WO2021109791A1 - 一种以ba为原料合成熊去氧胆酸的方法 - Google Patents

一种以ba为原料合成熊去氧胆酸的方法 Download PDF

Info

Publication number
WO2021109791A1
WO2021109791A1 PCT/CN2020/126922 CN2020126922W WO2021109791A1 WO 2021109791 A1 WO2021109791 A1 WO 2021109791A1 CN 2020126922 W CN2020126922 W CN 2020126922W WO 2021109791 A1 WO2021109791 A1 WO 2021109791A1
Authority
WO
WIPO (PCT)
Prior art keywords
formula
compound
reaction
solvent
ethylene glycol
Prior art date
Application number
PCT/CN2020/126922
Other languages
English (en)
French (fr)
Inventor
仇文卫
王杰
Original Assignee
江苏佳尔科药业集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏佳尔科药业集团股份有限公司 filed Critical 江苏佳尔科药业集团股份有限公司
Priority to JP2022552994A priority Critical patent/JP7365082B2/ja
Priority to US17/781,095 priority patent/US20230039886A1/en
Priority to KR1020227017621A priority patent/KR20220088765A/ko
Priority to EP20897016.0A priority patent/EP4071161A4/en
Publication of WO2021109791A1 publication Critical patent/WO2021109791A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07JSTEROIDS
    • C07J9/00Normal steroids containing carbon, hydrogen, halogen or oxygen substituted in position 17 beta by a chain of more than two carbon atoms, e.g. cholane, cholestane, coprostane
    • C07J9/005Normal steroids containing carbon, hydrogen, halogen or oxygen substituted in position 17 beta by a chain of more than two carbon atoms, e.g. cholane, cholestane, coprostane containing a carboxylic function directly attached or attached by a chain containing only carbon atoms to the cyclopenta[a]hydrophenanthrene skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07JSTEROIDS
    • C07J21/00Normal steroids containing carbon, hydrogen, halogen or oxygen having an oxygen-containing hetero ring spiro-condensed with the cyclopenta(a)hydrophenanthrene skeleton
    • C07J21/005Ketals
    • C07J21/006Ketals at position 3
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07JSTEROIDS
    • C07J9/00Normal steroids containing carbon, hydrogen, halogen or oxygen substituted in position 17 beta by a chain of more than two carbon atoms, e.g. cholane, cholestane, coprostane

