WO2021103885A1 - 富锂碳酸盐前驱体及其制备方法和应用 - Google Patents

富锂碳酸盐前驱体及其制备方法和应用 Download PDF

Info

Publication number
WO2021103885A1
WO2021103885A1 PCT/CN2020/123614 CN2020123614W WO2021103885A1 WO 2021103885 A1 WO2021103885 A1 WO 2021103885A1 CN 2020123614 W CN2020123614 W CN 2020123614W WO 2021103885 A1 WO2021103885 A1 WO 2021103885A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
salt
precursor
mixed metal
metal salt
Prior art date
Application number
PCT/CN2020/123614
Other languages
English (en)
French (fr)
Inventor
万江涛
张勇杰
任海朋
张宁
朱金鑫
王鹏飞
李子郯
Original Assignee
蜂巢能源科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 蜂巢能源科技有限公司 filed Critical 蜂巢能源科技有限公司
Priority to EP20893215.2A priority Critical patent/EP4024522A4/en
Priority to US17/780,957 priority patent/US20230002243A1/en
Publication of WO2021103885A1 publication Critical patent/WO2021103885A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • C01G53/44Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
    • C01G53/50Nickelates containing alkali metals, e.g. LiNiO2 containing manganese of the type [MnO2]n-, e.g. Li(NixMn1-x)O2, Li(MyNixMn1-x-y)O2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/006Compounds containing, besides nickel, two or more other elements, with the exception of oxygen or hydrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/32Spheres
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/11Powder tap density
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present disclosure relates to the field of lithium batteries, for example, to a lithium-rich carbonate precursor and a preparation method and application thereof.
  • lithium-ion batteries With the continuous expansion of the use of lithium-ion batteries, the application of lithium-ion batteries in the field of new energy vehicles has been widely favored in recent years, and the demand for high-energy-density lithium-ion batteries has become more urgent.
  • current lithium-rich materials generally have defects such as small particles, low sphericity, low tap density, and poor cycle and rate performance.
  • lithium-rich carbonate precursors with high sphericity and high tap density need to be further studied.
  • the present disclosure provides a lithium-rich carbonate precursor and a preparation method and application thereof.
  • An embodiment of the present disclosure provides a lithium-rich carbonate precursor, the lithium-rich carbonate precursor has a solid spherical structure, and the chemical formula of the lithium-rich carbonate precursor is Ni x Co y Mn (1-xy) CO 3 , x is 0.1 ⁇ 0.25, for example 0.1, 0.11, 0.12, 0.13, 0.14, 0.15, 0.16, 0.17, 0.18, 0.19, 0.20, 0.21, 0.22, 0.23, 0.24 or 0.25, etc.; y is 0.1 to 0.25, such as 0.1, 0.11, 0.12, 0.13, 0.14, 0.15, 0.16, 0.17, 0.18, 0.19, 0.20, 0.21, 0.22, 0.23, 0.24, or 0.25.
  • the lithium-rich carbonate precursor provided by the embodiments of the present disclosure has a small particle size solid spherical structure, and has a controllable particle size, uniform particle size distribution, high sphericity, high tap density, good fluidity, electrochemical performance and energy density It has excellent advantages. It can be produced stably in both ammonia and non-ammonia systems. Especially in the non-ammonia system, no ammonia-containing wastewater is generated, which is environmentally friendly.
  • the positive electrode material prepared by using the precursor has higher Compact density, specific capacity, and excellent cycle performance and electrochemical discharge performance. Nickel and cobalt is a component that assists in stabilizing the structure of the lithium-rich material. If the content is too high, the lithium ions of the lithium-rich material cannot be better inserted during the preparation of the cathode material, which affects the performance of the cathode material.
  • the particle size of the precursor is 3-6 ⁇ m, such as 3 ⁇ m, 4 ⁇ m, 5 ⁇ m or 6 ⁇ m, etc.; the tap density is not less than 1.47 g/cm 3 , such as 1.48 g/cm 3 , 1.49 g/cm 3 , 1.50g/cm 3 , 1.51g/cm 3 , 1.52g/cm 3 , 1.53g/cm 3 , 1.54g/cm 3 , 1.55g/cm 3 , 1.56g/cm 3 , 1.57g/cm 3 or 1.58g/cm 3 and so on.
  • the tap density is not less than 1.47 g/cm 3 , such as 1.48 g/cm 3 , 1.49 g/cm 3 , 1.50g/cm 3 , 1.51g/cm 3 , 1.52g/cm 3 , 1.53g/cm 3 , 1.54g/cm 3 , 1.55g/cm 3 ,
  • the particle size refers to the average particle size. Only lithium-rich precursors within this particle size range can be used to prepare solid-state battery cathode materials. The material application range is wider, while large-particle precursors can only be used in the current In the field of power batteries, the scope of application is narrow.
  • the present disclosure provides a method for preparing the precursor in an embodiment, and the method includes the following steps:
  • a mixed metal salt containing a soluble nickel salt, a soluble cobalt salt and a soluble manganese salt is mixed with a precipitating agent.
  • a precipitating agent Prepare small solid prefabricated particles, then mix the prefabricated particles, mixed metal salt and precipitant, that is, use the small solid prefabricated particles as seeds for co-precipitation reaction, and finally undergo subsequent washing, dehydration, and drying.
  • the iron removal process to prepare the above-mentioned lithium-rich carbonate precursor with solid spherical structure, controllable particle size, uniform particle size distribution, high sphericity, high tap density, good fluidity, excellent electrochemical performance and energy density
  • it can be produced stably in both ammonia and non-ammonia systems.
  • no ammonia-containing wastewater is produced, which is environmentally friendly.
  • the positive electrode material prepared by the precursor obtained by this method has better High compaction density, specific capacity and excellent cycle performance and electrochemical discharge performance.
  • step (2) in the presence of a protective agent and a conductive agent, a part of the mixed metal salt obtained in step (1) is mixed with a precipitating agent, where the mixed metal salt reacts quickly with the precipitating agent, and then Stir at a predetermined temperature according to a predetermined stirring speed, and finally reduce to room temperature, seal and stand still, to obtain small solid prefabricated particles.
  • the system can be prevented from being oxidized, and the addition of a conductive agent can improve the conductivity of the subsequent lithium-rich material.
  • the added mixed metal salt and the precipitating agent are mixed and react quickly (the reaction is completed within 10 seconds), and then the temperature is set at a predetermined temperature.
  • the homogenization of the system is achieved through rapid mixing and stirring and dispersion in the early stage, and then in a static environment on the basis of the above-mentioned homogenized particles, it grows into a spherical seed crystal by itself to obtain solid prefabricated particles.
  • step (3) provided by an embodiment of the present disclosure, the prefabricated particles obtained in step (2) are added to the reactor as the bottom liquid, and then accompanied by stirring, the other part of the mixed salt obtained in step (1) is combined with the precipitate
  • the agent is added to the reaction kettle and mixed for co-precipitation reaction, that is, the co-precipitation reaction is performed with small solid prefabricated particles as seed crystals to obtain the post-reaction liquid.
  • the precipitated particles after the reaction of the added mixed salt and the precipitating agent are deposited on the surface of the prefabricated particles, the crystal growth becomes regular and orderly, and the particle size distribution is also Following the particle size distribution of the seed crystal, the morphology and particle size of the product are well controlled, which facilitates the subsequent obtaining of a precursor with uniform particle size distribution, high sphericity, high tap density and good fluidity.
  • the detergent used is a detergent commonly used in the art, for example, a sodium hydroxide solution with a pH of 9.0, and it should be noted that those skilled in the art can follow It is actually necessary to select the amount of detergent added and the stirring speed and time, as long as it can achieve the removal of part of the sodium and sulfur in the reacted material.
  • step (5) the washed material is dehydrated once to obtain the first dehydrated material.
  • This first dehydration can be dehydrated by a centrifuge, and the moisture content of the obtained material after the first dehydration is not higher than 10wt%.
  • step (6) provided by an embodiment of the present disclosure, pure water is used to wash the material after the primary dehydration for a second time to further remove impurities such as sodium and sulfur in the material after the primary dehydration.
  • the amount of pure water, the stirring speed and the time can be selected, as long as the washing can be achieved until the sodium and sulfur content is qualified.
  • the dehydration process adopts centrifuge dehydration, and the water content of the obtained secondary dehydration material is not higher than 10wt%.
  • the soluble nickel salt, the soluble cobalt salt and the soluble manganese salt are (0.1 ⁇ 0.25) according to the molar ratio of nickel element, cobalt element and manganese element: (0.1 ⁇ 0.25): (0.5 ⁇ 0.8), such as 0.1:0.1:0.8, 0.15:0.12:0.73, 0.2:0.2:0.6 or 0.25:0.25:0.5, etc.
  • the concentration of the soluble nickel salt, the soluble cobalt salt and the soluble manganese salt are independently 80-130 g/L, for example 80g/L, 85g/L, 90g/L, 95g/L, 100g/L, 105g/L, 110g/L, 115g/L, 120g/L, 125g/L or 130g/L etc.
  • the soluble nickel salt is at least one selected from nickel chloride, nickel nitrate and nickel sulfate.
  • the soluble cobalt salt is at least one selected from cobalt chloride, cobalt nitrate and cobalt sulfate.
  • the soluble manganese salt is at least one selected from the group consisting of manganese chloride, manganese nitrate and manganese sulfate.
  • the protective agent is at least one selected from ascorbic acid and sodium sulfite.
  • the conductive agent is at least one selected from glucose and fructose.
  • the molar ratio of the mixed metal salt to the precipitant is 1: (2.0-3.5), for example, 1:2, 1:2.1, 1:2.2, 1: 2.3, 1:.4, 1:.5, 1:.6, 1:.7, 1:.8, 1:2.9, 1:3.0, 1:3.1, 1:3.2, 1:3.3, 1:3.4 Or 1:3.5, etc.
  • the amount of the protective agent is 1-20g, for example, 1g, 2g, 3g, 4g, 5g , 6g, 7g, 8g, 9g, 10g, 11g, 12g, 13g, 14g, 15g, 16g, 17g, 18g, 19g or 20g, etc.; the amount of the conductive agent is 10-100g, such as 10g, 20g, 30g, 40g, 50g, 60g, 70g, 80g, 90g or 100g, etc.
  • the precipitating agent is at least one selected from sodium carbonate, sodium bicarbonate, ammonium carbonate and ammonium bicarbonate.
  • the precipitating agent further includes ammonia water.
  • the concentration of the sodium carbonate is 50 ⁇ 200g/L, for example, 50g/L, 60g/L, 70g/L, 80g/L, 90g/L, 100g/L, 110g/L, 120g/L L, 130g/L, 140g/L, 150g/L, 160g/L, 170g/L, 180g/L, 190g/L or 200g/L, etc.
  • the concentration of sodium bicarbonate is 50-100 g/L, such as 50 g/L, 55 g/L, 60 g/L, 65 g/L, 70 g/L, 75 g/L, 80 g/L, 85 g /L, 90g/L, 95g/L or 100g/L etc.
  • the concentration of the ammonium carbonate is 150-200g/L, for example 150g/L, 155g/L, 160g/L, 165g/L, 170g/L, 175g/L, 180g/L, 185g/L L, 190g/L, 195g/L or 200g/L, etc.
