator LC3 (third LC resonator) is connected to the grounding point G1.
  • the LC parallel resonator LC3 is connected to the input / output terminal P2 via the capacitor C20.
  • the LC parallel resonator LC3 is connected to the LC parallel resonator LC1 via the capacitor C13.
  • FIG. 15 is an equivalent circuit diagram of the laminated filter 4 according to the fourth embodiment.
  • the equivalent circuit of the laminated filter 4 is an equivalent circuit in which an LC parallel resonator LC5 (third LC resonator) is added to the LC parallel resonators LC1 to LC4 included in the laminated filter 1 of FIG. Since the same is true except for the change due to the addition of the LC parallel resonator LC5, the description will not be repeated.
  • the magnetic field coupling M4 represents the magnetic field coupling between the LC parallel resonators LC4 and LC5.
  • the LC parallel resonator LC5 is connected to the LC parallel resonator LC4 (third LC resonator) via the capacitor C45.
  • the LC parallel resonator LC5 is connected to the LC parallel resonator LC1 via the capacitor C15.
  • the LC parallel resonator LC5 is connected to the input / output terminal P2 via the capacitor C20.
  • the LC parallel resonator LC5 is connected to the grounding point G1.
  • the LC parallel resonator LC4 is connected to the grounding point G2.
  • the LC parallel resonator LC5 includes an inductor L5 and a capacitor C5.
  • the inductor L5 and the capacitor C5 are connected in parallel between the grounding point G1 and the connection points of the capacitors C45 and C20.
  • FIG. 16 is an equivalent circuit diagram of the laminated filter 4A according to the modified example of the fourth embodiment.
  • the grounding point to which each of the LC parallel resonators LC1 and LC5 in FIG. 15 is connected is changed from G1 to G2, and the grounding point to which the LC parallel resonator LC3 is connected is G2.
  • the description is the same, so the description will not be repeated.
  • the attenuation characteristics can be improved.
  • FIG. 17 is an equivalent circuit diagram of the laminated filter 5 according to the fifth embodiment.
  • the equivalent circuit of the laminated filter 5 is an equivalent circuit in which an LC parallel resonator LC6 (third LC resonator) is added to the LC parallel resonators LC1 to LC5 included in the laminated filter 4 of FIG. Since the same is true except for the change due to the addition of the LC parallel resonator LC6, the description will not be repeated.
  • the magnetic field coupling M5 represents the magnetic field coupling between the LC parallel resonators LC5 and LC6.
  • the LC parallel resonator LC6 is connected to the LC parallel resonator LC5 (fourth LC resonator) via the capacitor C56.
  • the LC parallel resonator LC6 is connected to the LC parallel resonator LC1 via the capacitor C16.
  • the LC parallel resonator LC6 is connected to the input / output terminal P2 via the capacitor C20.
  • the LC parallel resonator LC6 is connected to the grounding point G1.
  • the LC parallel resonator LC5 is connected to the grounding point G2.
  • the LC parallel resonator LC6 includes an inductor L6 and a capacitor C6.
  • the inductor L6 and the capacitor C6 are connected in parallel between the grounding point G1 and the connection points of the capacitors C56 and C20.
  • FIG. 18 is an equivalent circuit diagram of the laminated filter 5A according to the modified example of the fifth embodiment.
  • the grounding point to which each of the LC parallel resonators LC1 and LC6 of FIG. 17 is connected is changed from G1 to G2, and the contact points to which each of the LC parallel resonators LC3 and LC4 are connected.
  • This is an equivalent circuit in which the point is changed from G2 to G1.
  • the description is the same, so the description will not be repeated.
  • the damping characteristics can be improved.
  • FIG. 19 is an equivalent circuit diagram of the laminated filter 6 according to the sixth embodiment.
  • the equivalent circuit of the laminated filter 6 is an equivalent circuit in which an LC parallel resonator LC7 (third LC resonator) is added to the LC parallel resonators LC1 to LC6 included in the laminated filter 5 of FIG. Since the same is true except for the change due to the addition of the LC parallel resonator LC7, the description will not be repeated.
  • the magnetic field coupling M6 represents the magnetic field coupling between the LC parallel resonators LC6 and LC7.
  • the LC parallel resonator LC7 is connected to the LC parallel resonator LC6 (fourth LC resonator) via the capacitor C67.
  • the LC parallel resonator LC7 is connected to the LC parallel resonator LC1 via a capacitor C17.
  • the LC parallel resonator LC7 is connected to the input / output terminal P2 via the capacitor C20.
  • the LC parallel resonator LC7 is connected to the grounding point G1.
  • the LC parallel resonator LC6 is connected to the grounding point G2.
  • the LC parallel resonator LC7 includes an inductor L7 and a capacitor C7.
  • the inductor L7 and the capacitor C7 are connected in parallel between the grounding point G1 and the connection points of the capacitors C67 and C20.
  • FIG. 20 is an equivalent circuit diagram of the laminated filter 6A according to the modified example of the sixth embodiment.
  • the grounding point to which each of the LC parallel resonators LC1 and LC7 in FIG. 19 is connected is changed from G1 to G2, and the grounding point to which the LC parallel resonator LC4 is connected is G2.
  • the description is the same, so the description will not be repeated.
  • the damping characteristics can be improved.
  • 1 to 6, 1A, 4A to 6A, 10 laminated filter 100 laminated body, 101, 201, 301, 401 line electrode, 102 to 104, 202, 203, 302, 303, 402 to 404 capacitor electrode, 110 ground terminal, 111,112 ground electrode, 121,122,221,222,231,232 coupling electrode, C1 to C7, C10, C12 to C17, C20, C22, C23, C34, C45, C56, C67 capacitor, L1 to L7 inductor, LC1 to LC7 parallel resonators, P1, P2 input / output terminals, V1 to V6, V10 to V13, V20 to V23, V31 to V33, V41 to V43, V81, V82 via conductors.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Filters And Equalizers (AREA)