Definitions

  • the present invention belongs to the technical field of organic chemistry synthesis/drug synthesis, and relates to a method for synthesizing ursodeoxycholic acid, in particular to a 21-hydroxy-20-methylpregna-4-en-3-one (BA) A method for synthesizing ursodeoxycholic acid as a raw material.
  • BA 21-hydroxy-20-methylpregna-4-en-3-one
  • Ursodeoxycholic acid (Ursodeoxycholic acid, UDCA) (as shown in formula 1), chemical name 3 ⁇ , 7 ⁇ -dihydroxy-5 ⁇ -cholan-24-acid (3 ⁇ , 7 ⁇ -dihydroxy-5 ⁇ -cholan-24-oicacid ), CAS No. 128-13-2, molecular formula C 24 H 40 O 4 , molecular weight 392.56, white powder, odorless, bitter taste, melting point 203-204°C.
  • Ursodeoxycholic acid is the main component of the precious Chinese medicine bear bile. It is the first-line treatment drug for primary biliary cirrhosis (PBC) approved by the US FDA. It can also effectively treat gallstone diseases and chronic liver diseases in clinical practice. , Has broad market prospects.
  • PBC primary biliary cirrhosis
  • the synthesis report of ursodeoxycholic acid mainly includes the following methods. (1) Using hyodeoxycholic acid as a raw material, 7-step reaction, ursodeoxycholic acid was synthesized with a total yield of 15% (as shown in Scheme 1, Journal) of the Chemical Society Perkin Transactions, 1990, 1:1-3.). The raw materials used in this route are cheap and easy to obtain, but the steps are cumbersome and the yield is low. At the same time, the last step of the reaction uses lithium-liquid ammonia reduction, which is more dangerous.
  • ursodeoxycholic acid was synthesized with a total yield of 38% (as shown in Scheme 4, WO2014020024 A1).
  • the raw materials used in this route are cheap and easily available, and the yield is acceptable, but the route is too long.
  • ursodeoxycholic acid was synthesized with a total yield of 53% after 4 steps of reaction (as shown in Scheme 5, CN105503987 A). This route is short and the yield is acceptable, but the selectivity is poor during hydrogen reduction.
  • ursodeoxycholic acid was synthesized with a total yield of 64% through a 2-step reaction (as shown in Scheme 6, Bioorganic&Medicinal Chemistry, 2016, 24: 3986-3993.). This route is short and the yield is relatively high, but the raw material chenodeoxycholic acid is more expensive.
  • the synthetic routes of ursodeoxycholic acid that have been reported so far not only have problems such as too complicated steps, low yield, large pollution, and expensive raw materials, but also the existing synthetic routes of ursodeoxycholic acid reported above all use animal bile acids ( Bovine, sheep cholic acid, chenodeoxycholic acid, urscholic acid, hyocholic acid, hyodeoxycholic acid) are the starting materials, but due to the emergence of diseases such as avian influenza, mad cow disease, swine streptococcus and African swine fever, People have doubts about the safety of animal-derived raw materials. Therefore, the development of an efficient method for the synthesis of ursodeoxycholic acid based on plant-derived raw materials is of great significance and industrial value.
  • the present invention overcomes the defects of the prior art, and uses 21-hydroxy-20-methylpregn-4-en-3-one ((20S)-21-hydroxy-20-methylpregn-4-en-3-one) Also known as BA (bisnoralcohol) as a raw material (which is obtained by biological fermentation of phytosterols) through ethylene glycol or neopentyl glycol protection, oxidation, Wittig reaction, deprotection, reduction, hydrolysis and other steps to synthesize the ursodeoxy bile acid.
  • BA bisnoralcohol
  • the efficient and simple method for chemically synthesizing ursodeoxycholic acid provided by the invention has the advantages of cheap and easy-to-obtain raw materials, mild reaction conditions, simple post-treatment, environmental friendliness, low cost, high yield, and convenient industrial production.
  • the raw material 21-hydroxy-20-methylpregn-4-en-3-one ((20S)-21-hydroxy-20-methylpregn-4-en-3-one) used in the present invention is also called BA ( Bisnoralcohol) is derived from the fermentation of phytosterols, leftovers from the oil and fat process. It is a green raw material of plant origin. The current annual output is 1,000 tons and the price is low. It can avoid the infection of pathogenic bacteria and viruses in the prior art. ; The synthetic route of the present invention, its synthetic steps are easy to operate, high yield, environmentally friendly, and convenient for industrial production.
  • the 21-hydroxy-20-methylpregna-4-en-3-one (BA) as the raw material includes, but is not limited to, obtained by biological fermentation of plant sterols, or obtained by chemical synthesis.
  • the method for synthesizing ursodeoxycholic acid from 21-hydroxy-20-methylpregna-4-en-3-one (BA) raw material includes the following steps:
  • the method for synthesizing ursodeoxycholic acid from 21-hydroxy-20-methylpregna-4-en-3-one (BA) as a raw material provided by the present invention further includes the following steps:
  • R is an alkyl group; preferably a C1-C20 alkyl group; more preferably, a C1, C2 alkyl group.
  • the ethylene glycol protection reaction means that BA, ethylene glycol, and p-toluenesulfonic acid represented by formula (1) are dissolved in the first solvent, and the ethylene glycol protection reaction occurs to obtain the formula ( 2) Compound; or, BA, ethylene glycol, p-toluenesulfonic acid, and triethyl orthoformate represented by formula (1) are dissolved in the first solvent, and the ethylene glycol protection reaction occurs to obtain the compound of formula (2);
  • BA, ethylene glycol, and p-toluenesulfonic acid represented by formula (1) are dissolved in the first solvent, and the ethylene glycol protection reaction occurs to obtain the compound of formula (2).
  • the first solvent is selected from one or more of benzene, toluene, ethyl acetate, tetrahydrofuran, hexane, etc.; preferably, it is benzene.
  • the ethylene glycol protection reaction in step (a) is: BA, ethylene glycol, and p-toluenesulfonic acid represented by formula (1) are dissolved in the first solvent, the ethylene glycol protection reaction occurs, and the formula (2) )
  • the temperature of the ethylene glycol protection reaction is 80 to 130°C, preferably 90°C; the time of the ethylene glycol protection reaction is 2 to 36 hours, preferably 24 hours.
  • ethylene glycol protection reaction in step (a) is: BA, ethylene glycol, p-toluenesulfonic acid, and triethyl orthoformate represented by formula (1) are dissolved in the first solvent, ethylene glycol protection occurs
  • the reaction yields a compound of formula (2); wherein the molar ratio of BA, ethylene glycol, p-toluenesulfonic acid, and triethyl orthoformate represented by formula (1) is 1: (1-50): (0.01-1) ): (1-20); preferably, 1:10:0.1:3; the temperature of the ethylene glycol protection reaction is 0-50°C, preferably room temperature 25°C; the time of the ethylene glycol protection reaction It is 2 to 36 hours, preferably 8 hours.
  • the synthesis step of the compound of formula (2) includes: the BA represented by formula (1) is dissolved in a first solvent, and reacted with ethylene glycol and p-toluenesulfonic acid to protect the compound represented by formula (1)
  • the 3-position carbonyl group of BA gives the compound of formula (2).
  • step (b) the oxidation reaction means: the compound of formula (2), TEMPO, sodium bicarbonate, tetrabutylammonium bromide, and an oxidizing agent are dissolved in the second solvent to undergo oxidation reaction to obtain the compound of formula (3) .
  • the oxidant is selected from one of N-chlorosuccinimide (NCS), N-bromosuccinimide (NBS), 2-iodoyl benzoic acid (IBX), etc. or Multiple; preferably, N-chlorosuccinimide (NCS).
  • step (b) the molar ratio of the compound of formula (2), TEMPO, sodium bicarbonate, tetrabutylammonium bromide, and oxidant is 1: (0-1): (0-20): (0-1): (1-5); Preferably, it is 1:0.01:1.35:0.1:1.15.
  • the second solvent is selected from one or more of dichloromethane, tetrahydrofuran, toluene, dimethyl sulfoxide, water, etc.; preferably, it is a mixed solvent of dichloromethane and water.
  • step (b) the temperature of the oxidation reaction is 0-30°C; preferably, it is 0°C.
  • step (b) the oxidation reaction time is 2-8h; preferably, it is 5h.
  • the synthesis step of the compound of formula (3) includes: dissolving the compound of formula (2) in a second solvent, and then adding TEMPO, sodium bicarbonate, tetrabutylammonium bromide, and NCS to cause an oxidation reaction, The compound of formula (3) is obtained.
  • step (c) the Wittig reaction means that the compound of formula (3) and ethoxyformylmethylenetriphenylphosphine are dissolved in a third solvent to cause a Wittig reaction to obtain a compound of formula (6).
  • the molar ratio of the compound of formula (3) to ethoxyformylmethylenetriphenylphosphine is 1:(1-5); preferably, it is 1:2.
  • the third solvent is selected from one or more of benzene, toluene, ethyl acetate, tetrahydrofuran, hexane, etc.; preferably, toluene.
  • the temperature of the Wittig reaction is 80-130°C; preferably, it is 110°C.
  • the time of the Wittig reaction is 2-8h; preferably, it is 4h.
  • the Wittig reaction means that the compound of formula (3), sodium hydride, and triethyl phosphonoacetate are dissolved in a third solvent to cause a Wittig reaction to obtain a compound of formula (6).
  • the molar ratio of the compound of formula (3), sodium hydride, and triethyl phosphonoacetate is 1:(1-5):(1-5); preferably, it is 1:1.5:1.5.
  • the third solvent is selected from one or more of benzene, toluene, ethyl acetate, tetrahydrofuran, hexane, etc.; preferably, it is tetrahydrofuran.
  • the temperature of the Wittig reaction is 0-30°C; preferably, it is 0°C.
  • the time of the Wittig reaction is 2-8h; preferably, it is 4h.
  • the synthesis steps of the compound of formula (6) include: compound of formula (3), ethoxyformylmethylene triphenylphosphine or compound of formula (3), sodium hydride, triethyl phosphonoacetate Dissolved in the third solvent, Wittig reaction occurs to obtain the compound of formula (6).
  • the oxidation reaction refers to: the compound of formula (6), oxidant, N-hydroxyphthalimide (NHPI), and acetic acid are dissolved in the fourth solvent to undergo oxidation reaction to obtain formula ( 7) Compound.
  • the oxidant is selected from one or more of Na 2 Cr 2 O 7 , K 2 Cr 2 O 7 , PDC, BPO, etc.; preferably, it is PDC.
  • step (d) the molar ratio of the compound of formula (6), oxidant, N-hydroxyphthalimide (NHPI), and acetic acid is 1: (1-5): (1-5): (0- 5); Preferably, it is 1:1.1:1.1:0.
  • the fourth solvent is selected from toluene, acetone, acetonitrile, water, dichloromethane, N,N-dimethylformamide, ethyl acetate, tert-butanol, N-methylpyrrolidone, etc.
  • step (d) the temperature of the oxidation reaction is 0-50°C; preferably, it is room temperature 25°C.
  • step (d) the oxidation reaction time is 10 to 48 hours; preferably, it is 20 hours.
  • the synthesis step of the compound of formula (7) includes: dissolving the compound of formula (6) in a fourth solvent, adding PDC and NHPI, and performing an oxidation reaction to obtain the compound of formula (7).
  • step (e) the deglycol protection reaction means that the compound of formula (7) and the acid are dissolved in the fifth solvent, and the deglycol protection reaction occurs to obtain the compound of formula (8).
  • step (e) the molar ratio of the compound of formula (7) to the acid is 1:(1-50); preferably, it is 1:5.
  • the acid is selected from one or more of concentrated sulfuric acid, concentrated hydrochloric acid, p-toluenesulfonic acid, etc.; preferably, concentrated sulfuric acid.
  • step (e) the temperature of the hydrolysis reaction is 0-50°C; preferably, it is room temperature 25°C.
  • step (e) the hydrolysis reaction time is 1-10h; preferably, it is 4h.
  • the synthesis step of the compound of formula (8) includes: dissolving the compound of formula (7) in a fifth solvent, adding concentrated sulfuric acid, and undergoing a hydrolysis reaction to obtain the compound of formula (8).
  • step (f) the molar ratio of the compound of formula (8) to the base is 1:(1-5); preferably, it is 1:2.
  • step (f) the mass ratio of the compound of formula (8) to Raney nickel is 1:(0.1-5); preferably, it is 1:1.
  • the base is selected from one or more of sodium tert-butoxide, potassium tert-butoxide, sodium ethoxide, sodium methoxide, sodium hydroxide, potassium hydroxide, etc.; preferably, tert-butanol sodium.
  • the catalyst is selected from one or more of Raney nickel and the like. Preferably, it is Raney nickel.
  • step (f) the temperature of the hydrolysis and reduction reaction is 20-100°C; preferably, it is 90°C.
  • step (f) the time for the hydrolysis and reduction reaction is 24 to 72 hours; preferably, it is 48 hours.
  • step (f) the reaction is carried out under the condition of hydrogen pressurization, and the pressure range of the hydrogen is 0.1-10 MPa; preferably, it is 4.0 MPa.
  • the synthesis step of the compound of formula (9) includes: dissolving the compound of formula (8) in a sixth solvent, adding Raney nickel and sodium tert-butoxide in sequence, and reacting to obtain the compound of formula (9) ursodeoxy cholic acid.
  • step (g) the oxidation reaction means that BA, TEMPO, sodium bicarbonate, tetrabutylammonium bromide, and an oxidizing agent represented by formula (1) are dissolved in the seventh solvent to undergo oxidation reaction to obtain formula ( 4) Compound.
  • the oxidant is selected from one of N-chlorosuccinimide (NCS), N-bromosuccinimide (NBS), 2-iodoyl benzoic acid (IBX), etc. or Multiple; preferably, N-chlorosuccinimide (NCS).
  • step (g) the molar ratio of BA, TEMPO, sodium bicarbonate, tetrabutylammonium bromide, and oxidant represented by formula (1) is 1: (0-1): (0-20): (0- 1): (1-5); preferably, 1:0.01:1.35:0.1:1.15.
  • the seventh solvent is selected from one or more of dichloromethane, tetrahydrofuran, toluene, dimethyl sulfoxide, water, etc.; preferably, it is a mixed solvent of dichloromethane and water.
  • step (g) the temperature of the oxidation reaction is 0-30°C; preferably, it is 0°C.
  • step (g) the oxidation reaction time is 2-8h; preferably, it is 5h.
  • the synthesis step of the compound of formula (4) includes: dissolving BA represented by formula (1) in a seventh solvent, and then adding TEMPO, sodium bicarbonate, tetrabutylammonium bromide, and NCS to produce The oxidation reaction yields the compound of formula (4).
  • the Wittig reaction refers to: a compound of formula (4), methoxyformylmethylenetriphenylphosphine or ethoxyformylmethylenetriphenylphosphine or propoxyformylmethylene Triphenylphosphine is dissolved in the eighth solvent, Wittig reaction occurs, and the compound of formula (5) is obtained.
  • the molar ratio of the compound of formula (4), methoxyformylmethylenetriphenylphosphine or ethoxyformylmethylenetriphenylphosphine or propoxyformylmethylenetriphenylphosphine is 1:( 1 to 5); preferably, 1:2.
  • the eighth solvent is selected from one or more of benzene, toluene, ethyl acetate, tetrahydrofuran, hexane, etc.; preferably, toluene.
  • the temperature of the Wittig reaction is 80-130°C; preferably, it is 110°C.
  • the time of the Wittig reaction is 2-8h; preferably, it is 4h.
  • step (h) the Wittig reaction means that the compound of formula (4), sodium hydride, diethyl phosphonoacetate or triethyl phosphonoacetate or propyl diethyl phosphonoacetate are dissolved in In the eighth solvent, Wittig reaction occurs to obtain the compound of formula (5).
  • the eighth solvent is selected from one or more of benzene, toluene, ethyl acetate, tetrahydrofuran, hexane, etc.; preferably, it is tetrahydrofuran.
  • the molar ratio of the compound of formula (4), sodium hydride, methyl phosphonoacetate diethyl or triethyl phosphonoacetate or propyl diethyl phosphonoacetate is 1:(1 ⁇ 5):(1 ⁇ 5); Preferably, it is 1:1.5:1.5.
  • the temperature of the Wittig reaction is 0-30°C; preferably, it is 0°C.
  • the time of the Wittig reaction is 2-8h; preferably, it is 4h.
  • the synthesis step of the compound of formula (5) includes: compound of formula (4), ethoxyformylmethylene triphenylphosphine or compound of formula (4), sodium hydride, methyl phosphonoacetate two Ethyl or triethyl phosphonoacetate or propyl diethyl phosphonoacetate is dissolved in the eighth solvent, and Wittig reaction occurs to obtain the compound of formula (5).
  • the ethylene glycol or neopentyl glycol protection reaction refers to: the compound of formula (5), ethylene glycol or neopentyl glycol, and p-toluenesulfonic acid are dissolved in the ninth solvent to produce ethylene glycol Protection reaction of alcohol or neopentyl glycol to obtain compound of formula (6); or, compound of formula (5), ethylene glycol or neopentyl glycol, p-toluenesulfonic acid, and triethyl orthoformate are dissolved in the ninth solvent,
  • the protection reaction of ethylene glycol or neopentyl glycol occurs to obtain the compound of formula (6); preferably, the compound of formula (5), ethylene glycol or neopentyl glycol, and p-toluenesulfonic acid are dissolved in the ninth solvent to produce Ethylene glycol or neopentyl glycol protection reaction to obtain the compound of formula (6);
  • the ninth solvent is selected from one or more of benzene, toluene, ethyl acetate, tetrahydrofuran, hexane, etc.; preferably, toluene.
  • the ethylene glycol or neopentyl glycol protection reaction in step (i) is: the compound of formula (5), ethylene glycol or neopentyl glycol, and p-toluenesulfonic acid are dissolved in the ninth solvent, ethylene glycol Or neopentyl glycol protection reaction to obtain a compound of formula (6), wherein the molar ratio of the compound of formula (5), ethylene glycol or neopentyl glycol, and p-toluenesulfonic acid is 1: (1-50): (0.01 -1), preferably 1:10:0.01; the temperature of the ethylene glycol or neopentyl glycol protection reaction is 80-130°C, preferably 110°C; the ethylene glycol or neopentyl glycol protection reaction temperature
  • the time is 2 to 36 hours, preferably 24 hours.
  • the compound of formula (5), ethylene glycol or neopentyl glycol, p-toluenesulfonic acid, and triethyl orthoformate are dissolved in the ninth solvent
  • the compound of formula (6) is obtained, wherein the moles of the compound of formula (5), ethylene glycol or neopentyl glycol, p-toluenesulfonic acid, and triethyl orthoformate
  • the ratio is 1: (1-50): (0.01-1): (1-20); preferably, 1:10:0.1:3;
  • the protection reaction temperature of ethylene glycol or neopentyl glycol is 0 ⁇ 50°C, preferably room temperature 25°C;
  • the time for the ethylene glycol or neopentyl glycol protection reaction is 2 to 36 hours, preferably 8 hours.
  • the synthesis step of the compound of formula (6) includes: dissolving the compound of formula (5) in a ninth solvent, reacting with ethylene glycol, neopentyl glycol, and p-toluenesulfonic acid to protect formula (5)
  • the 3-position carbonyl group of the compound yields the compound of formula (6).
  • the present invention also provides compounds represented by formula (6'), formula (6"), formula (7'), formula (7") or formula (8)
  • R is an alkyl group; preferably a C1-C20 alkyl group; more preferably, a C1, C2 alkyl group.
  • the compound represented by the formula (6) of the present invention includes a compound of the formula (6′) and a compound of the formula (6"), wherein the compound of the formula (6′) includes a compound of the formula (6′-A) and a compound of the formula (6′-B) Compounds, compounds of formula (6'-C), etc.; compounds of formula (6") include compounds of formula (6"-A), compounds of formula (6"-B), compounds of formula (6"-C), and the like.
  • the compound represented by the formula (7) of the present invention includes a compound of the formula (7′) and a compound of the formula (7"), wherein the compound of the formula (7′) includes a compound of the formula (7′-B), etc.; a compound of the formula (7") Including compounds of formula (7"-B) and the like.
  • the beneficial effects of the present invention include that in the preparation method of ursodeoxycholic acid of the present invention, the raw material BA used is a plant-derived raw material, which avoids the problem of pathogenic bacteria and virus infection, and is cheap and easy to obtain; the operation of the ursodeoxycholic acid synthesis step Simple, high yield, environmentally friendly, mild reaction conditions, simple post-treatment, low cost, and convenient for industrial production.
  • Figure 1 shows the TLC detection result of the compound of formula (10) oxidized by PDC in Comparative Example 1.
  • Figure 2 shows the TLC detection result of the compound of formula (11) oxidized by PDC in Comparative Example 1.
  • Figure 3 shows the TLC detection result of the compound of formula (8) reduced by Pd/CH 2 in Comparative Example 2.
  • Figure 4 shows the TLC detection result of the compound of formula (8) reduced by NaBH 4 in Comparative Example 2.
  • BA (10.0 g, 30.26 mmol), p-toluenesulfonic acid (57 mg, 0.30 mmol), ethylene glycol (16.8 mL, 302.60 mmol) and 300 mL of benzene were sequentially added into a 250 mL single-neck flask, and the reaction was carried out under reflux and water separation for 24 hours. After the reaction is cooled, add 20 mL of saturated sodium bicarbonate solution and stir for 10 min. After concentration under reduced pressure, add 100 mL of water, extract with ethyl acetate (60 mL ⁇ 3), wash with water (50 mL ⁇ 2), and wash with saturated sodium chloride solution (50 mL).
  • BA 5.0 g, 15.13 mmol
  • IBX 8.5 g, 30.26 mmol
  • 50 mL THF 50 mL DMSO were sequentially added to a 250 mL single-neck flask, and reacted at room temperature for 5 hours.
  • reaction solution was added with 30 mL saturated NaHCO 3 and stirred for 10 min, 100 mL of water was added, and extracted with ethyl acetate (50 mL*3). The organic phases were combined, washed with saturated brine (50 mL), and dried with anhydrous sodium sulfate. Concentrate under reduced pressure to obtain a pale yellow solid. The light yellow solid was added to 25 mL of ethanol, pulped at room temperature for 12 hours, and filtered with suction to obtain compound 6"-B (9g, white solid) with a molar yield of 74%.
  • the present invention tested various oxidation reaction conditions (as shown in Table 1), and obtained the best oxidation reaction conditions (as shown in Table 1, Entry 23).
  • the optimal reaction conditions are obtained by screening and optimizing the solvent, oxidant, and reaction temperature, that is, the optimal reaction solvent is acetone/water (9:1), the optimal oxidant is PDC, and the optimal reaction temperature is At 25°C, the reaction yield reached 85%.
  • the present invention tested various reduction and hydrolysis reaction conditions (as shown in Table 2), and obtained the best reduction and hydrolysis reaction conditions (as shown in Table 2, Entry 12).
  • the optimal reaction conditions are obtained by screening and optimizing the solvent, base and reaction temperature, that is, the optimal reaction solvent is 2-methyltetrahydrofuran/isopropanol (1:1, v/v).
  • the preferred base is sodium tert-butoxide
  • the optimal reaction temperature is 90°C
  • the reaction yield reaches 87%.
  • the compound of formula (8) (1.0g, 2.42mmol), 20mL of isopropanol, 1.0g of Raney Ni, H 2 (4.0MPa) were sequentially added to the autoclave, reacted at 90°C for 24 hours, and then potassium tert-butoxide ( 543mg, 4.84mmol), the reaction was continued at 90°C for 24 hours.
  • the compound of formula (8) (1.0g, 2.42mmol), 20mL of isopropanol, 1.0g of Raney Ni, H 2 (4.0MPa) were added to the autoclave successively, reacted at 90°C for 24 hours, and then added sodium tert-butoxide ( 465mg, 4.84mmol), the reaction was continued at 90°C for 24 hours.
  • the compound of formula (5-B) (1.0 g, 2.51 mmol), 10 mL of acetyl chloride and 10 mL of acetic anhydride were sequentially added to a 100 mL single-necked flask, and the reaction was refluxed for 4 hours. After the completion of the reaction, it was concentrated under reduced pressure to obtain the compound of formula (11) (1.1 g, white solid), which was directly used in the next step.
  • the compound of formula (11) (1.1 g, 2.51 mmol), 18 mL of acetone, 2 mL of water, NHPI (444 mg, 2.76 mmol), PDC (1.0 g, 2.76 mmol) were sequentially added to a 100 mL single-necked flask, and the reaction was carried out at room temperature for 20 hours.
  • reaction formula is as follows.
  • the compound of formula (8) (1.0 g, 2.42 mmol), 20 mL of methanol, 0.1 g of 10% Pd/C, and H 2 (4.0 MPa) were sequentially added to the autoclave, and reacted at 60° C. for 24 hours.
  • Pd/CH 2 is used to reduce the compound (8), the reaction result is complicated, and the compound of formula (14) is not isolated.

