WO2023142890A1 - 一种高纯度胆固醇的合成方法 - Google Patents

一种高纯度胆固醇的合成方法 Download PDF

Info

Publication number
WO2023142890A1
WO2023142890A1 PCT/CN2022/144100 CN2022144100W WO2023142890A1 WO 2023142890 A1 WO2023142890 A1 WO 2023142890A1 CN 2022144100 W CN2022144100 W CN 2022144100W WO 2023142890 A1 WO2023142890 A1 WO 2023142890A1
Authority
WO
WIPO (PCT)
Prior art keywords
formula
compound
reaction
solvent
cholesterol
Prior art date
Application number
PCT/CN2022/144100
Other languages
English (en)
French (fr)
Inventor
仇文卫
顾向忠
李晨晨
蒋澄宇
叶如飞
Original Assignee
华东师范大学
江苏佳尔科药业集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华东师范大学, 江苏佳尔科药业集团股份有限公司 filed Critical 华东师范大学
Publication of WO2023142890A1 publication Critical patent/WO2023142890A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07JSTEROIDS
    • C07J9/00Normal steroids containing carbon, hydrogen, halogen or oxygen substituted in position 17 beta by a chain of more than two carbon atoms, e.g. cholane, cholestane, coprostane
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07JSTEROIDS
    • C07J51/00Normal steroids with unmodified cyclopenta(a)hydrophenanthrene skeleton not provided for in groups C07J1/00 - C07J43/00