  • the concentration of the ammonium bicarbonate is 50-200g/L, for example, 50g/L, 60g/L, 70g/L, 80g/L, 90g/L, 100g/L, 110g/L, 120g /L, 130g/L, 140g/L, 150g/L, 160g/L, 170g/L, 180g/L, 190g/L or 200g/L etc.
  • the concentration of the ammonia water is 50 ⁇ 200g/L, for example, 50g/L, 60g/L, 70g/L, 80g/L, 90g/L, 100g/L, 110g/L, 120g/L , 130g/L, 140g/L, 150g/L, 160g/L, 170g/L, 180g/L, 190g/L or 200g/L, etc.
  • the predetermined temperature is 30-60°C, such as 30°C, 35°C, 40°C, 45°C, 50°C, 55°C, or 60°C;
  • the predetermined stirring The rotation speed is 800 ⁇ 1000rpm, such as 800rpm, 820rpm, 840rpm, 860rpm, 880rpm, 900rpm, 920rpm, 940rpm, 960rpm, 980rpm or 1000rpm, etc.;
  • the predetermined stirring time is 1 ⁇ 5h, such as 1h, 2h, 3h, 4h or 5h Wait.
  • the predetermined temperature is 30-60°C. If the predetermined temperature is too high, the material will be oxidized, while the too low temperature makes the particle high-temperature collision effect insufficient. At the same time, the stirring speed in this range can ensure the uniformity of the dispersion of the system.
  • the standing time is 12-24h, such as 12h, 13h, 14h, 15h, 16h, 17h, 18h, 19h, 20h, 21h, 22h, 23h or 24h, etc. .
  • the particle size of the prefabricated particles is 1 to 3 ⁇ m, such as 1.0 ⁇ m, 1.5 ⁇ m, 2.0 ⁇ m, 2.5 ⁇ m, or 3.0 ⁇ m.
  • the mass ratio of the preformed particles, the mixed metal salt and the precipitating agent is 1: (2-8): (6-20), for example 1: 2:6, 1:3:7, 1:4:9, 1:6:10, 1:7:15 or 1:8:20, etc.
  • the stirring speed is 400-1000 rpm, such as 400 rpm, 500 rpm, 600 rpm, 700 rpm, 800 rpm, 900 rpm, or 1000 rpm, etc.; the temperature is 50-70° C., such as 50° C., 52° C.
  • the pH of the liquid after the reaction is 8 to 9.5, such as 8.0, 8.1, 8.2, 8.3, 8.4, 8.5, 8.6, 8.7, 8.8, 8.9, 9.0, 9.1, 9.2 , 9.3, 9.4 or 9.5, etc.
  • the solid content of the liquid after the reaction is 100-300g/L, such as 100g/L, 120g/L, 140g/L, 160g/L, 180g/L, 200g/L, 220g/L L, 240g/L, 260g/L, 280g/L or 300g/L, etc.
  • a method for preparing a positive electrode material which includes:
  • the precursor material is the lithium-rich carbonate precursor described in an embodiment or the lithium-rich carbonate precursor obtained by the method described in an embodiment.
  • An embodiment of the present disclosure provides a method for preparing a positive electrode material by combining the above-mentioned solid spherical structure, controllable particle size, uniform particle size distribution, high sphericity, high tap density, good fluidity, electrochemical performance and energy density
  • the excellent lithium-rich carbonate precursor is mixed with lithium salt for primary sintering and secondary sintering.
  • the lithium-rich carbonate precursor is decomposed during the primary sintering process, and the lithium ion migrates into the precursor through the secondary sintering. , Thereby preparing a positive electrode material with higher compaction density (not less than 2.9 g/cm 3 ), specific capacity, and excellent cycle performance and electrochemical discharge performance.
  • the molar ratio of the precursor material to the lithium salt is 1:(1.02 ⁇ 1.08), for example, 1:1.02, 1:1.03, 1:1.04, 1: 1.05, 1:.06, 1:1.07, or 1:1.08, etc.
  • the temperature of the primary sintering is 400-600°C, for example, 400°C, 420°C, 460°C, 480°C, 500°C, 520°C, 540°C, 560°C, 580°C or 600°C, etc.; time is 4-6h, such as 4.0h, 4.2h, 4.4h, 4.6h, 4.8h, 5.0h, 5.2h, 5.4h, 5.6h, 5.8h or 6.0h, etc.
  • the temperature of the secondary sintering is 700 to 950°C, such as 700°C, 750°C, 800°C, 850°C, 900°C, or 950°C, etc.; the time is 8 to 950°C. 25h, such as 8h, 9h, 10h, 11h, 12h, 13h, 14h, 15h, 16h, 17h, 18h, 19h, 20h, 21h, 22h, 23h, 24h or 25h.
  • the present disclosure provides a positive electrode material in one embodiment, and the positive electrode material is prepared by the method described in one embodiment.
  • the positive electrode material provided by an embodiment of the present disclosure has a relatively high compaction density (not less than 2.9 g/cm 3 ), a specific capacity, and excellent cycle performance and electrochemical discharge performance.
  • the chemical formula of the cathode material is Li(Li 0.2 Ni a Co b Mn (0.8-ab) )O 2 , where a is 0.08 to 0.18, such as 0.08, 0.09, 0.1, 0.11, 0.12, 0.13 , 0.14, 0.15, 0.16, 0.17, or 0.18, etc.; b is 0.08 to 0.18, such as 0.08, 0.09, 0.1, 0.11, 0.12, 0.13, 0.14, 0.15, 0.16, 0.17, or 0.18.
  • the present disclosure provides a lithium battery in an embodiment, and the lithium battery has the cathode material described in an embodiment.
  • the lithium battery provided by an embodiment of the present disclosure has a long cycle life on the basis of a high specific energy.
  • the present disclosure provides an automobile, and the automobile has the lithium battery described in an embodiment.
  • the vehicle equipped with the above-mentioned lithium battery with high specific energy and long cycle life provided by an embodiment of the present disclosure has excellent endurance capability, thereby meeting the needs of consumers.
  • Fig. 1 is a schematic flow chart of a method for preparing a lithium-rich carbonate precursor according to an embodiment of the present disclosure
  • Fig. 2 is a schematic flow chart of a method for preparing a cathode material according to an embodiment of the present disclosure
  • Fig. 3 is a scanning electron micrograph of a lithium-rich carbonate precursor prepared in an embodiment of the present disclosure.
  • the present disclosure provides a lithium-rich carbonate precursor.
  • the lithium-rich carbonate precursor has a solid spherical structure and the chemical formula is Ni x Co y Mn (1-xy) CO 3 , and x is 0.1 ⁇ 0.25, y is 0.1 ⁇ 0.25.
  • the above-mentioned lithium-rich carbonate precursor has a small particle size solid spherical structure, and has the advantages of controllable particle size, uniform particle size distribution, high sphericity, high tap density, good fluidity, excellent electrochemical performance and energy density. It can be produced stably in both ammonia and non-ammonia systems. Especially in the non-ammonia system, no ammonia-containing wastewater is produced, which is environmentally friendly.
  • the positive electrode material prepared by using the above-mentioned precursor has a higher compaction density and specificity. Capacity and excellent cycle performance and electrochemical discharge performance.
  • the particle size of the precursor is 3-6 ⁇ m, and the tap density is not less than 1.47 g/cm 3 .
  • the present disclosure provides a method for preparing the foregoing lithium-rich carbonate precursor, as shown in FIG. 1, including the following steps:
  • S100 Mixing soluble nickel salt, soluble cobalt salt and soluble manganese salt to obtain a mixed metal salt
  • the soluble nickel salt is selected from at least one of nickel chloride, nickel nitrate and nickel sulfate
  • the soluble cobalt salt is selected from cobalt chloride, At least one of cobalt nitrate and cobalt sulfate
  • the soluble manganese salt is selected from at least one of manganese chloride, manganese nitrate and manganese sulfate.
  • the concentration of soluble nickel salt, soluble cobalt salt and soluble manganese salt is independently 80 ⁇ 130g/L, and the molar ratio of nickel, cobalt and manganese in soluble nickel salt, soluble cobalt salt and soluble manganese salt For (0.1 ⁇ 0.25): (0.1 ⁇ 0.25): (0.5 ⁇ 0.8);
  • step S200 In the presence of a protective agent and a conductive agent, a part of the mixed metal salt prepared in step S100 is mixed with a precipitating agent, where the mixed metal salt and the precipitating agent react quickly, and then at a predetermined temperature of 30-60°C and a predetermined stirring speed Stir for 1 to 5 hours at 800 to 1000 rpm, and finally reduce to room temperature and let stand for 12 to 24 hours in a sealed state to obtain small solid prefabricated particles.
  • the protective agent is selected from at least one of ascorbic acid and sodium sulfite; the conductive agent is at least one selected from glucose and fructose; the precipitating agent is selected from at least one of sodium carbonate, sodium bicarbonate, ammonium carbonate and ammonium bicarbonate One, or at least one of sodium carbonate, sodium bicarbonate, ammonium carbonate and ammonium bicarbonate and ammonia; the concentration of ammonium bicarbonate is 50-200g/L, the concentration of sodium carbonate is 50-200g/L, ammonium carbonate The concentration of ammonium bicarbonate is 150-200g/L, the concentration of ammonium bicarbonate is 50-200g/L, and the concentration of ammonia is 50-200g/L.
  • the molar ratio of mixed metal salt to precipitant is 1: (2.0 ⁇ 3.5), based on the total amount of 1L mixed metal salt and precipitant, the amount of protective agent is 1-20g, and the amount of conductive agent is 10-100g.
  • the particle size of prefabricated particles is 1 ⁇ 3 ⁇ m;
  • step S300 The prefabricated particles obtained in the above step S200 are added as the bottom liquid into the reaction kettle, and under stirring conditions, the other part of the mixed salt obtained in step S100 and the precipitating agent are added to the reaction kettle and mixed for co-precipitation reaction.
  • the solid prefabricated particles of the particles are seed crystals for co-precipitation reaction to obtain the post-reaction liquid.
  • the precipitating agent is the same as the precipitating agent used in step S200.
  • the mass ratio of prefabricated particles, mixed metal salt and precipitant is 1:(2 ⁇ 8):(6 ⁇ 20), the rotation speed of the stirring process is 400 ⁇ 1000rpm, the stirring temperature is 50 ⁇ 70°C, and the stirring time is 5 ⁇ 60h, the pH of the liquid after the reaction is 8 ⁇ 9.5, and the solid content of the liquid after the reaction is 100 ⁇ 300g/L;
  • step S400 Under stirring conditions, mixing the post-reaction material obtained in step S300 with a detergent to obtain a washing post-material.
  • the stirring process takes 0.1 to 5 hours, and the detergent is a sodium hydroxide solution with a pH of 9.0;
  • step S500 Dehydrate the once-washed material obtained in step S400 once to obtain the once-dehydrated material, and the water content of the material after the first-time dehydration is not higher than 10wt%;
  • step S600 subjecting the primary dehydrated material obtained in step S500 to secondary washing and then dewatering to obtain the secondary dehydrated material, and the moisture content of the obtained secondary dehydrated material is not higher than 10wt%;
  • step S700 drying the second dehydrated material obtained in step S600 and then sieving and removing iron to obtain a lithium-rich carbonate precursor.
  • the present disclosure provides a method for preparing a positive electrode material, as shown in FIG. 2, including the following steps:
  • the lithium salt is at least one selected from lithium hydroxide and lithium carbonate, the molar ratio of the precursor material to the lithium salt is 1: (1.02 ⁇ 1.08), the temperature of the primary sintering is 400 ⁇ 600°C, and the time is 4 ⁇ 6h ;
  • step Sa The primary sintered material obtained in step Sa is crushed and then sintered for the second time, so that the lithium salt migrates into the interior of the precursor to obtain a cathode material with the chemical formula Li(Li 0.2 Ni a Co b Mn (0.8-ab) )O 2 , Where a is 0.08 ⁇ 0.18 and b is 0.08 ⁇ 0.18.
  • the secondary sintering temperature is 700 ⁇ 950°C, and the time is 8 ⁇ 25h.
  • the present disclosure provides a positive electrode material, which is prepared by the above-mentioned method for preparing the above-mentioned lithium-rich carbonate precursor.