Abstract

一种熊去氧胆酸的合成方法,以植物源化合物BA为原料,经过乙二醇或新戊二醇保护、氧化、Wittig反应、脱保护、还原、水解等步骤合成所述熊去氧胆酸。合成熊去氧胆酸所用原料廉价易得,合成步骤操作简便、收率高、环境友好、便于工业化生产。

Description

一种以BA为原料合成熊去氧胆酸的方法 技术领域
本发明属于有机化学合成/药物合成技术领域,涉及一种熊去氧胆酸的合成方法,具体涉及一种以21-羟基-20-甲基孕甾-4-烯-3-酮(BA)为原料合成熊去氧胆酸的方法。
背景技术
熊去氧胆酸(Ursodeoxycholicacid,UDCA)(如式1所示),化学名称3α,7β-二羟基-5β-胆甾烷-24-酸(3α,7β-dihydroxy-5β-cholan-24-oicacid),CAS号128-13-2,分子式C 24H 40O 4,分子量392.56,白色粉末,无臭,味苦,熔点为203-204℃。熊去氧胆酸是名贵中药熊胆所含的主要成分,是美国FDA批准的原发性胆汁性肝硬化(PBC)的一线治疗药物,在临床上还可以有效治疗胆结石类疾病和慢性肝病,具有广阔的市场前景。
目前,制备熊去氧胆酸主要有动物胆汁提取和人工合成两种方法,但动物胆汁提取来源有限,难以满足医疗需要,因此主要依赖人工合成。
Figure PCTCN2020126922-appb-000001
式1熊去氧胆酸的结构式
熊去氧胆酸的合成报道主要有以下方法,(1)以猪去氧胆酸为原料,经7步反应,以总收率15%合成了熊去氧胆酸(如Scheme 1所示,Journal of the Chemical Society Perkin Transactions,1990,1:1-3.)。该路线所采用的原料廉价易得,但步骤繁琐、收率低,与此同时,最后一步反应采用了锂-液氨还原,危险性较大。
Figure PCTCN2020126922-appb-000002
(2)以猪去氧胆酸为原料,经9步反应,以总收率16%合成了熊去氧胆酸(如Scheme  2所示,Synthesis,2016,48:588-594.)。该路线所采用的原料廉价易得,但步骤过于繁琐、收率低。同样,在还原时使用了金属钠,反应剧烈,危险性较大。
Figure PCTCN2020126922-appb-000003
(3)以胆酸为原料,经4步反应,以总收率53%合成了熊去氧胆酸(如Scheme 3所示,Steroids,2011,76:1397-1399.)。该路线较短,产率相对较高,但反应所使用的氧化剂IBX价格昂贵,还原时使用了金属钠,反应剧烈,危险性较大。
Figure PCTCN2020126922-appb-000004
(4)以胆酸为原料,经10步反应,以总收率38%合成了熊去氧胆酸(如Scheme 4所示,WO2014020024 A1)。该路线所使用的原料廉价易得,产率尚可,但路线过长。
Figure PCTCN2020126922-appb-000005
(5)以鹅去氧胆酸为原料,经4步反应,以总收率53%合成了熊去氧胆酸(如Scheme 5所示,CN105503987 A)。该路线较短,收率尚可,但氢气还原时选择性较差。
Figure PCTCN2020126922-appb-000006
(6)以鹅去氧胆酸为原料,经2步反应,以总收率64%合成了熊去氧胆酸(如Scheme 6所示,Bioorganic&Medicinal Chemistry,2016,24:3986-3993.)。该路线较短,产率相对较高,但原料鹅去氧胆酸价格较贵。
Figure PCTCN2020126922-appb-000007
目前已经报道的熊去氧胆酸合成路线不仅存在步骤过于繁琐、产率低、污染大、原料昂贵等问题,而且以上报道的现有熊去氧胆酸合成路线均以动物胆酸类物质(牛、羊胆酸、鹅去氧胆酸、熊胆酸、猪胆酸、猪去氧胆酸)为起始原料,但由于禽流感、疯牛病、猪链球菌病和非洲猪瘟等疾病的出现,人们对于动物来源原料的安全性产生了怀疑,因此,研发一种基于植物源原料的,高效的熊去氧胆酸合成方法具有重要意义和工业化价值。
发明内容
本发明克服了现有技术的缺陷,以21-羟基-20-甲基孕甾-4-烯-3-酮((20S)-21-hydroxy-20-methylpregn-4-en-3-one)又称为BA(bisnoralcohol)为原料(其由植物甾醇经生物发酵所得)经过乙二醇或新戊二醇保护、氧化、Wittig反应、脱保护、还原、水解等步骤合成所述熊去氧胆酸。本发明提供的高效、简便的化学合成熊去氧胆酸的方法,原料廉价易得、反应条件温和、后处理简便、环境友好、成本低、收率高、便于工业化生产。
本发明所使用的原料21-羟基-20-甲基孕甾-4-烯-3-酮((20S)-21-hydroxy-20-methylpregn-4-en-3-one)又称为BA(bisnoralcohol)来源于油脂工艺下脚料植物甾醇的发酵,是一种植物源的绿色原料,目前年产量达千吨级,价格便宜,很好地避免了现有技术中致病菌和病毒的感染问题;本发明的合成路线,其合成步骤操作简便、收率高、环境友好、便于工业化生产。
本发明合成方法中,原料所述21-羟基-20-甲基孕甾-4-烯-3-酮(BA)包括但不限于通过植物甾醇经生物发酵得到,或由化学合成方法得到。
本发明提供的以21-羟基-20-甲基孕甾-4-烯-3-酮(BA)原料合成熊去氧胆酸的方法,包括以下步骤:
(a)在第一溶剂中,式(1)所示的BA经乙二醇保护,得到式(2)化合物;
(b)在第二溶剂中,式(2)化合物经氧化反应,得到式(3)化合物;
(c)在第三溶剂中,式(3)化合物经Wittig反应,得到式(6)化合物;
(d)在第四溶剂中,式(6)化合物经氧化反应,得到式(7)化合物;
(e)在第五溶剂中,式(7)化合物在酸作用下发生水解反应,脱乙二醇保护,得到式(8)化合物;
(f)在第六溶剂中,在催化剂和氢气的作用下,在加压条件下,式(8)化合物与碱加热发生水解和还原反应,得到所述熊去氧胆酸,其结构如式(9)所示;
或,本发明提供的以21-羟基-20-甲基孕甾-4-烯-3-酮(BA)原料合成熊去氧胆酸的方法,还包括以下步骤:
其中,所述式(6)化合物还可以经以下步骤得到;
(g)在第七溶剂中,式(1)所示的BA经氧化反应,得到式(4)化合物;
(h)在第八溶剂中,式(4)化合物经Wittig反应,得到式(5)化合物;
(i)在第九溶剂中,式(5)化合物经乙二醇或新戊二醇保护,得到式(6)化合物;
(d)在第四溶剂中,式(6)化合物经氧化反应,得到式(7)化合物;
(e)在第五溶剂中,式(7)化合物在酸作用下发生水解反应,脱乙二醇或新戊二醇保护,得到式(8)化合物;
(f)在第六溶剂中,在催化剂和氢气的作用下,在加压条件下,式(8)化合物与碱加热发生水解和还原反应,得到所述熊去氧胆酸,其结构如式(9)所示;
所述反应过程如路线(A)所示:
Figure PCTCN2020126922-appb-000008
其中,R为烷基;优选地为C1~C20的烷基;进一步优选地,为C1、C2的烷基。
R 1
Figure PCTCN2020126922-appb-000009
步骤(a)中,所述乙二醇保护反应是指:式(1)所示的BA、乙二醇、对甲苯磺酸溶解在第一溶剂中,发生乙二醇保护反应,得到式(2)化合物;或,式(1)所示的BA、乙二醇、对甲苯磺酸、原甲酸三乙酯溶解在第一溶剂中,发生乙二醇保护反应,得到式(2)化合物;优选地,为式(1)所示的BA、乙二醇、对甲苯磺酸溶解在第一溶剂中,发生乙二醇保护反应,得到式(2)化合物。
步骤(a)中,所述第一溶剂选自苯、甲苯、乙酸乙酯、四氢呋喃、己烷等中的一种或多种;优选地,为苯。
当步骤(a)中所述乙二醇保护反应为:式(1)所示的BA、乙二醇、对甲苯磺酸溶解在第一溶剂中,发生乙二醇保护反应,得到式(2)化合物,其中,式(1)所示的BA、乙二醇、对甲苯磺酸的摩尔比为1:(1-50):(0.01-1),优选为1:10:0.01;所述乙二醇保护反应的温度为80~130℃,优选为90℃;所述乙二醇保护反应的时间为2~36h,优选为24h。
当步骤(a)中所述乙二醇保护反应为:式(1)所示的BA、乙二醇、对甲苯磺酸、原甲酸三乙酯溶解在第一溶剂中,发生乙二醇保护反应,得到式(2)化合物;其中,式(1)所示的BA、乙二醇、对甲苯磺酸、原甲酸三乙酯的摩尔比为1:(1-50):(0.01-1):(1-20);优选地,为1:10:0.1:3;所述乙二醇保护反应的温度为0~50℃,优选为室温25℃;所述乙二醇保护反应的时间为2~36h,优选为8h。
在一具体实施方式中,式(2)化合物的合成步骤包括:式(1)所示的BA溶解在第一溶剂中,和乙二醇、对甲苯磺酸反应,保护式(1)所示的BA的3位羰基,得到式(2)化合物。
步骤(b)中,所述氧化反应是指:式(2)化合物、TEMPO、碳酸氢钠、四丁基溴化铵、氧化剂溶解在第二溶剂中,发生氧化反应,得到式(3)化合物。
步骤(b)中,所述氧化剂选自N-氯代琥珀酰亚胺(NCS)、N-溴代琥珀酰亚胺(NBS)、2-碘酰基苯甲酸(IBX)等中的一种或多种;优选地,为N-氯代琥珀酰亚胺(NCS)。
步骤(b)中,式(2)化合物、TEMPO、碳酸氢钠、四丁基溴化铵、氧化剂的摩尔比为1:(0-1):(0-20):(0-1):(1-5);优选地,为1:0.01:1.35:0.1:1.15。
步骤(b)中,所述第二溶剂选自二氯甲烷、四氢呋喃、甲苯、二甲基亚砜、水等中的一种或多种;优选地,为二氯甲烷和水的混合溶剂。
步骤(b)中,所述氧化反应的温度为0~30℃;优选地,为0℃。
步骤(b)中,所述氧化反应的时间为2~8h;优选地,为5h。
在一具体实施方式中,式(3)化合物的合成步骤包括:式(2)化合物溶解在第二溶剂中,然后加入TEMPO、碳酸氢钠、四丁基溴化铵、NCS,发生氧化反应,得到式(3)化合物。
步骤(c)中,所述Wittig反应是指:式(3)化合物、乙氧甲酰基亚甲基三苯基膦溶解在第三溶剂中,发生Wittig反应,得到式(6)化合物。
其中,式(3)化合物、乙氧甲酰基亚甲基三苯基膦的摩尔比为1:(1~5);优选地,为1:2。
其中,所述第三溶剂选自苯、甲苯、乙酸乙酯、四氢呋喃、己烷等中的一种或多种;优选地,为甲苯。
其中,所述Wittig反应的温度为80~130℃;优选地,为110℃。
其中,所述Wittig反应的时间为2~8h;优选地,为4h。
或,步骤(c)中,所述Wittig反应是指:式(3)化合物、氢化钠、膦酰基乙酸三乙 酯溶解在第三溶剂中,发生Wittig反应,得到式(6)化合物。
其中,式(3)化合物、氢化钠、膦酰基乙酸三乙酯的摩尔比为1:(1~5):(1~5);优选地,为1:1.5:1.5。
其中,所述第三溶剂选自苯、甲苯、乙酸乙酯、四氢呋喃、己烷等中的一种或多种;优选地,为四氢呋喃。
其中,所述Wittig反应的温度为0~30℃;优选地,为0℃。
其中,所述Wittig反应的时间为2~8h;优选地,为4h。
在一具体实施方式中,式(6)化合物的合成步骤包括:式(3)化合物、乙氧甲酰基亚甲基三苯基膦或式(3)化合物、氢化钠、膦酰基乙酸三乙酯溶解在第三溶剂中,发生Wittig反应,得到式(6)化合物。
步骤(d)中,所述氧化反应是指:式(6)化合物、氧化剂、N-羟基邻苯二甲酰亚胺(NHPI)、乙酸溶解在第四溶剂中,发生氧化反应,得到式(7)化合物。
步骤(d)中,所述氧化剂选自Na 2Cr 2O 7、K 2Cr 2O 7、PDC、BPO等中的一种或多种;优选地,为PDC。
步骤(d)中,式(6)化合物、氧化剂、N-羟基邻苯二甲酰亚胺(NHPI)、乙酸的摩尔比为1:(1-5):(1~5):(0~5);优选地,为1:1.1:1.1:0。
步骤(d)中,所述第四溶剂选自甲苯、丙酮、乙腈、水、二氯甲烷、N,N-二甲基甲酰胺、乙酸乙酯、叔丁醇、N-甲基吡咯烷酮等中的一种或多种;优选地,为丙酮和水的混合溶剂;进一步优选地,为丙酮:水(体积比)=9:1的混合溶剂。
步骤(d)中,所述氧化反应的温度为0~50℃;优选地,为室温25℃。
步骤(d)中,所述氧化反应的时间为10~48h;优选地,为20h。
在一具体实施方式中,式(7)化合物的合成步骤包括:式(6)化合物溶解在第四溶剂中,加入PDC、NHPI,发生氧化反应,得到式(7)化合物。
步骤(e)中,所述脱乙二醇保护反应是指:式(7)化合物、酸溶解在第五溶剂中,发生脱乙二醇保护反应,得到式(8)化合物。
步骤(e)中,式(7)化合物、酸的摩尔比为1:(1~50);优选地,为1:5。
步骤(e)中,所述第五溶剂选自四氢呋喃、乙酸乙酯、甲醇、二氯甲烷、乙醚、水、甲苯、丙酮等中的一种或多种;优选地,为四氢呋喃和水的混合溶剂;进一步优选地,为四氢呋喃:水(体积比)=9:1的混合溶剂。
步骤(e)中,所述酸选自浓硫酸、浓盐酸、对甲苯磺酸等中的一种或多种;优选地, 为浓硫酸。
步骤(e)中,所述水解反应的温度为0~50℃;优选地,为室温25℃。
步骤(e)中,所述水解反应的时间为1~10h;优选地,为4h。
在一具体实施方式中,式(8)化合物的合成步骤包括:式(7)化合物溶解在第五溶剂中,加入浓硫酸,发生水解反应,得到式(8)化合物。
步骤(f)中,式(8)化合物、碱的摩尔比为1:(1~5);优选地,为1:2。
步骤(f)中,式(8)化合物、雷尼镍的质量比为1:(0.1~5);优选地,为1:1。
步骤(f)中,所述第六溶剂选自四氢呋喃、2-甲基四氢呋喃、异丙醇、叔丁醇、甲醇、乙醇等中的一种或多种;优选地,为四氢呋喃和异丙醇地混合溶剂;进一步优选地,为四氢呋喃:异丙醇(体积比)=1:1的混合溶剂。
步骤(f)中,所述碱选自叔丁醇钠、叔丁醇钾、乙醇钠、甲醇钠、氢氧化钠、氢氧化钾等中的一种或多种;优选地,为叔丁醇钠。
步骤(f)中,所述催化剂选自雷尼镍等中的一种或多种。优选地,为雷尼镍。
步骤(f)中,所述水解和还原反应的温度为20~100℃;优选地,为90℃。
步骤(f)中,所述水解和还原反应的时间为24~72h;优选地,为48h。
步骤(f)中,所述反应在氢气加压的条件下进行,所述氢气的压力范围为0.1~10MPa;优选地,为4.0MPa。
在一具体实施方式中,式(9)化合物的合成步骤包括:式(8)化合物溶解在第六溶剂中,依次加入雷尼镍,叔丁醇钠,反应得到式(9)化合物熊去氧胆酸。
步骤(g)中,所述氧化反应是指:式(1)所示的BA、TEMPO、碳酸氢钠、四丁基溴化铵、氧化剂溶解在第七溶剂中,发生氧化反应,得到式(4)化合物。
步骤(g)中,所述氧化剂选自N-氯代琥珀酰亚胺(NCS)、N-溴代琥珀酰亚胺(NBS)、2-碘酰基苯甲酸(IBX)等中的一种或多种;优选地,为N-氯代琥珀酰亚胺(NCS)。
步骤(g)中,式(1)所示的BA、TEMPO、碳酸氢钠、四丁基溴化铵、氧化剂的摩尔比为1:(0-1):(0-20):(0-1):(1-5);优选地,为1:0.01:1.35:0.1:1.15。
步骤(g)中,所述第七溶剂选自二氯甲烷、四氢呋喃、甲苯、二甲基亚砜、水等中的一种或多种;优选地,为二氯甲烷和水的混合溶剂。
步骤(g)中,所述氧化反应的温度为0~30℃;优选地,为0℃。
步骤(g)中,所述氧化反应的时间为2~8h;优选地,为5h。
在一具体实施方式中,式(4)化合物的合成步骤包括:式(1)所示的BA溶解在第 七溶剂中,然后加入TEMPO、碳酸氢钠、四丁基溴化铵、NCS,发生氧化反应,得到式(4)化合物。
步骤(h)中,所述Wittig反应是指:式(4)化合物、甲氧甲酰基亚甲基三苯基膦或乙氧甲酰基亚甲基三苯基膦或丙氧甲酰基亚甲基三苯基膦溶解在第八溶剂中,发生Wittig反应,得到式(5)化合物。