Abstract

積層フィルタ(1)は、第1接地電極(111)および第2接地電極(112)と、第1LC共振器(LC1)と、第2LC共振器(LC2)とを備える。第1LC共振器(LC1)は、第1線路電極(101)と、第1キャパシタ電極(102)と、第1ビア導体(V11)と、第2ビア導体(V12)とを含む。第2ビア導体(V12)は、第1線路電極(101)から第1キャパシタ電極(102)が配置された側に延在し、第1線路電極(101)および第1接地電極(111)を接続する。第2LC共振器(LC2)は、第2線路電極(201)と、第2キャパシタ電極(202)と、第3ビア導体(V21)と、第4ビア導体(V22)とを含む。第4ビア導体(V22)は、第2線路電極(201)から第2キャパシタ電極(202)が配置された側に延在し、第2線路電極(201)および第2接地電極(112)を接続する。

Description

積層フィルタ
 本発明は、積層フィルタに関する。
 従来、複数の誘電体層の積層体として形成された積層フィルタが知られている。たとえば、国際公開第2002/009225号(特許文献1)には、積層バンドパスフィルタが開示されている。当該積層バンドパスフィルタにおいては、共振器を構成する2本のストリップラインが同層に一定間隔だけ離して配置されている。2つのストリップラインを平行に並べることにより、電磁結合を発生させることが可能となる。その結果、共振器間の容量を省くことが可能となり、積層体の低背化が可能となる。
 また、国際公開第2007/119356号(特許文献2)には、入力側LC並列共振器のインダクタ電極によるループの方向と、入力側LC並列共振器のインダクタ電極に隣接するLC並列共振器のインダクタ電極によるループの方向とが逆である積層帯域通過フィルタが開示されている。また、接地電極形成層に互いに分離した3つの接地電極が形成された積層帯域通過フィルタも開示されている。
国際公開第2002/009225号 国際公開第2007/119356号
 積層フィルタの減衰特性(通過帯域外の挿入損失の周波数特性)を改善するためには、共振器間の電磁結合(電界結合および磁界結合)をバランスさせて、通過帯域の境界における減衰量の変化の急峻性および通過帯域外における減衰量の確保の双方を両立させる必要がある。しかし、特許文献1に開示されている積層バンドパスフィルタにおいては、平行に並べられた2つのストリップラインの間に発生する電磁結合のバランスについて考慮されていない。
 特許文献2に開示されているように、互いに隣接する2つのLC並列共振器のインダクタ電極のループの向きを逆にする場合、磁界結合を弱めることができるものの、磁界結合の微調整が困難である。また、同じ誘電体層に複数の接地電極を形成する場合、製造ばらつきが発生し易い。
 本発明は上記のような課題を解決するためになされたものであり、その目的は積層フィルタの減衰特性を改善することである。
 本発明に係る積層フィルタは、第1接地電極および第2接地電極と、第1LC共振器と、第2LC共振器とを備える。第1LC共振器は、第1接地電極に接続されている。第2LC共振器は、第2接地電極に接続されている。第1LC共振器は、第1線路電極と、第1キャパシタ電極と、第1ビア導体と、第2ビア導体とを含む。第1キャパシタ電極は、第1接地電極および第1線路電極の間に配置されている。第1ビア導体は、第1線路電極および第1キャパシタ電極を接続する。第2ビア導体は、第1線路電極から第1キャパシタ電極が配置された側に延在し、第1線路電極および第1接地電極を接続する。第2LC共振器は、第2線路電極と、第2キャパシタ電極と、第3ビア導体と、第4ビア導体とを含む。第2キャパシタ電極は、第2接地電極および第2線路電極の間に配置されている。第3ビア導体は、第2線路電極および第2キャパシタ電極を接続する。第4ビア導体は、第2線路電極から第2キャパシタ電極が配置された側に延在し、第2線路電極および第2接地電極を接続する。
 本発明に係る積層フィルタによれば、第1LC共振器が第1接地電極に接続されているとともに、第2LC共振器が第2接地電極に接続されていることにより、減衰特性を改善することができる。
実施の形態1に係る積層フィルタの等価回路図である。 図1の積層フィルタの外観斜視図である。 図2の積層体の内部に形成された複数の電極を示す図である。 図2の積層フィルタをX軸方向(第2方向)から平面視した図である。 図2の積層フィルタをY軸方向(第1方向)から平面視した図である。 比較例に係る積層フィルタの等価回路図である。 図1~図5の積層フィルタの通過特性(実線)および図6の積層フィルタの通過特性(点線)を併せて示す図である。 図4の接地ビア導体をY軸方向に移動させた場合の積層フィルタの挿入損失の変化を示す図である。 実施の形態1の変形例に係る積層フィルタの積層体内部の電極構造を、Y軸方向から平面視した図である。 実施の形態2に係る積層フィルタの等価回路図である。 図10の積層フィルタの積層体内部の電極構造を、Y軸方向から平面視した図である。 図11の積層フィルタの通過特性(実線)および図5の積層フィルタの通過特性(点線)を併せて示す図である。 図12の4GHz~7GHzの部分が拡大された図である。 実施の形態3に係る積層フィルタの等価回路図である。 実施の形態4に係る積層フィルタの等価回路図である。 実施の形態4の変形例に係る積層フィルタの等価回路図である。 実施の形態5に係る積層フィルタの等価回路図である。 実施の形態5の変形例に係る積層フィルタの等価回路図である。 実施の形態6に係る積層フィルタの等価回路図である。 実施の形態6の変形例に係る積層フィルタの等価回路図である。
 以下、実施の形態について図面を参照しながら詳細に説明する。なお、図中同一または相当部分には同一符号を付してその説明は原則として繰り返さない。
 [実施の形態1]