  • the present disclosure provides a lithium battery having the above-mentioned cathode material.
  • the present disclosure provides an automobile having the above-mentioned lithium battery.
  • the method for preparing lithium-rich carbonate precursor is as follows:
  • step (3) Add the prefabricated particles obtained above as the bottom liquid into the reaction kettle, and then add the mixed metal salt obtained in step (1) with the ammonium bicarbonate solution with a concentration of 100g/L and the ammonia water with a concentration of 150g/L.
  • the reaction kettle is mixed for co-precipitation reaction to obtain the post-reaction liquid, in which the mass ratio of preformed particles, mixed metal salt and precipitant is 1:8:16, the stirring speed is 400rpm, the temperature is 65°C, and the time is 50h. And control the pH of the liquid after the reaction to 8.5, and the liquid-solid content after the reaction to 120g/L;
  • the secondary dehydrated material obtained above is dried and then sieved to remove iron to obtain a lithium-rich carbonate precursor with a particle size of 6 ⁇ m. Its chemical formula is Ni 0.18 Co 0.1 Mn 0.72 CO 3 and its tap density is 1.5 g/cm 3 .
  • the method of preparing the cathode material is as follows:
  • Figure 3 is a scanning electron micrograph of a precursor material obtained in an embodiment of the present disclosure. It can be seen that the precursor material has a spherical structure, uniform particle size distribution and smooth surface, and the particle size distribution of the precursor is further discovered by using a laser particle size analyzer. The particle size distribution is uniform, and the detected precursor sodium content is less than 300ppm, and the sulfur content is less than 1000ppm.
  • the cathode material is mixed with SP (carbon black conductive agent) and PVDF (polyvinylidene fluoride), and NMP (N-methylpyrrolidone) is used.
  • SP carbon black conductive agent
  • PVDF polyvinylidene fluoride
  • NMP N-methylpyrrolidone
  • a lithium ion half-cell is prepared by solvent pulping and stirring for several hours, and a blue battery tester is used to conduct charge and discharge tests at 4.8V, and the product has a 0.1C discharge gram capacity of 300-306mAh, and a 1.0C discharge capacity of 230-240mAh.
  • the method for preparing lithium-rich carbonate precursor is as follows:
  • step (3) Add the prefabricated particles obtained above as the bottom liquid into the reaction kettle, and then react the mixed metal salt obtained in step (1) with sodium carbonate solution with a concentration of 200g/L and ammonia with a concentration of 120g/L.
  • the co-precipitation reaction is carried out by mixing in the kettle to obtain the post-reaction liquid, in which the mass ratio of the preformed particles, the mixed metal salt and the precipitating agent is 1:4.5:11.2, the stirring speed is 600rpm, the temperature is 55°C, the time is 40h, and Control the pH of the liquid after the reaction to 9.5, and the liquid-solid content after the reaction to 180g/L;
  • the secondary dehydrated material obtained above is dried and then sieved to remove iron to obtain a lithium-rich carbonate precursor with a particle size of 5 ⁇ m. Its chemical formula is Ni 0.2 Co 0.2 Mn 0.6 CO 3 and its tap density is 1.71 g/cm 3 .
  • the method of preparing the cathode material is as follows:
  • the precursor material prepared in an embodiment of the present disclosure has a spherical structure, uniform particle size distribution, and a smooth surface, and the particle size distribution of the precursor is detected by a laser particle size analyzer, and the particle size distribution is further found to be uniform, and the detected precursor sodium content is less than 300 ppm ,
  • the sulfur content is less than 1000ppm
  • the positive electrode material is mixed with SP (carbon black conductive agent), PVDF (polyvinylidene fluoride), and NMP (N-methylpyrrolidone) is used as a solvent to prepare a lithium ion half-cell and stir for several hours.
  • SP carbon black conductive agent
  • PVDF polyvinylidene fluoride
  • NMP N-methylpyrrolidone
  • the method for preparing lithium-rich carbonate precursor is as follows:
  • step (3) Add the prefabricated particles obtained above as the bottom liquid into the reaction kettle, and then react the mixed metal salt obtained in step (1) with ammonium carbonate solution with a concentration of 180g/L and ammonia with a concentration of 100g/L.
  • the co-precipitation reaction is carried out by mixing in the kettle to obtain the post-reaction liquid, in which the mass ratio of the preformed particles, the mixed metal salt and the precipitating agent is 1:2.4:7.2, the stirring speed is 900 rpm, the temperature is 50°C, the time is 30 hours, and Control the pH of the liquid after the reaction to 8, and the liquid-solid content after the reaction to 140g/L;
  • the secondary dehydrated material obtained above is dried and then sieved to remove iron to obtain a lithium-rich carbonate precursor with a particle size of 4 ⁇ m. Its chemical formula is Ni 0.15 Co 0.15 Mn 0.7 CO 3 and its tap density is 1.6 g/cm 3 .
  • the method of preparing the cathode material is as follows:
  • the precursor material prepared in an embodiment of the present disclosure has a spherical structure, uniform particle size distribution, and a smooth surface, and the particle size distribution of the precursor is detected by a laser particle size analyzer, and the particle size distribution is further found to be uniform, and the detected precursor sodium content is less than 300 ppm ,
  • the sulfur content is less than 1000ppm
  • the positive electrode material is mixed with SP (carbon black conductive agent), PVDF (polyvinylidene fluoride), and NMP (N-methylpyrrolidone) is used as a solvent to prepare a lithium ion half-cell and stir for several hours.
  • SP carbon black conductive agent
  • PVDF polyvinylidene fluoride
  • NMP N-methylpyrrolidone
  • the method for preparing lithium-rich carbonate precursor is as follows:
  • step (3) Add the prefabricated particles obtained above as the bottom liquid into the reaction kettle, and then add the mixed metal salt obtained in step (1) with a sodium bicarbonate solution with a concentration of 90g/L and sodium carbonate with a concentration of 170g/L
  • the co-precipitation reaction is carried out by mixing in the reactor to obtain the post-reaction liquid, wherein the mass ratio of the preformed particles, the mixed metal salt and the precipitating agent is 1:6:12, the stirring speed is 1000rpm, the temperature is 60°C, and the time is 15h , And control the pH of the liquid after the reaction to 9.5, and the liquid-solid content after the reaction to 220g/L;
  • the secondary dehydrated material obtained above is dried and then sieved to remove iron to obtain a lithium-rich carbonate precursor with a particle size of 5 ⁇ m. Its chemical formula is Ni 0.1 Co 0.18 Mn 0.72 CO 3 and its tap density is 1.64 g/cm 3 .
  • the method of preparing the cathode material is as follows:
  • the precursor material prepared in an embodiment of the present disclosure has a spherical structure, uniform particle size distribution, and a smooth surface, and the particle size distribution of the precursor is detected by a laser particle size analyzer, and the particle size distribution is further found to be uniform, and the detected precursor sodium content is less than 300 ppm ,
  • the sulfur content is less than 1000ppm
  • the positive electrode material is mixed with SP (carbon black conductive agent), PVDF (polyvinylidene fluoride), and NMP (N-methylpyrrolidone) is used as a solvent to prepare a lithium ion half-cell and stir for several hours.
  • SP carbon black conductive agent
  • PVDF polyvinylidene fluoride
  • NMP N-methylpyrrolidone
  • the method for preparing lithium-rich carbonate precursor is as follows:
  • step (3) Add the prefabricated particles obtained above as the bottom liquid to the reaction kettle, and then add the mixed metal salt obtained in step (1) with a sodium bicarbonate solution with a concentration of 50g/L and sodium carbonate with a concentration of 200g/L
  • the co-precipitation reaction is mixed in the reactor to obtain the post-reaction liquid, wherein the mass ratio of preformed particles, mixed metal salt and precipitant is 1:2:6, the stirring speed is 400rpm, the temperature is 70°C, and the time is 5h , And control the pH of the liquid after the reaction to 8, and the liquid-solid content after the reaction to 100g/L;
  • the secondary dehydrated material obtained above is dried and then sieved to remove iron to obtain a lithium-rich carbonate precursor with a particle size of 5 ⁇ m. Its chemical formula is Ni 0.1 Co 0.1 Mn 0.8 CO 3 and its tap density is 1.72 g/cm 3 .
  • the method of preparing the cathode material is as follows:
  • the precursor material prepared in an embodiment of the present disclosure has a spherical structure, uniform particle size distribution, and a smooth surface, and the particle size distribution of the precursor is detected by a laser particle size analyzer, and the particle size distribution is further found to be uniform, and the detected precursor sodium content is less than 300 ppm ,
  • the sulfur content is less than 1000ppm
  • the positive electrode material is mixed with SP (carbon black conductive agent), PVDF (polyvinylidene fluoride), and NMP (N-methylpyrrolidone) is used as a solvent to prepare a lithium ion half-cell and stir for several hours.
  • SP carbon black conductive agent
  • PVDF polyvinylidene fluoride
  • NMP N-methylpyrrolidone
  • the method for preparing lithium-rich carbonate precursor is as follows:
  • step (3) Add the prefabricated particles obtained above as the bottom liquid into the reactor, and then add the mixed metal salt obtained in step (1) with the ammonium bicarbonate solution with a concentration of 50g/L and ammonium carbonate with a concentration of 150g/L
  • the solution is mixed in the reactor for co-precipitation reaction to obtain the post-reaction liquid, wherein the mass ratio of the preformed particles, the mixed metal salt and the precipitating agent is 1:8:20, the stirring speed is 1000 rpm, the temperature is 50 °C, and the time is 60h, and control the pH of the liquid after the reaction to 9.5, and the liquid-solid content after the reaction to 300g/L;
  • the secondary dehydrated material obtained above is dried and then sieved to remove iron to obtain a lithium-rich carbonate precursor with a particle size of 6 ⁇ m. Its chemical formula is Ni 0.25 Co 0.25 Mn 0.5 CO 3 and its tap density is 1.47 g/cm 3 .
  • the method of preparing the cathode material is as follows:
  • the precursor material prepared in an embodiment of the present disclosure has a spherical structure, uniform particle size distribution, and a smooth surface, and the particle size distribution of the precursor is detected by a laser particle size analyzer, and the particle size distribution is further found to be uniform, and the detected precursor sodium content is less than 300 ppm ,
  • the sulfur content is less than 1000ppm
  • the positive electrode material is mixed with SP (carbon black conductive agent), PVDF (polyvinylidene fluoride), and NMP (N-methylpyrrolidone) is used as a solvent to prepare a lithium ion half-cell and stir for several hours.
  • SP carbon black conductive agent
  • PVDF polyvinylidene fluoride
  • NMP N-methylpyrrolidone