其中,式(4)化合物、甲氧甲酰基亚甲基三苯基膦或乙氧甲酰基亚甲基三苯基膦或丙氧甲酰基亚甲基三苯基膦的摩尔比为1:(1~5);优选地,为1:2。
其中,所述第八溶剂选自苯、甲苯、乙酸乙酯、四氢呋喃、己烷等中的一种或多种;优选地,为甲苯。
其中,所述Wittig反应的温度为80~130℃;优选地,为110℃。
其中,所述Wittig反应的时间为2~8h;优选地,为4h。
或,步骤(h)中,所述Wittig反应是指:式(4)化合物、氢化钠、膦酰基乙酸甲酯二乙酯或膦酰基乙酸三乙酯或膦酰基乙酸丙酯二乙酯溶解在第八溶剂中,发生Wittig反应,得到式(5)化合物。
其中,所述第八溶剂选自苯、甲苯、乙酸乙酯、四氢呋喃、己烷等中的一种或多种;优选地,为四氢呋喃。
其中,式(4)化合物、氢化钠、膦酰基乙酸甲酯二乙酯或膦酰基乙酸三乙酯或膦酰基乙酸丙酯二乙酯的摩尔比为1:(1~5):(1~5);优选地,为1:1.5:1.5。
其中,所述Wittig反应的温度为0~30℃;优选地,为0℃。
其中,所述Wittig反应的时间为2~8h;优选地,为4h。
在一具体实施方式中,式(5)化合物的合成步骤包括:式(4)化合物、乙氧甲酰基亚甲基三苯基膦或式(4)化合物、氢化钠、膦酰基乙酸甲酯二乙酯或膦酰基乙酸三乙酯或膦酰基乙酸丙酯二乙酯溶解在第八溶剂中,发生Wittig反应,得到式(5)化合物。
步骤(i)中,所述乙二醇或新戊二醇保护反应是指:式(5)化合物、乙二醇或新戊二醇、对甲苯磺酸溶解在第九溶剂中,发生乙二醇或新戊二醇保护反应,得到式(6)化合物;或,式(5)化合物、乙二醇或新戊二醇、对甲苯磺酸、原甲酸三乙酯溶解在第九溶剂中,发生乙二醇或新戊二醇保护反应,得到式(6)化合物;优选地,为式(5)化合物、乙二醇或新戊二醇、对甲苯磺酸溶解在第九溶剂中,发生乙二醇或新戊二醇保护反应,得到式(6)化合物;
步骤(i)中,所述第九溶剂选自苯、甲苯、乙酸乙酯、四氢呋喃、己烷等中的一种 或多种;优选地,为甲苯。
当步骤(i)中所述乙二醇或新戊二醇保护反应为:式(5)化合物、乙二醇或新戊二醇、对甲苯磺酸溶解在第九溶剂中,发生乙二醇或新戊二醇保护反应,得到式(6)化合物,其中,式(5)化合物、乙二醇或新戊二醇、对甲苯磺酸的摩尔比为1:(1-50):(0.01-1),优选为1:10:0.01;所述乙二醇或新戊二醇保护反应的温度为80~130℃,优选为110℃;所述乙二醇或新戊二醇保护反应的时间为2~36h,优选为24h。
当步骤(i)中所述乙二醇或新戊二醇保护反应为:式(5)化合物、乙二醇或新戊二醇、对甲苯磺酸、原甲酸三乙酯溶解在第九溶剂中,发生乙二醇或新戊二醇保护反应,得到式(6)化合物,其中,式(5)化合物、乙二醇或新戊二醇、对甲苯磺酸、原甲酸三乙酯的摩尔比为1:(1-50):(0.01-1):(1-20);优选地,为1:10:0.1:3;所述乙二醇或新戊二醇保护反应的温度为0~50℃,优选为室温25℃;所述乙二醇或新戊二醇保护反应的时间为2~36h,优选为8h。
在一具体实施方式中,式(6)化合物的合成步骤包括:式(5)化合物溶解在第九溶剂中,和乙二醇或新戊二醇、对甲苯磺酸反应,保护式(5)化合物的3位羰基,得到式(6)化合物。
本发明还提供了如式(6′)、式(6")、式(7′)、式(7")或式(8)所示的化合物
Figure PCTCN2020126922-appb-000010
其中,R为烷基;优选地为C1~C20的烷基;进一步优选地,为C1、C2的烷基。
本发明式(6)所示的化合物包括式(6′)化合物、式(6")化合物,其中,式(6′)化合物包括式(6′-A)化合物、式(6′-B)化合物、式(6′-C)化合物等;式(6")化合物包括式(6"-A)化合物、式(6"-B)化合物、式(6"-C)化合物等。
本发明式(7)所示的化合物包括式(7′)化合物、式(7")化合物,其中,式(7′)化合物包括式(7′-B)化合物等;式(7")化合物包括式(7"-B)化合物等。
本发明的有益效果包括,本发明熊去氧胆酸的制备方法,所用原料BA为植物源原料,避免了致病菌和病毒的感染问题,廉价易得;该熊去氧胆酸合成步骤操作简便、收率高、环境友好、反应条件温和、后处理简便、成本低、便于工业化生产。
附图说明
图1为对比例一采用PDC氧化式(10)化合物的TLC检测结果。
图2为对比例一采用PDC氧化式(11)化合物的TLC检测结果。
图3为对比例二采用Pd/C-H 2还原式(8)化合物的TLC检测结果。
图4为对比例二采用NaBH 4还原式(8)化合物的TLC检测结果。
具体实施方式
结合以下具体实施例,对本发明作进一步详细说明,实施本发明的过程、条件、试剂、实验方法等,除以下专门提及的内容之外,均为本领域的普遍知识和公知常识,本发明没有特别限制内容。
实施例一 式(2)化合物的制备
于250mL单口烧瓶中依次加入BA(10.0g,30.26mmol),对甲苯磺酸(57mg,0.30mmol),乙二醇(16.8mL,302.60mmol),原甲酸三乙酯(15.1mL,90.78mmol)和150mL四氢呋喃,室温反应8h。反应完毕后减压浓缩,加100mL水,乙酸乙酯(60mL×3)萃取,水(50mL×2)洗,饱和氯化钠溶液(50mL)洗涤,无水硫酸钠干燥,减压浓缩,硅胶柱层析(PE/EA=3/1,v/v)纯化,得到式(2)化合物(5.0g,白色固体),摩尔收率44%。
于250mL单口烧瓶中依次加入BA(10.0g,30.26mmol),对甲苯磺酸(57mg,0.30mmol),乙二醇(16.8mL,302.60mmol)和300mL苯,回流分水反应24h。反应完毕冷却后加20mL饱和碳酸氢钠溶液搅拌10min,减压浓缩后加100mL水,乙酸乙酯(60mL×3)萃取,水(50mL×2)洗,饱和氯化钠溶液(50mL)洗涤,无水硫酸钠干燥,减压浓缩,硅胶柱层析(PE/EA=3/1,v/v)纯化,得到式(2)化合物(10.0g,白色固体),摩尔收率88%。mp:175-177℃。 1H NMR(500MHz,CDCl 3)δ5.36-5.32(m,1H),3.97-3.90(m,4H),3.63(dd,J=10.5,3.2Hz,1H),3.35(dd,J=10.5,6.9Hz,1H),2.58-2.53(m,1H),2.11(dd,J=14.2,2.9Hz,1H),2.03-1.91(m,2H),1.85-1.72(m,3H),1.69-1.58(m,3H),1.57-1.49(m,2H),1.49-1.39(m,2H),1.36-1.27(m,3H),1.22-1.15(m,2H),1.12-1.07(m,1H),1.04(d,J=6.7Hz,3H),1.02(s,3H),1.00-0.97(m,1H),0.70(s,3H). 13C NMR(125MHz,CDCl 3)δ140.26,122.25,109.60,68.12,64.55,64.34,56.59,52.52,49.79,42.55,41.91,39.74, 38.90,36.73,36.45,32.04,31.84,31.19,27.85,24.51,21.16,19.00,16.89,12.07.HRMS(ESI):calcd for C 24H 38NaO 3[M+Na] +,397.2713,found 397.2704.
Figure PCTCN2020126922-appb-000011
实施例二 式(3)化合物的制备
于250mL单口烧瓶中依次加入式(2)化合物(5.0g,13.35mmol),IBX(7.5g,26.70mmol),50mL THF和50mLDMSO,室温反应5h。TLC检测反应完毕后加入水,抽滤,二氯甲烷(50mL×3)萃取,水(50mL×2)洗,饱和碳酸氢钠溶液(50mL)洗,无水硫酸钠干燥,减压浓缩,硅胶柱层析(PE/EA=3/1,v/v)纯化,得到式(3)化合物(4.9g,白色固体),摩尔收率98%。
于500mL单口烧瓶中依次加入式(2)化合物(10.1g,26.96mmol),TEMPO(42mg,0.27mmol),100mL二氯甲烷,碳酸氢钠(3.1g,36.40mmol)和四丁基溴化铵(870mg,2.70mmol)的水(40mL)溶液,NCS(4.1g,31.00mmol),0℃反应5h。TLC检测反应完毕后加入五水合硫代硫酸钠溶液(1.3g五水合硫代硫酸钠/25mL水),5-10℃搅拌20min,分液,二氯甲烷(50mL×3)萃取,加120mL1%氢氧化钠溶液,搅拌30min,分液,水相用二氯甲烷(50mL)反萃一次,水洗,减压浓缩,得到式(3)化合物(9.6g,淡黄色固体),摩尔收率95%。mp:168-171℃。 1H NMR(500MHz,CDCl 3)δ9.56(d,J=3.3Hz,1H),5.36-5.31(m,1H),3.97-3.90(m,4H),2.58-2.53(m,1H),2.39-2.31(m,1H),2.11(dd,J=14.2,2.9Hz,1H),2.00-1.93(m,2H),1.91-1.82(m,1H),1.81-1.73(m,2H),1.68-1.62(m,3H),1.59-1.53(m,1H),1.52-1.44(m,3H),1.40-1.29(m,2H),1.28-1.15(m,2H),1.12(d,J=6.8Hz,3H),1.11-1.03(m,2H),1.02(s,3H),0.72(s,3H). 13C NMR(125MHz,CDCl 3)δ205.20,140.26,122.10,109.54,64.56,64.35,56.11,51.08,49.79,49.61,43.09,41.90,39.58,36.74,36.45,32.01,31.80,31.19,27.16,24.78,21.10,19.00,13.59,12.37.HRMS(ESI):calcd for C 24H 36NaO 3[M+Na] +,395.2557,found 395.2542.
Figure PCTCN2020126922-appb-000012
实施例三 式(6′)化合物的制备
于100mL单口烧瓶中依次加入式(3)化合物(1.0g,2.68mmol),甲氧甲酰基亚甲基三苯基膦(1.7g,5.36mmol)和15mL甲苯,回流反应4h。TLC检测反应完全后减压浓缩,硅胶柱层析(PE/EA=3/1,v/v)纯化,得到式(6′-A)化合物(1.13g,白色固体),摩尔收率98%。
于100mL单口烧瓶中氢化钠(161mg,4.02mmol)和10mL四氢呋喃,搅拌15min后依次加入膦酰基乙酸三甲酯(0.65mL,4.02mmol),式(3)化合物(1.0g,2.68mmol),0℃下反应4h。TLC检测反应完全后减压浓缩,硅胶柱层析(PE/EA=3/1,v/v)纯化,得到式(6′-A)化合物(1.12g,白色固体),摩尔收率97%。mp:161-162℃。 1H NMR(500MHz,CDCl 3)δ6.83(dd,J=15.6,9.0Hz,1H),5.73(d,J=15.6Hz,1H),5.36-5.30(m,1H),3.97-3.90(m,4H),3.71(s,3H),2.62-2.51(m,1H),2.31-2.23(m,1H),2.13-2.08(m,1H),2.01-1.91(m,2H),1.81-1.64(m,5H),1.63-1.51(m,3H),1.51-1.41(m,2H),1.36-1.29(m,1H),1.27-1.20(m,3H),1.08(d,J=6.6Hz,3H),1.04(dd,J=11.0,4.0Hz,2H),1.02(s,3H),0.71(s,3H). 13C NMR(125MHz,CDCl 3)δ167.61,155.18,140.24,122.20,118.65,109.57,64.56,64.35,56.62,54.98,51.49,49.77,42.80,41.90,39.88,39.71,36.75,36.45,32.02,31.80,31.19,28.22,24.42,21.13,19.37,19.00,12.25.
Figure PCTCN2020126922-appb-000013
于500mL单口烧瓶中依次加入式(3)化合物(9.6g,25.77mmol),乙氧甲酰基亚甲基三苯基膦(18.0g,51.54mmol)和150mL甲苯,回流反应4h。TLC检测反应完全后减压浓缩,硅胶柱层析(PE/EA=3/1,v/v)纯化,得到式(6′-B)化合物(11.2g,白色固体),摩尔收率98%。
于250mL单口烧瓶中氢化钠(805mg,20.13mmol)和50mL四氢呋喃,搅拌15min后依次加入膦酰基乙酸三乙酯(4.0mL,20.13mmol),式(3)化合物(5.0g,13.42mmol),0℃下反应4h。TLC检测反应完全后减压浓缩,甲醇打浆,得到式(6′-B)化合物(5.65g,白色固体),摩尔收率95%。mp:122-124℃。 1H NMR(500MHz,CDCl 3)δ6.82(dd,J=15.6,8.9Hz,1H),5.72(d,J=15.6Hz,1H),5.39-5.28(m,1H),4.16(q,J=7.1Hz,2H),3.97-3.90(m,4H),2.58-2.53(m,1H),2.26(d,J=6.7Hz,1H),2.11(dd,J=14.2,2.9Hz,1H),2.00-1.92 (m,2H),1.81-1.73(m,2H),1.72-1.61(m,3H),1.60-1.52(m,2H),1.51-1.41(m,2H),1.37-1.30(m,1H),1.27(t,J=7.1Hz,3H),1.25-1.18(m,3H),1.08(d,J=6.7Hz,3H),1.04-1.06(m,2H),1.02(s,3H),1.00-0.97(m,1H),0.71(s,3H). 13C NMR(125MHz,CDCl 3)δ167.20,154.84,140.24,122.20,119.07,109.57,64.56,64.35,60.22,56.63,55.01,49.78,42.79,41.91,39.85,39.72,36.75,36.45,32.02,31.80,31.20,28.25,24.42,21.14,19.38,19.00,14.42,12.24.HRMS(ESI):calcd for C 28H 42NaO 4[M+Na] +,465.2975,found 465.2990.
Figure PCTCN2020126922-appb-000014
于100mL单口烧瓶中依次加入式(3)化合物(1.0g,2.68mmol),丙氧甲酰基亚甲基三苯基膦(1.85g,5.36mmol)和15mL甲苯,回流反应4h。TLC检测反应完全后减压浓缩,硅胶柱层析(PE/EA=3/1,v/v)纯化,得到式(6′-C)化合物(1.2g,白色固体),摩尔收率98%。mp:108-110℃。 1H NMR(500MHz,CDCl 3)δ6.82(dd,J=15.6,8.9Hz,1H),5.73(d,J=15.6Hz,1H),5.40-5.30(m,1H),4.07(t,J=6.7Hz,,2H),3.97-3.89(m,4H),2.55(dd,J=14.2,2.6Hz,1H),2.30-2.23(m,1H),2.11(dd,J=14.2,2.8Hz,1H),2.01-1.92(m,2H),1.81-1.73(m,2H),1.70-1.62(m,5H),1.60-1.52(m,2H),1.50-1.41(m,2H),1.36-1.18(m,5H),1.08(d,J=6.6Hz,3H),1.06-1.04(m,1H),1.02(s,3H),1.01-0.97(m,1H),0.95(t,J=7.4Hz,3H),0.71(s,3H). 13C NMR(125MHz,CDCl 3)δ167.30,154.82,140.24,122.20,119.06,109.57,65.88,64.56,64.35,56.63,55.02,49.78,42.79,41.91,39.84,39.72,36.75,36.45,32.02,31.80,31.20,28.24,24.42,22.18,21.14,19.37,19.00,12.24,10.58.