Definitions

  • the invention belongs to the technical field of organic chemical synthesis, and relates to a method of synthesizing high-purity 21-hydroxy-20-methylpregn-4-en-3-one from plant sources, also known as bisnorol or BA (Bisnoralcohol) as a raw material. Cholesterol method.
  • Cholesterol also known as cholesterol, is an indispensable and important substance in animal tissue cells. It not only participates in the formation of cell membranes, but also is a raw material for the synthesis of bile acids and steroid hormones in the body. At present, commercialized cholesterol is mainly used for: 1. Pharmaceutical excipients-liposome additives, such as as auxiliary materials for the new crown mRNA vaccine (adding 30-50% cholesterol when preparing liposomes can greatly improve lipid plastid drug loading and stability); 2. Cosmetic additives; 3. Raw materials for the production of liquid crystals; 4. Starting materials for the production of vitamin D3.
  • animal brainstem brainstem cholesterol
  • lanolin lanolin cholesterol
  • the upstream raw material for the production of vitamin D3 is cholesterol. Due to the risk of epidemics, European and American countries have long prohibited the use of brainstem cholesterol as a raw material. From July 1, 2020, China has also restricted the use of brainstem cholesterol as a raw material. Therefore, in order to ensure people's health and safety, it is urgent to develop a plant-derived, high-purity synthetic method for cholesterol.
  • the chemical synthesis reports of cholesterol mainly include the following methods:
  • Cholesterol from animal sources has the risk of infection such as mad cow disease, streptococcus suis, and bird flu.
  • the currently reported chemical synthesis routes of cholesterol have disadvantages such as cumbersome operation, high pollution, expensive catalysts, and low product purity. Therefore, it is of great value to develop a safer and more efficient high-purity cholesterol synthesis method based on plant-derived raw materials.
  • the object of the present invention is to provide a method for synthesizing plant-derived high-purity cholesterol.
  • the present invention uses plant source 21-hydroxyl-20-methylpregn-4-en-3-one, also known as bisnorol or BA, as a raw material, undergoes oxidation, Wittig reaction, acetylation, reduction, hydroxyl protection, selective
  • the cholesterol is synthesized through steps such as hydrogenation reduction, deprotection or hydrolysis, and the purity can reach more than 99%.
  • the starting material BA selected for synthesizing cholesterol in the invention is safe and economical, and the method for synthesizing cholesterol is simple in operation, high in yield, good in purity, friendly in environment, and convenient for industrialized production.
  • the raw material BA (bisnoralcohol) used in the present invention is derived from the fermentation of phytosterols left over from the oil process. It is a green raw material of plant origin. At present, the annual output reaches 1,000 tons, and the price is cheap. There may be a risk of pathogenic bacteria and viral infection in animal-derived cholesterol.
  • the raw material BA includes, but is not limited to, obtained through biological fermentation of phytosterols, or obtained through chemical synthesis methods.
  • the method for synthesizing cholesterol with BA as raw material comprises the following steps:
  • Step (a) in the first solvent, the BA represented by the formula (1) undergoes an oxidation reaction to obtain the compound of the formula (2);
  • Step (b) in the second solvent, the compound of formula (2) undergoes Wittig reaction to obtain the compound of formula (3);
  • Step (c) in the third solvent, the compound of formula (3) is acetylated to obtain the compound of formula (4);
  • Step (e) in the fifth solvent, the compound of formula (5) undergoes hydroxyl protection reaction to obtain the compound of formula (6);
  • Step (f) in the sixth solvent, the compound of formula (6) undergoes selective hydrogenation reduction reaction to obtain the compound of formula (7);
  • Step (g) in the seventh solvent, deprotect or hydrolyze the compound of formula (7) to obtain cholesterol;
  • reaction process of described method is as shown in route (A):
  • R is selected from ester group, silicon ether group
  • R is selected from C2-C10 straight chain ester group, isobutyl ester Isopentyl Phenyl ester p-methoxyphenylcarboxylate Trimethylsilyl ether group tert-butyldimethylsilyl ether group one or more of
  • R is selected from ethyl ester Propyl ester Butyl ester Isobutyl ester Isopentyl ester Phenyl esters p-methoxyphenyl ester Trimethylsilyl ether group tert-butyldimethylsilyl ether group one or more of.
  • step (a) of the present invention the oxidation reaction is specifically: in the first solvent, BA shown in formula (1) undergoes an oxidation reaction with TEMPO, sodium bicarbonate, tetrabutylammonium bromide, and an oxidizing agent to obtain the formula (2) Compounds.
  • the mol ratio of BA shown in formula (1), TEMPO, sodium bicarbonate, tetrabutylammonium bromide, oxidizing agent is 1: (0 ⁇ 1): (0 ⁇ 20): (0 ⁇ 1): ( 1 to 5); preferably, 1:0.01:1.35:0.1:1.15.
  • the oxidation reaction is carried out under the action of an oxidizing agent, and the oxidizing agent is selected from one of N-chlorosuccinimide NCS, N-bromosuccinimide NBS, 2-iodylbenzoic acid IBX, etc. or more; preferably, N-chlorosuccinimide NCS.
  • the temperature of the oxidation reaction is 0-30°C; preferably, it is 0°C.
  • the oxidation reaction time is 3-8 hours; preferably, it is 6 hours.
  • the synthesis step of the compound of formula (2) comprises: the BA shown in formula (1) is dissolved in the first solvent, then add TEMPO, sodium bicarbonate, tetrabutylammonium bromide, NCS, produce Oxidation reaction gives the compound of formula (2).
  • the Wittig reaction is specifically: in the second solvent, the compound of formula (2), 3,3-dimethylallyl halide, triphenylphosphine, and potassium tert-butoxide occur Wittig reaction to obtain the compound of formula (3).
  • the molar ratio of the compound of formula (2), 3,3-dimethylallyl halide, triphenylphosphine, and potassium tert-butoxide is 1: (1 ⁇ 4): (1 ⁇ 4): (1 ⁇ 4); preferably, 1:1.3:1.3:1.3.
  • the second solvent is one or more of toluene, benzene, tetrahydrofuran, heptane, etc.; preferably, it is toluene.
  • the 3,3-dimethylallyl halide is selected from one or more of 3,3-dimethylallyl chloride, 3,3-dimethylallyl bromide, etc.; Preferably, it is 3,3-dimethylallyl bromide.
  • the temperature of the Wittig reaction is -10-112°C; preferably, it is 10°C.
  • the time for the Wittig reaction is 0.5-9 h; preferably, 0.5 h.
  • the acetylation reaction is specifically: the compound of formula (3), acetyl chloride, acetic anhydride, and alkali are acetylated in a third solvent to obtain the compound of formula (4).
  • the molar ratio of the compound of formula (3), acetyl chloride, acetic anhydride, and base is 1:(0.5 ⁇ 62.5):(1 ⁇ 62.5):(0 ⁇ 6); preferably, it is 1:25:24:4 .
  • the base is selected from one or more of pyridine, triethylamine, DIPEA, DMAP, diisopropylamine, etc.; preferably, it is diisopropylamine.
  • the third solvent is one or more of acetic anhydride, acetyl chloride, ethyl acetate, dichloromethane, etc.; preferably, it is a mixed solvent of acetyl chloride and acetic anhydride.
  • the temperature of the acetylation reaction is 40-110°C; preferably, it is 70°C.
  • the time for the acetylation reaction is 1-10 h; preferably, 2-10 h; more preferably, 6 h.
  • acetyl chloride and acetic anhydride are both used as reactants and solvents.
  • the synthesis step of the compound of formula (4) includes: adding acetyl chloride, acetic anhydride and alkali to the compound of formula (3) for acetylation to obtain the compound of formula (4).
  • the reduction reaction is specifically: the compound of the formula (4) and the reducing agent undergo a reduction reaction in a fourth solvent to obtain the compound of the formula (5).
  • the molar ratio of the compound of formula (4) to the reducing agent is 1:(1-25); preferably, it is 1:4.
  • the reducing agent is one or more of NaBH 4 , KBH 4 , etc.; preferably, it is NaBH 4 .
  • the temperature of the reduction reaction is 0-50°C; preferably, 25°C.
  • the reduction reaction time is 6-12 hours; preferably, it is 8 hours.
  • the synthesis step of the compound of formula (5) comprises: dissolving the compound of formula (4) in a fourth solvent, and performing a reduction reaction with a reducing agent to obtain the compound of formula (5).
  • the hydroxyl protecting reaction is specifically: in the fifth solvent, the compound of formula (5) reacts with the reagent for protecting hydroxyl in the fifth solvent under the action of a base Condensation reaction in the fifth solvent to obtain the compound of formula (6).
  • ester group is selected from C2-C10 linear ester group (ethyl ester Propyl ester Butyl ester etc.), isobutyl ester Isopentyl ester Phenyl esters p-methoxyphenyl ester One or more ester groups in etc.; preferably, ethyl ester.
  • the molar ratio of the compound of formula (5), ester group protecting reagent and base is 1:(1-4):(0.05-5); preferably, it is 1:3:0.1.
  • the fifth solvent is one or more of ethyl acetate, dichloromethane, chloroform, DMF, toluene, tetrahydrofuran, 2-methyltetrahydrofuran, etc.; preferably, it is ethyl acetate.
  • the base is selected from one or more of triethylamine, diisopropylethylamine, imidazole, pyridine, DMAP, etc.; preferably, it is DMAP.
  • the temperature of the reaction is 0-50°C; preferably, it is 45°C.
  • reaction time is 2-24 hours; preferably, it is 4 hours.
  • the hydroxyl protection reaction is specifically: in the fifth solvent, the compound of formula (5) is reacted with a silicon ether group protecting reagent under the action of a base React in the fifth solvent to obtain the compound of formula (6).
  • the silicon ether group is selected from trimethylsilyl ether group tert-butyldimethylsilyl ether group etc.; preferably, tert-butyldimethylsilyl ether group
  • the molar ratio of the compound of formula (5), silicon ether group protecting reagent and base is 1:(2-4):(4-8); preferably, it is 1:2.5:4.
  • the fifth solvent is one or more of DMF, dichloromethane, chloroform, carbon tetrachloride, etc.; preferably, it is dichloromethane.
  • the base is selected from one or more of triethylamine, diisopropylethylamine, imidazole, pyridine, DMAP, etc.; preferably, it is imidazole.
  • the temperature of the reaction is 0-50°C; preferably, it is 25°C.
  • reaction time is 2-24 hours; preferably, it is 12 hours.
  • the synthesis step of the compound of formula (6) includes: dissolving the compound of formula (5) in a fifth solvent, and reacting with a reagent for protecting hydroxyl under the action of a base to obtain the compound of formula (6).
  • the selective hydrogenation reduction reaction is specifically: the compound of formula (6), under the action of a catalyst, undergoes a selective hydrogenation reduction reaction with a reducing agent in the sixth solvent to obtain the formula (7) ) compound.
  • the catalyst is RaneyNi.
  • the reducing agent is H 2 .
  • the mass ratio of the compound of formula (6) to the catalyst RaneyNi is 1:(0.05-5); preferably, it is 1:1.
  • the sixth solvent is selected from one or more of 2-methyltetrahydrofuran, tetrahydrofuran, ethyl acetate, toluene, isopropanol, etc.; preferably, it is ethyl acetate.
  • the temperature of the hydrogenation reduction reaction is 0-60°C; preferably, it is 30°C.
  • the reducing agent H 2 pressure of the hydrogenation reduction reaction is 1-20 atm; preferably, 1 atm.
  • the time for the hydrogenation-reduction reaction is 4-48 hours; preferably, 4-30 hours; more preferably, 7 hours.
  • the cholesterol synthesis step includes: dissolving the compound of formula (6) in a sixth solvent, adding Raney Ni and H2 for replacement, and then undergoing a selective hydrogenation reduction reaction to obtain the compound of formula (7).
  • step (g) when the protecting group R is an ester group, the hydrolysis reaction is specifically: the compound of formula (7) undergoes a hydrolysis reaction in the seventh solvent under the action of a base to obtain cholesterol .
  • the base is selected from one or more of LiOH, KOH, NaOH, t-BuOK, K 2 CO 3 , etc.; preferably, it is K 2 CO 3 .
  • the molar ratio of the compound of formula (7) to the base is 1:(0.5-2); preferably, it is 1:1.3.
  • the seventh solvent is selected from one or more of methanol, ethanol, etc.; preferably, it is methanol.
  • the temperature of the hydrolysis reaction is 10-75°C; preferably, it is 65°C.
  • the time of the hydrolysis reaction is 0.3-12 hours; preferably, it is 2 hours.
  • step (g) when the protecting group R is a silyl ether group, the deprotection reaction is specifically: the compound of formula (7) undergoes a deprotection reaction in the seventh solvent under the action of a catalyst , get cholesterol.
  • the catalyst is selected from one or more of tetrabutylammonium fluoride TBAF, tetrabutylammonium fluoride trihydrate TBAF 3H 2 O, boron trifluoride ether, acetic acid, ethyl acetate solution of hydrogen chloride, etc. species; preferably, TBAF 3H 2 O.
  • the molar ratio of the compound of formula (7) to the catalyst is 1:(1-6); preferably, it is 1:4.
  • the seventh solvent is selected from one or more of tetrahydrofuran, water, etc.; preferably, it is tetrahydrofuran.
  • the temperature of the deprotection reaction is 10-75°C; preferably, 25°C.
  • the time of the deprotection reaction is 2-48 hours; preferably, it is 24 hours.
  • the synthesis step of cholesterol includes: dissolving the compound of formula (7) in the seventh solvent, adding a base or a catalyst, and deprotection or hydrolysis reaction to obtain cholesterol.
  • the present invention also provides twenty kinds of compounds, the structure of the compound is as formula (6-2E), (6-3E), (6-4E), (6-5E), (6-6E), (6- 2Z), (6-3Z), (6-4Z), (6-5Z), (6-6Z), (6'-2E), (6'-3E), (6'-4E), (6 '-5E), (6'-6E), (6'-2Z), (6'-3Z), (6'-4Z), (6'-5Z), (6'-6Z):
  • the beneficial effects of the present invention include: in the preparation method of high-purity cholesterol of the present invention, the commercial raw material BA used is plant-derived raw material, which avoids the risk of pathogenic bacteria and virus infection that may exist in animal-derived raw materials, and is cheap and easy to obtain; and the obtained Cholesterol has high purity (>99%), simple synthesis steps, high yield, less side reactions, and is environmentally friendly, which is convenient for industrialized production of high-purity cholesterol; solves the problem of poor safety, low purity, and high synthesis cost of existing cholesterol products and unfriendly environment.
  • Fig. 1 is a gas chromatogram of the crude compound of formula (7-1) obtained in Example 6 of the present invention.
  • Fig. 2 is the gas chromatogram of the refined compound of formula (7-1) obtained in Example 6 of the present invention.
  • Fig. 3 is the gas chromatogram of the refined compound of formula (7-2) obtained in Example 6 of the present invention.
  • Fig. 4 is the gas chromatogram of the refined compound of formula (7-3) obtained in Example 6 of the present invention.
  • Fig. 5 is a gas chromatogram of the refined compound of formula (7-4) obtained in Example 6 of the present invention.
  • Fig. 6 is a gas chromatogram of the refined compound of formula (7-5) obtained in Example 6 of the present invention.
  • Fig. 7 is a gas chromatogram of the refined compound of formula (7-6) obtained in Example 6 of the present invention.
  • Fig. 9 is a gas chromatogram of cholesterol obtained by hydrolysis of the compound of formula (7-1).
  • Fig. 10 is a gas chromatogram of cholesterol obtained by hydrolysis of the compound of formula (7-2).
  • Fig. 11 is a gas chromatogram of cholesterol obtained by hydrolysis of the compound of formula (7-3).
  • Fig. 12 is a gas chromatogram of cholesterol obtained by hydrolysis of the compound of formula (7-4).
  • Fig. 13 is a gas chromatogram of cholesterol obtained by hydrolysis of the compound of formula (7-5).
  • Fig. 14 is the gas chromatogram of cholesterol obtained by the deprotection reaction of the compound of formula (7-6).
  • Figure 15 10% Pd/C catalytic hydrogenation of the compound of formula (6-1), the gas chromatogram of the crude product of the compound of formula (7-1) obtained.
  • the structure of the compound is determined by nuclear magnetic resonance and high-resolution mass spectrometer; reagents are mainly provided by Shanghai Sinopharm Chemical Reagent Company; product purification is mainly through beating and column chromatography; silica gel (200-300) is produced by Qingdao Ocean Chemical Factory .
  • a kind of method that the present invention proposes takes plant source 21-hydroxyl-20-methylpregn-4-en-3-one BA as raw material to synthesize cholesterol, and its reaction process is as shown in the aforementioned route (A), and needs to be explained Yes, the present invention also includes the generation of other by-products in the method of synthesizing cholesterol from plant source 21-hydroxyl-20-methylpregn-4-en-3-one BA as raw material, the specific reaction route is as (A') Shown:
  • R is selected from ester group, silicon ether group
  • Embodiment 1 The preparation of formula (2) compound
  • the present embodiment has provided the preparation result of formula (2) compound under different experimental conditions:
  • the present embodiment has provided the preparation result of formula (3) compound under different experimental conditions:
  • the ratio of the E/Z configuration of the intermediate compound of formula (4), compound of formula (5) and compound of formula (6) obtained through acetylation and reduction of the compound of formula (3) remains basically unchanged, and C
  • C The double bond between -22 and C-23 is dominated by E configuration, supplemented by Z configuration (3E/3Z ⁇ 87/13). Since the cis-trans isomers of the double bond between the C-22 and C-23 positions in the compound of formula (6) can obtain the product cholesterol after Raney nickel hydrogenation reduction, deprotection or hydrolysis, therefore, the following examples
  • the ratio of the E/Z configuration of the corresponding compound is no longer marked in .
  • the present embodiment has provided the preparation result of formula (4) compound under different experimental conditions:
  • Embodiment 4 The preparation of formula (5) compound crude product
  • the present embodiment provides the preparation result of the crude product of the formula (5) compound under different experimental conditions:
  • the main components of the crude product of the compound of formula (5) obtained with sodium borohydride as the reducing agent are compound (5) (5E and 5Z, 3 ⁇ -OH) and (5′) (5′E and 5′Z, 3 ⁇ -OH ), according to 1 HNMR, the ratio is compound (5)/(5′) ⁇ 92/8.
  • the ratio of 5(3 ⁇ -OH)/5′(3 ⁇ -OH) in the crude compound of formula (5) obtained in the following examples is basically the same as that in this example, and will not be noted later.
  • the main components of the crude compound of formula (5) obtained by reduction of potassium borohydride are compound (5) (5E and 5Z, 3 ⁇ -OH) and (5′) (5′E and 5′Z, 3 ⁇ -OH), Among them, the content of compound 5'(3 ⁇ -OH) is relatively high, and according to 1 H NMR, the compound 5(3 ⁇ -OH)/5'(3 ⁇ -OH) ⁇ 85/15.
  • Embodiment 5 The preparation of formula (6) compound crude product
  • the main components of the crude compound of formula (6-1) are compound (6-1) (6-1E and 6-1Z) and (6'-1) (6'-1E and 6'-1Z), and the ratio is Compound (6-1)/(6'-1) ⁇ 92/8.
  • the main components of the crude compound of formula (6-2) are compound (6-2) (6-2E and 6-2Z) and (6'-2) (6'-2E and 6'-2Z), and the ratio is Compound (6-2)/(6'-2) ⁇ 92/8.
  • the main components of the crude compound of formula (6-3) are compound (6-3) (6-3E and 6-3Z) and (6'-3) (6'-3E and 6'-3Z), and the ratio is Compound (6-3)/(6'-3) ⁇ 92/8.
  • the main components of the crude compound of formula (6-4) are compound (6-4) (6-4E and 6-4Z) and (6'-4) (6'-4E and 6'-4Z), and the ratio is Compound (6-4)/(6'-4) ⁇ 92/8.
  • the main components of the crude compound of formula (6-5) are compound (6-5) (6-5E and 6-5Z) and (6'-5) (6'-5E and 6'-5Z), and the ratio is Compound (6-5)/(6'-5) ⁇ 92/8.
  • the main components of the crude compound of formula (6-6) are compound (6-6) (6-6E and 6-6Z) and (6'-6) (6'-6E and 6'-6Z), and the ratio is Compound (6-6)/(6'-6) ⁇ 92/8.
  • the white solid was added to a mixed solution of methanol and ethyl acetate, heated to reflux until dissolved, naturally cooled to 15°C, stirred for 5h, and suction filtered to obtain the compound of formula (7-1) (4.2g of white solid, molar yield of 84 %, gas chromatography purity 99.40%, see accompanying drawing 2).
  • the main components of the crude compound of formula (7-1) are compounds (7-1) and (7′-1), and the ratio is compound (7-1)/(7′-1) ⁇ 92/8.
  • the white solid was added to a mixed solution of methanol and ethyl acetate, heated and refluxed until dissolved, cooled naturally to 15 ° C, stirred for 4 h, and filtered with suction to obtain the compound of formula (7-2) (4.0 g of white solid, molar yield of 80 %, gas chromatography purity 98.35%, see accompanying drawing 3).
  • the main components of the crude compound of formula (7-2) are compounds (7-2) and (7′-2), and the ratio is compound (7-2)/(7′-2) ⁇ 92/8.
  • the white solid was added to a mixed solution of methanol and ethyl acetate, heated to reflux until dissolved, cooled naturally to 15°C, stirred for 5h, and filtered with suction to obtain the compound of formula (7-3) (4.1g of white solid, molar yield of 82 %, gas chromatography purity 99.5%, see accompanying drawing 4).
  • the main components of the crude compound of formula (7-3) are compounds (7-3) and (7′-3), and the ratio is compound (7-3)/(7′-3) ⁇ 92/8.
  • the main components of the crude compound of formula (7-4) are compounds (7-4) and (7′-4), and the ratio is compound (7-4)/(7′-4) ⁇ 92/8.
  • the white solid was added to a mixed solution of methanol and ethyl acetate, heated to reflux until dissolved, cooled naturally to 15°C, stirred for 4h, and filtered with suction to obtain the compound of formula (7-5) (4.23g of white solid, molar yield of 82 %, gas chromatography purity 97.96%, see accompanying drawing 6).
  • the main components of the crude compound of formula (7-5) are compounds (7-5) and (7′-5), and the ratio is compound (7-5)/(7′-5) ⁇ 92/8.
  • the white solid was added to a mixed solution of methanol and ethyl acetate, heated to reflux until dissolved, naturally cooled to 15°C, stirred for 4h, and filtered with suction to obtain the compound of formula (7-6) (4.05g of white solid, molar yield of 81 %, gas chromatography purity 98.57%, see accompanying drawing 7).
  • the main components of the crude compound of formula (7-6) are compounds (7-6) and (7′-6), and the ratio is compound (7-6)/(7′-6) ⁇ 92/8.
  • Example 6 of the present invention in the gas chromatogram of the crude product of the obtained formula (7-1) compound (see accompanying drawing 1), formula (8-1), (8-2), (8-3), (8 -4) The compound corresponds to one of the retention times of 9.123min (0.11%), 9.318min (0.42%), 9.538min (0.16%), and 10.324min (0.39%).
  • the crude product of the compound of formula (7-1) of the present invention is purified by recrystallization once, and the purity is increased from 91.25% to 99.40% (see accompanying drawing 2 for the gas chromatogram). At this time, the 3 ⁇ -OR by-product is basically removed, and the corresponding retention time corresponds to the impurity
  • the content of the recrystallization method also decreased, respectively 9.168min (0.19%), 9.382min (0.12%), 9.576min (0.05%), 10.366min (0.17%), and the molar yield of the recrystallization operation method was 84%.
  • the gas chromatographic purity of the cholesterol obtained by alkaline hydrolysis is 99.10% (see Figure 9), which is basically consistent with the purity of the compound of formula (7-1).
  • the patent document CN105218610 A describes the reaction formula 1.
  • the compound of the formula (02) after BA oxidation is used as a raw material, and ethanol is used as a solvent. Under the action of p-toluenesulfonic acid and triethyl orthoformate, it is heated to 40 ° C for 4 hours to obtain Compound of formula (03) (97.50% molar yield).
  • the present invention uses ethanol as a solvent, and the compound of formula (02) as a substrate, under the catalysis of p-toluenesulfonic acid and triethyl orthoformate, reacts at 40° C. for 4 hours, and TLC detects that the raw material has The reaction is complete, and the compound of formula (03') (shown in Reaction Formula 2) is obtained by post-processing according to the method of the patent document (CN105218610 A), which is inconsistent with the compound described in the patent document.
  • the present invention also attempts to reduce the amount of triethyl orthoformate, and TLC detects that the raw material reacts completely, but does not obtain the result of the reaction formula one described in the patent document (CN105218610 A), but obtains the reaction formula shown in the following reaction formula three result. It shows that when the 3-carbonyl group of the compound of formula (02) is protected according to the method reported in patent document CN 105218610 A, the C-22 aldehyde group will be preferentially protected to generate acetal, and the formula shown in reaction formula 2 or formula 3 will be generated.
  • the 3-ester group of the compound of formula (4) is reduced by NaBH4 to obtain the compound of formula (5), and then the compound of formula (5) is subjected to hydroxyl protection, selective hydrogenation reduction, deprotection or hydrolysis to obtain cholesterol.
  • Raney Ni/H 2 as the reducing agent to carry out selective hydrogenation reduction reaction on the double bond of the side chain, and then use NaBH 4 to reduce the 3-position ester group. The result of the reaction is shown in Reaction Formula 6.
  • the crude compound of formula (6-1) is reduced by Raney Ni/H 2 to synthesize the crude compound of formula (7-1). As shown in the following reaction formula seven:
  • the present invention uses H As reducing agent, Raney Ni carries out selective hydrogenation reduction to the double bond of side chain as catalyzer, and in the compound crude product of gained formula (7-1), content of overreduced impurity formula (8-4) compound is lower (0.39 %), it is easier to remove by purification; at the same time, when trying to use H as a reducing agent and 10% Pd/C as a catalyst to carry out selective hydrogenation reduction of the double bond of the side chain, in the crude product of the obtained formula (7-1) compound
  • the compound of overreduction impurity formula (8-4) is more than 3.4% (see accompanying drawing 15), it is difficult to remove by purification, and the expected goal is not achieved. It shows that 10% Pd/C has relatively high catalytic activity and poor selectivity, and cannot replace RaneyNi as a catalyst for selective hydrogenation reduction of side chains.
  • the compound of formula (4) was reduced by sodium borohydride and purified by column chromatography to obtain the compound of formula (5) (3 ⁇ -OH); the compound of formula (5) was subjected to selective hydrogenation reaction catalyzed by RaneyNi to obtain crude cholesterol; then the crude cholesterol was Purified by column chromatography or recrystallization once, the high-quality cholesterol is obtained, and the gas chromatography purity is 95-96%.
  • the cholesterol obtained by the compound of formula (7) after one recrystallization purification, deprotection or hydrolysis has high purity, which can reach more than 99.0%, and the purification yield is good, which has important application value.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Steroid Compounds (AREA)