 図1は、実施の形態1に係る積層フィルタ1の等価回路図である。図1に示される等価回路は、後に説明する実施の形態1の変形例に係る積層フィルタ1Aの等価回路と同様である。以下では、2つの回路素子の間に生じている電界結合をキャパシタによって表現する。すなわち、当該2つの回路素子は、当該キャパシタを介して互いに接続されている。また、2つの回路素子が電気的に接続されている場合には、当該2つの回路素子が直接に接続されている場合、および当該2つの回路素子が電界結合(容量結合)している場合が含まれる。
 図1に示されるように、積層フィルタ1は、入出力端子P1(第1端子)と、入出力端子P2(第2端子)と、LC並列共振器LC1(第1LC共振器)と、LC並列共振器LC2(第2LC共振器)と、LC並列共振器LC3(第4LC共振器)と、LC並列共振器LC4(第3LC共振器)と、キャパシタC10,C12,C14,C20,C23,C34とを備える。
 図1において、LC並列共振器LC1とLC2とは互いに電磁界結合している。磁界結合M1,キャパシタC12は、LC並列共振器LC1とLC2との間の磁界結合および電界結合をそれぞれ表している。LC並列共振器LC2とLC3とは互いに電磁界結合している。磁界結合M2,キャパシタC23は、LC並列共振器LC2とLC3との間の磁界結合および電界結合をそれぞれ表している。LC並列共振器LC3とLC4とは互いに電磁界結合している。磁界結合M3,キャパシタC34は、LC並列共振器LC3とLC4との間の磁界結合および電界結合をそれぞれ表している。なお、電界結合はキャパシタを介して接続される場合もある。
 入出力端子P1は、LC並列共振器LC1に電気的に接続されている。図1においては、入出力端子P1がキャパシタC10を介してLC並列共振器LC1に接続されている場合が示されている。入出力端子P1は、LC並列共振器LC1に直接に接続されていてもよい。
 入出力端子P2は、LC並列共振器LC4に電気的に接続されている。図1においては、入出力端子P2がキャパシタC20を介してLC並列共振器LC4に接続されている場合が示されている。入出力端子P2は、LC並列共振器LC4に直接に接続されていてもよい。
 LC並列共振器LC1とLC2とは、キャパシタC12を介して接続されている。LC並列共振器LC2とLC3とは、キャパシタC23を介して接続されている。LC並列共振器LC3とLC4とは、キャパシタC34を介して接続されている。LC並列共振器LC1とLC4とは、キャパシタC14を介して接続されている。
 LC並列共振器LC1は、インダクタL1と、キャパシタC1とを含む。インダクタL1およびキャパシタC1は、接地点G1と、キャパシタC10およびC12の接続点との間において並列に接続されている。
 LC並列共振器LC2は、インダクタL2と、キャパシタC2とを含む。インダクタL2およびキャパシタC2は、接地点G2と、キャパシタC12およびC23の接続点との間において並列に接続されている。
 LC並列共振器LC3は、インダクタL3と、キャパシタC3とを含む。インダクタL3およびキャパシタC3は、接地点G2と、キャパシタC23およびC34の接続点との間において並列に接続されている。
 LC並列共振器LC4は、インダクタL4と、キャパシタC4とを含む。インダクタL4およびキャパシタC4は、接地点G1と、キャパシタC34およびC20の接続点との間において並列に接続されている。
 図2は、図1の積層フィルタ1の外観斜視図である。図2において、X軸、Y軸、およびZ軸は互いに直交している。後に説明する図3~図5,図9,図11においても同様である。
 図2に示されるように、積層フィルタ1は、複数の誘電体層がZ軸方向に積層された積層体100として形成される。積層体100は、たとえば直方体状である。Z軸方向に垂直な積層体100の最外層の面を上面UFおよび底面BFとする。上面UFおよび底面BFは、Z軸方向に対向している。
 底面BFには、入出力端子P1,P2、および接地端子110が形成されている。入出力端子P1,P2、および接地端子110は、たとえば底面BFに平面電極が規則的に配置されたLGA(Land Grid Array)端子である。底面BFは、不図示の回路基板に接続される。
 図3は、図2の積層体100の内部に形成された複数の電極を示す図である。図4は、図2の積層フィルタ1をX軸方向(第2方向)から平面視した図である。図5は、図2の積層フィルタ1をY軸方向(第1方向)から平面視した図である。
 図1,図3~図5を参照しながら、積層体100の内部には、接地電極111(第1接地電極)と、接地電極112(第2接地電極)とが形成されている。接地電極111は、接地端子110と接地電極112との間に配置されている。接地電極111は、ビア導体V1,V2,V3,V4,V5,V6(第2ビア導体)によって接地端子110に接続されている。接地電極112は、ビア導体V81(第1接地ビア導体)およびビア導体V82(第1接地ビア導体)の各々によって接地電極111に接続されている。接地電極111,112は、図1の接地点G1,G2にそれぞれ対応する。接地電極111,112は、互いに別個の導体として形成されている。
 LC並列共振器LC1は、線路電極101(第1線路電極)と、キャパシタ電極102(第1キャパシタ電極)と、キャパシタ電極103と、ビア導体V11(第1ビア導体)と、ビア導体V12(第2ビア導体)とを含む。線路電極101は、Y軸方向に延在している。キャパシタ電極102は、接地電極112と線路電極101との間に配置されている。ビア導体V11は、線路電極101およびキャパシタ電極102を接続する。ビア導体V12は、線路電極101からキャパシタ電極102が配置された側に延在し、線路電極101および接地電極111を接続する。キャパシタ電極103は、キャパシタ電極102と接地電極112との間に配置されている。キャパシタ電極103は、ビア導体V13によって接地電極112に接続されている。ビア導体V11の延在方向において、線路電極101と接地電極112との距離は、線路電極101と接地電極111との距離よりも短い。
 入出力端子P1とキャパシタ電極102との間にキャパシタ電極104(第5キャパシタ電極)が配置されている。キャパシタ電極104は、ビア導体V10によって入出力端子P1に接続されている。