Figure PCTCN2020126922-appb-000015
实施例四 式(4)化合物的制备
于250mL单口烧瓶中依次加入BA(5.0g,15.13mmol),IBX(8.5g,30.26mmol),50mLTHF和50mL DMSO,室温反应5h。TLC检测反应完毕后加入水,抽滤,二氯甲烷(50mL×3)萃取,水(50mL×2)洗,饱和碳酸氢钠溶液(50mL)洗,无水硫酸钠干燥,减压浓缩,硅胶柱层析(PE/EA=3/1,v/v)纯化,得到式(3)化合物(4.9g,白色 固体),摩尔收率98%。
于500mL单口烧瓶中依次加入BA(10.0g,30.26mmol),TEMPO(47mg,0.30mmol),100mL二氯甲烷,碳酸氢钠(3.43g,40.85mmol)和四丁基溴化铵(977mg,3.03mmol)的水(40mL)溶液,NCS(4.65g,34.80mmol),0℃反应5h。TLC检测反应完毕后加入五水合硫代硫酸钠溶液(1.5g五水合硫代硫酸钠/30mL水),5-10℃搅拌20min,分液,二氯甲烷(50mL×3)萃取,加135mL1%氢氧化钠溶液,搅拌30min,分液,水相用二氯甲烷(50mL)反萃一次,水洗,减压浓缩,得到式(4)化合物(9.5g,淡黄色固体),摩尔收率95%。mp:155-157℃。 1H NMR(400MHz,CDCl 3)δ9.55(s,1H),5.71(s,1H),2.45-2.23(m,5H),1.99(t,J=13.7Hz,2H),1.91-1.78(m,2H),1.68(t,J=10.2Hz,2H),1.43(m,5H),1.30-1.19(m,2H),1.17(s,3H),1.11(d,J=5.5Hz,3H),1.06-0.89(m,3H),0.75(s,3H). 13C NMR(100MHz,CDCl3)δ205.00,199.65,171.31,123.99,55.25,53.84,51.04,49.54,43.10,39.39,38.68,35.80,35.68,34.06,32.93,32.05,27.11,24.64,21.06,17.48,13.53,12.44.HRMS(ESI):calcd for C 22H 32NaO 2[M+Na] +,351.2295,found 351.2292.
Figure PCTCN2020126922-appb-000016
实施例五 式(5)化合物的制备
于100mL单口烧瓶中依次加入式(4)化合物(1.0g,3.04mmol),甲氧甲酰基亚甲基三苯基膦(1.92g,6.08mmol)和15mL甲苯,回流反应4h。TLC检测反应完全后减压浓缩,硅胶柱层析(PE/EA=3/1,v/v)纯化,得到式(5-A)化合物(1.15g,白色固体),摩尔收率98%。
于100mL单口烧瓶中氢化钠(182mg,4.56mmol)和10mL四氢呋喃,搅拌15min后依次加入膦酰基乙酸甲酯二乙酯(0.75mL,4.56mmol),式(4)化合物(1.0g,3.04mmol),0℃下反应4h。TLC检测反应完全后减压浓缩,硅胶柱层析(PE/EA=3/1,v/v)纯化,得到式(5-A)化合物(1.14g,白色固体),摩尔收率97%。mp:142-144℃。 1H NMR(500MHz,CDCl 3)δ6.81(dd,J=15.6,9.0Hz,1H),5.73(d,J=15.8Hz,1H),5.71(s,1H),3.70(s,3H),2.43-2.23(m,5H),2.04-1.97(m,2H),1.82(ddd,J=11.3,6.5,4.1Hz,1H),1.69(ddd,J=14.3,9.1,3.7Hz,2H),1.60(ddd,J=11.8,5.8,2.7Hz,1H),1.53(ddd,J=14.1,6.9,3.7Hz,2H),1.50-1.38(m,1H),1.28-1.19(m,3H),1.17(s,3H),1.15-1.09(m,1H),1.07(d,J=6.6Hz,3H), 1.05-0.97(m,2H),0.96-0.88(m,1H),0.73(s,3H). 13C NMR(125MHz,CDCl 3)δ199.63,171.43,167.53,154.86,123.94,118.80,55.77,54.97,53.85,51.51,42.83,39.81,39.54,38.69,35.81,35.70,34.08,32.98,32.06,28.17,24.28,21.10,19.32,17.49,12.33.
Figure PCTCN2020126922-appb-000017
于500mL单口烧瓶中依次加入式(4)化合物(9.5g,28.92mmol),乙氧甲酰基亚甲基三苯基膦(20.2g,57.84mmol)和150mL甲苯,回流反应4h。TLC检测反应完全后减压浓缩,硅胶柱层析(PE/EA=3/1,v/v)纯化,得到式(5-B)化合物(11.3g,白色固体),摩尔收率98%。
于250mL单口烧瓶中氢化钠(913mg,22.83mmol)和50mL四氢呋喃,搅拌15min后依次加入膦酰基乙酸三乙酯(4.5mL,22.83mmol),式(3)化合物(5.0g,15.22mmol),0℃下反应4h。TLC检测反应完全后减压浓缩,甲醇打浆,得到式(5-B)化合物(5.6g,白色固体),摩尔收率92%。mp:160-162℃。 1H NMR(400MHz,CDCl 3)δ6.81(dd,J=15.3,9.0Hz,1H),5.71(d,J=13.4Hz,2H),4.24-4.09(m,2H),2.45-2.21(m,5H),2.00(d,J=12.6Hz,2H),1.80(m,1H),1.76-1.33(m,7H),1.26(m,6H),1.17(s,3H),1.08(d,J=6.2Hz,3H),1.05-0.86(m,3H),0.73(s,3H). 13C NMR(100MHz,CDCl 3)δ199.70,171.51,167.16,154.56,123.94,119.21,60.27,55.78,54.98,53.84,42.82,39.80,39.54,38.69,35.80,35.70,34.08,32.98,32.06,28.19,24.28,21.10,19.31,17.49,14.40,12.32.HRMS(ESI):calcd for C 26H 38NaO 3[M+Na] +,421.2713,found421.2708.
Figure PCTCN2020126922-appb-000018
于100mL单口烧瓶中依次加入式(4)化合物(1.0g,3.04mmol),丙氧甲酰基亚甲基三苯基膦(2.1g,6.08mmol)和15mL甲苯,回流反应4h。TLC检测反应完全后减压浓缩,硅胶柱层析(PE/EA=3/1,v/v)纯化,得到式(5-C)化合物(1.23g,白色固体),摩尔收率98%。mp:144-146℃。 1H NMR(500MHz,CDCl 3)δ6.81(dd,J=15.6,8.9Hz,1H),5.73(d,J=16.3Hz,1H),5.71(s,1H),4.06(t,J=6.7Hz,2H),2.44-2.22(m,5H),2.03-1.97(m,2H),1.85-1.78(m,1H),1.74-1.64(m,4H),1.63-1.57(m,1H),1.57-1.50(m,2H),1.48-1.39(m, 1H),1.29-1.20(m,3H),1.17(s,3H),1.15-1.09(m,1H),1.08(d,J=6.6Hz,3H),1.06-0.97(m,2H),0.94(t,J=7.4Hz,3H),0.93-0.89(m,1H),0.74(s,3H).
Figure PCTCN2020126922-appb-000019
实施例六 式(6′-B)化合物的制备
于250mL单口烧瓶中依次加入式(5-B)化合物(5.0g,12.54mmol),对甲苯磺酸(25mg,0.13mmol),乙二醇(7.0mL,125.40mmol),原甲酸三乙酯(6.3mL,37.62mmol)和150mL四氢呋喃,室温反应8h。反应完毕后减压浓缩,加100mL水,乙酸乙酯(60mL×3)萃取,水(50mL×2)洗,饱和氯化钠溶液(50mL)洗涤,无水硫酸钠干燥,减压浓缩,硅胶柱层析(PE/EA=3/1,v/v)纯化,得到式(6′-B)化合物(3.0g,白色固体),摩尔收率54%。
于250mL单口烧瓶中依次加入式(5-B)化合物(5.0g,12.54mmol),对甲苯磺酸(25mg,0.13mmol),乙二醇(7.0mL,125.40mmol)和150mL甲苯,回流分水反应24h。反应完毕冷却后加20mL饱和碳酸氢钠溶液搅拌10min,减压浓缩后加100mL水,乙酸乙酯(50mL×3)萃取,水(50mL×2)洗,饱和氯化钠溶液(50mL)洗涤,无水硫酸钠干燥,减压浓缩,硅胶柱层析(PE/EA=3/1,v/v)纯化,得到式(6′-B)化合物(4.9g,白色固体),摩尔收率88%。mp:122-124℃。 1H NMR(500MHz,CDCl 3)δ6.82(dd,J=15.6,8.9Hz,1H),5.72(d,J=15.6Hz,1H),5.39-5.28(m,1H),4.16(q,J=7.1Hz,2H),3.97-3.90(m,4H),2.58-2.53(m,1H),2.26(d,J=6.7Hz,1H),2.11(dd,J=14.2,2.9Hz,1H),2.00-1.92(m,2H),1.81-1.73(m,2H),1.72-1.61(m,3H),1.60-1.52(m,2H),1.51-1.41(m,2H),1.37-1.30(m,1H),1.27(t,J=7.1Hz,3H),1.25-1.18(m,3H),1.08(d,J=6.7Hz,3H),1.04-1.06(m,2H),1.02(s,3H),1.00-0.97(m,1H),0.71(s,3H). 13C NMR(125MHz,CDCl 3)δ167.20,154.84,140.24,122.20,119.07,109.57,64.56,64.35,60.22,56.63,55.01,49.78,42.79,41.91,39.85,39.72,36.75,36.45,32.02,31.80,31.20,28.25,24.42,21.14,19.38,19.00,14.42,12.24.HRMS(ESI):calcd for C 28H 42NaO 4[M+Na] +,465.2975,found 465.2990.
Figure PCTCN2020126922-appb-000020
实施例七 式(6"-B)化合物的制备
于100mL单口烧瓶中依次加入式(5-B)化合物(10.0g,25.09mmol)、新戊二醇(6.33g,60.7mmol)、对甲基苯磺酸一水化合物(215mg,1.13mmol)和甲苯(25mL),滴加原甲酸三乙酯(7.5mL,45.16mmol),室温反应2h。TLC检测原料基本反应完全后,反应液加入30mL饱和NaHCO 3搅拌10min,加入水100mL,乙酸乙酯(50mL*3)萃取,合并有机相,饱和食盐水(50mL)洗,无水硫酸钠干燥,减压浓缩,得到淡黄色固体。将该淡黄色固体加入乙醇25mL,室温打浆12h,抽滤,得化合物6"-B(9g,白色固体),摩尔收率为74%。 1H NMR(500MHz,CDCl 3)δ6.83(dd,J=15.6,8.9Hz,1H),5.73(d,J=15.6Hz,1H),5.41–5.16(m,1H),4.17(q,J=7.1Hz,2H),3.49(m,4H),2.56(dd,J=14.3,2.8Hz,1H),2.37–2.13(m,3H),2.03–1.85(m,2H),1.67(dd,J=21.0,8.2Hz,2H),1.57–1.38(m,8H),1.34–1.15(m,7H),1.08(t,J=7.7Hz,3H),1.04–0.94(m,7H),0.91(s,3H),0.71(s,3H). 13C NMR(126MHz,CDCl 3)δ167.11,154.75,139.61,122.07,118.93,98.40,70.21,69.88,60.11,56.51,54.89,49.60,42.67,39.97,39.74,39.60,36.88,34.97,31.89,31.69,30.12,28.13,27.66,24.29,22.79,22.65,20.98,19.24,19.05,14.29,12.11.
Figure PCTCN2020126922-appb-000021
实施例八 式(7′-B)化合物的制备
式(7′-B)化合物的制备,本发明试验了多种氧化反应条件(如表1所示),获得了最佳的氧化反应条件(如表1,Entry 23)。
表1
式(6′-B)化合物的氧化. a
Figure PCTCN2020126922-appb-000022
Figure PCTCN2020126922-appb-000023
a所有反应时间均为20h,氧化剂/化合物6′-B=1.1:1(mol:mol).
b未反应.
由表1可知,通过对溶剂、氧化剂、反应温度的筛选优化,得到了最佳反应条件,即最佳反应溶剂为丙酮/水(9:1),最佳氧化剂为PDC,最佳反应温度为25℃,反应收率达到了85%。
其中部分实施例如下所示:
于250mL单口烧瓶中依次加入式(6′-B)化合物(1.0g,2.26mmol),20mL丙酮,NHPI(400mg,2.49mmol),PDC(940mg,2.49mmol),室温反应20h。TLC检测反应完全后硅藻土抽滤,滤液减压浓缩,硅胶柱层析(PE/EA=3/1,v/v)纯化,得到式(7′-B)化合物(743mg,白色固体),摩尔收率72%。
于250mL单口烧瓶中依次加入式(6′-B)化合物(1.0g,2.26mmol),20mL乙腈,NHPI(400mg,2.49mmol),PDC(940mg,2.49mmol),室温反应20h。TLC检测反应完全后硅藻土抽滤,滤液减压浓缩,硅胶柱层析(PE/EA=3/1,v/v)纯化,得到式(7′-B)化合物(722mg,白色固体),摩尔收率70%。
于250mL单口烧瓶中依次加入式(6′-B)化合物(1.0g,2.26mmol),20mL丙酮,NHPI(400mg,2.49mmol),Na 2Cr 2O 7·2H 2O(742mg,2.49mmol),AcOH(0.4mL,6.78mmol),室温反应20h。TLC检测反应完全后硅藻土抽滤,滤液减压浓缩,硅胶柱层析(PE/EA=3/1,v/v)纯化,得到式(7′-B)化合物(640mg,白色固体),摩尔收率62%。