Abstract

本发明公开了一种高纯度胆固醇的合成方法,以植物源21-羟基-20-甲基孕甾-4-烯-3-酮,又称双降醇或BA为原料,经氧化、Wittig反应、乙酰化、还原、羟基保护、选择性氢化还原、脱保护或水解反应等步骤合成所述胆固醇,纯度可达到99%以上。针对传统动物源胆固醇存在的缺点,本发明以植物源原料BA合成胆固醇,不仅安全性高,避免了致病菌和病毒感染的风险,而且合成收率高,产品纯度好,环境友好,便于工业化生产;并且此发明路线极大的降低了产品中的杂质水平,便于获得高纯度胆固醇,提高了临床使用的安全性。

Description

一种高纯度胆固醇的合成方法 技术领域
本发明属于有机化学合成技术领域,涉及一种以植物源21-羟基-20-甲基孕甾-4-烯-3-酮,又称为双降醇或BA(Bisnoralcohol)为原料合成高纯度胆固醇的方法。
背景技术
胆固醇又名胆甾醇,是动物组织细胞不可缺少的重要物质,不仅参与细胞膜的形成,还是体内合成胆汁酸、甾体激素的原料。目前,商品化的胆固醇主要用于:1、药用辅料-脂质体添加剂,如用作新冠mRNA疫苗的辅料(在制备脂质体时添加30-50%的胆固醇,可以极大的提高脂质体的载药量和稳定性);2、化妆品添加剂;3、生产液晶的原材料;4、生产维生素D3的起始原料。目前,商品化的胆固醇大部分来自于动物脑干(脑干胆固醇)或羊毛脂(羊毛脂胆固醇),均为动物源胆固醇。研究发现动物源产品很可能携带动物病原体或其它有害因子,尤其随着疯牛病、猪链球菌、禽流感等感染事件的发生,使得人们越来越重视胆固醇的安全性。如生产维生素D3的上游原料是胆固醇,因存在流行病风险,欧美国家早已不允许使用脑干胆固醇为原料,2020年7月1日起中国也限制了脑干胆固醇原料的使用。因此,为保证人们的健康和安全,迫切需要开发一种植物源的、高纯度胆固醇的合成方法。
胆固醇的化学合成报道主要有以下方法:
(1)以薯蓣苷元为原料,经6步反应,以总摩尔收率61%合成了胆固醇(CN 1772760 A,如Scheme 1所示)。该路线原料价格相对较高、步骤繁琐,所用试剂毒性大、污染大,不适宜工业化生产。
Figure PCTCN2022144100-appb-000001
(2)以豆甾醇降解物为原料,经5步反应,以总摩尔收率67%合成胆固醇,(CN 105218610 A,如图Scheme 2所示)。但本发明申请人通过试验表明该路线存在的问题如下:该专利第一步反应采用原甲酸三乙酯对C-3位羰基进行醚化保护时,选择性差,容易对侧链醛基进行反应形成缩醛物(具体请见发明内容部分的“对比例一”)。因此,该路线可行性存在严重的问题。
Figure PCTCN2022144100-appb-000002
(3)以孕烯醇酮为原料,经4步反应,以总摩尔收率72%合成胆固醇,(CN 105218609 A,如图Scheme 3所示),该路线使用了贵金属铑催化剂以及手性膦配体,价格昂贵,不适合大规模工业化生产。
Figure PCTCN2022144100-appb-000003
(4)以孕烯醇酮为原料,经2步反应,以总摩尔收率80%合成胆固醇,(CN 104961788 A,如图Scheme 4所示),该路线同样使用了贵金属铑催化剂以及手性膦配体,价格昂贵,不适合大规模工业生产。
Figure PCTCN2022144100-appb-000004
(5)以豆甾醇为原料,经5步反应,以总摩尔收率68%合成胆固醇,(CN 105237603 A,如图Scheme 5所示),该路线在合成过程中使用到了O 3,对监测反应及设备提出更高的要求,经济性和安全性不够好。
Figure PCTCN2022144100-appb-000005
(6)以豆甾醇为原料,经4步反应,以总摩尔收率70%合成胆固醇,(CN 106632565 A,如图Scheme 6所示),该路线同样使用了O 3,增加了工艺难度,对监测反应及设备提出更高的要求,经济性和安全性不好。
Figure PCTCN2022144100-appb-000006
(7)以BA为原料,经5步反应,以总摩尔收率78.5%合成胆固醇,(CN 113248557 A,如图Scheme 7所示),该路线的纯化需要用到柱层析纯化操作,不利于工业化生产,另外,此路线得到的胆固醇纯度不高(95%-96%),如未经进一步纯化,难以达到药用辅料标准。
Figure PCTCN2022144100-appb-000007
动物源胆固醇存在感染疯牛病、猪链球菌、禽流感等疾病的风险。目前已经报道的胆固醇化学合成路线存在操作繁琐、污染大、催化剂价格昂贵、产品纯度不高等不足,因此,研发一种基于植物源原料的、更加安全、高效的高纯度胆固醇合成方法具有重要价值。
发明内容
为了解决现有技术存在的不足,本发明的目的是提供一种植物源的高纯度胆固醇合成方法。本发明以植物源21-羟基-20-甲基孕甾-4-烯-3-酮,又称双降醇或BA为原料,经氧化、Wittig反应、乙酰化、还原、羟基保护、选择性氢化还原、脱保护或水解等步骤合成所述胆固醇,纯度可达到99%以上。本发明合成胆固醇选择的起始原料BA安全、经济,合成胆固醇的方法操作简单、收率高、纯度好、环境友好,便于工业化生产。
本发明所使用的原料BA(bisnoralcohol),来源于油脂工艺下脚料植物甾醇发酵所得,是一种植物源的绿色原料,目前年产量达千吨级,价格便宜,能够很好的避免现有技术中动物源胆固醇可能存在致病菌和病毒感染的风险。
本合成方法中,所述原料BA包括但不限于通过植物甾醇经生物发酵得到,或由化学合成方法得到。
本发明提供的以BA为原料合成胆固醇的方法,包括以下步骤:
步骤(a)、在第一溶剂中,式(1)所示的BA经氧化反应,得到式(2)化合物;
步骤(b)、在第二溶剂中,式(2)化合物经Wittig反应,得到式(3)化合物;
步骤(c)、在第三溶剂中,式(3)化合物经乙酰化反应,得到式(4)化合物;
步骤(d)、在第四溶剂中,式(4)化合物经还原反应,得到式(5)化合物;
步骤(e)、在第五溶剂中,式(5)化合物经羟基保护反应,得到式(6)化合物;
步骤(f)、在第六溶剂中,式(6)化合物经选择性氢化还原反应,得到式(7)化合物;
步骤(g)、在第七溶剂中,式(7)化合物经脱保护或水解反应,得到胆固醇;
其中,所述方法的反应过程如路线(A)所示:
Figure PCTCN2022144100-appb-000008
其中,R选自酯基、硅醚基;
优选地,R选自C2-C10直链酯基、异丁酯
Figure PCTCN2022144100-appb-000009
异戊酯基
Figure PCTCN2022144100-appb-000010
苯酯基
Figure PCTCN2022144100-appb-000011
对甲氧基苯酯基
Figure PCTCN2022144100-appb-000012
三甲基硅醚基
Figure PCTCN2022144100-appb-000013
叔丁基二甲基硅醚基
Figure PCTCN2022144100-appb-000014
中的一种或多种;
进一步优选地,R选自乙酯
Figure PCTCN2022144100-appb-000015
丙酯
Figure PCTCN2022144100-appb-000016
丁酯
Figure PCTCN2022144100-appb-000017
异丁酯
Figure PCTCN2022144100-appb-000018
异戊酯
Figure PCTCN2022144100-appb-000019
苯酯
Figure PCTCN2022144100-appb-000020
对甲氧基苯酯
Figure PCTCN2022144100-appb-000021
三甲基硅醚基
Figure PCTCN2022144100-appb-000022
叔丁基二甲基硅醚基
Figure PCTCN2022144100-appb-000023
中的一种或多种。
注:化合物式(3)~(6)中,C-22与C-23位之间的双键均以E构型为主,Z构型为辅,两种构型比例为E/Z≈87/13( 1H NMR判断);如后续无纯化操作,该比例保持不变。
本发明步骤(a)中,所述氧化反应具体为:在第一溶剂中,式(1)所示的BA与TEMPO、碳酸氢钠、四丁基溴化铵、氧化剂发生氧化反应,得到式(2)化合物。
其中,式(1)所示的BA、TEMPO、碳酸氢钠、四丁基溴化铵、氧化剂的摩尔比为1:(0~1):(0~20):(0~1):(1~5);优选地,为1:0.01:1.35:0.1:1.15。
其中,所述氧化反应在氧化剂的作用下进行,所述氧化剂选自N-氯代琥珀酰亚胺NCS、N-溴代琥珀酰亚胺NBS、2-碘酰基苯甲酸IBX等中的一种或多种;优选地,为N-氯代琥珀酰亚胺NCS。
其中,所述第一溶剂选自二氯甲烷、四氢呋喃、甲苯、二甲基亚砜、水等中的一种或多种;优选地,为二氯甲烷和水的混合溶剂(体积比V/V=5/2)。
其中,所述氧化反应的温度为0~30℃;优选地,为0℃。
其中,所述氧化反应的时间为3~8h;优选地,为6h。
在一具体实施方式中,式(2)化合物的合成步骤包括:式(1)所示的BA溶解在第一溶剂中,然后加入TEMPO、碳酸氢钠、四丁基溴化铵、NCS,发生氧化反应,得到式(2)化合物。
本发明步骤(b)中,所述Wittig反应具体为:在第二溶剂中,式(2)化合物、3,3-二甲基烯丙基卤代物、三苯基膦、叔丁醇钾发生Wittig反应,得到式(3)化合物。
其中,式(2)化合物、3,3-二甲基烯丙基卤代物、三苯基膦、叔丁醇钾的摩尔比为1:(1~4):(1~4):(1~4);优选地,为1:1.3:1.3:1.3。
其中,所述第二溶剂为甲苯、苯、四氢呋喃、庚烷等中的一种或多种;优选地,为甲苯。
其中,所述3,3-二甲基烯丙基卤代物选自3,3-二甲基烯丙基氯、3,3-二甲基烯丙基溴等中的一种或多种;优选地,为3,3-二甲基烯丙基溴。
其中,所述Wittig反应的温度为-10~112℃;优选地,为10℃。
其中,所述Wittig反应的时间为0.5~9h;优选地,为0.5h。
本发明步骤(c)中,所述乙酰化反应具体为:式(3)化合物、乙酰氯、乙酸酐、碱在第三溶剂中发生乙酰化反应,得到式(4)化合物。
其中,式(3)化合物、乙酰氯、乙酸酐、碱的摩尔比为1:(0.5~62.5):(1~62.5):(0~6);优选地,为1:25:24:4。
其中,所述碱选自吡啶、三乙胺、DIPEA、DMAP、二异丙基胺等中的一种或多种;优选地,为二异丙基胺。
其中,所述第三溶剂为乙酸酐、乙酰氯、乙酸乙酯、二氯甲烷等中的一种或多种;优选地,为乙酰氯和乙酸酐的混合溶剂。
其中,所述乙酰化反应的温度为40~110℃;优选地,为70℃。
其中,所述乙酰化反应的时间为1~10h;优选地,为2~10h;进一步优选地,为6h。
其中,所述乙酰化反应中,乙酰氯、乙酸酐既作反应物,又作溶剂。
在一具体实施方式中,式(4)化合物的合成步骤包括:式(3)化合物加入乙酰氯、乙酸酐、碱发生乙酰化反应,得到式(4)化合物。
本发明步骤(d)中,所述还原反应具体为:所述式(4)化合物、还原剂在第四溶剂中发生还原反应,得到式(5)化合物。
其中,式(4)化合物、还原剂的摩尔比为1:(1~25);优选地,为1:4。
其中,所述第四溶剂为四氢呋喃、乙醇、水、二氯甲烷、2-甲基四氢呋喃、异丙醇、乙酸、甲基叔丁基醚等中的一种或多种;优选地,为四氢呋喃、乙醇、水的混合溶剂(体积比V/V/V=10/5/3)。
其中,所述还原剂为NaBH 4、KBH 4等中的一种或多种;优选地,为NaBH 4
其中,所述还原反应的温度为0~50℃;优选地,为25℃。
其中,所述还原反应的时间为6~12h;优选地,为8h。
在一具体实施方式中,式(5)化合物的合成步骤包括:式(4)化合物溶解在第四溶剂中,和还原剂发生还原反应,得到式(5)化合物。
本发明步骤(e)中,当羟基保护基R为酯基时,所述羟基保护反应具体为:在第五溶剂中,式(5)化合物在碱的作用下,与保护羟基的试剂在所述第五溶剂中缩合反应,得到式(6)化合物。
所述酯基选自C2-C10直链酯基(乙酯
Figure PCTCN2022144100-appb-000024
丙酯
Figure PCTCN2022144100-appb-000025
丁酯
Figure PCTCN2022144100-appb-000026
等)、异丁酯
Figure PCTCN2022144100-appb-000027
异戊酯
Figure PCTCN2022144100-appb-000028
苯酯
Figure PCTCN2022144100-appb-000029
对甲氧基苯酯
Figure PCTCN2022144100-appb-000030
等中的一种或多种酯基;优选地,为乙酯。
其中,所述式(5)化合物、酯基保护试剂、碱的摩尔比为1:(1~4):(0.05~5);优选地,为1:3:0.1。
其中,所述第五溶剂为乙酸乙酯、二氯甲烷、三氯甲烷、DMF、甲苯、四氢呋喃、2-甲基四氢呋喃等中的一种或多种;优选地,为乙酸乙酯。
其中,所述碱选自三乙胺、二异丙基乙基胺、咪唑、吡啶、DMAP等中的一种或多种;优选地,为DMAP。
其中,所述反应的温度为0~50℃;优选地,为45℃。
其中,所述反应的时间为2~24h;优选地,为4h。
本发明步骤(e)中,当羟基保护基为硅醚基时,所述羟基保护反应具体为:在第五溶剂中,式(5)化合物在碱的作用下,与硅醚基保护试剂在所述第五溶剂中反应,得到式(6)化合物。
其中,所述硅醚基选自三甲基硅醚基
Figure PCTCN2022144100-appb-000031
叔丁基二甲基硅醚基
Figure PCTCN2022144100-appb-000032
等中的一种或多种;优选地,为叔丁基二甲基硅醚基
Figure PCTCN2022144100-appb-000033
其中,所述式(5)化合物、硅醚基保护试剂、碱的摩尔比为1:(2~4):(4~8);优选地,为1:2.5:4。
其中,所述第五溶剂为DMF、二氯甲烷、三氯甲烷、四氯化碳等中的一种或多种;优选地,为二氯甲烷。
其中,所述碱选自三乙胺、二异丙基乙基胺、咪唑、吡啶、DMAP等中的一种或多种;优选地,为咪唑。
其中,所述反应的温度为0~50℃;优选地,为25℃。
其中,所述反应的时间为2~24h;优选地,为12h。
在一具体实施方式中,式(6)化合物的合成步骤包括:式(5)化合物溶解在第五溶剂中,在碱作用下,与保护羟基的试剂反应,得到式(6)化合物。
本发明步骤(f)中,所述选择性氢化还原反应具体为:式(6)化合物,在催化剂作用下,与还原剂在所述第六溶剂中发生选择性氢化还原反应,得到式(7)化合物。
其中,所述催化剂为RaneyNi。
其中,所述还原剂为H 2
其中,式(6)化合物、催化剂RaneyNi的质量比为1:(0.05~5);优选地,为1:1。
其中,所述第六溶剂选自2-甲基四氢呋喃、四氢呋喃、乙酸乙酯、甲苯、异丙醇等中的一种或多种;优选地,为乙酸乙酯。
其中,所述氢化还原反应的温度为0~60℃;优选地,为30℃。
其中,所述氢化还原反应的还原剂H 2压力为1-20atm;优选地,为1atm。
其中,所述氢化还原反应的时间为4~48h;优选地,为4~30h;进一步优选地,为7h。
在一具体实施方式中,胆固醇的合成步骤包括:式(6)化合物溶解在第六溶剂中,加入Raney Ni、H 2置换后,发生选择性氢化还原反应,得到式(7)化合物。
步骤(g)中,当保护基R为酯基时,所述水解反应具体为:所述式(7)化合物,在碱的作用下,在所述第七溶剂中,发生水解反应,得到胆固醇。
其中,所述碱选自LiOH、KOH、NaOH、t-BuOK、K 2CO 3等中的一种或多种;优选地,为K 2CO 3
其中,所述式(7)化合物、碱的摩尔比为1:(0.5~2);优选地,为1:1.3。
其中,所述第七溶剂选自甲醇、乙醇等中的一种或多种;优选地,为甲醇。
其中,所述水解反应的温度为10~75℃;优选地,为65℃。
其中,所述水解反应的时间为0.3~12h;优选地,为2h。
步骤(g)中,当保护基R为硅醚基时,所述脱保护反应具体为:所述式(7)化合物,在催化剂的作用下,在所述第七溶剂中,发生脱保护反应,得到胆固醇。
其中,所述催化剂选自四丁基氟化铵TBAF、四丁基氟化铵三水合物TBAF 3H 2O、三氟化硼乙醚、乙酸、氯化氢的乙酸乙酯溶液等中的一种或多种;优选地,为TBAF 3H 2O。
其中,所述式(7)化合物、催化剂的摩尔比为1:(1~6);优选地,为1:4。
其中,所述第七溶剂选自四氢呋喃、水等中的一种或多种;优选地,为四氢呋喃。
其中,所述脱保护反应的温度为10~75℃;优选地,为25℃。
其中,所述脱保护反应的时间为2~48h;优选地,为24h。
在一具体实施方式中,胆固醇的合成步骤包括:将式(7)化合物溶解在第七溶剂中,加入碱或催化剂,发生脱保护或水解反应,得到胆固醇。
本发明还提供了二十种化合物,所述化合物的结构如式(6-2E)、(6-3E)、(6-4E)、(6-5E)、(6-6E)、(6-2Z)、(6-3Z)、(6-4Z)、(6-5Z)、(6-6Z)、(6′-2E)、(6′-3E)、(6′-4E)、(6′-5E)、(6′-6E)、(6′-2Z)、(6′-3Z)、(6′-4Z)、(6′-5Z)、(6′-6Z)所示:
Figure PCTCN2022144100-appb-000034
Figure PCTCN2022144100-appb-000035
本发明的有益效果包括:本发明高纯度胆固醇的制备方法中,所用商品化原料BA为植物源原料,避免了动物源原料可能存在的致病菌和病毒感染的风险,廉价易得;并且所得胆固醇的纯度高(>99%)、合成步骤简便、收率较高,副反应少,环境友好,方便实现高纯度胆固醇的工业化生产;解决了现有胆固醇产品安全性差、纯度低、合成成本高以及环境不友好等问题。
附图说明
图1为本发明实施例六中,所得式(7-1)化合物粗品的气相色谱图。
图2为本发明实施例六中,所得式(7-1)化合物精品的气相色谱图。
图3为本发明实施例六中,所得式(7-2)化合物精品的气相色谱图。
图4为本发明实施例六中,所得式(7-3)化合物精品的气相色谱图。
图5为本发明实施例六中,所得式(7-4)化合物精品的气相色谱图。
图6为本发明实施例六中,所得式(7-5)化合物精品的气相色谱图。
图7为本发明实施例六中,所得式(7-6)化合物精品的气相色谱图。
图8胆固醇的单晶结构图。
图9式(7-1)化合物经水解反应所得胆固醇的气相色谱图。
图10式(7-2)化合物经水解反应所得胆固醇的气相色谱图。
图11式(7-3)化合物经水解反应所得胆固醇的气相色谱图。
图12式(7-4)化合物经水解反应所得胆固醇的气相色谱图。
图13式(7-5)化合物经水解反应所得胆固醇的气相色谱图。
图14式(7-6)化合物经脱保护反应所得胆固醇的气相色谱图。
图1510%Pd/C催化氢化式(6-1)化合物,所得式(7-1)化合物粗品的气相色谱图。
具体实施方式
结合以下具体实施例和附图,对本发明作进一步的详细说明。实施本发明的过程、条件、实验方法等,除以下专门提及的内容之外,均为本领域的普遍知识和公知常识,本发明没有特别限制内容。
下述实施例中,化合物结构用核磁共振仪和高分辨质谱仪测定;试剂主要由上海国药化学试剂公司提供;产品纯化主要通过打浆、柱色谱;硅胶(200-300)由青岛海洋化工厂生产。
本发明提出的一种以植物源21-羟基-20-甲基孕甾-4-烯-3-酮BA为原料合成胆固醇的方法,其反应过程如前述路线(A)所示,需要说明的是,本发明在以植物源21-羟基-20-甲基孕甾-4-烯-3-酮BA为原料合成胆固醇的方法中还包括其他副产物的生成,具体反应路线如(A’)所示:
Figure PCTCN2022144100-appb-000036
其中,R选自酯基、硅醚基;
注:化合物式(3)~(6)中,C-22与C-23位之间的双键均以E构型为主,Z构型为辅,两种构型比例为E/Z≈87/13( 1HNMR判断),如后续无纯化操作,该比例保持不变;化合物式(5)(3β-OH)/(5')(3α-OH)的比例约为92/8( 1HNMR判断),如后续无纯化操作,则化合物式(6)/(6')、(7)/(7')的比例保持不变。
本发明以上式(3)、式(4)、式(5)、式(5′)、式(6)和式(6′)化合物,由于通过Wittig反应引入的D环侧链双键(C-22、C-23位双键)具有顺反构型(E和Z构型),两种构型比例为E/Z≈87/13;如后续无纯化操作,该比例保持不变。化合物式(5)(3β-OH)和(5')(3α-OH)是由化合物式(4)经NaBH 4或KBH 4还原得到,所得化合物式(5)(3β-OH)和(5')(3α-OH)中的3β-OH/3α-OH的比例约为92/8,如后续无纯化操作,该比例保持不变。因此式(3)、式(4)、式(5)、式(5′)、式(6)、式(6′)、式(7)和式(7′)化合物均不是单一物质,均为混合物。
实施例一 式(2)化合物的制备
Figure PCTCN2022144100-appb-000037
本实施例给出了不同实验条件下式(2)化合物的制备结果:
(1)于烧瓶中依次加入BA(24.79g,0.075mol),TEMPO(118mg,0.750mmol),二氯甲烷(200mL),碳酸氢钠(8.8g,0.105mol),NCS(11.55g,86.5mmol),四丁基溴化铵(2.42g,7.5mmol)和水(160mL),0℃反应6h。TLC检测反应完毕后加入五水合硫代硫酸钠溶液(5.6g五水合硫代硫酸钠/110mL水),5-10℃搅拌20min,分液,水相用二氯甲烷(150mL×2)萃取,合并有机层,用1%氢氧化钠溶液(100mL)洗涤,分液,有机相用无水硫酸钠干燥,减压浓缩,得到式(2)化合物(白色固体24.0g,摩尔收率96.8%)。 1HNMR(400MHz,CDCl 3)δ9.55(s,1H),5.71(s,1H),2.45–2.23(m,5H),1.99(t,J=13.7Hz,2H),1.91–1.78(m,2H),1.68(t,J=10.2Hz,2H),1.43(m,5H),1.30–1.19(m,2H),1.17(s,3H),1.11(d,J=5.5Hz,3H),1.06–0.89(m,3H),0.75(s,3H). 13C NMR(100MHz,CDCl 3)δ205.00,199.65,171.31,123.99,55.25,53.84,51.04,49.54,43.10,39.39,38.68,35.80,35.68,34.06,32.93,32.05,27.11,24.64,21.06,17.48,13.53,12.44.HRMS(ESI):calcd for C 22H 32NaO 2[M+Na] +,351.2295,found 351.2292.
(2)于烧瓶中依次加入BA(24.79g,0.075mol),TEMPO(118mg,0.750mmol),二氯甲烷(200mL),碳酸氢钠(8.8g,0.105mol),NBS(17.8g,100mmol),四丁基溴化铵(2.42g,7.5mmol)和水(160mL),0℃反应6h。TLC检测反应完毕后加入五水合硫代硫酸钠溶液(8g五水合硫代硫酸钠/160mL水),5-10℃搅拌20min,分液,水相用二氯甲烷(150mL×2)萃取,合并有机层,用1%氢氧化钠溶液(100mL)洗涤,分液,有机相用无水硫酸钠干燥,减压浓缩,得到式(2)化合物(白色固体23.6g,摩尔收率95.2%)。
(3)于烧瓶中依次加入式(1)化合物BA(24.79g,75mmol),IBX(42g,150mmol),THF(250mL)和DMSO(200mL),25℃反应5h。TLC检测反应完毕后加入水,抽滤,滤液减压浓缩,加入二氯甲烷(400mL)和水(300mL)萃取,有机相用1%氢氧化钠溶液(200mL)洗涤,无水硫酸钠干燥,减压浓缩,得到式(2)化合物(白色固体23.2g,摩尔收率93.5%)。
实施例二 式(3)化合物的制备
Figure PCTCN2022144100-appb-000038
本实施例给出了不同实验条件下式(3)化合物的制备结果:
(1)于烧瓶中加入三苯基膦(23.97g,91.40mmol)、3,3-二甲基烯丙基溴(13.62g,91.40mmol),甲苯230mL,80℃搅拌反应30min,升温回流反应2h后,冷却至25℃,冰浴下加入叔丁醇钾(10.26g,91.40mmol),搅拌0.5h后分批加入式(2)化合物(23.09g,70.30mmol),10℃反应0.5h。TLC监测反应完全后,加入水(23mL)淬灭反应,加入2M HCl调节PH值为6-7,有机相水洗(120mL×2),减压浓缩得到乳白色固体。将上述固体加入50%的乙醇(80mL),25℃打浆1h,过滤,滤饼用50%乙醇(13mL)漂洗,得到式(3)化合物(3E和3Z,3E/3Z≈87/13,白色固体24.9g,摩尔收率93.14%)。HRMS(ESI):calcd for C 27H 40NaO[M+Na] +,403.2971,found 403.2967.
注:本发明中,式(3)化合物经过乙酰化、还原得到的中间体式(4)化合物、式(5)化合物、式(6)化合物的E/Z构型的比例基本保持不变,C-22与C-23位之间的双键以E构型为主,Z构型为辅(3E/3Z≈87/13)。由于式(6)化合物中C-22与C-23位之间双键的顺反异构体经过雷尼镍氢化还原、脱保护或水解之后均可得到产品胆固醇,因此,后面的实施例中不再标注相应化合物E/Z构型的比例。
(2)于烧瓶中加入三苯基膦(23.97g,91.40mmol)、3,3-二甲基烯丙基溴(13.62g,91.40mmol),正庚烷230mL,升温回流反应3h后,冷却至25℃,冰浴下加入叔丁醇钾(10.26g,91.40mmol),搅拌0.5h后分批加入式(2)化合物(23.00g,70.07mmol),15℃反应1h。TLC监测反应完全后,冷却至25℃,加入水(23mL)淬灭反应,加入2M HCl调节PH值为6-7,有机相水洗(120mL×2),减压浓缩得到乳白色固体。将上述固体加入50%的乙醇(70mL),25℃打浆1h,过滤,滤饼用50%乙醇(13mL)漂洗,得到式(3)化合物(3E和3Z,白色固体24.5g,摩尔收率91.94%)。
(3)于烧瓶中加入三苯基膦(23.97g,91.40mmol)、3,3-二甲基烯丙基溴(13.62g,91.40mmol),甲苯230mL,80℃搅拌反应30min,升温回流反应2h后,冷却至25℃,冰浴下加入叔丁醇钾(11.27g,100.5mmol),搅拌40min后分批加入式(2)化合物(23.09g,70.30mmol),10℃反应2h。TLC监测反应完全后,加入水(23mL)淬灭反应,加入2M HCl调节PH值为6-7,有机相水洗(120mL×2),减压浓缩得到乳白色固体。将上述固体加入50%的乙醇(70mL),25℃打浆1h,过滤,滤饼用50%乙醇(13mL)漂洗, 得到式(3)化合物(3E和3Z,白色固体24.73g,摩尔收率92.5%)。
(4)于烧瓶中加入三苯基膦(23.97g,91.40mmol)、3,3-二甲基烯丙基溴(13.62g,91.40mmol),甲苯230mL,回流反应2h后,冷却至25℃,冰浴下加入叔丁醇钾(9.23g,82.26mmol),搅拌0.5h后加入式(2)化合物(15.00g,45.70mmol),升温回流反应2.5h。TLC监测反应完全后,冷却至25℃,加入水(23mL)淬灭反应,加入2M HCl调节P H值为6-7,有机相水洗(100mL×2),减压浓缩得到乳白色固体。将上述固体加入50%的乙醇(45mL),25℃打浆1h,得到式(3)化合物(3E和3Z,白色固体16.72g,摩尔收率96.20%)。
(5)于烧瓶中加入三苯基膦(23.97g,91.40mmol)、3,3-二甲基烯丙基氯(9.56g,91.40mmol),甲苯230mL,回流反应10h后,冷却至25℃,冰浴下加入叔丁醇钾(9.23g,82.26mmol),搅拌0.5h后加入式(2)化合物(7.5g,22.85mmol),回流反应4.5h。TLC监测反应完全后,冷却至25℃,加入水(23mL)淬灭反应,加入2M HCl调节PH值为6-7,有机相水洗(100mL×2),减压浓缩得到乳白色固体。将上述固体加入50%的乙醇(45mL),25℃打浆1h,得到式(3)化合物(3E和3Z,白色固体6.26g,摩尔收率72.04%)。
实施例三 式(4)化合物的制备
Figure PCTCN2022144100-appb-000039
本实施例给出了不同实验条件下式(4)化合物的制备结果:
(1)于烧瓶中加入式(3)化合物(15g,39.44mmol)、乙酸酐(16.09g,157.76mmol)和乙酰氯(3.08g,39.44mmol),70℃反应6h,TLC监测反应完全后,冷却至25℃,减压浓缩,稍冷却,加入吡啶(2g)和甲醇(75mL),搅拌分散,减压浓缩,稍冷却,加入甲醇(75mL),搅拌回流10min,将反应液冷却至25℃,搅拌30min,过滤,滤饼用甲醇漂洗(24mL),抽滤,干燥,得到式(4)化合物(4E和4Z,白色固体15.50g,摩尔收率93.03%)。HRMS(ESI):calcd for C 29H 42NaO 2[M+Na] +,445.3077,found445.3081.
(2)于烧瓶中加入式(3)化合物(15g,39.44mmol)、乙酸酐(96.6g,946.2mmol)、乙酰氯(77.4g,986mmol)和DIPEA(30.58g,236.6mmol),70℃反应3h,TLC监测反应完全后,冷却至25℃,减压浓缩,稍冷却,将反应液加入到冰水(200mL)中搅拌15min,过滤,抽干,将所得固体加入甲醇(60mL)和吡啶(1.5mL),25℃打浆30min,过滤,滤饼用甲醇漂洗(10mL),抽滤,干燥,得到式(4)化合物(4E和4Z,白色固体16g,摩尔 收率96.04%)。
(3)于烧瓶中加入式(3)化合物(15g,39.44mmol)、乙酸酐(96.3g,943.2mmol)、乙酰氯(74.1g,943.2mmol),65℃回流反应4h,TLC监测反应完全后,冷却至25℃,减压浓缩,稍冷却,将反应液加入到冰水(300mL)中搅拌15min,过滤,抽干,将所得固体加入甲醇(60mL)和吡啶(3mL),25℃打浆30min,过滤,滤饼用甲醇漂洗(7.5mL),抽滤,干燥,得到式(4)化合物(4E和4Z,白色固体14.99g,摩尔收率89.97%)。
(4)于烧瓶中加入式(3)化合物(15g,39.44mmol)、乙酸酐(95.51g,936.23mmol)、乙酰氯(73.49g,936.23mmol)和二异丙基胺(11.98g,118.35mmol),60℃回流反应4h,TLC监测反应完全后,冷却至25℃,减压浓缩,稍冷却,将反应液加入到冰水(300mL)中搅拌15min,过滤,抽干,将所得固体加入甲醇(60mL)和吡啶(3mL),25℃打浆30min,过滤,滤饼用甲醇漂洗(7.5mL),抽滤,干燥,得到式(4)化合物(4E和4Z,白色固体16.32g,摩尔收率97.96%)。
实施例四 式(5)化合物粗品的制备
Figure PCTCN2022144100-appb-000040
本实施例给出了不同实验条件下式(5)化合物粗品的制备结果:
(1)于烧瓶中加入式(4)化合物(9.80g,23.21mmol),四氢呋喃、乙醇和水的混合溶剂(196mL,V/V/V=10/5/3),分批加入硼氢化钠(3.51g,92.84mmol),30℃下反应8h。TLC监测反应完全后,加入6M盐酸调节反应液PH=7-8,反应液中有大量固体析出,过滤,取滤液,减压蒸除溶剂,析出大量固体,加入二氯甲烷(100mL)和水(50mL)萃取,分液,有机相水洗(100mL),搅拌,分层,减压蒸除溶剂,得式(5)化合物的粗品(淡黄色固体8.71g,摩尔收率98.09%),直接用于下一步反应。
注:硼氢化钠为还原剂得到的式(5)化合物粗品的主要成分为化合物(5)(5E和5Z,3β-OH)和(5′)(5′E和5′Z,3α-OH),根据 1HNMR判断,比例为化合物(5)/(5′)≈92/8。后面实施例中所得式(5)化合物粗品中5(3β-OH)/5′(3α-OH)的比例与本实施例基本一致,后续不再标注。
(2)于烧瓶中加入式(4)化合物(9.80g,23.21mmol),四氢呋喃、乙醇和水的混合溶剂(147mL,V/V/V=10/5/2),分批加入硼氢化钠(2.64g,69.63mmol),25℃下反应10h。TLC监测反应完全后,加入6M盐酸调节反应液PH=7-8,反应液中有大量固体析出,过滤, 取滤液,减压蒸除溶剂,析出大量固体,加入二氯甲烷(100mL)和水(50mL)萃取,分液,有机相水洗(100mL),搅拌,分层,减压蒸除溶剂,得式(5)化合物的粗品(淡黄色固体8.79g,摩尔收率98.9%),直接用于下一步反应。
(3)于烧瓶中加入式(4)化合物(9.80g,23.21mmol),二氯甲烷、甲醇和水的混合溶剂(95mL,V/V/V=18/9/1),分批加入硼氢化钠(1.76g,46.44mmol),25℃反应6h。TLC监测反应完全后,加入3M盐酸调节反应液PH=7-8,反应液中有大量固体析出,过滤,取滤液,减压蒸除溶剂,析出大量固体,加入二氯甲烷(100mL)和水(50mL)萃取,分液,有机相水洗(100mL),搅拌,分层,减压蒸除溶剂,得式(5)化合物的粗品(淡黄色固体8.77g,摩尔收率98.76%),直接用于下一步反应。
(4)于烧瓶中加入式(4)化合物(9.80g,23.21mmol),四氢呋喃、乙醇和水的混合溶剂(200mL,V/V/V=10/5/3),分批加入硼氢化钾(5.01g,92.84mmol),30℃下反应8h。TLC监测反应完全后,加入6M盐酸调节反应液PH=7-8,反应液中有大量固体析出,过滤,取滤液,减压蒸除溶剂,析出大量固体,加入二氯甲烷(100mL)和水(50mL)萃取,分液,有机相水洗(100mL),搅拌,分层,减压蒸除溶剂,得式(5)化合物的粗品(淡黄色固体8.80g,摩尔收率99.1%),直接用于下一步反应。
注:硼氢化钾还原得到的式(5)化合物粗品的主要成分为化合物(5)(5E和5Z,3β-OH)和(5′)(5′E和5′Z,3α-OH),其中化合物5′(3α-OH)含量较高,根据 1H NMR判断化合物5(3β-OH)/5′(3α-OH)≈85/15。
实施例五 式(6)化合物粗品的制备
1.式(6-1)化合物粗品的制备