 キャパシタ電極102および104によってキャパシタC10が形成されている。ビア導体V12、線路電極101、およびビア導体V11によって、ループ状のインダクタL1が形成されている。キャパシタ電極102および103によってキャパシタC1が形成されている。
 LC並列共振器LC2は、線路電極201(第2線路電極)と、キャパシタ電極202(第2キャパシタ電極)と、キャパシタ電極203と、ビア導体V21(第3ビア導体)と、ビア導体V22(第4ビア導体)とを含む。線路電極201は、Y軸方向に延在している。キャパシタ電極202は、接地電極112と線路電極201との間に配置されている。ビア導体V21は、線路電極201およびキャパシタ電極202を接続する。ビア導体V22は、線路電極201からキャパシタ電極202が配置された側に延在し、線路電極201および接地電極112を接続する。キャパシタ電極203は、キャパシタ電極202と接地電極112との間に配置されている。キャパシタ電極203は、ビア導体V23によって接地電極112に接続されている。
 ビア導体V22、線路電極201、およびビア導体V21によって、ループ状のインダクタL2が形成されている。キャパシタ電極202および203によってキャパシタC2が形成されている。
 線路電極101とキャパシタ電極102との間において、結合電極121(第3結合電極)がビア導体V11に接続されている。結合電極121は、キャパシタ電極102,202の各々と対向している。キャパシタ電極102,202および結合電極121により、キャパシタC12が形成されている。
 LC並列共振器LC3は、線路電極301(第2線路電極)と、キャパシタ電極302(第2キャパシタ電極)と、キャパシタ電極303と、ビア導体V31(第3ビア導体)と、ビア導体V32(第4ビア導体)とを含む。線路電極301は、Y軸方向に延在している。キャパシタ電極302は、接地電極112と線路電極301との間に配置されている。ビア導体V31は、線路電極301およびキャパシタ電極302を接続する。ビア導体V32は、線路電極301からキャパシタ電極302が配置された側に延在し、線路電極301および接地電極112を接続する。キャパシタ電極303は、キャパシタ電極302と接地電極112との間に配置されている。キャパシタ電極303は、ビア導体V33によって接地電極112に接続されている。
 ビア導体V32、線路電極301、およびビア導体V31によって、ループ状のインダクタL3が形成されている。キャパシタ電極302および303によってキャパシタC3が形成されている。
 線路電極201とキャパシタ電極202との間において、結合電極222が配置されている。結合電極222は、キャパシタ電極202,302の各々と対向している。キャパシタ電極202,302および結合電極222によってキャパシタC23が形成されている。
 LC並列共振器LC4は、線路電極401(第3線路電極)と、キャパシタ電極402(第3キャパシタ電極)と、キャパシタ電極403と、ビア導体V41(第5ビア導体)と、ビア導体V42(第6ビア導体)とを含む。線路電極401は、Y軸方向に延在している。キャパシタ電極402は、接地電極112と線路電極401との間に配置されている。ビア導体V41は、線路電極401およびキャパシタ電極402を接続する。ビア導体V42は、線路電極401からキャパシタ電極402が配置された側に延在し、線路電極401および接地電極111を接続する。キャパシタ電極403は、キャパシタ電極402と接地電極112との間に配置されている。キャパシタ電極403は、ビア導体V43によって接地電極112に接続されている。
 入出力端子P2とキャパシタ電極402との間にキャパシタ電極404(第6キャパシタ電極)が配置されている。キャパシタ電極404は、ビア導体V20によって入出力端子P2に接続されている。
 キャパシタ電極402および404によってキャパシタC20が形成されている。ビア導体V42、線路電極401、およびビア導体V41によって、ループ状のインダクタL4が形成されている。キャパシタ電極402および403によってキャパシタC4が形成されている。
 線路電極201とキャパシタ電極202との間において、結合電極221が配置されている。結合電極221は、結合電極121,122の各々と対向している。結合電極121,122,221によってキャパシタC14が形成されている。
 図4を参照しながら、Y軸方向においてビア導体V21,V31,V41の各々は、ビア導体V12よりもビア導体V11に近い。Y軸方向においてビア導体V22,V32,V42は、ビア導体V11よりもビア導体V12に近い。インダクタL1~L4の各々の接地電極からキャパシタ電極への巻回方向は同じである。インダクタL1~L4の各々の空芯部は、重なっている。Y軸方向においてビア導体V81,V82は、ビア導体V12よりもビア導体V11に近い。
 図6は、比較例に係る積層フィルタ10の等価回路図である。積層フィルタ10の等価回路は、図1の積層フィルタ1の等価回路から接地点G2が除かれて、LC並列共振器LC1~LC4の各々が接地点G1に短絡されている等価回路である。これら以外は同様であるため、説明を繰り返さない。
 図7は、図1~図5の積層フィルタ1の通過特性(実線)および図6の積層フィルタ10の通過特性(点線)を併せて示す図である。通過特性とは、挿入損失の周波数特性である。図7の縦軸の減衰量は、0dBから下に向かう方向に増加する。後に説明する図8,図12,図13においても同様である。
 図1、図5、および図7を併せて参照しながら、LC並列共振器LC1,LC4の各々が短絡される接地点G1(接地電極111)と、LC並列共振器LC2,LC3の各々が短絡される接地点G2(接地電極112)とが物理的に分離されていることにより、磁界結合M1,M3が低減される。その結果、積層フィルタ1の減衰特性が改善される。
 図7に示されるように、2GHz~4GHzの周波数帯における挿入損失の極小値は、積層フィルタ1の方が積層フィルタ10より大きい。積層フィルタ1は、通過帯域よりも低い周波数帯(低域側)において積層フィルタ10よりも大きい減衰量を確保することができる。すなわち、積層フィルタ1の減衰特性は、積層フィルタ10の減衰特性よりも改善されている。