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

本公开提供了一种富锂碳酸盐前驱体及其制备方法和应用,所述富锂碳酸盐前驱体为实心球形结构,并且所述富锂碳酸盐前驱体的化学式为Ni xCo yMn (1-x-y)CO 3。该前驱体具有粒度可控且粒度分布均匀、球形度高、振实密度高、流动性好、电化学性能和能量密度优异的优势。

Description

富锂碳酸盐前驱体及其制备方法和应用 技术领域
本公开涉及锂电池领域,例如涉及一种富锂碳酸盐前驱体及其制备方法和应用。
背景技术
随着锂离子电池使用领域的不断扩展,近年来新能源汽车领域锂离子电池的应用受到了广泛青睐,而对于高能量密度的锂离子电池的需求越发迫切,富锂锰基正极材料因放电比容量大、价格低廉、环境友好等优点具有较大潜力。而目前的富锂材料一般都存在颗粒细小、球形度低、振实密度低、循环和倍率性能差等缺陷。
因此,球形度、振实密度高等性能的富锂碳酸盐前驱体有待进一步研究。
发明内容
本公开提供一种富锂碳酸盐前驱体及其制备方法和应用。
本公开在一实施例中提供一种富锂碳酸盐前驱体,所述富锂碳酸盐前驱体为实心球形结构,并且所述富锂碳酸盐前驱体的化学式为Ni xCo yMn (1-x-y)CO 3,x为0.1~0.25,例如0.1、0.11、0.12、0.13、0.14、0.15、0.16、0.17、0.18、0.19、0.20、0.21、0.22、0.23、0.24或0.25等;y为0.1~0.25,例如0.1、0.11、0.12、0.13、0.14、0.15、0.16、0.17、0.18、0.19、0.20、0.21、0.22、0.23、0.24或0.25等。
本公开实施例提供的富锂碳酸盐前驱体为小粒径实心球形结构,并且具有粒度可控且粒度分布均匀、球形度高、振实密度高、流动性好、电化学性能和能量密度优异的优势,其在有氨体系和无氨体系均可稳定生产,特别是在无氨体系下,没有含氨废水产生,对环境友好,同时采用该前驱体制备得到的正极材料具有较高的压实密度、比容量以及优异的循环性能和电化学放电性能。镍钴是辅助稳定富锂材料结构的成分,若含量过高,导致在制备正极材料过程中 富锂材料的锂离子无法更好嵌入而影响正极材料性能。
在一实施例中,所述前驱体粒径为3~6μm,例如3μm、4μm、5μm或6μm等;振实密度不低于1.47g/cm 3,例如1.48g/cm 3、1.49g/cm 3、1.50g/cm 3、1.51g/cm 3、1.52g/cm 3、1.53g/cm 3、1.54g/cm 3、1.55g/cm 3、1.56g/cm 3、1.57g/cm 3或1.58g/cm 3等。
本公开实施例中,粒径指平均粒径,在该粒径范围内的富锂前驱体才能应用于制备固态电池正极材料,材料应用范围更广,而大颗粒前驱体只能用于目前的动力电池领域,应用范围狭窄。
本公开在一实施例中提供一种制备所述前驱体的方法,所述方法包括以下步骤:
(1)将可溶性镍盐、可溶性钴盐和可溶性锰盐进行混合,以便得到混合金属盐;
(2)在保护剂和导电剂存在下,将所述混合金属盐的一部分与沉淀剂混合,在预定温度下按照预定搅拌转速搅拌,然后降至常温密封静置,以便得到预造粒子;
(3)伴随着搅拌,将所述预造粒子、所述混合金属盐的另一部分与所述沉淀剂混合进行共沉淀反应,以便得到反应后液;
(4)伴随着搅拌,将所述反应后料与洗涤剂混合,以便得到一次洗涤后料;
(5)将所述一次洗涤后料进行一次脱水,以便得到一次脱水后料;
(6)伴随着搅拌,将所述一次脱水后料进行二次洗涤后脱水,以便得到二次脱水后料;
(7)将所述二次脱水后料干燥后筛分除铁,以便得到富锂碳酸盐前驱体。
本公开一实施例提供的制备富锂碳酸盐前驱体的方法,首先在保护剂和导电剂的存在下,将含有可溶性镍盐、可溶性钴盐和可溶性锰盐的混合金属盐与沉淀剂混合制备小颗粒的实心预造粒子,再将预造粒子、混合金属盐和沉淀剂混合,即以小颗粒的实心预造粒子为晶种进行共沉淀反应,最后经后续的洗涤、脱水以及干燥筛分除铁工序,即可制备得到上述具有实心球形结构、粒度可控且粒度分布均匀、球形度高、振实密度高、流动性好、电化学性能和能量密度优异的富锂碳酸盐前驱体,并且其在有氨体系和无氨体系均可稳定生产,特别是在无氨体系下,没有含氨废水产生,对环境友好,同时采用该方法得到的前 驱体制备得到的正极材料具有较高的压实密度、比容量以及优异的循环性能和电化学放电性能。
本公开一实施例提供的步骤(2)中,在保护剂和导电剂存在下,将步骤(1)得到混合金属盐的一部分与沉淀剂混合,其中混合金属盐与沉淀剂快速反应,然后在预定温度下按照预定搅拌转速搅拌,最后降至常温密封静置,得到小颗粒实心预造粒子。在保护剂存在下,可以防止体系被氧化,而加入导电剂,可以提高后续富锂材料的导电性能,加入的混合金属盐与沉淀剂混合快速反应(10秒内完成反应),然后在预定温度和预定搅拌转速下搅拌,最后降至常温密封静置。通过前期的快速混合并搅拌分散实现体系的均一化,然后在静态环境中在上述均一化的颗粒基础上自行生长为类球形晶种,得到实心预造粒子。
本公开一实施例提供的步骤(3)中,经步骤(2)得到的预造粒子作为底液加入反应釜中,然后伴随着搅拌,将步骤(1)得到的混合盐的另一部分和沉淀剂加入反应釜中混合进行共沉淀反应,即以小颗粒的实心预造粒子为晶种进行共沉淀反应,得到反应后液。通过以小颗粒的实心预造粒子为晶种进行共沉淀反应,使得加入的混合盐和沉淀剂反应后的沉淀颗粒在预造粒子表面沉积,晶体的生长变得规则有序,粒度的分布也沿袭晶种的粒度分布,产品的形貌和粒度得到了很好的控制,从而利于后续得到粒度分布均匀、球形度高、振实密度高、流动性好的前驱体。
本公开一实施例提供的步骤(4)中,采用的洗涤剂为本领域常规使用的洗涤剂,例如可以为pH为9.0的氢氧化钠溶液,并且需要说明的是,本领域技术人员可以根据实际需要对洗涤剂的加入量以及搅拌转速和时间进行选择,只要能够实现去除反应后料中部分的钠和硫即可。
本公开一实施例提供的步骤(5)中,将一次洗涤后料进行一次脱水,得到一次脱水后料,该一次脱水可以采用离心机脱水,并且得到的一次脱水后料中含水率不高于10wt%。
本公开一实施例提供的步骤(6)中,采用纯水对一次脱水后料进行二次洗涤,以进一步去除一次脱水后料中的钠和硫等杂质,本领域技术人员可以根据实际需要对纯水用量和搅拌转速以及时间进行选择,只要能够实现洗涤至钠和硫含量合格即可,该脱水过程采用离心机脱水,得到的二次脱水后料中含水率不高于10wt%。
在一实施例中,在步骤(1)中,所述可溶性镍盐、所述可溶性钴盐和所述可溶性锰盐按照镍元素、钴元素和锰元素摩尔比为(0.1~0.25):(0.1~0.25):(0.5~0.8),例如0.1:0.1:0.8、0.15:0.12:0.73、0.2:0.2:0.6或0.25:0.25:0.5等。
在一实施例中,在步骤(1)中,所述混合金属盐中,所述可溶性镍盐、所述可溶性钴盐和所述可溶性锰盐的浓度分别独立地为80~130g/L,例如80g/L、85g/L、90g/L、95g/L、100g/L、105g/L、110g/L、115g/L、120g/L、125g/L或130g/L等。
在一实施例中,在步骤(1)中,所述可溶性镍盐为选自氯化镍、硝酸镍和硫酸镍中的至少之一。
在一实施例中,在步骤(1)中,所述可溶性钴盐为选自氯化钴、硝酸钴和硫酸钴中的至少之一。
在一实施例中,在步骤(1)中,所述可溶性锰盐为选自氯化锰、硝酸锰和硫酸锰中的至少之一。
在一实施例中,在步骤(2)中,所述保护剂为选自抗坏血酸和亚硫酸钠中的至少之一。
在一实施例中,在步骤(2)中,所述导电剂为选自葡萄糖和果糖中的至少之一。
在一实施例中,在步骤(2)中,所述混合金属盐与所述沉淀剂的摩尔比为1:(2.0~3.5),例如1:2、1:2.1、1:2.2、1:2.3、1:.4、1:.5、1:.6、1:.7、1:.8、1:2.9、1:3.0、1:3.1、1:3.2、1:3.3、1:3.4或1:3.5等。
在一实施例中,在步骤(2)中,基于1L所述混合金属盐和所述沉淀剂的总量,所述保护剂的用量为1~20g,例如1g、2g、3g、4g、5g、6g、7g、8g、9g、10g、11g、12g、13g、14g、15g、16g、17g、18g、19g或20g等;所述导电剂的用量为10~100g,例如10g、20g、30g、40g、50g、60g、70g、80g、90g或100g等。
在一实施例中,在步骤(2)中,所述沉淀剂为选自碳酸钠、碳酸氢钠、碳酸铵和碳酸氢铵中的至少之一。
在一实施例中,所述的沉淀剂还包括氨水。
在一实施例中,所述碳酸钠的浓度为50~200g/L,例如50g/L、60g/L、70g/L、80g/L、90g/L、100g/L、110g/L、120g/L、130g/L、140g/L、150g/L、160g/L、 170g/L、180g/L、190g/L或200g/L等。
在一实施例中,所述碳酸氢钠的浓度为50~100g/L,例如50g/L、55g/L、60g/L、65g/L、70g/L、75g/L、80g/L、85g/L、90g/L、95g/L或100g/L等。
在一实施例中,所述碳酸铵的浓度为150~200g/L,例如150g/L、155g/L、160g/L、165g/L、170g/L、175g/L、180g/L、185g/L、190g/L、195g/L或200g/L等。
在一实施例中,所述碳酸氢铵的浓度为50~200g/L,例如50g/L、60g/L、70g/L、80g/L、90g/L、100g/L、110g/L、120g/L、130g/L、140g/L、150g/L、160g/L、170g/L、180g/L、190g/L或200g/L等。
在一实施例中,所述氨水的浓度为50~200g/L,例如50g/L、60g/L、70g/L、80g/L、90g/L、100g/L、110g/L、120g/L、130g/L、140g/L、150g/L、160g/L、170g/L、180g/L、190g/L或200g/L等。
在一实施例中,在步骤(2)中,所述预定温度为30~60℃,例如30℃、35℃、40℃、45℃、50℃、55℃或60℃等;所述预定搅拌转速为800~1000rpm,例如800rpm、820rpm、840rpm、860rpm、880rpm、900rpm、920rpm、940rpm、960rpm、980rpm或1000rpm等;所述预定搅拌时间为1~5h,例如1h、2h、3h、4h或5h等。
在本公开一实施例中,预定温度为30~60℃,若预定温度过高会氧化材料,而过低的温度使得粒子高温碰撞效应不足,同时该范围的搅拌速度可以保证体系分散均一性。
在一实施例中,在步骤(2)中,所述静置时间为12~24h,例如12h、13h、14h、15h、16h、17h、18h、19h、20h、21h、22h、23h或24h等。
在一实施例中,在步骤(2)中,所述预造粒子粒径为1~3μm,例如1.0μm、1.5μm、2.0μm、2.5μm或3.0μm等。
在一实施例中,在步骤(3)中,所述预造粒子、所述混合金属盐与所述沉淀剂的质量比为1:(2~8):(6~20),例如1:2:6、1:3:7、1:4:9、1:6:10、1:7:15或1:8:20等。
在一实施例中,在步骤(3)中,所述搅拌转速为400~1000rpm,例如400rpm、500rpm、600rpm、700rpm、800rpm、900rpm或1000rpm等;温度为50~70℃,例如50℃、52℃、54℃、56℃、58℃、60℃、62℃、64℃、66℃、68℃或70℃ 等;时间为5~60h,例如5h、10h、15h、20h、25h、30h、35h、40h、45h、50h、55h或60h等;所述反应后液的pH为8~9.5,例如8.0、8.1、8.2、8.3、8.4、8.5、8.6、8.7、8.8、8.9、9.0、9.1、9.2、9.3、9.4或9.5等;所述反应后液的固含量为100~300g/L,例如100g/L、120g/L、140g/L、160g/L、180g/L、200g/L、220g/L、240g/L、260g/L、280g/L或300g/L等。