Figure PCTCN2022144100-appb-000041
于烧瓶中加入乙酸乙酯(76mL)、式(5)化合物粗品(7.6g,20mmol),搅拌溶清,加入DMAP(0.245g,2mmol)和乙酸酐(6.13g,60mmol),45℃反应4h,TLC监测反应完全后,加入水(20mL)淬灭反应,加入乙酸乙酯(76mL)萃取,有机相再经过水洗,饱和食盐水洗涤,无水Na 2SO 4干燥,减压浓缩,得到式(6-1)化合物粗品(白色固体8.3g,摩尔收率97.8%)。
注:式(6-1)化合物粗品主要成分为化合物(6-1)(6-1E和6-1Z)和(6′-1)(6′-1E和6′-1Z),其比例为化合物(6-1)/(6′-1)≈92/8。
2.式(6-2)化合物粗品的制备
Figure PCTCN2022144100-appb-000042
于烧瓶中加入乙酸乙酯(50mL)、式(5)化合物粗品(5g,13mmol),搅拌溶清,加入DMAP(0.159g,1.3mmol)和丙酸酐(5.07g,39mmol),50℃反应5h,TLC监测反应完全后,加入水(20mL)淬灭反应,加入乙酸乙酯(76mL)萃取,有机相再经过水洗,饱和食盐水洗涤,无水Na 2SO 4干燥,减压浓缩,加入甲醇/水,25℃打浆5h,抽滤,得到式(6-2)化合物粗品(白色固体5.6g,摩尔收率98.2%)。
注:式(6-2)化合物粗品主要成分为化合物(6-2)(6-2E和6-2Z)和(6′-2)(6′-2E和6′-2Z),其比例为化合物(6-2)/(6′-2)≈92/8。
3.式(6-3)化合物粗品的制备
Figure PCTCN2022144100-appb-000043
于烧瓶中加入乙酸乙酯(50mL)、式(5)化合物粗品(5g,13mmol),搅拌溶清,加入DMAP(0.159g,1.3mmol)和丁酸酐(6.2g,39mmol),55℃反应4h,TLC监测反应完全后,加入水(20mL)淬灭反应,加入乙酸乙酯(76mL)萃取,有机相再经过水洗,饱和食盐水洗涤,无水Na 2SO 4干燥,减压浓缩,加入甲醇/水,25℃打浆5h,抽滤,得到式(6-3)化合物粗品(白色固体5.71g,摩尔收率97%)。
注:式(6-3)化合物粗品主要成分为化合物(6-3)(6-3E和6-3Z)和(6′-3)(6′-3E和6′-3Z),其比例为化合物(6-3)/(6′-3)≈92/8。
4.式(6-4)化合物粗品的制备
Figure PCTCN2022144100-appb-000044
于烧瓶中加入乙酸乙酯(115mL)、式(5)化合物粗品(7.65g,20mmol),搅拌溶清,加入DMAP(0.488g,4mmol)和苯甲酸酐(13.5g,60mmol),45℃反应4h,TLC监测 反应完全后,减压浓缩,加入甲醇/水,25℃打浆5h,抽滤,得到式(6-4)化合物粗品(白色固体9.34g,摩尔收率96%)。
注:式(6-4)化合物粗品主要成分为化合物(6-4)(6-4E和6-4Z)和(6′-4)(6′-4E和6′-4Z),其比例为化合物(6-4)/(6′-4)≈92/8。
5.式(6-5)化合物粗品的制备
Figure PCTCN2022144100-appb-000045
于烧瓶中加入DCM(50mL)、式(5)化合物粗品(5g,13.07mmol),搅拌溶清,加入三乙胺(2.64g,26.14mmol)和DMAP(0.318g,2.61mmol),0℃缓慢滴加对氯苯甲酰氯(3.4g,19.6mmol),N 2保护,35℃反应12h,TLC监测反应完全后,加入水(30mL)淬灭反应,分液,有机相依次用饱和NaHCO 3水溶液、2N稀盐酸、水、饱和NaCl洗涤,减压浓缩,加入甲醇/水,25℃打浆5h,抽滤,得到式(6-5)化合物粗品(白色固体6.4g,摩尔收率94.8%)。
注:式(6-5)化合物粗品主要成分为化合物(6-5)(6-5E和6-5Z)和(6′-5)(6′-5E和6′-5Z),其比例为化合物(6-5)/(6′-5)≈92/8。
6.式(6-6)化合物粗品的制备
Figure PCTCN2022144100-appb-000046
于烧瓶中加入DCM(100mL)、式(5)化合物粗品(10g,26.14mmol),搅拌溶清,加入TBSCl(9.85g,65.35mmol)和咪唑(7.12g,104.56mmol),25℃反应12h,TLC监测反应完全后,加入水(100mL)搅拌10min,分液,有机相用水洗和饱和NaCl洗涤,减压浓缩,加入甲醇/水,25℃打浆3h,抽滤,得到式(6-6)化合物粗品(白色固体12.43g,摩尔收率95%)。
注:式(6-6)化合物粗品主要成分为化合物(6-6)(6-6E和6-6Z)和(6′-6)(6′-6E和6′-6Z),其比例为化合物(6-6)/(6′-6)≈92/8。
实施例六 式(7)化合物的制备
1.式(7-1)化合物的制备
Figure PCTCN2022144100-appb-000047
于烧瓶中加入乙酸乙酯(75mL)、式(6-1)化合物粗品(5g,11.77mmol),搅拌溶清后加入RaneyNi(5g,湿重,按标准流程活化),H 2(1atm),35℃反应7h,气相监测反应完全后,硅藻土滤除Raney Ni,滤液减压浓缩,得到式(7-1)化合物粗品(白色固体,气相色谱纯度91.25%,见附图1),直接用于纯化步骤。将该白色固体加入甲醇和乙酸乙酯的混合溶液,加热回流至溶清,自然冷却至15℃,搅拌5h,抽滤,得到式(7-1)化合物(白色固体4.2g,摩尔收率84%,气相色谱纯度99.40%,见附图2)。 1HNMR(600MHz,CDCl 3)δ5.40(d,J=4.9Hz,1H),4.68–4.57(m,1H),2.40–2.31(m,2H),2.05(s,3H),2.05–1.95(m,2H),1.91–1.81(m,3H),1.66–1.43(m,8H),1.41–1.33(m,3H),1.31–1.24(m,1H),1.22–1.07(m,7H),1.04(s,3H),1.03–0.96(m,2H),0.94(d,J=6.5Hz,3H),0.89(dd,J=6.6,2.8Hz,6H),0.70(s,3H). 13C NMR(151MHz,CDCl 3)δ170.55,139.67,122.66,73.99,56.69,56.14,50.04,42.32,39.74,39.53,38.13,37.00,36.60,36.19,35.80,31.91,31.87,28.24,28.02,27.78,24.29,23.83,22.83,22.57,21.45,21.03,19.32,18.72,11.86.
注:式(7-1)化合物粗品主要成分为化合物(7-1)和(7′-1),其比例为化合物(7-1)/(7′-1)≈92/8。
2.式(7-2)化合物的制备
Figure PCTCN2022144100-appb-000048
于烧瓶中加入乙酸乙酯(75mL)、式(6-2)化合物粗品(5g,11.4mmol),搅拌溶清后加入Raney Ni(7.5g,湿重,按标准流程活化),H 2(1atm),55℃反应7h,气相监测反应完全后,硅藻土滤除Raney Ni,滤液减压浓缩,得到式(7-2)化合物粗品,白色固体,直接用于纯化步骤。将该白色固体加入甲醇和乙酸乙酯的混合溶液,加热回流至溶清,自然冷却至15℃,搅拌4h,抽滤,得到式(7-2)化合物(白色固体4.0g,摩尔收率80%,气相色谱纯度98.35%,见附图3)。 1HNMR(600MHz,CDCl 3)δ5.39(d,J=4.9Hz,1H),4.67–4.62(m, 1H),2.44–2.24(m,4H),2.10–1.95(m,2H),1.93–1.81(m,3H),1.68–1.43(m,8H),1.40–1.34(m,3H),1.29-1.25(m,1H),1.20-1.10(m,9H),1.04(s,3H),1.03–0.96(m,3H),0.94(d,J=6.5Hz,3H),0.89(dd,J=6.6,2.8Hz,6H),0.70(s,3H). 13C NMR(151MHz,CDCl 3)δ173.96,139.75,122.59,56.70,56.14,50.03,42.32,39.74,39.53,38.16,37.01,36.61,36.19,35.80,31.91,31.87,28.24,28.02,27.94,27.81,24.29,23.83,22.83,22.57,21.04,19.33,18.72,11.86,9.19.
注:式(7-2)化合物粗品主要成分为化合物(7-2)和(7′-2),其比例为化合物(7-2)/(7′-2)≈92/8。
3.式(7-3)化合物的制备
Figure PCTCN2022144100-appb-000049
于烧瓶中加入乙酸乙酯(75mL)、式(6-3)化合物粗品(5g,11mmol),搅拌溶清后加入Raney Ni(5g,湿重,按标准流程活化),H 2(1atm),35℃反应10h,气相监测反应完全后,硅藻土滤除Raney Ni,滤液减压浓缩,得到式(7-3)化合物粗品,白色固体,直接用于纯化步骤。将该白色固体加入甲醇和乙酸乙酯的混合溶液,加热回流至溶清,自然冷却至15℃,搅拌5h,抽滤,得到式(7-3)化合物(白色固体4.1g,摩尔收率82%,气相色谱纯度99.5%,见附图4)。 1HNMR(600MHz,CDCl 3)δ5.39(d,J=4.9Hz,1H),4.74–4.58(m,1H),2.33(d,J=7.1Hz,2H),2.28(t,J=7.4Hz,2H),2.09–1.95(m,2H),1.93–1.80(m,3H),1.68–1.65(m,2H),1.65–1.41(m,7H),1.41–1.31(m,3H),1.31–1.24(m,1H),1.23–1.06(m,7H),1.04(s,3H),1.03-0.99(m,2H),0.99–0.92(m,7H),0.89(dd,J=6.7,2.7Hz,6H),0.70(s,3H). 13C NMR(151MHz,CDCl 3)δ173.14,139.74,122.59,73.68,56.70,56.14,50.03,42.32,39.74,39.53,38.18,37.01,36.60,36.19,35.80,31.91,31.87,28.24,28.02,27.83,24.29,23.84,22.83,22.57,21.04,19.33,18.72,18.56,13.65,11.86.
注:式(7-3)化合物粗品主要成分为化合物(7-3)和(7′-3),其比例为化合物(7-3)/(7′-3)≈92/8。
4.式(7-4)化合物的制备
Figure PCTCN2022144100-appb-000050
于烧瓶中加入四氢呋喃(35mL)和乙酸乙酯(35mL)、式(6-4)化合物粗品(4.87g,10mmol),搅拌溶清后加入Raney Ni(4.87g,湿重,按标准流程活化),H 2(1atm),35℃反应24h,气相监测反应完全后,硅藻土滤除RaneyNi,滤液减压浓缩,得到式(7-4)化合物粗品,白色固体,直接用于纯化步骤。将该白色固体加入甲醇和乙酸乙酯的混合溶液,加热回流至溶清,自然冷却至15℃,搅拌4-5h,抽滤,得到式(7-4)化合物(白色固体4.1g,摩尔收率84.2%,气相色谱纯度98.08%,见附图5)。 1H NMR(600MHz,CDCl 3)δ8.11–7.99(m,2H),7.59–7.51(m,1H),7.43(t,J=7.8Hz,2H),5.42(dd,J=5.1,2.1Hz,1H),4.89–4.84(m,1H),2.47(d,J=8.0Hz,2H),2.05-1.97(m,3H),1.94–1.90(m,1H),1.86-1.80(m,1H),1.77–1.73(m,1H),1.63–1.45(m,6H),1.41–1.30(m,3H),1.29–1.05(m,11H),1.04–0.99(m,3H),0.92(d,J=6.5Hz,3H),0.87(dd,J=6.6,2.8Hz,6H),0.69(s,3H). 13C NMR(151MHz,CDCl 3)δ166.01,139.69,132.72,130.87,129.55,128.27,122.80,56.71,56.15,50.06,42.34,39.76,39.54,38.23,37.05,36.68,36.20,35.82,31.95,31.90,28.25,28.03,27.90,24.31,23.85,22.84,22.58,21.07,19.40,18.74,11.88.
注:式(7-4)化合物粗品主要成分为化合物(7-4)和(7′-4),其比例为化合物(7-4)/(7′-4)≈92/8。
5.式(7-5)化合物的制备
Figure PCTCN2022144100-appb-000051
于烧瓶中加入四氢呋喃(39mL)和乙酸乙酯(39mL)、式(6-5)化合物粗品(5.16g,10mmol),搅拌溶清后加入RaneyNi(10g,湿重,按标准流程活化),H 2(1atm),30℃反应24h,气相监测反应完全后,硅藻土滤除RaneyNi,滤液减压浓缩,得到式(7-5)化合物粗品,白色固体,直接用于纯化步骤。将该白色固体加入甲醇和乙酸乙酯的混合溶液,加热回流至溶清,自然冷却至15℃,搅拌4h,抽滤,得到式(7-5)化合物(白色固体4.23g,摩尔收率82%,气相色谱纯度97.96%,见附图6)。 1HNMR(500MHz,CDCl 3)δ8.02(d,J=8.7Hz,2H),6.93(d,J=8.7Hz,2H),5.44(d,J=5.0Hz,1H),4.88–4.82(m,1H),3.88(s,3H),2.47(d,J=7.9Hz,2H),2.06–1.98(m,3H),1.95–1.91(m,1H),1.90–1.81(m,1H),1.79–1.69(m,1H),1.67–1.44(m,7H),1.36(d,J=8.9Hz,3H),1.30–1.10(m,7H),1.09(s,3H),1.07–0.99(m,3H),0.94(d,J=6.5Hz,3H),0.89(dd,J=6.6,2.4Hz,6H),0.71(s,3H). 13C NMR(151MHz,CDCl 3)δ165.78,163.20,139.79,131.55,123.31,122.69,113.50,60.41,58.50,56.71,56.15,55.42, 50.06,42.33,39.76,39.53,38.30,37.07,36.67,36.20,35.81,31.95,31.90,28.25,28.03,27.95,24.31,23.84,22.83,22.58,21.06,19.40,18.73,18.46,14.21,11.87.
注:式(7-5)化合物粗品主要成分为化合物(7-5)和(7′-5),其比例为化合物(7-5)/(7′-5)≈92/8。
6.式(7-6)化合物的制备
Figure PCTCN2022144100-appb-000052
于烧瓶中加入乙酸乙酯(75mL)、式(6-6)化合物粗品(5g,10mmol),搅拌溶清后加入Raney Ni(5g,湿重,按标准流程活化),H 2(1atm),35℃反应12h,气相监测反应完全后,硅藻土滤除Raney Ni,滤液减压浓缩,得到式(7-6)化合物粗品,白色固体,直接用于纯化步骤。将该白色固体加入甲醇和乙酸乙酯的混合溶液,加热回流至溶清,自然冷却至15℃,搅拌4h,抽滤,得到式(7-6)化合物(白色固体4.05g,摩尔收率81%,气相色谱纯度98.57%,见附图7)。 1HNMR(500MHz,CDCl 3)δ5.43–5.30(m,1H),3.53–3.47(m,1H),2.32–2.26(m,1H),2.21–2.17(m,1H),2.07–1.96(m,2H),1.89–1.80(m,2H),1.77–1.70(m,1H),1.62–1.45(m,8H),1.41–1.31(m,3H),1.31–1.24(m,1H),1.18–1.06(m,7H),1.02(s,4H),1.01–0.98(m,1H),0.93(d,J=6.4Hz,3H),0.91(s,9H),0.89(dd,J=6.6,2.4Hz,6H),0.69(s,3H),0.08(s,6H). 13C NMR(151MHz,CDCl 3)δ141.60,121.19,72.67,56.82,56.16,50.23,42.84,42.34,39.82,39.53,37.40,36.61,36.20,35.79,32.10,31.96,31.92,28.25,28.03,25.96,24.31,23.82,22.83,22.57,21.08,19.44,18.73,18.28,11.86.
注:式(7-6)化合物粗品主要成分为化合物(7-6)和(7′-6),其比例为化合物(7-6)/(7′-6)≈92/8。
实施例七 胆固醇的制备
1.式(7-1)化合物水解制备胆固醇
Figure PCTCN2022144100-appb-000053