于250mL单口烧瓶中依次加入式(6′-B)化合物(5.0g,11.30mmol),90mL丙酮,10mL水,NHPI(2.0g,12.43mmol),PDC(4.7g,12.43mmol),室温反应20h。TLC检测反应完全后硅藻土抽滤,滤液减压浓缩,硅胶柱层析(PE/EA=3/1,v/v)纯化,得到式(7′-B)化合物(4.4g,白色固体),摩尔收率85%。mp:139-141℃。 1H NMR(500MHz,CDCl 3)δ6.82(dd,J=15.6,9.0Hz,1H),5.72(d,J=15.6Hz,1H),5.65(d,J=1.7Hz,1H),4.16(q,J=7.1Hz,2H),3.98-3.90(m,4H),2.66(dd,J=14.7,1.8Hz,1H),2.44-2.36(m,1H),2.34-2.18(m,3H),2.02-1.95(m,1H),1.89-1.83(m,2H),1.78-1.71(m,2H),1.64-1.52(m,3H),1.52-1.43(m,1H),1.27(m,8H),1.19(s,3H),1.08(d,J=6.6Hz,3H),0.70(s,3H). 13C NMR(125MHz,CDCl 3)δ201.52,167.11,164.66,154.53,126.73,119.23,108.98,64.70,64.62,60.24,53.82,50.01,49.65,45.41,43.58,41.84,39.59,38.65,38.35,35.73,31.16,28.34,26.44,21.25,19.58,17.08,14.40,12.40.HRMS(ESI):calcd for C 28H 40NaO 5[M+Na] +,479.2768,found 479.2770.
Figure PCTCN2020126922-appb-000024
实施例九 式(7"-B)化合物的制备
于250mL单口烧瓶中依次加入式(6"-B)化合物(2.1g,4.21mmol)、33.5mL丙酮、3.7mL H 2O、NHPI(1.38g,8.42mmol)和PDC(3.17g,8.42mmol),室温反应24h。后处理:TLC检测原料反应完全后,旋除溶剂。然后加入DCM(50mL)搅拌溶解,使用硅藻土抽滤,滤饼用DCM洗涤(20mL*3),滤液减压浓缩,得到浅棕色固体。将上述粗品加入乙醇(5mL+0.05mL TEA)室温打浆12h,抽滤,得化合物7"-B(1.5g,淡黄色固体),摩尔收率为70%。 1H NMR(600MHz,CDCl 3)δ6.83(dd,J=15.6,9.0Hz,1H),5.70(dd,J=24.9,8.5Hz,2H),4.16(q,J=7.1Hz,2H),3.65–3.50(m,2H),3.41(q,J=11.5Hz,2H),2.83(dd,J=14.8,3.0Hz,1H),2.50–2.33(m,2H),2.25(m,3H),1.98(d,J=12.9Hz,1H),1.81–1.69(m,3H),1.68–1.52(m,4H),1.47–1.31(m,3H),1.25(m,7H),1.18(s,3H),1.17(d,J=12.9Hz,1H),1.08(d,J=6.6Hz,3H),0.95(d,J=11.1Hz,6H),0.70(s,3H). 13C NMR(151MHz, CDCl 3)δ201.59,167.05,164.52,154.47,126.81,119.12,98.07,70.39,70.01,60.15,53.73,49.89,49.60,45.37,43.49,39.50,39.28,38.54,38.52,34.44,30.08,28.42,28.25,26.33,22.62,21.13,19.46,17.12,14.29,12.28.
Figure PCTCN2020126922-appb-000025
实施例十 式(8)化合物的制备
于100mL单口烧瓶中依次加入式(7′-B)化合物(4.4g,9.64mmol),45mL四氢呋喃,5mL水,2mL浓硫酸,滴加完毕室温搅拌反应4h。TLC检测反应完全后加80mL饱和碳酸氢钠溶液淬灭反应,乙酸乙酯(30mL*3)萃取,饱和氯化钠溶液(30mL)洗涤,无水硫酸钠干燥,减压浓缩,硅胶柱层析(PE/EA=3/1,v/v)纯化,得到式(8)化合物(3.9g,白色固体),摩尔收率98%。
Figure PCTCN2020126922-appb-000026
于100mL单口烧瓶中依次加入式(7"-B)化合物(5.70g,11.1mmol)、51mLTHF、5.8mLH 2O,冰浴滴加2.3mL浓硫酸,滴加完毕室温搅拌反应12h。TLC检测原料反应完全后,加80mL饱和碳酸氢钠溶液淬灭,乙酸乙酯(30mL*3)萃取,合并有机相,饱和食盐水(35mL)洗,无水硫酸钠干燥,减压浓缩,得到土黄色固体。将该固体加入石油醚与乙酸乙酯的混合溶液16mL(PE:EA=3:1)室温打浆12h,抽滤,得化合物8(3.7g,白色固体),摩尔收率为81%。mp:167-169℃。 1H NMR(400MHz,DMSO-d 6)δ10.22(s,1H),6.74(dd,J=15.4,9.0Hz,1H),5.78(d,J=15.5Hz,1H),5.29(s,1H),5.27(s,1H),4.09(dd,J=13.2,6.4Hz,2H),2.37-2.13(m,5H),1.94-1.85(m,2H),1.58-1.42(m,4H),1.34-1.25(m,3H),1.20(m,6H),1.05(d,J=7.0Hz,6H),0.69(s,3H). 13C NMR(100MHz,DMSO-d 6)δ198.89,165.98,165.30,164.15,154.50,118.79,117.65,99.83,59.69,53.03,50.42,48.87,44.90,43.47,38.80,38.27,35.45,32.49,27.95,26.30,25.43,21.04,19.19,16.91,14.17,12.09.HRMS(ESI):calcd for C 26H 36NaO 4[M+Na] +,435.2506,found 435.2501.
Figure PCTCN2020126922-appb-000027
实施例十一 式(9)化合物熊去氧胆酸的制备
式(9)化合物的制备,本发明试验了多种还原、水解反应条件(如表2所示),获得了最佳的还原、水解反应条件(如表2,Entry 12)。
表2
式(8)化合物的还原、水解. a
Figure PCTCN2020126922-appb-000028
a所有反应时间均为48h,Raney-Ni/化合物8=1:1(m:m);
b溶剂和碱一起加(其余分开加);
c无UDCA.
由表2可知,通过对溶剂、碱、反应温度的筛选优化,得到了最佳反应条件,即最佳反应溶剂为2-甲基四氢呋喃/异丙醇(1:1,v/v),最佳碱为叔丁醇钠,最佳反应温度为90℃,反应收率达到了87%。
其中部分实施例如下所示:
于高压反应釜中依次加入式(8)化合物(1.0g,2.42mmol),20mL异丙醇,1.0g Raney Ni,H 2(4.0MPa),90℃下反应24小时后加入叔丁醇钾(543mg,4.84mmol),90℃下继续反应24小时。TLC检测反应完全后加乙酸调pH至5,硅藻土抽滤,滤液减压浓缩后用乙酸乙酯(30mL)溶解,依次用水、饱和氯化钠溶液洗,无水硫酸钠干燥,减压浓缩,硅胶柱层析(DCM/MeOH=20/1,v/v)纯化,得到熊去氧胆酸(580mg,白色固体),摩尔收率61%。
于高压反应釜中依次加入式(8)化合物(1.0g,2.42mmol),20mL异丙醇,1.0g Raney Ni,H 2(4.0MPa),叔丁醇钠(465mg,4.84mmol),90℃下反应48小时。TLC检测反应完全后加乙酸调pH至5,硅藻土抽滤,滤液减压浓缩后用乙酸乙酯(30mL)溶解,依次用水、饱和氯化钠溶液洗,无水硫酸钠干燥,减压浓缩,硅胶柱层析(DCM/MeOH=20/1,v/v)纯化,得到熊去氧胆酸(571mg,白色固体),摩尔收率60%。
于高压反应釜中依次加入式(8)化合物(1.0g,2.42mmol),20mL异丙醇,1.0g Raney Ni,H 2(4.0MPa),90℃下反应24小时后加入叔丁醇钠(465mg,4.84mmol),90℃下继续反应24小时。TLC检测反应完全后加乙酸调pH至5,硅藻土抽滤,滤液减压浓缩后用乙酸乙酯(30mL)溶解,依次用水、饱和氯化钠溶液洗,无水硫酸钠干燥,减压浓缩,硅胶柱层析(DCM/MeOH=20/1,v/v)纯化,得到熊去氧胆酸(685mg,白色固体),摩尔收率72%。
于高压反应釜中依次加入式(8)化合物(1.0g,2.42mmol),20mL 2-甲基四氢呋喃,1.0g Raney Ni,H 2(4.0MPa),20mL异丙醇,叔丁醇钠(465mg,4.84mmol),90℃下反应48小时。TLC检测反应完全后加乙酸调pH至5,硅藻土抽滤,滤液减压浓缩后用乙酸乙酯(30mL)溶解,依次用水、饱和氯化钠溶液洗,无水硫酸钠干燥,减压浓缩,硅胶柱层析(DCM/MeOH=20/1,v/v)纯化,得到熊去氧胆酸(646mg,白色固体),摩尔收率68%。
于高压反应釜中依次加入式(8)化合物(1.0g,2.42mmol),20mL 2-甲基四氢呋喃,1.0g Raney Ni,H 2(4.0MPa),90℃下反应24小时后加入20mL异丙醇,叔丁醇钠(465mg,4.84mmol),90℃下继续反应24小时。TLC检测反应完全后加乙酸调pH至5,硅藻土抽滤,滤液减压浓缩后用乙酸乙酯(30mL)溶解,依次用水、饱和氯化钠溶液洗,无水硫酸钠干燥,减压浓缩,硅胶柱层析(DCM/MeOH=20/1,v/v)纯化,得到熊去氧胆酸(827mg,白色固体),摩尔收率87%。
于高压反应釜中依次加入式(8)化合物(1.0g,2.42mmol),20mL四氢呋喃,1.0g Raney Ni,H 2(4.0MPa),20mL异丙醇,叔丁醇钠(465mg,4.84mmol),90℃下反应48小时。TLC检测反应完全后加乙酸调pH至5,硅藻土抽滤,滤液减压浓缩后用乙酸乙酯(30mL)溶解,依次用水、饱和氯化钠溶液洗,无水硫酸钠干燥,减压浓缩,硅胶柱层析(DCM/MeOH=20/1,v/v)纯化,得到熊去氧胆酸(618mg,白色固体),摩尔收率65%。
于高压反应釜中依次加入式(8)化合物(2.0g,4.85mmol),20mL四氢呋喃,2.0g Raney Ni,H 2(4.0MPa),90℃下反应24小时后加入20mL异丙醇,叔丁醇钠(932mg,9.70mmol),90℃下继续反应24小时。TLC检测反应完全后加乙酸调pH至5,硅藻土抽滤,滤液减压浓缩后用乙酸乙酯(30mL)溶解,依次用水、饱和氯化钠溶液洗,无水硫酸钠干燥,减压浓缩,硅胶柱层析(DCM/MeOH=20/1,v/v)纯化,得到熊去氧胆酸(1.54g,白色固体),摩尔收率81%。mp:200-202℃. 1H NMR(400MHz,DMSO-d 6)δ11.94(s,1H),4.46(s,1H),3.88(d,J=6.7Hz,1H),3.35-3.24(m,2H),2.26-2.19(m,1H),2.13-2.05(m,1H),1.95-1.81(m,2H),1.78-1.63(m,4H),1.51-1.42(m,3H),1.41-1.28(m,7H),1.23-1.08(m,6H),1.05-0.91(m,2H),0.88(d,J=6.5Hz,6H),0.61(s,3H). 13C NMR(100MHz,DMSO-d 6)δ174.93,69.75,69.46,55.87,54.70,43.11,43.02,42.20,39.94,39.84,39.73,38.75,37.75,37.28,34.88,33.78,30.78,30.26,28.21,26.75,23.34,20.89,18.32,12.06.HRMS(ESI):calcd for C 24H 40NaO 4[M+Na] +,415.2819,found 415.2834.
Figure PCTCN2020126922-appb-000029
对比例一
通过对式(5-B)化合物3位羰基的保护,合成烯醚和烯酯结构(其结构分别如式(10)、(11)所示)时,得到的式(10)、(11)化合物稳定性差,容易变质;且在进一步使用PDC和NHPI分别对式(10)、(11)化合物进行7位氧化时,反应结果复杂,未能分离得到目标式(12)化合物和式(13)化合物(反应式如下)。
Figure PCTCN2020126922-appb-000030
于100mL单口烧瓶中依次加入式(5-B)化合物(1.0g,2.51mmol)和20mL 1.5M HCl/EtOH溶液,室温反应4h。反应完毕后减压浓缩,得到式(10)化合物(1.1g,白色固体),直接用于下一步。
于100mL单口烧瓶中依次加入式(10)化合物(1.1g,2.51mmol),18mL丙酮,2mL水,NHPI(444mg,2.76mmol),PDC(1.0g,2.76mmol),室温反应20h。TLC检测结果如图1所示(PE/EA=3/1,v/v),烯醚化合物稳定性,反应结果复杂,未分离得到式(12)化合物。
Figure PCTCN2020126922-appb-000031
于100mL单口烧瓶中依次加入式(5-B)化合物(1.0g,2.51mmol),10mL乙酰氯和10mL乙酸酐,回流反应4h。反应完毕后减压浓缩,得到式(11)化合物(1.1g,白色固体),直接用于下一步。
于100mL单口烧瓶中依次加入式(11)化合物(1.1g,2.51mmol),18mL丙酮,2mL水,NHPI(444mg,2.76mmol),PDC(1.0g,2.76mmol),室温反应20h。TLC检测结果如图2所示(PE/EA=3/1,v/v),烯酯化合物稳定性,反应结果复杂,未分离得到式(13)化合物。
由该对比例一可知,烯醚和烯酯结构的化合物稳定性差,容易变质且在使用PDC和NHPI进行7位氧化时,反应结果复杂,未能分离得到目标式(12)化合物和式(13)化合物。
对比例二
采用Pd/C-H 2、NaBH 4等对化合物(8)进行还原时,反应结果复杂,未分离得到目标式(14)化合物和式(15)化合物(反应式如下)。
Figure PCTCN2020126922-appb-000032
于高压反应釜中依次加入式(8)化合物(1.0g,2.42mmol),20mL甲醇,0.1g 10%Pd/C,H 2(4.0MPa),60℃下反应24小时。TLC检测结果如图3所示(PE/EA=1/1,v/v),采用Pd/C-H 2对化合物(8)进行还原时,反应结果复杂,未分离得到式(14)化合物。
Figure PCTCN2020126922-appb-000033
于100mL单口烧瓶中依次加入式(8)化合物(1.0g,2.42mmol),20mL甲醇,NaBH 4(458mg,12.10mmol),室温搅拌反应4h。TLC检测结果如图4所示(PE/EA=1/1,v/v),采用NaBH 4对化合物(8)进行还原时,反应结果复杂,未分离得到式(15)化合物。
由该对比例二可知,在使用Pd/C-H 2、NaBH 4等还原时,反应结果复杂,未分离得到目标式(14)化合物、式(15)化合物。
本发明的保护内容不局限于以上实施例。在不背离发明构思的精神和范围下,本领域技术人员能够想到的变化和优点都被包括在发明中,并且以所附的权利要求书为保护范围。