本公开在一实施例中提供一种制备正极材料的方法,包括:
(a)将前驱体材料与锂盐混合进行一次烧结,以便得到一次烧结料;
(b)将所述一次烧结料破碎后进行二次烧结,以便得到正极材料,
其中,在步骤(a)中,所述前驱体材料为一实施例所述的富锂碳酸盐前驱体或采用一实施例所述的方法得到的富锂碳酸盐前驱体。
本公开一实施例提供了一种制备正极材料的方法,通过将上述具有实心球形结构、粒度可控且粒度分布均匀、球形度高、振实密度高、流动性好、电化学性能和能量密度优异的富锂碳酸盐前驱体与锂盐混合进行一次烧结和二次烧结,其中,一次烧结过程中使得富锂碳酸盐前驱体分解,再经二次烧结使得锂离子迁移进入前驱体内部,从而制备得到具有较高的压实密度(不低于2.9g/cm 3)、比容量以及优异的循环性能和电化学放电性能的正极材料。
在一实施例中,在步骤(a)中,所述前驱体材料与所述锂盐的摩尔比为1:(1.02~1.08),例如1:1.02、1:1.03、1:1.04、1:1.05、1:.06、1:1.07或1:1.08等。
在一实施例中,在步骤(a)中,所述一次烧结的温度为400~600℃,例如400℃、420℃、460℃、480℃、500℃、520℃、540℃、560℃、580℃或600℃等;时间为4~6h,例如4.0h、4.2h、4.4h、4.6h、4.8h、5.0h、5.2h、5.4h、5.6h、5.8h或6.0h等。
在一实施例中,在步骤(b)中,所述二次烧结的温度为700~950℃,例如700℃、750℃、800℃、850℃、900℃或950℃等;时间为8~25h,例如8h、9h、10h、11h、12h、13h、14h、15h、16h、17h、18h、19h、20h、21h、22h、23h、24h或25h等。
本公开在一实施例中提供一种正极材料,所述正极材料采用一实施例所述的方法制备得到。
本公开一实施例提供的正极材料具有较高的压实密度(不低于2.9g/cm 3)、比容量以及优异的循环性能和电化学放电性能。
在一实施例中,所述正极材料的化学式为Li(Li 0.2Ni aCo bMn (0.8-a-b))O 2,其中a为0.08~0.18,例如0.08、0.09、0.1、0.11、0.12、0.13、0.14、0.15、0.16、0.17或0.18等;b为0.08~0.18,例如0.08、0.09、0.1、0.11、0.12、0.13、0.14、0.15、0.16、0.17或0.18等。
本公开在一实施例中提供一种锂电池,所述锂电池具有一实施例所述的正极材料。
本公开一实施例提供的锂电池在具有高比能量的基础上具有长循环寿命。
本公开在一实施例中提供一种汽车,所述汽车具有一实施例所述的锂电池。
本公开一实施例提供的装载上述具有高比能量和长循环寿命锂电池的车辆具有优异的续航能力,从而满足消费者的使用需求。
附图说明
附图用来提供对本公开技术方案的进一步理解,并且构成说明书的一部分,与本申请的实施例一起用于解释本公开的技术方案,并不构成对本公开技术方案的限制。
图1是本公开一个实施例的制备富锂碳酸盐前驱体的方法流程示意图;
图2是本公开一个实施例的制备正极材料的方法流程示意图;
图3是本公开一个实施例制备得到的富锂碳酸盐前驱体的扫描电镜图。
具体实施例
下面结合附图并通过具体实施方式来进一步说明本公开的技术方案。
在一个实施例中,本公开提供了一种富锂碳酸盐前驱体,富锂碳酸盐前驱体为实心球形结构,化学式为Ni xCo yMn (1-x-y)CO 3,x为0.1~0.25,y为0.1~0.25。上述富锂碳酸盐前驱体为小粒径实心球形结构,并且具有粒度可控且粒度分布均匀、球形度高、振实密度高、流动性好、电化学性能和能量密度优异的优势,其在有氨体系和无氨体系均可稳定生产,特别是在无氨体系下,没有含氨废水产生,对环境友好,同时采用上述前驱体制备得到的正极材料具有较高的压实密度、比容量以及优异的循环性能和电化学放电性能。上述前驱体粒径为3~6μm,振实密度不低于1.47g/cm 3
在一个实施例中,本公开提供了一种制备上述富锂碳酸盐前驱体的方法,如图1所示,包括如下步骤:
S100:将可溶性镍盐、可溶性钴盐和可溶性锰盐混合,得到混合金属盐,可溶性镍盐选自氯化镍、硝酸镍和硫酸镍中的至少之一;可溶性钴盐选自氯化钴、硝酸钴和硫酸钴中的至少之一;可溶性锰盐选自氯化锰、硝酸锰和硫酸锰中的至少之一。混合金属盐中,可溶性镍盐、可溶性钴盐和可溶性锰盐的浓度分别独立地为80~130g/L,可溶性镍盐、可溶性钴盐和可溶性锰盐中镍元素、钴元素和锰元素摩尔比为(0.1~0.25):(0.1~0.25):(0.5~0.8);
S200:在保护剂和导电剂存在下,将步骤S100制备得到的混合金属盐的一部分与沉淀剂混合,其中混合金属盐与沉淀剂快速反应,然后在预定温度为30~60℃、预定搅拌转速为800~1000rpm下搅拌1~5h,最后降至常温密封静置12~24h,得到小颗粒实心预造粒子。保护剂选自抗环血酸和亚硫酸钠中的至少之一;导电剂为选自葡萄糖和果糖中的至少之一;沉淀剂选自碳酸钠、碳酸氢钠、碳酸铵和碳酸氢铵中的至少之一,或碳酸钠、碳酸氢钠、碳酸铵和碳酸氢铵中的至少之一和氨水;碳酸氢铵的浓度为50~200g/L,碳酸钠的浓度为50~200g/L,碳酸铵的浓度为150~200g/,碳酸氢铵的浓度为50~200g/L,氨水的浓度为50~200g/L。混合金属盐与沉淀剂的摩尔比为1:(2.0~3.5),基于1L混合金属盐和沉淀剂的总量,保护剂的用量为1~20g,导电剂的用量为10~100g,得到的预造粒子粒径为1~3μm;
S300:经上述步骤S200得到的预造粒子作为底液加入反应釜中,在搅拌条件下,将步骤S100得到的混合盐的另一部分和沉淀剂加入反应釜中混合进行共沉淀反应,即以小颗粒的实心预造粒子为晶种进行共沉淀反应,得到反应后液。沉淀剂与步骤S200采用的沉淀剂相同。预造粒子、混合金属盐与沉淀剂的质量比为1:(2~8):(6~20),搅拌过程的转速为400~1000rpm,搅拌温度为50~70℃,搅拌时间为5~60h,反应后液的pH为8~9.5,反应后液的固含量为100~300g/L;
S400:在搅拌条件下,将步骤S300得到的反应后料与洗涤剂混合,得到一次洗涤后料,该搅拌过程的时间为0.1~5h,洗涤剂为pH为9.0的氢氧化钠溶液;
S500:将步骤S400得到的一次洗涤后料进行一次脱水,得到一次脱水后料,一次脱水后料中含水率不高于10wt%;
S600:将步骤S500得到的一次脱水后料进行二次洗涤后脱水,得到二次脱水后料,得到的二次脱水后料中含水率不高于10wt%;
S700:将步骤S600得到的二脱水后料干燥后筛分除铁,得到富锂碳酸盐前驱体。
在一个实施例中,本公开提供了一种制备正极材料的方法,如图2所示,包括如下步骤:
Sa:将上述实施例中制备得到的前驱体材料与锂盐混合进行一次烧结,使得富锂碳酸盐前驱体分解,即一次烧结料。锂盐为选自氢氧化锂和碳酸锂中的至少之一,前驱体材料与锂盐的摩尔比为1:(1.02~1.08),一次烧结的温度为400~600℃,时间为4~6h;
Sb:将步骤Sa得到的一次烧结料破碎后进行二次烧结,从而使得锂盐迁移进入前驱体内部,得到化学式为Li(Li 0.2Ni aCo bMn (0.8-a-b))O 2的正极材料,其中a为0.08~0.18,b为0.08~0.18。二次烧结温度为700~950℃,时间为8~25h。
在一个实施例中,本公开提供了一种正极材料,采用上述制备上述富锂碳酸盐前驱体的方法制备得到。
在一个实施例中,本公开提供了一种锂电池,具有上述正极材料。
在一个实施例中,本公开提供了一种汽车,具有上述锂电池。
实施例1
制备富锂碳酸盐前驱体的方法如下:
(1)将硫酸镍、硫酸钴、硫酸锰按照镍钴锰元素摩尔比为0.18:0.1:0.72进行混合,得到混合金属盐,并且混合金属盐中硫酸镍、硫酸钴和硫酸锰的浓度均为100g/L;
(2)在保护剂抗坏血酸和导电剂葡萄糖存在下,将混合金属盐的一部分与浓度为100g/L的碳酸氢氨溶液和浓度为150g/L的氨水进行混合快速反应(10秒内完成反应,其中,混合金属盐与沉淀剂的摩尔比为1:2.0,同时基于1L混合金属盐和沉淀剂的总量,保护剂抗坏血酸的用量为15g,导电剂葡萄糖的用量为100g),然后在40℃、搅拌转速为1000rpm下搅拌1h,然后降至常温密封静置24h,得到粒径为3μm的实心预造粒子;
(3)将上述得到的预造粒子作为底液加入到反应釜中,然后将步骤(1) 得到的混合金属盐与浓度为100g/L的碳酸氢氨溶液和浓度为150g/L的氨水在反应釜中混合进行共沉淀反应,得到反应后液,其中,预造粒子、混合金属盐与沉淀剂的质量比为1:8:16,搅拌转速为400rpm,温度为65℃,时间为50h,并且控制反应后液的pH为8.5,反应后液固含量为120g/L;
(4)将上述得到的反应后料与pH为9.0的氢氧化钠溶液混合搅拌1h,得到一次洗涤后料;
(5)采用离心机对对上述得到的反应后料进行离心脱水,得到含水率不高于10wt%的一次脱水后料;
(6)采用纯水对上述得到的一次脱水后料进行洗涤和脱水,得到二次脱水后料,得到的二次脱水后料中含水率不高于10wt%;
(7)将上述得到的二次脱水后料干燥后筛分除铁,得到粒径6μm的富锂碳酸盐前驱体,其化学式为Ni 0.18Co 0.1Mn 0.72CO 3,其振实密度为1.5g/cm 3
制备正极材料的方法如下:
Sa:将上述步骤(8)得到的富锂碳酸盐前驱体与氢氧化锂按照摩尔比为1:1.06混合在空气气氛下于500℃进行一次烧结4h,得到一次烧结料;
Sb:将上述得到的一次烧结料破碎后在700℃进行二次烧结25h,得到化学式为Li(Li 0.2Ni 0.14Co 0.08Mn 0.58)O 2正极材料,压实密度为2.9g/cm 3
图3是本公开一实施例得到的前驱体材料的扫描电镜图,可以看出该前驱体材料具有球形结构、粒度分布均匀且表面光滑,并且使用激光粒度仪检测前驱体粒径分布进一步发现其粒度分布均匀,同时检测得到的前驱体钠含量小于300ppm,硫含量小于1000ppm,同时该正极材料与SP(炭黑导电剂)、PVDF(聚偏氟乙烯)混合,用NMP(N-甲基吡咯烷酮)为溶剂制浆搅拌数h制得锂离子半电池,采用蓝电测试仪在4.8V下进行充放电测试,得到产品0.1C放电克容量为300~306mAh,1.0C放电容量为230~240mAh。
实施例2
制备富锂碳酸盐前驱体的方法如下:
(1)将硝酸镍、硝酸钴、硝酸锰按照镍钴锰元素摩尔比为0.18:0.18:0.64 进行混合,得到混合金属盐,并且混合金属盐中硝酸镍、硝酸钴和硝酸锰的浓度均为110g/L;
(2)在保护剂亚硫酸钠和导电剂果糖存在下,将混合金属盐的一部分与浓度为200g/L的碳酸钠溶液和浓度为120g/L的氨水进行混合快速反应(10秒内完成反应,其中,混合金属盐与沉淀剂的摩尔比为1:2.5,同时基于1L混合金属盐和沉淀剂的总量,保护剂亚硫酸钠的用量为8g,导电剂果糖的用量为50g),然后在50℃、搅拌转速为800rpm下搅拌2h,然后降至常温密封静置12h,得到粒径为3.0μm的实心预造粒子;
(3)将上述得到的预造粒子作为底液加入到反应釜中,然后将步骤(1)得到的混合金属盐与浓度为200g/L的碳酸钠溶液和浓度为120g/L的氨水在反应釜中混合进行共沉淀反应,得到反应后液,其中,预造粒子、混合金属盐与沉淀剂的质量比为1:4.5:11.2,搅拌转速为600rpm,温度为55℃,时间为40h,并且控制反应后液的pH为9.5,反应后液固含量为180g/L;
(4)将上述得到的反应后料与pH为9.0的氢氧化钠溶液混合搅拌1h,得到一次洗涤后料;
(5)采用离心机对对上述得到的反应后料进行离心脱水,得到含水率不高于10wt%的一次脱水后料;