于烧瓶中加入甲醇(40mL)和K 2CO 3(1.28g,12.1mmol),溶清后N 2保护下加入式(7-1)化合物(4g,9.33mmol),升温至65℃反应2h,TLC监测反应完全后,冷却至25℃, 加入2mol/L的稀盐酸调节PH=7-8,减压蒸除甲醇,加入水(20mL),25℃搅拌2h,抽滤;滤饼再加入水(20mL),25℃搅拌2h,抽滤,干燥,得到精制胆固醇(CCDC 2099442,单晶结构见附图8,白色固体3.57g,摩尔收率99.1%,气相色谱纯度99.10%,见附图9)。mp:147-149℃。 1H NMR(600MHz,CDCl 3)δ5.36–5.34(m,1H),3.55–3.49(m,1H),2.35–2.19(m,2H),2.06–1.92(m,2H),1.86–1.79(m,3H),1.68–1.19(m,14H),1.19–1.03(m,7H),1.01(s,3H),0.98–0.93(m,1H),0.91(d,J=6.6Hz,3H),0.86(dd,J=6.6,2.8Hz,6H),0.68(s,3H). 13C NMR(150MHz,CDCl 3)δ140.77,121.73,71.82,56.78,56.17,50.14,42.33,42.32,39.80,39.53,37.27,36.52,36.20,35.80,31.93,31.92,31.68,28.25,28.03,24.31,23.84,22.84,22.58,21.10,19.41,18.73,11.87.HRMS(ESI):calcd for C 27H 46NaO[M+Na] +,409.3441,found 409.3121.
2.式(7-2)化合物水解制备胆固醇
Figure PCTCN2022144100-appb-000054
于烧瓶中加入甲醇(40mL)和K 2CO 3(1.57g,11.4mmol),溶清后N 2保护下加入式(7-2)化合物(4g,9mmol),升温至65℃反应2h,TLC监测反应完全后,冷却至25℃,加入2mol/L的稀盐酸调节PH=7-8,减压蒸除甲醇,加入水(20mL),25℃搅拌2h,抽滤;滤饼再加入水(20mL),25℃搅拌2h,抽滤,干燥,得到精制胆固醇(白色固体3.46g,摩尔收率98.8%,气相色谱纯度98.96%,见附图10)。
3.式(7-3)化合物水解制备胆固醇
Figure PCTCN2022144100-appb-000055
于烧瓶中加入甲醇(40mL)和K 2CO 3(1.57g,11.4mmol),溶清后N 2保护下加入式(7-3)化合物(4g,8.76mmol),升温至65℃反应2h,TLC监测反应完全后,冷却至25℃,加入2mol/L的稀盐酸调节PH=7-8,减压蒸除甲醇,加入水(20mL),25℃搅拌2h,抽滤;滤饼再加入水(20mL),25℃搅拌2h,抽滤,干燥,得到精制胆固醇(白色固体3.33g,摩尔收率98.5%,气相色谱纯度99.41%,见附图11)。
4.式(7-4)化合物水解制备胆固醇
Figure PCTCN2022144100-appb-000056
于烧瓶中加入甲醇(25mL)和KOH(0.31g,5.5mmol),溶清后N 2保护下加入式(7-4)化合物(2.45g,5mmol),45℃反应6h,TLC监测反应完全后,冷却至25℃,加入2mol/L的稀盐酸调节PH=5-6,减压蒸除甲醇,加入水(20ml),25℃搅拌2h,抽滤;滤饼再加入80%的乙醇(10ml),25℃搅拌2h,抽滤,干燥,得到精制胆固醇(白色固体1.83g,摩尔收率94.8%,气相色谱纯度99.44%,见附图12)。
5.式(7-5)化合物水解制备胆固醇
Figure PCTCN2022144100-appb-000057
于烧瓶中加入甲醇(25mL)和KOH(0.31g,5.5mmol),溶清后N 2保护下加入式(7-5)化合物(2.6g,5mmol),45℃反应8h,TLC监测反应完全后,冷却至25℃,加入2mol/L的稀盐酸调节PH=5-6,减压蒸除甲醇,加入水(20mL),25℃搅拌2h,抽滤;滤饼再加入80%的乙醇(10mL),25℃搅拌2h,抽滤,干燥,得到精制胆固醇(白色固体1.8g,摩尔收率93.3%,气相色谱纯度98.69%,见附图13)。
6.式(7-6)化合物脱保护制备胆固醇
Figure PCTCN2022144100-appb-000058
于烧瓶中加入四氢呋喃(25mL)、式(7-6)化合物(2.5g,5mmol),溶清后N 2保护下加入TBAF.3H 2O(7.88g,25mmol),25℃反应24h,TLC监测反应完全后,加入饱和氯化铵淬灭,减压蒸除四氢呋喃,加入二氯甲烷(70mL)和水(50mL)萃取,分液,有机相依 次用饱和NaHCO 3水溶液、2N稀盐酸、水、饱和NaCl洗涤,减压浓缩,得到胆固醇粗品,滤饼再加入80%的乙醇(10mL),25℃打浆3h,抽滤,得到精制胆固醇(白色固体1.84g,摩尔收率95.3%,气相色谱纯度98.6%,见附图14)。
式(6-1)化合物经Raney Ni加氢还原获得式(7-1)化合物的反应进程中可能引入的杂质结构如式(8-1)、(8-2)、(8-3)及(8-4)化合物:
Figure PCTCN2022144100-appb-000059
在本发明实施例六中,所得式(7-1)化合物粗品的气相色谱图中(见附图1),式(8-1)、(8-2)、(8-3)、(8-4)化合物对应保留时间9.123min(0.11%)、9.318min(0.42%)、9.538min(0.16%)、10.324min(0.39%)中的其中之一。
本发明式(7-1)化合物粗品经过一次重结晶纯化,纯度从91.25%提高到99.40%(气相色谱图见附图2),此时,3α-OR副产物基本除去,相应保留时间对应杂质的含量也有减少,分别为9.168min(0.19%)、9.382min(0.12%)、9.576min(0.05%)、10.366min(0.17%),该重结晶操作方法的摩尔收率为84%。经过碱水解得到胆固醇的气相色谱纯度为99.10%(见附图9),与式(7-1)化合物的纯度基本一致。
对比例一
专利文献(背景技术Scheme 2,CN105218610 A)报导的以豆甾醇降解物为原料,经5步反应,以总摩尔收率67%合成胆固醇。该专利文献的技术路线中第一步反应如下反应式一所示:
Figure PCTCN2022144100-appb-000060
专利文献CN105218610 A中描述反应式一以BA氧化后的式(02)化合物作为原料,以 乙醇为溶剂,在对甲苯磺酸、原甲酸三乙酯作用下,加热至40℃保温反应4h,得到式(03)化合物(摩尔收率97.50%)。
按照上述专利文献提供的实验方法,本发明以乙醇作为溶剂,式(02)化合物作为底物,在对甲苯磺酸、原甲酸三乙酯催化作用下,40℃保温反应4h,TLC检测原料已经反应完全,按照专利文献(CN105218610 A)方法后处理得到式(03′)化合物(反应式二所示),与该专利文献所描述的化合物不符。本发明也尝试减少原甲酸三乙酯的量,TLC检测原料反应完全,但并没有得到如专利文献(CN105218610 A)所描述的反应式一的结果,而是得到了如下反应式三所示的结果。说明按照专利文献CN 105218610 A报导的方法对式(02)化合物的3-位羰基进行保护时,C-22位醛基会被优先保护生成缩醛,生成反应式二或式三所示的式(03′)和(03″)化合物,而不能得到专利文献(CN 105218610 A)中所述的式(03)化合物,显然,反应式二或式三所示的式(03′)和(03″)化合物不能进行后续Wittig反应。
Figure PCTCN2022144100-appb-000061
实验方法:于烧瓶中加入乙醇(4ml)、原甲酸三乙酯(2ml),式(02)化合物(2.00g,70.20mmol)及对甲苯磺酸(20mg,0.12mmol),40℃保温反应,反应4h,TLC检测原料已经反应完全。冰浴下加入乙酸钠(20mg),水洗滤饼至洗出液为中性,抽干后柱层析纯化(石油醚:乙酸乙酯=20:1),得到式(03′)化合物(无色油状物2.30g,摩尔收率88%)。 1H NMR(600MHz,CDCl 3)δ5.23–5.19(m 1H),5.10(d,J=1.9Hz,1H),4.30(d,J=2.4Hz,1H),3.81–3.70(m,4H),3.61–3.55(m,1H),3.49–3.41(m,2H),2.31–2.25(m,1H),2.18–1.96(m,4H),1.85–1.78(m,2H),1.71–1.52(m,7H),1.43–1.33(m,4H),1.29(d,J=7.0Hz,3H),1.22–1.18(m,6H),0.99(d,J=6.7Hz,3H),0.96(s,3H),0.70(s,3H). 13C NMR(150MHz,CDCl 3)δ154.52,141.06,118.03,106.07,99.04,64.60,63.35,62.14,56.48,51.88,48.33,42.59, 40.39,39.62,35.18,33.86,31.92,31.86,27.72,25.55,24.42,21.17,18.96,15.49,15.37,14.68,11.94,11.89.HRMS(ESI):calcd for C 28H 46NaO 3[M+Na] +,453.3339,found 453.3328.
实验方法:于烧瓶中加入乙醇(4ml)、原甲酸三乙酯(1ml)、式(02)化合物(2.00g,70.20mmol)及对甲苯磺酸(20mg,0.12mmol),40℃保温反应,反应4h,TLC检测原料已经反应完全。冰浴下加入乙酸钠(20mg),水洗滤饼至洗出液为中性,抽干后柱层析纯化(石油醚:乙酸乙酯=5:1),得到式(03″)化合物(无色油状物2.32g,摩尔收率95%)。 1H NMR(600MHz,CDCl3)δ5.69(d,J=1.8Hz,1H),4.27(d,J=2.4Hz,1H),3.78–3.72(m,1H),3.58-3.53(m,1H),3.47–3.40(m,2H),2.42–2.21(m,4H),2.01–1.97(m,2H),1.84–1.77(m,2H),1.69–1.58(m,3H),1.53–1.47(m,2H),1.41–1.27(m,3H),1.21–1.17(m,6H),1.16(d,J=4.1Hz,4H),1.13–1.08(m,1H),1.04–0.98(m,2H),0.96(d,J=6.8Hz,3H),0.93–0.86(m,1H),0.69(s,3H). 13C NMR(150MHz,CDCl 3)δ199.58,171.53,123.76,105.95,64.58,63.40,55.39,53.81,51.81,42.52,40.33,39.42,35.69,35.63,33.97,32.92,32.03,27.62,24.37,21.01,17.37,15.48,15.36,11.91,11.86.
对比例二
专利文献(CN105218610 A)报道的第二步Wittig反应,如下反应式四所示:
Figure PCTCN2022144100-appb-000062
在该专利文献中,以甲苯为溶剂,加入三苯基膦和1-氯-3-甲基丁烷回流2h,加入叔丁醇钾和式(03)化合物,回流反应4h,得到式(04)化合物,摩尔收率:90.29%。如本发明采用专利文献(CN 105218610 A)的方法(对比例二,反应式四),使用1-氯-3-甲基丁烷或1-溴-3-甲基丁烷对本发明涉及的式(2)化合物进行Wittig反应,反应结果如反应式五所示,得到了式(3′)化合物,而没有得到预期的式(3)化合物,说明专利文献(CN 105218610 A)中公开的方法不能应用于本发明。
Figure PCTCN2022144100-appb-000063
实验方法:于烧瓶中加入三苯基膦(797mg,3.04mmol)、1-氯-3-甲基丁烷(324mg,3.04mmol),甲苯(10mL),回流反应2h后,冷却至25℃,冰浴下分三批加入叔丁醇钾(307mg,2.74.02mmol),冰浴下搅拌0.5h后加入式(2)化合物(500mg,1.52mmol),回流反应4h。TLC监测反应完全后,冷却至25℃,加入2M HCl(4mL)调节溶液为中性,二氯甲烷(50mL)和水(50mL)萃取,有机相依次用水洗、饱和食盐水洗涤,无水硫酸钠干燥,减压浓缩,柱层析纯化(PE:EA=20:1),得式(3′)化合物(无色油状物516mg,摩尔收率85%)。 1H NMR(600MHz,CDCl 3)δ9.53(d,J=5.0Hz,1H),2.72–2.68(m,1H),2.39–2.25(m,6H),2.10(dd,J=14.4,4.8Hz,1H),1.94–1.86(m,3H),1.68–1.53(m,8H),1.43–1.30(m,4H),1.25(s,3H),1.15(s,3H),1.04(d,J=6.7Hz,3H),0.89(d,J=6.6Hz,6H),0.72(s,3H). 13C NMR(150MHz,CDCl 3)δ205.71,198.54,163.30,133.32,55.49,54.31,51.82,48.85,42.21,39.05,38.94,38.40,35.35,35.16,33.95,32.12,29.71,28.43,27.31,26.49,23.74,23.21,22.54,20.74,17.80,13.60,12.97.HRMS(ESI):calcd for C 27H 42NaO 2[M+Na] +,421.3077,found 421.3075.
于烧瓶中加入三苯基膦(797mg,3.04mmol)、1-溴-3-甲基丁烷(459mg,3.04mmol),甲苯10mL,回流反应2h后,冷却至25℃,冰浴下分批加入叔丁醇钾(307mg,2.74mmol),冰浴下搅拌0.5h后加入式(2)化合物(500mg,1.52mmol),回流反应2.5h。TLC监测反应完全后,冷却至25℃,加入2M HCl(4mL)调节溶液为中性,二氯甲烷(50mL)和水(50mL)萃取,有机相依次用水洗、饱和食盐水洗涤,无水硫酸钠干燥,减压浓缩,柱层析纯化(PE:EA=20:1),得式(3′)化合物(无色油状物534mg,摩尔收率88%)。
对比例三
本发明中式(4)化合物的3-位酯基经NaBH 4还原得到式(5)化合物,然后式(5)化合物经过羟基保护、选择性氢化还原、脱保护或水解反应得到胆固醇。除此之外,我们尝试先用Raney Ni/H 2作为还原剂先对侧链的双键进行选择性氢化还原反应,然后再用NaBH 4还原3-位酯基。反应结果如反应式六所示,得到了式(6-1)和(6′-1)化合物,而没有得到预期的式(9)化合物,说明Raney Ni/H 2作为还原剂,不能对侧链进行选择性氢化还原,因此,本发明的反应顺序不能更改。
Figure PCTCN2022144100-appb-000064
实验方法:于烧瓶中加入式(4)化合物(2.10g,17.2mmol),Raney Ni(4.20g,湿重),异丙醇(30mL),H 2(1atm),30℃反应11h,TLC监测反应完全后,过滤除去Raney Ni,滤液减压浓缩,得到式(6-1)和式(6′-1)的混合物,从产物 1H NMR的结果判断式(6-1)化合物和异构体式(6′-1)化合物比例为1:0.28。
对比例四
本发明中式(6-1)化合物粗品经过Raney Ni/H 2还原合成式(7-1)化合物粗品。如下反应式七所示:
Figure PCTCN2022144100-appb-000065
本发明使用H 2作为还原剂、Raney Ni作为催化剂对侧链的双键进行选择性氢化还原,所得式(7-1)化合物粗品中过还原杂质式(8-4)化合物含量较低(0.39%),较易通过纯化除去;同时,在尝试使用H 2作为还原剂、10%Pd/C作为催化剂对侧链的双键进行选择性氢化还原时,所得式(7-1)化合物粗品中过还原杂质式(8-4)化合物较多,大于3.4%(见附图 15),较难通过纯化除去,未达到预期目标。说明10%Pd/C催化活性相对较高,选择性较差,不能替代RaneyNi作为催化剂,对侧链进行选择性氢化还原。
实验方法:于烧瓶中加入式(6-1)化合物(1.50g,3.56mmol),10%Pd/C(150mg),乙酸乙酯(30mL),H 2(1atm),30℃反应9h,气相监测反应完全后,过滤除去Pd/C,滤液减压浓缩。从产物的气相色谱图判断式(7-1)化合物的含量为91.3%,过还原杂质式(8-4)化合物的含量3.4%,中间体杂质1、2、3的总含量为2%。
对比例五
专利文献CN 113248557 A中,如下反应式八所示:
式(4)化合物经过硼氢化钠还原、柱层析纯化得到式(5)(3β-OH)化合物;式(5)化合物经RaneyNi催化的选择性氢化反应,得到胆固醇粗品;然后将该胆固醇粗品经过一次柱层析或重结晶纯化得到精品胆固醇,气相色谱纯度为95-96%。
Figure PCTCN2022144100-appb-000066
本发明中,式(7)化合物经过一次重结晶纯化、脱保护或水解所得胆固醇纯度高,可达到99.0%以上,并且纯化收率较好,具有重要的应用价值。
本发明的保护内容不局限于以上实施例。在不背离本发明构思的精神和范围下,本领域技术人员能够想到的变化和优点都被包括在本发明中,并且以所附的权利要求书为保护范围。