 積層フィルタ1においては、図4のビア導体V81,V82をY軸方向に移動させることにより、図1の接地点G1およびG2の間のインダクタ成分が変化する。その結果、高域側に発生する減衰極の周波数を調整することができる。
 図8は、図4のビア導体V81,V82をY軸方向に移動させた場合の積層フィルタ1の挿入損失の変化を示す図である。図8において、通過特性A1は、ビア導体V81,V82が図4に示される位置に配置されている場合の通過特性を示す。通過特性A2は、通過特性A1の場合よりもビア導体V81,V82がビア導体V12に近い場合の通過特性を示す。通過特性A3は、通過特性A2の場合よりもビア導体V81,V82がビア導体V12に近い場合の通過特性を示す。
 図4および図8を参照しながら、通過特性A1~A3において、通過帯域および低域側の通過特性は、ほとんど同じである。通過特性A1の通過帯域よりも高い周波数帯(高域側)には周波数f1において減衰極が発生している。通過特性A2の高域側には周波数f2(>f1)において減衰極が発生している。通過特性A3の高域側には周波数f3(>f2)において減衰極が発生している。ビア導体V81,V82をビア導体V12に近づけることにより、高域側において発生する減衰極の周波数を高くすることができる。
 積層フィルタ1においては、キャパシタ電極102,202,302,402は、接地電極112に接続されたキャパシタ電極103,203,303,403とそれぞれキャパシタを形成している場合について説明した。キャパシタ電極102,202,302,402の各々は、接地電極112とキャパシタを形成してもよい。
 図9は、実施の形態1の変形例に係る積層フィルタ1Aの積層体内部の電極構造を、Y軸方向から平面視した図である。積層フィルタ1Aの電極構造は、図5の積層フィルタ1の電極構造から、キャパシタ電極103,203,303,403、およびビア導体V13,V23,V33,V43が除かれた電極構造である。これら以外は同様であるため、説明を繰り返さない。
 図1および図9を参照しながら、キャパシタ電極102,202,302,402は、接地電極112と対向している。積層フィルタ1Aにおいては、キャパシタ電極102,202,302,402は、接地電極112とともに、キャパシタC1~C4をそれぞれ形成する。積層フィルタに求められる所望の特性に応じて、実施の形態1または変形例のいずれかを選択することにより、キャパシタC1~C4の各々の電極間の距離を調節することができる。
 以上、実施の形態1および変形例に係る積層フィルタによれば、減衰特性を改善することができる。
 [実施の形態2]
 実施の形態2においては、実施の形態1の積層フィルタの2つの端子を互いに電界結合させることにより、積層フィルタの減衰特性をさらに改善する構成について説明する。
 図10は、実施の形態2に係る積層フィルタ2の等価回路図である。図10に示されるように、積層フィルタ2の等価回路は、図1の積層フィルタ1の等価回路にキャパシタC22が追加された等価回路である。これら以外は同様であるため、説明を繰り返さない。図10に示されるように、入出力端子P1,P2は、キャパシタC22を介して互いに接続されている。
 図11は、図10の積層フィルタ2の積層体内部の電極構造を、Y軸方向から平面視した図である。積層フィルタ2の電極構造は、図5の積層フィルタ1の電極構造に、結合電極231(第1結合電極)、および結合電極232(第2結合電極)が追加された電極構造である。これら以外は同様であるため、説明を繰り返さない。
 図11に示されるように、結合電極231は、接地電極111および112の間においてビア導体V10に接続され、入出力端子P1からP2に向かって延在している。結合電極232は、接地電極111および112の間においてビア導体V20に接続され、入出力端子P2からP1に向かって延在している。結合電極231の辺は、入出力端子P1からP2に向かう方向において、結合電極232の辺に対向している。結合電極231,232によって、図10のキャパシタC22が形成されている。
 図12は、図11の積層フィルタ2の通過特性(実線)および図5の積層フィルタ1の通過特性(点線)を併せて示す図である。図12に示されるように、積層フィルタ1においては、低域側の周波数f21付近において減衰極が発生している。一方、積層フィルタ2においては、低域側の周波数f21に加えてf22(<f21)においても減衰極が発生している。その結果、低域側における挿入損失の極小値は、積層フィルタ2の方が積層フィルタ1より大きい。積層フィルタ2は、低域側において積層フィルタ1よりも大きい減衰量を確保することができる。すなわち、積層フィルタ2の減衰特性は、積層フィルタ1の減衰特性よりも改善されている。
 図13は、図12の4GHz~7GHzの部分が拡大された図である。図13に示されるように、積層フィルタ2の挿入損失の最小値は、積層フィルタ1の挿入損失の最小値とほぼ同じである。すなわち、積層フィルタ2の通過帯域における通過特性は、積層フィルタ1の通過帯域における通過特性を維持している。
 以上、実施の形態2に係る積層フィルタによれば、通過帯域における通過特性を維持しながら、減衰特性をさらに改善することができる。
 実施の形態1,2においては、4つのLC共振器を含む積層フィルタについて説明した。実施の形態に係る積層フィルタに含まれるLC共振器の数は、4に限定されない。以下では、実施の形態に係る積層フィルタに含まれるLC共振器の数が3,5,6,7である場合を、実施の形態3,4,5,6においてそれぞれ説明する。
 [実施の形態3]
 図14は、実施の形態3に係る積層フィルタ3の等価回路図である。積層フィルタ3の等価回路は、図1の積層フィルタ1に含まれるLC並列共振器LC1~LC4から、LC並列共振器LC4が除かれた等価回路である。LC並列共振器LC4が除かれたことによる変更以外は同様であるため、説明を繰り返さない。