Claims (17)

  1. 一种以BA为原料合成熊去氧胆酸的方法,其特征在于,所述方法包括以下步骤:
    (a)在第一溶剂中,式(1)所示的BA经乙二醇保护,得到式(2)化合物;
    (b)在第二溶剂中,式(2)化合物经氧化反应,得到式(3)化合物;
    (c)在第三溶剂中,式(3)化合物经Wittig反应,得到式(6)化合物;
    (d)在第四溶剂中,式(6)化合物经氧化反应,得到式(7)化合物;
    (e)在第五溶剂中,式(7)化合物在酸作用下发生水解反应,脱乙二醇保护,得到式(8)化合物;
    (f)在第六溶剂中,在催化剂和氢气的作用下,在加压条件下,式(8)化合物与碱加热发生水解和还原反应,得到如式(9)所示的所述熊去氧胆酸;
    或,所述方法包括以下步骤:
    (g)在第七溶剂中,式(1)所示的BA经氧化反应,得到式(4)化合物;
    (h)在第八溶剂中,式(4)化合物经Wittig反应,得到式(5)化合物;
    (i)在第九溶剂中,式(5)化合物经乙二醇或新戊二醇保护,得到式(6)化合物;
    (d)在第四溶剂中,式(6)化合物经氧化反应,得到式(7)化合物;
    (e)在第五溶剂中,式(7)化合物在酸作用下发生水解反应,脱乙二醇或新戊二醇保护,得到式(8)化合物;
    (f)在第六溶剂中,在催化剂和氢气的作用下,在加压条件下,式(8)化合物与碱加热发生水解和还原反应,得到如式(9)所示的所述熊去氧胆酸;
    其中,所述方法的反应过程如路线(A)所示:
    Figure PCTCN2020126922-appb-100001
    所述路线(A)中,R为烷基;R 1
    Figure PCTCN2020126922-appb-100002
  2. 如权利要求1所述的方法,其特征在于,R为C1~C20的烷基;R 1
    Figure PCTCN2020126922-appb-100003
  3. 如权利要求1所述的方法,其特征在于,步骤(a)中,所述乙二醇保护反应是指:式(1)所示的BA、乙二醇、对甲苯磺酸溶解在第一溶剂中,发生乙二醇保护反应,得到式(2)化合物;其中,式(1)所示的BA、乙二醇、对甲苯磺酸的摩尔比为1:(1-50):(0.01-1);和/或,所述第一溶剂选自苯、甲苯、乙酸乙酯、四氢呋喃、己烷中的一种或多种;和/或,所述乙二醇保护反应的温度为80~130℃;和/或,所述乙二醇保护反应的时间为2~36h。
  4. 如权利要求1所述的方法,其特征在于,步骤(a)中,所述乙二醇保护反应是指:式(1)所示的BA、乙二醇、对甲苯磺酸、原甲酸三乙酯溶解在第一溶剂中,发生乙二醇保护反应,得到式(2)化合物;其中,式(1)所示的BA、乙二醇、对甲苯磺酸、原甲酸三乙酯的摩尔比为1:(1-50):(0.01-1):(1-20);和/或,所述第一溶剂选自苯、甲苯、乙酸乙酯、四氢呋喃、己烷中的一种或多种;和/或,所述乙二醇保护反应的温度为0~50℃;和/或,所述乙二醇保护反应的时间为2~36h。
  5. 如权利要求1所述的方法,其特征在于,步骤(b)中,所述氧化反应是指:式(2)化合物、TEMPO、碳酸氢钠、四丁基溴化铵、氧化剂溶解在第二溶剂中,发生氧化反应,得到式(3)化合物;其中,式(2)化合物、TEMPO、碳酸氢钠、四丁基溴化铵、氧化剂的摩尔比为1:(0-1):(0-20):(0-1):(1-5);和/或,所述氧化反应在氧化剂的作用下进行,其中,所述氧化剂选自N-氯代琥珀酰亚胺(NCS)、N-溴代琥珀酰亚胺(NBS)、2-碘酰基苯甲酸(IBX)中的一种或多种;和/或,所述第二溶剂选自二氯甲烷、四氢呋喃、甲苯、二甲基亚砜、水中的一种或多种;和/或,所述氧化反应的温度为0~30℃;和/或,所述氧化反应的时间为2~8h。
  6. 如权利要求1所述的方法,其特征在于,步骤(c)中,所述Wittig反应是指:式(3)化合物、乙氧甲酰基亚甲基三苯基膦溶解在第三溶剂中,发生Wittig反应,得到式(6)化合物;其中,式(3)化合物、乙氧甲酰基亚甲基三苯基膦的摩尔比为1:(1~5);和/或,所述第三溶剂选自苯、甲苯、乙酸乙酯、四氢呋喃、己烷中的一种或多种;和/或,所述Wittig反应的温度为80~130℃;和/或,所述Wittig反应的时间为2~8h。
  7. 如权利要求1所述的方法,其特征在于,步骤(c)中,所述Wittig反应是指:式(3)化合物、氢化钠、膦酰基乙酸三乙酯溶解在第三溶剂中,发生Wittig反应,得到式(6) 化合物;其中,式(3)化合物、氢化钠、膦酰基乙酸三乙酯的摩尔比为1:(1~5):(1~5);和/或,所述第三溶剂选自苯、甲苯、乙酸乙酯、四氢呋喃、己烷中的一种或多种;和/或,所述Wittig反应的温度为0~30℃;和/或,所述Wittig反应的时间为2~8h。
  8. 如权利要求1所述的方法,其特征在于,步骤(g)中,所述氧化反应是指:式(1)所示的BA、TEMPO、碳酸氢钠、四丁基溴化铵、氧化剂溶解在第七溶剂中,发生氧化反应,得到式(4)化合物;其中,式(1)化合物、TEMPO、碳酸氢钠、四丁基溴化铵、氧化剂的摩尔比为1:(0-1):(0-20):(0-1):(1-5);和/或,所述氧化反应在氧化剂的作用下进行,其中,所述氧化剂选自N-氯代琥珀酰亚胺(NCS)、N-溴代琥珀酰亚胺(NBS)、2-碘酰基苯甲酸(IBX)中的一种或多种;和/或,所述第七溶剂选自二氯甲烷、四氢呋喃、甲苯、二甲基亚砜、水中的一种或多种;和/或,所述氧化反应的温度为0~30℃;和/或,所述氧化反应的时间为2~8h。
  9. 如权利要求1所述的方法,其特征在于,步骤(h)中,所述Wittig反应是指:式(4)化合物、甲氧甲酰基亚甲基三苯基膦或乙氧甲酰基亚甲基三苯基膦或丙氧甲酰基亚甲基三苯基膦溶解在第八溶剂中,发生Wittig反应,得到式(5)化合物;其中,式(4)化合物、甲氧甲酰基亚甲基三苯基膦或乙氧甲酰基亚甲基三苯基膦或丙氧甲酰基亚甲基三苯基膦的摩尔比为1:(1~5);和/或,所述第八溶剂选自苯、甲苯、乙酸乙酯、四氢呋喃、己烷中的一种或多种;和/或,所述Wittig反应的温度为80~130℃;和/或,所述Wittig反应的时间为2~8h。
  10. 如权利要求1所述的方法,其特征在于,步骤(h)中,所述Wittig反应是指:式(4)化合物、氢化钠、膦酰基乙酸甲酯二乙酯或膦酰基乙酸三乙酯或膦酰基乙酸丙酯二乙酯溶解在第八溶剂中,发生Wittig反应,得到式(5)化合物;其中,所述第八溶剂选自苯、甲苯、乙酸乙酯、四氢呋喃、己烷中的一种或多种;和/或,式(4)化合物、氢化钠、膦酰基乙酸甲酯二乙酯或膦酰基乙酸三乙酯或膦酰基乙酸丙酯二乙酯的摩尔比为1:(1~5):(1~5);和/或,所述Wittig反应的温度为0~30℃;和/或,所述Wittig反应的时间为2~8h。
  11. 如权利要求1所述的方法,其特征在于,步骤(i)中,所述乙二醇或新戊二醇保护反应是指:式(5)化合物、乙二醇或新戊二醇、对甲苯磺酸溶解在第九溶剂中,发生乙二醇或新戊二醇保护反应,得到式(6)化合物;其中,式(5)化合物、乙二醇或新戊二醇、对甲苯磺酸的摩尔比为1:(1-50):(0.01-1);和/或,所述第九溶剂选自苯、甲苯、乙酸乙酯、四氢呋喃、己烷中的一种或多种;和/或,所述乙二醇或新戊二醇保护反应的温度为80~130℃;和/或,所述乙二醇或新戊二醇保护反应的时间为2~36h。
  12. 如权利要求1所述的方法,其特征在于,步骤(i)中,所述乙二醇或新戊二醇保护反应是指:式(5)化合物、乙二醇或新戊二醇、对甲苯磺酸、原甲酸三乙酯溶解在第九溶剂中,发生乙二醇保护反应,得到式(6)化合物;其中,式(5)化合物、乙二醇或新戊二醇、对甲苯磺酸、原甲酸三乙酯的摩尔比为1:(1-50):(0.01-1):(1-20);和/或,所述第九溶剂选自苯、甲苯、乙酸乙酯、四氢呋喃、己烷中的一种或多种;和/或,所述乙二醇或新戊二醇保护反应的温度为0~50℃;和/或,所述乙二醇或新戊二醇保护反应的时间为2~36h。
  13. 如权利要求1所述的方法,其特征在于,步骤(d)中,所述氧化反应是指:式(6)化合物、氧化剂、N-羟基邻苯二甲酰亚胺、乙酸溶解在第四溶剂中,发生氧化反应,得到式(7)化合物;其中,式(6)化合物、氧化剂、N-羟基邻苯二甲酰亚胺(NHPI)、乙酸的摩尔比为1:(1-5):(1~5):(0~5);和/或,其中,所述氧化剂选自Na 2Cr 2O 7、K 2Cr 2O 7、PDC、BPO中的一种或多种;和/或,所述第四溶剂选自甲苯、丙酮、乙腈、水、二氯甲烷、N,N-二甲基甲酰胺、乙酸乙酯、叔丁醇、N-甲基吡咯烷酮中的一种或多种;和/或,所述氧化反应的温度为0~50℃;和/或,所述氧化反应的时间为10~48h。
  14. 如权利要求1所述的方法,其特征在于,步骤(e)中,所述脱乙二醇或新戊二醇保护反应是指:式(7)化合物、酸溶解在第五溶剂中,发生脱乙二醇或新戊二醇保护反应,得到式(8)化合物;其中,式(7)化合物、酸的摩尔比为1:(1~50);和/或,所述第五溶剂选自四氢呋喃、乙酸乙酯、甲醇、二氯甲烷、乙醚、水、甲苯、丙酮中的一种或多种;和/或,所述酸选自浓硫酸、浓盐酸、对甲苯磺酸中的一种或多种;和/或,所述水解反应的温度为0~50℃;和/或,所述水解反应的时间为1~10h。
  15. 如权利要求1所述的方法,其特征在于,步骤(f)中,式(8)化合物、碱的摩尔比为1:(1~5);和/或,式(8)化合物、雷尼镍的质量比为1:(0.1~5);和/或,所述第六溶剂选自四氢呋喃、2-甲基四氢呋喃、异丙醇、叔丁醇、甲醇、乙醇中的一种或多种;和/或,所述碱选自叔丁醇钠、叔丁醇钾、乙醇钠、甲醇钠、氢氧化钠、氢氧化钾中的一种或多种;所述催化剂选自雷尼镍等中的一种或多种;和/或,所述水解和还原反应的温度为20~100℃;和/或,所述水解和还原反应的时间为24~72h;和/或,所述反应在氢气加压的条件下进行,所述氢气的压力范围为0.1~10MPa。
  16. 结构分别如式(6′)、式(6")、式(7′)、式(7")或式(8)所示的化合物:
    Figure PCTCN2020126922-appb-100004
    其中,R为烷基。
  17. 如权利要求16所述的化合物,其特征在于,R为C1~C20的烷基。
PCT/CN2020/126922 2019-12-03 2020-11-06 一种以ba为原料合成熊去氧胆酸的方法 WO2021109791A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2022552994A JP7365082B2 (ja) 2019-12-03 2020-11-06 Baを原料とするウルソデオキシコール酸の合成方法
US17/781,095 US20230039886A1 (en) 2019-12-03 2020-11-06 Method for synthesizing ursodeoxycholic acid using ba as raw material
KR1020227017621A KR20220088765A (ko) 2019-12-03 2020-11-06 Ba를 원료로 하는 우르소데옥시콜산의 합성 방법
EP20897016.0A EP4071161A4 (en) 2019-12-03 2020-11-06 PROCESS FOR SYNTHESIS OF URSODEOXYCHOLIC ACID USING BA AS RAW MATERIAL