Claims (19)

  1. 一种以植物源21-羟基-20-甲基孕甾-4-烯-3-酮BA为原料合成胆固醇的方法,其特征在于,所述方法以BA为原料,经氧化、Wittig反应、乙酰化、还原、羟基保护、选择性氢化还原、脱保护或水解步骤合成所述胆固醇,具体包括以下步骤:
    步骤(a)、在第一溶剂中,式(1)所示的BA经氧化反应,得到式(2)化合物;
    步骤(b)、在第二溶剂中,式(2)化合物经Wittig反应,得到式(3)化合物;
    步骤(c)、在第三溶剂中,式(3)化合物经乙酰化反应,得到式(4)化合物;
    步骤(d)、在第四溶剂中,式(4)化合物经还原反应,得到式(5)化合物;
    步骤(e)、在第五溶剂中,式(5)化合物经羟基保护反应,得到式(6)化合物;
    步骤(f)、在第六溶剂中,式(6)化合物经选择性氢化还原反应,得到式(7)化合物;
    步骤(g)、在第七溶剂中,式(7)化合物经脱保护或水解反应,得到胆固醇;
    其中,所述方法的反应过程如路线(A)所示:
    Figure PCTCN2022144100-appb-100001
    路线(A)
    其中,R选自酯基、硅醚基。
  2. 如权利要求1所述的方法,其特征在于,所述酯基选自C2-C10直链酯基、异丁酯
    Figure PCTCN2022144100-appb-100002
    异戊酯基
    Figure PCTCN2022144100-appb-100003
    苯酯基
    Figure PCTCN2022144100-appb-100004
    对甲氧基苯酯基
    Figure PCTCN2022144100-appb-100005
    中的一种或多种;
    所述硅醚基选自三甲基硅醚基
    Figure PCTCN2022144100-appb-100006
    叔丁基二甲基硅醚基
    Figure PCTCN2022144100-appb-100007
    中的一种或两种。
  3. 如权利要求1所述的方法,其特征在于,步骤(a)中,所述氧化反应具体为:在所述第一溶剂中,式(1)所示的BA与TEMPO、碳酸氢钠、四丁基溴化铵、氧化剂发生氧化反应,得到式(2)化合物。
  4. 如权利要求3所述的方法,其特征在于,所述式(1)所示的BA、TEMPO、碳酸氢钠、四丁基溴化铵、氧化剂的摩尔比为1:(0~1):(0~20):(0~1):(1~5);和/或,所述氧化剂选自N-氯代琥珀酰亚胺NCS、N-溴代琥珀酰亚胺NBS、2-碘酰基苯甲酸IBX中的一种或多种;和/或,所述第一溶剂选自二氯甲烷、四氢呋喃、甲苯、二甲基亚砜、水中的一种或多种;和/或,所述氧化反应的温度为0~30℃;和/或,所述氧化反应的时间为3~8h。
  5. 如权利要求1所述的方法,其特征在于,步骤(b)中,所述Wittig反应具体为:在所述第二溶剂中,式(2)化合物、3,3-二甲基烯丙基卤代物、三苯基膦、叔丁醇钾发生Wittig反应,得到式(3)化合物。
  6. 如权利要求5所述的方法,其特征在于,所述式(2)化合物、3,3-二甲基烯丙基卤代物、三苯基膦、叔丁醇钾的摩尔比为1:(1~4):(1~4):(1~4);和/或,所述第二溶剂选自甲苯、苯、四氢呋喃、庚烷中的一种或多种;和/或,所述3,3-二甲基烯丙基卤代物选自3,3-二甲基烯丙基氯、3,3-二甲基烯丙基溴中的一种或两种;和/或,所述Wittig反应的温度为-10~112℃;和/或,所述Wittig反应的时间为0.5~9h。
  7. 如权利要求1所述的方法,其特征在于,步骤(c)中,所述乙酰化反应具体为:所述式(3)化合物、乙酰氯、乙酸酐、碱在所述第三溶剂中发生乙酰化反应,得到式(4)化合物。
  8. 如权利要求7所述的方法,其特征在于,所述式(3)化合物、乙酰氯、乙酸酐、碱的摩尔比为1:(0.5~62.5):(1~62.5):(0~6);和/或,所述碱选自吡啶、三乙胺、DIPEA、DMAP、二异丙基胺中的一种或多种;和/或,所述第三溶剂选自乙酸酐、乙酰氯、乙酸乙酯、二氯甲烷中的一种或多种;和/或,所述乙酰化反应的温度为40~110℃;和/或,所述乙酰化反应的时间为1~10h。
  9. 如权利要求1所述的方法,其特征在于,步骤(d)中,所述还原反应具体为:所述式(4)化合物、还原剂在所述第四溶剂中发生还原反应,得到式(5)化合物。
  10. 如权利要求9所述的方法,其特征在于,所述式(4)化合物、还原剂的摩尔比为1:(1~25);和/或,所述第四溶剂选自四氢呋喃、乙醇、水、二氯甲烷、2-甲基四氢呋喃、异丙醇、乙酸、甲基叔丁基醚中的一种或多种;和/或,所述还原剂选自NaBH 4、KBH 4中的一种或两种;和/或,所述还原反应的温度为0~50℃;和/或,所述还原反应的时间为6~12h。
  11. 如权利要求1所述的方法,其特征在于,步骤(e)中,所述羟基保护反应具体为: 所述式(5)化合物,在碱的作用下,与保护羟基的试剂在所述第五溶剂中缩合反应,得到式(6)化合物。
  12. 如权利要求11所述的方法,其特征在于,当R为酯基时,所述第五溶剂选自乙酸乙酯、二氯甲烷、三氯甲烷、DMF、甲苯、四氢呋喃、2-甲基四氢呋喃中的一种或多种;和/或,所述碱选自三乙胺、二异丙基乙基胺、咪唑、吡啶、DMAP中的一种或多种;和/或,所述式(5)化合物、保护羟基的试剂、碱的摩尔比为1:(1~4):(0.05~5);和/或,所述反应的温度为0~50℃;和/或,所述羟基保护反应的时间为2~24h;
    当R为硅醚基时,所述第五溶剂为DMF、二氯甲烷、三氯甲烷、四氯化碳中的一种或多种;和/或,所述碱选自三乙胺、二异丙基乙基胺、咪唑、吡啶、DMAP中的一种或多种;所述式(5)化合物、保护羟基的试剂、碱的摩尔比为1:(2~4):(4~8);和/或,所述反应的温度为0~50℃;和/或,所述羟基保护反应的时间为2~24h。
  13. 如权利要求1所述的方法,其特征在于,步骤(f)中,所述选择性氢化还原反应具体为:所述式(6)化合物,在催化剂作用下,与还原剂在所述第六溶剂中,发生选择性氢化还原反应,得到式(7)化合物。
  14. 如权利要求13所述的方法,其特征在于,所述还原剂选自H 2;和/或,所述催化剂为Raney Ni;和/或,所述式(6)化合物、催化剂的质量比为1:(0.05~5);和/或,所述第六溶剂选自2-甲基四氢呋喃、四氢呋喃、乙酸乙酯、甲苯、异丙醇中的一种或多种;和/或,所述氢化还原反应的温度为0~60℃;和/或,所述氢化还原反应的还原剂H 2压力为1-20atm;和/或,所述氢化还原反应的时间为4~48h。
  15. 如权利要求1所述的方法,其特征在于,当R为酯基时,步骤(g)中,所述水解反应具体为:所述式(7)化合物,在碱的作用下,在所述第七溶剂中,发生水解反应,得到胆固醇。
  16. 如权利要求15所述的方法,其特征在于,所述碱选自LiOH、KOH、NaOH、t-BuOK、K 2CO 3中的一种或多种;和/或,所述式(7)化合物、碱的摩尔比为1:(0.5~2);和/或,所述第七溶剂选自甲醇、乙醇中的一种或两种;和/或,所述水解反应的温度为10~75℃;和/或,所述水解反应的时间为0.3~12h。
  17. 如权利要求1所述的方法,当R为硅醚基时,其特征在于,步骤(g)中,所述脱保护反应具体为:所述式(7)化合物,在催化剂的作用下,在所述第七溶剂中,发生脱保护反应,得到胆固醇。
  18. 如权利要求17所述的方法,其特征在于,所述催化剂选自四丁基氟化铵TBAF、四丁基氟化铵三水合物TBAF 3H 2O、三氟化硼乙醚、乙酸、氯化氢的乙酸乙酯溶液中的一种或 多种和/或,所述式(7)化合物、催化剂的摩尔比为1:(1~6);和/或,所述第七溶剂选自四氢呋喃、水中的一种或两种;和/或,所述脱保护反应的温度为10~75℃;和/或,所述脱保护反应的时间为2~48h。
  19. 化合物,其特征在于,所述化合物的结构如式(6-2E)、(6-3E)、(6-4E)、(6-5E)、(6-6E)、(6-2Z)、(6-3Z)、(6-4Z)、(6-5Z)、(6-6Z)、(6′-2E)、(6′-3E)、(6′-4E)、(6′-5E)、(6′-6E)、(6′-2Z)、(6′-3Z)、(6′-4Z)、(6′-5Z)、(6′-6Z)所示:
    Figure PCTCN2022144100-appb-100008
PCT/CN2022/144100 2022-01-27 2022-12-30 一种高纯度胆固醇的合成方法 WO2023142890A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210099954.7 2022-01-27
CN202210099954.7A CN114395009B (zh) 2022-01-27 2022-01-27 一种高纯度胆固醇的合成方法