(6)采用纯水对上述得到的一次脱水后料进行洗涤和脱水,得到二次脱水后料,得到的二次脱水后料中含水率不高于10wt%;
(7)将上述得到的二次脱水后料干燥后筛分除铁,得到粒径5μm的富锂碳酸盐前驱体,其化学式为Ni 0.2Co 0.2Mn 0.6CO 3,其振实密度为1.71g/cm 3
制备正极材料的方法如下:
Sa:将上述步骤(8)得到的富锂碳酸盐前驱体与碳酸锂按照摩尔比为1:1.02混合在空气气氛下于400℃进行一次烧结6h,得到一次烧结料;
Sb:将上述得到的一次烧结料破碎后在800℃进行二次烧结20h,得到化学式为Li(Li 0.2Ni 0.14Co 0.14Mn 0.52)O 2正极材料,压实密度为3.1g/cm 3
本公开一实施例制备得到的前驱体材料具有球形结构、粒度分布均匀且表 面光滑,并且使用激光粒度仪检测前驱体粒径分布进一步发现其粒度分布均匀,同时检测得到的前驱体钠含量小于300ppm,硫含量小于1000ppm,同时该正极材料与SP(炭黑导电剂)、PVDF(聚偏氟乙烯)混合,用NMP(N-甲基吡咯烷酮)为溶剂制浆搅拌数h制得锂离子半电池,采用蓝电测试仪在4.8V下进行充放电测试,得到产品0.1C放电克容量为300~305mAh,1.0C放电容量为230~235mAh。
实施例3
制备富锂碳酸盐前驱体的方法如下:
(1)将氯化镍、氯化钴、氯化锰按照镍钴锰元素摩尔比为0.15:0.15:0.7进行混合,得到混合金属盐,并且混合金属盐中氯化镍、氯化钴和氯化锰的浓度均为120g/L;
(2)在保护剂抗坏血酸和导电剂果糖存在下,将混合金属盐的一部分与浓度为180g/L的碳酸氨溶液和浓度为100g/L的氨水进行混合快速反应(10秒内完成反应,其中,混合金属盐与沉淀剂的摩尔比为1:3,同时基于1L混合金属盐和沉淀剂的总量,保护剂抗坏血酸的用量为10g,导电剂果糖的用量为20g),然后在60℃、搅拌转速为800rpm下搅拌5h,然后降至常温密封静置24h,得到粒径为3μm的实心预造粒子;
(3)将上述得到的预造粒子作为底液加入到反应釜中,然后将步骤(1)得到的混合金属盐与浓度为180g/L的碳酸氨溶液和浓度为100g/L的氨水在反应釜中混合进行共沉淀反应,得到反应后液,其中,预造粒子、混合金属盐与沉淀剂的质量比为1:2.4:7.2,搅拌转速为900rpm,温度为50℃,时间为30h,并且控制反应后液的pH为8,反应后液固含量为140g/L;
(4)将上述得到的反应后料与pH为9.0的氢氧化钠溶液混合搅拌1h,得到一次洗涤后料;
(5)采用离心机对对上述得到的反应后料进行离心脱水,得到含水率不高于10wt%的一次脱水后料;
(6)采用纯水对上述得到的一次脱水后料进行洗涤和脱水,得到二次脱水后料,得到的二次脱水后料中含水率不高于10wt%;
(7)将上述得到的二次脱水后料干燥后筛分除铁,得到粒径4μm的富锂碳 酸盐前驱体,其化学式为Ni 0.15Co 0.15Mn 0.7CO 3,其振实密度为1.6g/cm 3
制备正极材料的方法如下:
Sa:将上述步骤(8)得到的富锂碳酸盐前驱体与氢氧化锂按照摩尔比为1:1.05混合在空气气氛下于450℃进行一次烧结5h,得到一次烧结料;
Sb:将上述得到的一次烧结料破碎后在900℃进行二次烧结15h,得到化学式为Li(Li 0.2Ni 0.12Co 0.12Mn 0.56)O 2正极材料,压实密度为3.0g/cm 3
本公开一实施例制备得到的前驱体材料具有球形结构、粒度分布均匀且表面光滑,并且使用激光粒度仪检测前驱体粒径分布进一步发现其粒度分布均匀,同时检测得到的前驱体钠含量小于300ppm,硫含量小于1000ppm,同时该正极材料与SP(炭黑导电剂)、PVDF(聚偏氟乙烯)混合,用NMP(N-甲基吡咯烷酮)为溶剂制浆搅拌数h制得锂离子半电池,采用蓝电测试仪在4.8V下进行充放电测试,得到产品0.1C放电克容量为310~315mAh,1.0C放电容量为236~242mAh。
实施例4
制备富锂碳酸盐前驱体的方法如下:
(1)将硫酸镍、硫酸钴、硫酸锰按照镍钴锰元素摩尔比为0.1:0.18:0.72进行混合,得到混合金属盐,并且混合金属盐中硫酸镍、硫酸钴和硫酸锰的浓度均为200g/L;
(2)在保护剂亚硫酸钠和导电剂葡萄糖存在下,将混合金属盐的一部分与浓度为90g/L的碳酸氢钠溶液和浓度为170g/L的碳酸钠进行混合快速反应(10秒内完成反应,其中,混合金属盐与沉淀剂的摩尔比为1:2,同时基于1L混合金属盐和沉淀剂的总量,保护剂亚硫酸钠的用量为9g,导电剂葡萄糖的用量为60g),然后在55℃、搅拌转速为850rpm下搅拌3h,然后降至常温密封静置18h,得到粒径为2.8μm的实心预造粒子;
(3)将上述得到的预造粒子作为底液加入到反应釜中,然后将步骤(1)得到的混合金属盐与浓度为90g/L的碳酸氢钠溶液和浓度为170g/L的碳酸钠在反应釜中混合进行共沉淀反应,得到反应后液,其中,预造粒子、混合金属盐与沉淀剂的质量比为1:6:12,搅拌转速为1000rpm,温度为60℃,时间为15h,并且控制反应后液的pH为9.5,反应后液固含量为220g/L;
(4)将上述得到的反应后料与pH为9.0的氢氧化钠溶液混合搅拌1h,得到一次洗涤后料;
(5)采用离心机对对上述得到的反应后料进行离心脱水,得到含水率不高于10wt%的一次脱水后料;
(6)采用纯水对上述得到的一次脱水后料进行洗涤和脱水,得到二次脱水后料,得到的二次脱水后料中含水率不高于10wt%;
(7)将上述得到的二次脱水后料干燥后筛分除铁,得到粒径5μm的富锂碳酸盐前驱体,其化学式为Ni 0.1Co 0.18Mn 0.72CO 3,其振实密度为1.64g/cm 3
制备正极材料的方法如下:
Sa:将上述步骤(8)得到的富锂碳酸盐前驱体与碳酸锂按照摩尔比为1:1.03混合在空气气氛下于600℃进行一次烧结5h,得到一次烧结料;
Sb:将上述得到的一次烧结料破碎后在950℃进行二次烧结8h,得到化学式为Li(Li 0.2Ni 0.08Co 0.14Mn 0.58)O 2正极材料,压实密度为2.9g/cm 3
本公开一实施例制备得到的前驱体材料具有球形结构、粒度分布均匀且表面光滑,并且使用激光粒度仪检测前驱体粒径分布进一步发现其粒度分布均匀,同时检测得到的前驱体钠含量小于300ppm,硫含量小于1000ppm,同时该正极材料与SP(炭黑导电剂)、PVDF(聚偏氟乙烯)混合,用NMP(N-甲基吡咯烷酮)为溶剂制浆搅拌数h制得锂离子半电池,采用蓝电测试仪在4.8V下进行充放电测试,得到产品0.1C放电克容量为304~310mAh,1.0C放电容量为242~248mAh。
实施例5
制备富锂碳酸盐前驱体的方法如下:
(1)将硫酸镍、硫酸钴、硫酸锰按照镍钴锰元素摩尔比为0.1:0.1:0.8进行混合,得到混合金属盐,并且混合金属盐中硫酸镍、硫酸钴和硫酸锰的浓度均为80g/L;
(2)在保护剂亚硫酸钠和导电剂葡萄糖存在下,将混合金属盐的一部分与浓度为50g/L的碳酸氢钠溶液和浓度为200g/L的碳酸钠进行混合快速反应(10秒内完成反应,其中,混合金属盐与沉淀剂的摩尔比为1:2,同时基于1L混合金属盐和沉淀剂的总量,保护剂亚硫酸钠的用量为1g,导电剂葡萄糖的用量为 10g),然后在30℃、搅拌转速为1000rpm下搅拌1h,然后降至常温密封静置12h,得到粒径为1μm的实心预造粒子;
(3)将上述得到的预造粒子作为底液加入到反应釜中,然后将步骤(1)得到的混合金属盐与浓度为50g/L的碳酸氢钠溶液和浓度为200g/L的碳酸钠在反应釜中混合进行共沉淀反应,得到反应后液,其中,预造粒子、混合金属盐与沉淀剂的质量比为1:2:6,搅拌转速为400rpm,温度为70℃,时间为5h,并且控制反应后液的pH为8,反应后液固含量为100g/L;
(4)将上述得到的反应后料与pH为9.0的氢氧化钠溶液混合搅拌0.1h,得到一次洗涤后料;
(5)采用离心机对对上述得到的反应后料进行离心脱水,得到含水率不高于10wt%的一次脱水后料;
(6)采用纯水对上述得到的一次脱水后料进行洗涤和脱水,得到二次脱水后料,得到的二次脱水后料中含水率不高于10wt%;
(7)将上述得到的二次脱水后料干燥后筛分除铁,得到粒径5μm的富锂碳酸盐前驱体,其化学式为Ni 0.1Co 0.1Mn 0.8CO 3,其振实密度为1.72g/cm 3
制备正极材料的方法如下:
Sa:将上述步骤(8)得到的富锂碳酸盐前驱体与碳酸锂按照摩尔比为1:1.02混合在空气气氛下于400℃进行一次烧结6h,得到一次烧结料;
Sb:将上述得到的一次烧结料破碎后在700℃进行二次烧结25h,得到化学式为Li(Li 0.2Ni 0.1Co 0.1Mn 0.8)O 2正极材料,压实密度为3.0g/cm 3
本公开一实施例制备得到的前驱体材料具有球形结构、粒度分布均匀且表面光滑,并且使用激光粒度仪检测前驱体粒径分布进一步发现其粒度分布均匀,同时检测得到的前驱体钠含量小于300ppm,硫含量小于1000ppm,同时该正极材料与SP(炭黑导电剂)、PVDF(聚偏氟乙烯)混合,用NMP(N-甲基吡咯烷酮)为溶剂制浆搅拌数h制得锂离子半电池,采用蓝电测试仪在4.8V下进行充放电测试,得到产品0.1C放电克容量为306~312mAh,1.0C放电容量为236~240mAh。
实施例6
制备富锂碳酸盐前驱体的方法如下:
(1)将硫酸镍、硫酸钴、硫酸锰按照镍钴锰元素摩尔比为0.25:0.25:0.5进行混合,得到混合金属盐,并且混合金属盐中硫酸镍、硫酸钴和硫酸锰的浓度均为130g/L;
(2)在保护剂亚硫酸钠和导电剂葡萄糖存在下,将混合金属盐的一部分与浓度为50g/L的碳酸氢铵溶液和浓度为150g/L的碳酸铵溶液进行混合快速反应(10秒内完成反应,其中,混合金属盐与沉淀剂的摩尔比为1:3.5,同时基于1L混合金属盐和沉淀剂的总量,保护剂亚硫酸钠的用量为20g,导电剂葡萄糖的用量为100g),然后在60℃、搅拌转速为800rpm下搅拌5h,然后降至常温密封静置24h,得到粒径为3μm的实心预造粒子;
(3)将上述得到的预造粒子作为底液加入到反应釜中,然后将步骤(1)得到的混合金属盐与浓度为50g/L的碳酸氢铵溶液和浓度为150g/L的碳酸铵溶液在反应釜中混合进行共沉淀反应,得到反应后液,其中,预造粒子、混合金属盐与沉淀剂的质量比为1:8:20,搅拌转速为1000rpm,温度为50℃,时间为60h,并且控制反应后液的pH为9.5,反应后液固含量为300g/L;
(4)将上述得到的反应后料与pH为9.0的氢氧化钠溶液混合搅拌5h,得到一次洗涤后料;
(5)采用离心机对对上述得到的反应后料进行离心脱水,得到含水率不高于10wt%的一次脱水后料;
(6)采用纯水对上述得到的一次脱水后料进行洗涤和脱水,得到二次脱水后料,得到的二次脱水后料中含水率不高于10wt%;
(7)将上述得到的二次脱水后料干燥后筛分除铁,得到粒径6μm的富锂碳酸盐前驱体,其化学式为Ni 0.25Co 0.25Mn 0.5CO 3,其振实密度为1.47g/cm 3
制备正极材料的方法如下:
Sa:将上述步骤(8)得到的富锂碳酸盐前驱体与碳酸锂按照摩尔比为1:1.08混合在空气气氛下于600℃进行一次烧结4h,得到一次烧结料;
Sb:将上述得到的一次烧结料破碎后在950℃进行二次烧结8h,得到化学式为Li(Li 0.2Ni 0.25Co 0.25Mn 0.5)O 2正极材料,压实密度为2.6g/cm 3
本公开一实施例制备得到的前驱体材料具有球形结构、粒度分布均匀且表 面光滑,并且使用激光粒度仪检测前驱体粒径分布进一步发现其粒度分布均匀,同时检测得到的前驱体钠含量小于300ppm,硫含量小于1000ppm,同时该正极材料与SP(炭黑导电剂)、PVDF(聚偏氟乙烯)混合,用NMP(N-甲基吡咯烷酮)为溶剂制浆搅拌数h制得锂离子半电池,采用蓝电测试仪在4.8V下进行充放电测试,得到产品0.1C放电克容量为308~315mAh,1.0C放电容量为235~245mAh。