 図14に示されるように、LC並列共振器LC3(第3LC共振器)は、接地点G1に接続されている。LC並列共振器LC3は、キャパシタC20を介して入出力端子P2に接続されている。LC並列共振器LC3は、キャパシタC13を介してLC並列共振器LC1に接続されている。
 以上、実施の形態3に係る積層フィルタによれば、減衰特性を改善することができる。
 [実施の形態4]
 図15は、実施の形態4に係る積層フィルタ4の等価回路図である。積層フィルタ4の等価回路は、図1の積層フィルタ1に含まれるLC並列共振器LC1~LC4にLC並列共振器LC5(第3LC共振器)が追加された等価回路である。LC並列共振器LC5が追加されたことによる変更以外は同様であるため、説明を繰り返さない。
 図15に示されるように、磁界結合M4は、LC並列共振器LC4とLC5との間の磁界結合を表している。LC並列共振器LC5は、キャパシタC45を介してLC並列共振器LC4(第3LC共振器)に接続されている。LC並列共振器LC5は、キャパシタC15を介してLC並列共振器LC1に接続されている。LC並列共振器LC5は、キャパシタC20を介して入出力端子P2に接続されている。LC並列共振器LC5は、接地点G1に接続されている。LC並列共振器LC4は、接地点G2に接続されている。
 LC並列共振器LC5は、インダクタL5と、キャパシタC5とを含む。インダクタL5およびキャパシタC5は、接地点G1と、キャパシタC45およびC20の接続点との間において並列に接続されている。
 図16は、実施の形態4の変形例に係る積層フィルタ4Aの等価回路図である。積層フィルタ4Aの等価回路は、図15のLC並列共振器LC1,LC5の各々が接続される接地点がG1からG2に変更されているとともに、LC並列共振器LC3が接続される接地点がG2からG1に変更された等価回路である。これら以外は同様であるため、説明を繰り返さない。
 以上、実施の形態4および変形例に係る積層フィルタによれば、減衰特性を改善することができる。
 [実施の形態5]
 図17は、実施の形態5に係る積層フィルタ5の等価回路図である。積層フィルタ5の等価回路は、図15の積層フィルタ4に含まれるLC並列共振器LC1~LC5にLC並列共振器LC6(第3LC共振器)が追加された等価回路である。LC並列共振器LC6が追加されたことによる変更以外は同様であるため、説明を繰り返さない。
 図17に示されるように、磁界結合M5は、LC並列共振器LC5とLC6との間の磁界結合を表している。LC並列共振器LC6は、キャパシタC56を介してLC並列共振器LC5(第4LC共振器)に接続されている。LC並列共振器LC6は、キャパシタC16を介してLC並列共振器LC1に接続されている。LC並列共振器LC6は、キャパシタC20を介して入出力端子P2に接続されている。LC並列共振器LC6は、接地点G1に接続されている。LC並列共振器LC5は、接地点G2に接続されている。
 LC並列共振器LC6は、インダクタL6と、キャパシタC6とを含む。インダクタL6およびキャパシタC6は、接地点G1と、キャパシタC56およびC20の接続点との間において並列に接続されている。
 図18は、実施の形態5の変形例に係る積層フィルタ5Aの等価回路図である。積層フィルタ5Aの等価回路は、図17のLC並列共振器LC1,LC6の各々が接続される接地点がG1からG2に変更されているとともに、LC並列共振器LC3,LC4各々が接続される接地点がG2からG1に変更された等価回路である。これら以外は同様であるため、説明を繰り返さない。
 以上、実施の形態5および変形例に係る積層フィルタによれば、減衰特性を改善することができる。
 [実施の形態6]
 図19は、実施の形態6に係る積層フィルタ6の等価回路図である。積層フィルタ6の等価回路は、図17の積層フィルタ5に含まれるLC並列共振器LC1~LC6にLC並列共振器LC7(第3LC共振器)が追加された等価回路である。LC並列共振器LC7が追加されたことによる変更以外は同様であるため、説明を繰り返さない。
 図19に示されるように、磁界結合M6は、LC並列共振器LC6とLC7との間の磁界結合を表している。LC並列共振器LC7は、キャパシタC67を介してLC並列共振器LC6(第4LC共振器)に接続されている。LC並列共振器LC7は、キャパシタC17を介してLC並列共振器LC1に接続されている。LC並列共振器LC7は、キャパシタC20を介して入出力端子P2に接続されている。LC並列共振器LC7は、接地点G1に接続されている。LC並列共振器LC6は、接地点G2に接続されている。
 LC並列共振器LC7は、インダクタL7と、キャパシタC7とを含む。インダクタL7およびキャパシタC7は、接地点G1と、キャパシタC67およびC20の接続点との間において並列に接続されている。
 図20は、実施の形態6の変形例に係る積層フィルタ6Aの等価回路図である。積層フィルタ6Aの等価回路は、図19のLC並列共振器LC1,LC7の各々が接続される接地点がG1からG2に変更されているとともに、LC並列共振器LC4が接続される接地点がG2からG1に変更された等価回路である。これら以外は同様であるため、説明を繰り返さない。
 以上、実施の形態6および変形例に係る積層フィルタによれば、減衰特性を改善することができる。
 今回開示された各実施の形態は、矛盾しない範囲で適宜組み合わされて実施されることも予定されている。今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
 1~6,1A,4A~6A,10 積層フィルタ、100 積層体、101,201,301,401 線路電極、102~104,202,203,302,303,402~404 キャパシタ電極、110 接地端子、111,112 接地電極、121,122,221,222,231,232 結合電極、C1~C7,C10,C12~C17,C20,C22,C23,C34,C45,C56,C67 キャパシタ、L1~L7 インダクタ、LC1~LC7 並列共振器、P1,P2 入出力端子、V1~V6,V10~V13,V20~V23,V31~V33,V41~V43,V81,V82 ビア導体。