Publications (1)

Publication Number Publication Date
WO2023142890A1 true WO2023142890A1 (zh) 2023-08-03

Family

ID=81232450

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/144100 WO2023142890A1 (zh) 2022-01-27 2022-12-30 一种高纯度胆固醇的合成方法

Country Status (2)

Country Link
CN (1) CN114395009B (zh)
WO (1) WO2023142890A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114524856B (zh) * 2022-01-27 2024-03-15 华东师范大学 一种高纯度植物源胆固醇的合成方法
CN114395009B (zh) * 2022-01-27 2024-02-27 华东师范大学 一种高纯度胆固醇的合成方法
CN115555034B (zh) * 2022-10-17 2023-08-18 湖南科瑞生物制药股份有限公司 一种将羰基转为亚甲基的复合催化剂及其高效催化胆固醇合成的制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112608361A (zh) * 2019-12-19 2021-04-06 湖南科瑞生物制药股份有限公司 制备胆固醇、其衍生物及类似物的方法
CN113248557A (zh) * 2021-04-09 2021-08-13 华东师范大学 一种以ba为原料合成胆固醇的方法
CN114395009A (zh) * 2022-01-27 2022-04-26 华东师范大学 一种高纯度胆固醇的合成方法
CN114524856A (zh) * 2022-01-27 2022-05-24 华东师范大学 一种高纯度植物源胆固醇的合成方法
CN114874277A (zh) * 2022-03-08 2022-08-09 江苏佳尔科药业集团股份有限公司 一种胆固醇的合成方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105218610B (zh) * 2015-10-28 2017-01-11 湖南科瑞生物制药股份有限公司 一种以豆甾醇降解物为原料合成胆固醇的方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112608361A (zh) * 2019-12-19 2021-04-06 湖南科瑞生物制药股份有限公司 制备胆固醇、其衍生物及类似物的方法
CN113248557A (zh) * 2021-04-09 2021-08-13 华东师范大学 一种以ba为原料合成胆固醇的方法
CN113943336A (zh) * 2021-04-09 2022-01-18 华东师范大学 一种以ba为原料合成胆固醇的方法
CN114395009A (zh) * 2022-01-27 2022-04-26 华东师范大学 一种高纯度胆固醇的合成方法
CN114524856A (zh) * 2022-01-27 2022-05-24 华东师范大学 一种高纯度植物源胆固醇的合成方法
CN114874277A (zh) * 2022-03-08 2022-08-09 江苏佳尔科药业集团股份有限公司 一种胆固醇的合成方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JIANG JING-SONG; ZHAO HOU-FA; ZHANG WEI-XIU; ANHUI KEBAO: "Refinement of cholesterol with isopropyl alcohol", MODERN CHEMICAL INDUSTRY, HUAXUE GONGYE BU KEXUE JISHU QINGBAO YANJIUSUO, BEIJING, CN, vol. 34, no. 9, 30 September 2014 (2014-09-30), CN , pages 80 - 81, 83, XP009547817, ISSN: 0253-4320 *
XINYU MA, LIU XIAOFANG, ZHOU GANG: "New Process for Cholesterol Separation and Purification", XINJIANG JOURNAL OF TRADITIONAL CHINESE MEDICINE, vol. 20, no. 4, 25 August 2002 (2002-08-25), pages 9 - 10, XP093082100 *

Also Published As

Publication number Publication date
CN114395009B (zh) 2024-02-27
CN114395009A (zh) 2022-04-26

Similar Documents

Publication Publication Date Title
WO2023142890A1 (zh) 一种高纯度胆固醇的合成方法
WO2023142888A1 (zh) 一种高纯度植物源胆固醇的合成方法
WO2021109791A1 (zh) 一种以ba为原料合成熊去氧胆酸的方法
WO2021258723A1 (zh) 一种以ba为原料合成石胆酸的方法
WO2022213805A1 (zh) 一种以ba为原料合成胆固醇的方法
CN114874277B (zh) 一种胆固醇的合成方法
JP5678216B2 (ja) 3、3―ジメチルブチルアルデヒドの製造方法
CN109912676B (zh) 一种3β-熊去氧胆酸的制备方法
CN115884978A (zh) 制备胆酸衍生物的方法及其原料
WO2013123878A1 (zh) 醋酸阿比特龙三氟乙酸盐及其制备方法和应用
CN102952169A (zh) 6-甲基-17α-乙酰氧基-19-去甲孕甾-4,6-二烯-3,20-二酮合成方法
WO2018010651A1 (zh) 一种奥贝胆酸及其中间体的制备方法
CN115536719B (zh) 一种高纯度植物源7-酮基石胆酸的合成方法
KR20110048137A (ko) 3-아이오도타이로나민의 제조방법
CN107298694A (zh) 奥贝胆酸的合成方法及其中间体
CN115197150B (zh) 一种l-肌肽的制备方法
CN102993257A (zh) 一种氟维司群的新的制备方法
WO2023109273A1 (zh) 一种抗hiv病毒药物依曲拉韦的制备方法
CN111100042B (zh) 一种2-甲氧基-5-磺酰胺基苯甲酸的制备方法
CN113666860B (zh) 一种7-乙基色醇的制备方法
CN111018936B (zh) 一种氟维司群有关物质e的合成方法
CN110386958B (zh) 磺达肝癸钠中间体制备方法
CN1248263A (zh) 甲酰氨基-4-氮杂甾族化合物的制备方法
CN107663221A (zh) 一种奥贝胆酸的制备方法
CN112812033A (zh) 一种奥司他韦的新合成方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22923675

Country of ref document: EP

Kind code of ref document: A1