Claims (32)

  1. 一种富锂碳酸盐前驱体,所述富锂碳酸盐前驱体为实心球形结构,并且所述富锂碳酸盐前驱体的化学式为Ni xCo yMn (1-x-y)CO 3,x为0.1~0.25,y为0.1~0.25。
  2. 根据权利要求1所述的前驱体,其中,所述前驱体粒径为3~6μm,振实密度不低于1.47g/cm 3
  3. 一种制备权利要求1或2所述前驱体的方法,包括:
    (1)将可溶性镍盐、可溶性钴盐和可溶性锰盐进行混合,以便得到混合金属盐;
    (2)在保护剂和导电剂存在下,将所述混合金属盐的一部分与沉淀剂混合,在预定温度下按照预定搅拌转速搅拌,然后降至常温密封静置,以便得到预造粒子;
    (3)伴随着搅拌,将所述预造粒子、所述混合金属盐的另一部分与所述沉淀剂混合进行共沉淀反应,以便得到反应后液;
    (4)伴随着搅拌,将所述反应后料与洗涤剂混合,以便得到一次洗涤后料;
    (5)将所述一次洗涤后料进行一次脱水,以便得到一次脱水后料;
    (6)伴随着搅拌,将所述一次脱水后料进行二次洗涤后脱水,以便得到二次脱水后料;
    (7)将所述二次脱水后料干燥后筛分除铁,以便得到富锂碳酸盐前驱体。
  4. 根据权利要求3所述的方法,其中,在步骤(1)中,所述可溶性镍盐、所述可溶性钴盐和所述可溶性锰盐按照镍元素、钴元素和锰元素摩尔比为(0.1~0.25):(0.1~0.25):(0.5~0.8)。
  5. 根据权利要求3或4所述的方法,其中,在步骤(1)中,所述混合金属盐中,所述可溶性镍盐、所述可溶性钴盐和所述可溶性锰盐的浓度分别独立地为80~130g/L。
  6. 根据权利要求3-5任一项所述的方法,其中,在步骤(1)中,所述可溶性镍盐为选自氯化镍、硝酸镍和硫酸镍中的至少之一。
  7. 根据权利要求3-6任一项所述的方法,其中,在步骤(1)中,所述可溶性钴盐为选自氯化钴、硝酸钴和硫酸钴中的至少之一。
  8. 根据权利要求3-7任一项所述的方法,其中,在步骤(1)中,所述可溶性锰盐为选自氯化锰、硝酸锰和硫酸锰中的至少之一。
  9. 根据权利要求3-8任一项所述的方法,其中,在步骤(2)中,所述保护剂为选自抗坏血酸和亚硫酸钠中的至少之一。
  10. 根据权利要求3-9任一项所述的方法,其中,在步骤(2)中,所述导电剂为选自葡萄糖和果糖中的至少之一。
  11. 根据权利要求3-10任一项所述的方法,其中,在步骤(2)中,所述混合金属盐与所述沉淀剂的摩尔比为1:(2.0~3.5)。
  12. 根据权利要求3-11任一项所述的方法,其中,在步骤(2)中,基于1L所述混合金属盐和所述沉淀剂的总量,所述保护剂的用量为1~20g,所述导电剂的用量为10~100g。
  13. 根据权利要求3-12任一项所述的方法,其中,在步骤(2)中,所述沉淀剂为选自碳酸钠、碳酸氢钠、碳酸铵和碳酸氢铵中的至少之一。
  14. 根据权利要求13所述的方法,所述的沉淀剂还包括氨水。
  15. 根据权利要求13或14所述的方法,其中,所述碳酸钠的浓度为50~200g/L。
  16. 根据权利要求13-15任一项所述的方法,其中,所述碳酸氢钠的浓度为50~100g/L。
  17. 根据权利要求13-16任一项所述的方法,其中,所述碳酸铵的浓度为150~200g/L。
  18. 根据权利要求13-17任一项所述的方法,其中,所述碳酸氢铵的浓度为50~200g/L。
  19. 根据权利要求14所述的方法,其中,所述氨水的浓度为50~200g/L。
  20. 根据权利要求3-19任一项所述的方法,其中,在步骤(2)中,所述预定温度为30~60℃,所述预定搅拌转速为800~1000rpm,所述预定搅拌时间为1~5h。
  21. 根据权利要求3-20任一项所述的方法,其中,在步骤(2)中,所述静置时间为12~24h。
  22. 根据权利要求3-21任一项所述的方法,其中,在步骤(2)中,所述预造粒子粒径为1~3μm。
  23. 根据权利要求3-22任一项所述的方法,其中,在步骤(3)中,所述预造粒子、所述混合金属盐与所述沉淀剂的质量比为1:(2~8):(6~20)。
  24. 根据权利要求3-23任一项所述的方法,其中,在步骤(3)中,所述搅拌转速为400~1000rpm,温度为50~70℃,时间为5~60h,所述反应后液的pH为8~9.5,所述反应后液的固含量为100~300g/L。
  25. 一种制备正极材料的方法,包括:
    (a)将前驱体材料与锂盐混合进行一次烧结,以便得到一次烧结料;
    (b)将所述一次烧结料破碎后进行二次烧结,以便得到正极材料,
    其中,在步骤(a)中,所述前驱体材料为权利要求1或2中所述的富锂碳酸盐前驱体或采用权利要求3-25中任一项所述的方法得到的富锂碳酸盐前驱体。
  26. 根据权利要求25所述的方法,其中,在步骤(a)中,所述前驱体材料与所述锂盐的摩尔比为1:(1.02~1.08)。
  27. 根据权利要求25或26所述的方法,其中,在步骤(a)中,所述一次烧结的温度为400~600℃,时间为4~6h。
  28. 根据权利要求25-27任一项所述的方法,其中,在步骤(b)中,所述二次烧结的温度为700~950℃,时间为8~25h。
  29. 一种正极材料,所述正极材料采用权利要求25-28任一项所述的方法制备得到。
  30. 根据权利要求29所述的正极材料,其中,所述正极材料的化学式为Li(Li 0.2Ni aCo bMn (0.8-a-b))O 2,其中a为0.08~0.18,b为0.08~0.18。
  31. 一种锂电池,所述锂电池具有权利要求29或30所述的正极材料。
  32. 一种汽车,所述汽车具有权利要求31所述的锂电池。
PCT/CN2020/123614 2019-11-29 2020-10-26 富锂碳酸盐前驱体及其制备方法和应用 WO2021103885A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20893215.2A EP4024522A4 (en) 2019-11-29 2020-10-26 LITHIUM-RICH CARBONATE PRECURSOR, ASSOCIATED PREPARATION PROCESS, AND ITS APPLICATION
US17/780,957 US20230002243A1 (en) 2019-11-29 2020-10-26 Lithium-rich carbonate precursor, preparation method therefor, and application thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911203426.6 2019-11-29
CN201911203426.6A CN111430701B (zh) 2019-11-29 2019-11-29 富锂碳酸盐前驱体及其制备方法和应用