Claims (11)

  1.  第1接地電極および第2接地電極と、
     前記第1接地電極に接続された第1LC共振器と、
     前記第2接地電極に接続された第2LC共振器とを備え、
     前記第1LC共振器は、
      第1線路電極と、
      前記第1接地電極および前記第1線路電極の間に配置された第1キャパシタ電極と、
      前記第1線路電極および前記第1キャパシタ電極を接続する第1ビア導体と、
      前記第1線路電極から前記第1キャパシタ電極が配置された側に延在し、前記第1線路電極および前記第1接地電極を接続する第2ビア導体とを含み、
     前記第2LC共振器は、
      第2線路電極と、
      前記第2接地電極および前記第2線路電極の間に配置された第2キャパシタ電極と、
      前記第2線路電極および前記第2キャパシタ電極を接続する第3ビア導体と、
      前記第2線路電極から前記第2キャパシタ電極が配置された側に延在し、前記第2線路電極および前記第2接地電極を接続する第4ビア導体とを含む、積層フィルタ。
  2.  前記第1線路電極および前記第2線路電極の各々は、第1方向に延在し、
     前記第1方向および前記第1ビア導体の延在方向の各々に直交する第2方向から平面視したとき、前記第1方向において前記第3ビア導体は、前記第2ビア導体よりも前記第1ビア導体に近く、前記第1方向において前記第4ビア導体は、前記第1ビア導体よりも前記第2ビア導体に近い、請求項1に記載の積層フィルタ。
  3.  前記第1接地電極と前記第2接地電極とを接続する第1接地ビア導体をさらに備える、請求項2に記載の積層フィルタ。
  4.  前記第2方向から平面視したとき、前記第1方向において前記第1接地ビア導体は、前記第2ビア導体よりも前記第1ビア導体に近い、請求項3に記載の積層フィルタ。
  5.  接地端子と、
     前接地端子と前記第1接地電極とを接続する第2接地ビア導体をさらに備える、請求項1~4のいずれか1項に記載の積層フィルタ。
  6.  第3LC共振器と、
     前記第1LC共振器と電気的に接続された第1端子と、
     前記第3LC共振器と電気的に接続された第2端子とをさらに備え、
     前記第3LC共振器は、
      第3線路電極と、
      前記第1接地電極および前記第3線路電極の間に配置された第3キャパシタ電極と、
      前記第3線路電極および前記第3キャパシタ電極を接続する第5ビア導体と、
      前記第3線路電極から前記第3キャパシタ電極が配置された側に延在し、前記第3線路電極および前記第1接地電極を接続する第6ビア導体とを含む、請求項1~5のいずれか1項に記載の積層フィルタ。
  7.  第4LC共振器をさらに備え、
      前記第4LC共振器は、
      第4線路電極と、
      前記第2接地電極および前記第4線路電極の間に配置された第4キャパシタ電極と、
      前記第4線路電極および前記第4キャパシタ電極を接続する第7ビア導体と、
      前記第4線路電極から前記第4キャパシタ電極が配置された側に延在し、前記第4線路電極および前記第2接地電極を接続する第8ビア導体とを含む、請求項6に記載の積層フィルタ。
  8.  前記第1キャパシタ電極は、前記第2接地電極と前記第1線路電極との間に配置されており、
     前記第2キャパシタ電極は、前記第2接地電極と前記第2線路電極との間に配置されている、請求項6または7に記載の積層フィルタ。
  9.  前記第1ビア導体の延在方向において、前記第1線路電極と前記第2接地電極との距離は、前記第1線路電極と前記第1接地電極との距離よりも短い、請求項8に記載の積層フィルタ。
  10.  前記第1接地電極および前記第2接地電極の間において前記第1端子に接続され、前記第1端子から前記第2端子に向かって延在する第1結合電極と、
     前記第1接地電極および前記第2接地電極の間において前記第2端子に接続され、前記第2端子から前記第1端子に向かって延在する第2結合電極と、
     前記第1キャパシタ電極と対向し、前記第1端子に接続された第5キャパシタ電極と、
     前記第3キャパシタ電極と対向し、前記第2端子に接続された第6キャパシタ電極とをさらに備え、
     前記第1結合電極は、前記第1端子から前記第2端子に向かう方向において、前記第2結合電極に対向している、請求項8または9に記載の積層フィルタ。
  11.  前記第1キャパシタ電極および前記第2キャパシタ電極の各々と対向する第3結合電極をさらに備える、請求項1~10のいずれか1項に記載の積層フィルタ。
PCT/JP2020/040084 2019-12-03 2020-10-26 積層フィルタ WO2021111761A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202080056761.2A CN114208030A (zh) 2019-12-03 2020-10-26 层叠滤波器
JP2021562493A JP7251658B2 (ja) 2019-12-03 2020-10-26 積層フィルタ
US17/715,995 US12034426B2 (en) 2019-12-03 2022-04-08 Multilayer filter