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911222943.8 2019-12-03
CN201911222943.8A CN111072744B (zh) 2019-12-03 2019-12-03 一种以ba为原料合成熊去氧胆酸的方法

Publications (1)

Publication Number Publication Date
WO2021109791A1 true WO2021109791A1 (zh) 2021-06-10

Family

ID=70312828

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/126922 WO2021109791A1 (zh) 2019-12-03 2020-11-06 一种以ba为原料合成熊去氧胆酸的方法

Country Status (6)

Country Link
US (1) US20230039886A1 (zh)
EP (1) EP4071161A4 (zh)
JP (1) JP7365082B2 (zh)
KR (1) KR20220088765A (zh)
CN (1) CN111072744B (zh)
WO (1) WO2021109791A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11384116B2 (en) 2020-08-21 2022-07-12 Sandhill One, Llc Methods of making cholic acid derivatives and starting materials therefor
CN115286675A (zh) * 2022-08-30 2022-11-04 湖北共同生物科技有限公司 一种黄体酮中间体的制备方法
WO2023081657A3 (en) * 2021-11-02 2023-07-06 Sandhill One, Llc High purity non-animal derived udca
WO2023081658A3 (en) * 2021-11-02 2023-07-06 Sandhill One, Llc High purity non-animal derived tudca

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111072744B (zh) * 2019-12-03 2021-09-14 江苏佳尔科药业集团股份有限公司 一种以ba为原料合成熊去氧胆酸的方法
CN113024624A (zh) * 2019-12-25 2021-06-25 上海科胜药物研发有限公司 一种去氧胆酸的合成方法
CN111560045A (zh) * 2020-06-23 2020-08-21 江苏佳尔科药业集团股份有限公司 一种以ba为原料合成石胆酸的方法
CN113248557A (zh) * 2021-04-09 2021-08-13 华东师范大学 一种以ba为原料合成胆固醇的方法
CN115246867A (zh) * 2021-04-27 2022-10-28 江苏佳尔科药业集团股份有限公司 一种以ba为原料合成7-酮基石胆酸的方法
CN113651866B (zh) * 2021-08-02 2023-07-04 王涛 一种以21-羟基-20-甲基孕甾-4-烯-3-酮为原料合成胆固醇的新方法
CN113968890A (zh) * 2021-11-15 2022-01-25 湖南科瑞生物制药股份有限公司 一种植物源7-酮基石胆酸异构体杂质的制备方法
CN116836214A (zh) * 2022-03-25 2023-10-03 苏州恩泰新材料科技有限公司 一种7-酮石胆酸中间体的合成方法和应用
CN115536719B (zh) * 2022-09-16 2024-02-09 江苏佳尔科药业集团股份有限公司 一种高纯度植物源7-酮基石胆酸的合成方法
CN115521964B (zh) * 2022-09-19 2024-04-12 湖北共同生物科技有限公司 一种甾体激素药物中间体的制备方法
CN115594728B (zh) * 2022-10-28 2024-01-26 湖南科瑞生物制药股份有限公司 一种3-酮-4,22-二烯石胆酸酯及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014020024A1 (en) 2012-07-31 2014-02-06 Erregierre S.P.A. Process for preparing high purity ursodeoxycholic acid
CN105503987A (zh) 2015-12-28 2016-04-20 成都市新功生物科技有限公司 一种载铜活性炭催化氧化还原法用鹅去氧胆酸合成熊去氧胆酸的方法
CN111072744A (zh) * 2019-12-03 2020-04-28 华东师范大学 一种以ba为原料合成熊去氧胆酸的方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2002300302B2 (en) * 1996-12-06 2006-08-10 Genaera Corporation Stereoselective synthesis of 24-hydroxylated compounds useful for the preparation of aminosterols, vitamin D analogs, and other compounds
JP4438308B2 (ja) * 2003-04-07 2010-03-24 三菱化学株式会社 ステロイド化合物の製造方法
EP1775304A4 (en) * 2004-07-13 2010-04-28 Mitsubishi Chem Corp PROCESS FOR THE PRODUCTION OF STEROIDS
CN103319560A (zh) * 2013-01-04 2013-09-25 华东理工大学 一种熊去氧胆酸的制备方法
EP3328817A4 (en) * 2015-07-30 2019-04-03 Intercept Pharmaceuticals, Inc. PROCESS FOR THE PRODUCTION OF GALLENIC ACIDS AND DERIVATIVES THEREOF
GB201608779D0 (en) * 2016-05-18 2016-06-29 Dextra Lab Ltd Methods and compounds
GB201608777D0 (en) * 2016-05-18 2016-06-29 Dextra Lab Ltd Compounds
CN106749469B (zh) 2016-12-08 2019-08-02 青州市欣泰生物制品有限公司 一种熊去氧胆酸的制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014020024A1 (en) 2012-07-31 2014-02-06 Erregierre S.P.A. Process for preparing high purity ursodeoxycholic acid
CN105503987A (zh) 2015-12-28 2016-04-20 成都市新功生物科技有限公司 一种载铜活性炭催化氧化还原法用鹅去氧胆酸合成熊去氧胆酸的方法
CN111072744A (zh) * 2019-12-03 2020-04-28 华东师范大学 一种以ba为原料合成熊去氧胆酸的方法

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
BIOORGANIC & MEDICINAL CHEMISTRY, vol. 24, 2016, pages 3986 - 3993
CAS , no. 128-13-2
JOURNAL OF THE CHEMICAL SOCIETY PERKIN TRANSACTIONS, vol. 1, 1990, pages 1 - 3
SAMAJA GISELA A.; CASTRO OLGA; ALVAREZ LAUTARO D.; DANSEY MARIA V.; ESCUDERO DAIANA S.; VELEIRO ADRIANA S.; PECCI ADALI; BURTON GE: "27-Nor-Δ4-dafachronic acid is a synthetic ligand ofCaenorhabditis elegansDAF-12 rece", BIOORGANIC & MEDICINAL CHEMISTRY LETTERS, vol. 23, no. 10, 28 March 2013 (2013-03-28), pages 2893 - 2896, XP028582269, ISSN: 0960-894X, DOI: 10.1016/j.bmcl.2013.03.071 *
See also references of EP4071161A4
STEROIDS, vol. 76, 2011, pages 1397 - 1399
SYNTHESIS, vol. 48, 2016, pages 588 - 594
WANG JIE; GU XIANG-ZHONG; HE LI-MING; LI CHEN-CHEN; QIU WEN-WEI: "Synthesis of ursodeoxycholic acid from plant-source (20S)-21-hydroxy-20-methylpregn-4-en-3-one", STEROIDS, ELSEVIER SCIENCE PUBLISHERS, NEW YORK, NY., US, vol. 157, 14 February 2020 (2020-02-14), US, XP086083441, ISSN: 0039-128X, DOI: 10.1016/j.steroids.2020.108600 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11384116B2 (en) 2020-08-21 2022-07-12 Sandhill One, Llc Methods of making cholic acid derivatives and starting materials therefor
WO2023081657A3 (en) * 2021-11-02 2023-07-06 Sandhill One, Llc High purity non-animal derived udca
WO2023081658A3 (en) * 2021-11-02 2023-07-06 Sandhill One, Llc High purity non-animal derived tudca
CN115286675A (zh) * 2022-08-30 2022-11-04 湖北共同生物科技有限公司 一种黄体酮中间体的制备方法
CN115286675B (zh) * 2022-08-30 2024-02-27 湖北共同生物科技有限公司 一种黄体酮中间体的制备方法

Also Published As

Publication number Publication date
US20230039886A1 (en) 2023-02-09
JP2023500978A (ja) 2023-01-11
EP4071161A4 (en) 2024-04-10
KR20220088765A (ko) 2022-06-28
CN111072744B (zh) 2021-09-14
JP7365082B2 (ja) 2023-10-19
EP4071161A1 (en) 2022-10-12
CN111072744A (zh) 2020-04-28

Similar Documents

Publication Publication Date Title
WO2021109791A1 (zh) 一种以ba为原料合成熊去氧胆酸的方法
WO2022228080A1 (zh) 一种以ba为原料合成7-酮基石胆酸的方法
WO2022213480A1 (zh) 一种以ba为原料合成胆固醇的方法
CN111560045A (zh) 一种以ba为原料合成石胆酸的方法
WO2013063859A1 (zh) 醋酸乌利司他的制备方法及其中间体
WO2023142888A1 (zh) 一种高纯度植物源胆固醇的合成方法
CN1257181C (zh) 雄激素甾类化合物以及制备和使用它们的方法
CN114874277B (zh) 一种胆固醇的合成方法
WO2023142890A1 (zh) 一种高纯度胆固醇的合成方法
He et al. A facile synthesis of ursodeoxycholic acid and obeticholic acid from cholic acid
CN115536719B (zh) 一种高纯度植物源7-酮基石胆酸的合成方法
CN115884978A (zh) 制备胆酸衍生物的方法及其原料
CN115181150A (zh) 一种由植物甾醇降解物合成熊去氧胆酸的方法
WO2018010651A1 (zh) 一种奥贝胆酸及其中间体的制备方法
JP2004529160A (ja) 胆汁酸の製造
CN115466300A (zh) 一种胆酸中间体a7及其合成方法
JPH10507451A (ja) 6−アザアンドロステノンの合成
JPS5850240B2 (ja) アンドロスタン系の新規なジエン誘導体の製造法
EP0338065B1 (fr) Derives de la 19-nor progesterone, leur preparation et leur utilisation
US4163744A (en) Synthesis of steroids
WO2023179724A1 (zh) 一种7-酮石胆酸中间体的合成方法和应用
DK147684B (da) Analogifremgangsmaade til fremstilling af 16alfa-ethyl-4,9,11-oestratrien-3-oner
WO2023179721A1 (zh) 一种7-酮石胆酸中间体及其合成方法和应用
CN117917425A (zh) 一种植物源熊去氧胆酸的合成方法
CA2037092C (en) Bile acid unsaturated derivatives, processes for the preparation thereof and pharmaceutical compositions containing them

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20897016

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022552994

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20227017621

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020897016

Country of ref document: EP

Effective date: 20220704