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019218719 2019-12-03
JP2019-218719 2019-12-03

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/715,995 Continuation US12034426B2 (en) 2019-12-03 2022-04-08 Multilayer filter

Publications (1)

Publication Number Publication Date
WO2021111761A1 true WO2021111761A1 (ja) 2021-06-10

Family

ID=76222513

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/040084 WO2021111761A1 (ja) 2019-12-03 2020-10-26 積層フィルタ

Country Status (4)

Country Link
US (1) US12034426B2 (ja)
JP (1) JP7251658B2 (ja)
CN (1) CN114208030A (ja)
WO (1) WO2021111761A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024070195A1 (ja) * 2022-09-26 2024-04-04 ローム株式会社 半導体装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022026519A (ja) * 2020-07-31 2022-02-10 太陽誘電株式会社 アレイ型インダクタ
JP2024021356A (ja) * 2022-08-03 2024-02-16 Tdk株式会社 積層フィルタ

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007119356A1 (ja) * 2006-04-14 2007-10-25 Murata Manufacturing Co., Ltd. 積層帯域通過フィルタ
JP2013128232A (ja) * 2011-12-19 2013-06-27 Murata Mfg Co Ltd バンドパスフィルタ
JP2017069670A (ja) * 2015-09-29 2017-04-06 株式会社村田製作所 Lc並列共振器および積層帯域通過フィルタ
WO2017169354A1 (ja) * 2016-03-31 2017-10-05 株式会社村田製作所 積層帯域通過フィルタ
WO2018100918A1 (ja) * 2016-12-04 2018-06-07 株式会社村田製作所 積層型lcフィルタ
WO2019087739A1 (ja) * 2017-10-30 2019-05-09 株式会社村田製作所 積層帯域通過フィルタ

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1209848C (zh) 2000-07-24 2005-07-06 松下电器产业株式会社 层叠带通滤波器、高频无线设备及层叠带通滤波器的制造方法
US7671706B2 (en) 2006-04-14 2010-03-02 Murata Manufacturing Co., Ltd High frequency multilayer bandpass filter

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007119356A1 (ja) * 2006-04-14 2007-10-25 Murata Manufacturing Co., Ltd. 積層帯域通過フィルタ
JP2013128232A (ja) * 2011-12-19 2013-06-27 Murata Mfg Co Ltd バンドパスフィルタ
JP2017069670A (ja) * 2015-09-29 2017-04-06 株式会社村田製作所 Lc並列共振器および積層帯域通過フィルタ
WO2017169354A1 (ja) * 2016-03-31 2017-10-05 株式会社村田製作所 積層帯域通過フィルタ
WO2018100918A1 (ja) * 2016-12-04 2018-06-07 株式会社村田製作所 積層型lcフィルタ
WO2019087739A1 (ja) * 2017-10-30 2019-05-09 株式会社村田製作所 積層帯域通過フィルタ

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024070195A1 (ja) * 2022-09-26 2024-04-04 ローム株式会社 半導体装置

Also Published As

Publication number Publication date
CN114208030A (zh) 2022-03-18
JP7251658B2 (ja) 2023-04-04
US20220231655A1 (en) 2022-07-21
US12034426B2 (en) 2024-07-09
JPWO2021111761A1 (ja) 2021-06-10

Similar Documents

Publication Publication Date Title
WO2021111761A1 (ja) 積層フィルタ
CN110048686B (zh) 层叠带通滤波器
JP4995606B2 (ja) 受動部品
US20120249264A1 (en) Layered bandpass filter
WO2015087821A1 (ja) フィルタ部品
WO2016167171A1 (ja) 共振回路、帯域阻止フィルタおよび帯域通過フィルタ
TWI732610B (zh) Lc濾波器
CN111357198A (zh) 带通滤波器
US11005443B2 (en) Multilayer balun
KR100461719B1 (ko) 적층형 유전체 필터
US11588461B2 (en) Resonant element, filter, and diplexer
TWI732609B (zh) Lc濾波器
JP4505827B2 (ja) 電子部品
JP4457363B2 (ja) バンドパスフィルタ
TWI812016B (zh) 積層型濾波器裝置
WO2024203057A1 (ja) フィルタ
US11139793B2 (en) Diplexer
US20220385260A1 (en) Lc resonator and lc filter
US20230083216A1 (en) Multilayer electronic component
JP2023121294A (ja) フィルタ
JP4490611B2 (ja) バンドパスフィルタ
CN116455345A (zh) 层叠型带通滤波器
JP2022138076A (ja) バンドパスフィルタ
JP2022138074A (ja) 積層型フィルタ装置
JP2023128836A (ja) フィルタ回路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20895737

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021562493

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20895737

Country of ref document: EP

Kind code of ref document: A1