Publications (1)

Publication Number Publication Date
WO2021103885A1 true WO2021103885A1 (zh) 2021-06-03

Family

ID=71545877

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/123614 WO2021103885A1 (zh) 2019-11-29 2020-10-26 富锂碳酸盐前驱体及其制备方法和应用

Country Status (4)

Country Link
US (1) US20230002243A1 (zh)
EP (1) EP4024522A4 (zh)
CN (1) CN111430701B (zh)
WO (1) WO2021103885A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111430701B (zh) * 2019-11-29 2022-10-25 蜂巢能源科技有限公司 富锂碳酸盐前驱体及其制备方法和应用
CN114031126B (zh) * 2021-11-11 2022-10-25 中物院成都科学技术发展中心 一种富锰碳酸盐前驱体及其制备方法
CN116789193A (zh) * 2023-08-28 2023-09-22 河南科隆新能源股份有限公司 一种实心碳酸盐前驱体及其制备方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016069209A (ja) * 2014-09-29 2016-05-09 住友金属鉱山株式会社 ニッケルコバルトマンガン化合物及びその製造方法
CN106340638A (zh) * 2016-10-10 2017-01-18 哈尔滨工业大学 一种双层中空结构的高倍率富锂锰基正极材料及其制备方法
CN107968198A (zh) * 2017-11-24 2018-04-27 中国科学院过程工程研究所 一种核壳结构的镍钴锰酸锂前驱体、其制备方法及在锂离子电池的用途
CN108432002A (zh) * 2016-01-06 2018-08-21 住友金属矿山株式会社 非水类电解质二次电池用正极活性物质前驱体、非水类电解质二次电池用正极活性物质、非水类电解质二次电池用正极活性物质前驱体的制造方法、及非水类电解质二次电池用正极活性物质的制造方法
CN108463911A (zh) * 2016-01-06 2018-08-28 住友金属矿山株式会社 非水类电解质二次电池用正极活性物质前驱体、非水类电解质二次电池用正极活性物质、非水类电解质二次电池用正极活性物质前驱体的制造方法、及非水类电解质二次电池用正极活性物质的制造方法
CN109279661A (zh) * 2018-09-13 2019-01-29 湖南鸿捷新材料有限公司 一种降低ncm三元前驱体硫含量的制备方法
JP2019160523A (ja) * 2018-03-12 2019-09-19 Jx金属株式会社 リチウムイオン電池用酸化物系正極活物質、リチウムイオン電池用酸化物系正極活物質の前駆体の製造方法、リチウムイオン電池用酸化物系正極活物質の製造方法、リチウムイオン電池用正極及びリチウムイオン電池
CN111422918A (zh) * 2019-11-29 2020-07-17 蜂巢能源科技有限公司 高镍碳酸盐前驱体及其制备方法和应用
CN111430701A (zh) * 2019-11-29 2020-07-17 蜂巢能源科技有限公司 富锂碳酸盐前驱体及其制备方法和应用

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101982421B (zh) * 2010-10-21 2013-06-12 江苏东新能源科技有限公司 纳米氧化钴的制备方法
CN104409716A (zh) * 2014-10-30 2015-03-11 中国科学院过程工程研究所 一种具有浓度梯度的镍锂离子电池正极材料及其制备方法
CN106328922A (zh) * 2015-06-29 2017-01-11 河南科隆新能源有限公司 一种改性ncm前驱体材料及其制备方法
CN105489842B (zh) * 2015-12-18 2018-03-23 浙江天能能源科技股份有限公司 一种富锂锰基正极材料及其制备方法
CN108054371B (zh) * 2017-12-21 2020-08-07 哈尔滨工业大学 一种高振实密度、高倍率与长寿命富锂锰基正极材料及其制备方法
CN109686946A (zh) * 2018-12-25 2019-04-26 宁波富理电池材料科技有限公司 一种基于碳酸盐前驱体制备多元正极材料的方法
CN110364714B (zh) * 2019-07-17 2021-08-20 中国恩菲工程技术有限公司 制备镍钴锰三元材料前驱体的方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016069209A (ja) * 2014-09-29 2016-05-09 住友金属鉱山株式会社 ニッケルコバルトマンガン化合物及びその製造方法
CN108432002A (zh) * 2016-01-06 2018-08-21 住友金属矿山株式会社 非水类电解质二次电池用正极活性物质前驱体、非水类电解质二次电池用正极活性物质、非水类电解质二次电池用正极活性物质前驱体的制造方法、及非水类电解质二次电池用正极活性物质的制造方法
CN108463911A (zh) * 2016-01-06 2018-08-28 住友金属矿山株式会社 非水类电解质二次电池用正极活性物质前驱体、非水类电解质二次电池用正极活性物质、非水类电解质二次电池用正极活性物质前驱体的制造方法、及非水类电解质二次电池用正极活性物质的制造方法
CN106340638A (zh) * 2016-10-10 2017-01-18 哈尔滨工业大学 一种双层中空结构的高倍率富锂锰基正极材料及其制备方法
CN107968198A (zh) * 2017-11-24 2018-04-27 中国科学院过程工程研究所 一种核壳结构的镍钴锰酸锂前驱体、其制备方法及在锂离子电池的用途
JP2019160523A (ja) * 2018-03-12 2019-09-19 Jx金属株式会社 リチウムイオン電池用酸化物系正極活物質、リチウムイオン電池用酸化物系正極活物質の前駆体の製造方法、リチウムイオン電池用酸化物系正極活物質の製造方法、リチウムイオン電池用正極及びリチウムイオン電池
CN109279661A (zh) * 2018-09-13 2019-01-29 湖南鸿捷新材料有限公司 一种降低ncm三元前驱体硫含量的制备方法
CN111422918A (zh) * 2019-11-29 2020-07-17 蜂巢能源科技有限公司 高镍碳酸盐前驱体及其制备方法和应用
CN111430701A (zh) * 2019-11-29 2020-07-17 蜂巢能源科技有限公司 富锂碳酸盐前驱体及其制备方法和应用

Also Published As

Publication number Publication date
EP4024522A1 (en) 2022-07-06
CN111430701B (zh) 2022-10-25
CN111430701A (zh) 2020-07-17
US20230002243A1 (en) 2023-01-05
EP4024522A4 (en) 2023-11-01

Similar Documents

Publication Publication Date Title
WO2021103885A1 (zh) 富锂碳酸盐前驱体及其制备方法和应用
WO2021023313A1 (zh) 一种双包覆层改性锂离子电池正极材料及其制备方法
WO2023092989A1 (zh) 磷酸亚铁锰及其制备方法和应用
JP7389247B2 (ja) リチウムイオン電池用複合正極材料、その調製方法および使用
JP2003017057A (ja) リチウム二次電池負極活物質用リチウムバナジウム複合酸化物、その製造方法およびそれを用いたリチウム二次電池
CN110931768A (zh) 一种高镍类单晶锂离子电池三元正极材料及制备方法
CN108557905A (zh) 一种富锂锰基材料前驱体及其制备方法、富锂锰基正极材料及其制备方法、锂电池
JP3702353B2 (ja) リチウム電池用正極活物質の製造方法およびリチウム電池
CN107408690A (zh) 非水系电解质二次电池用正极活性物质及其制造方法
WO2015039490A1 (zh) 富锂正极材料及其制备方法
CN111435745B (zh) 二元富锂碳酸盐前驱体及其制备方法和应用
WO2022041989A1 (zh) 正极材料及其制备方法和应用
WO2023207246A1 (zh) 一种高振实密度三元前驱体及其制备方法
WO2022267423A1 (zh) 纳米级磷酸铁及其制备方法和应用
WO2022027981A1 (zh) 一种环境友好型前驱体和复合氧化物粉体及其制备方法和应用
WO2024045566A1 (zh) 一种掺杂型磷酸铁锂及其制备方法和应用
CN111434617B (zh) 铝包覆前驱体及其制备方法和应用
JP2001328813A (ja) リチウム二次電池正極活物質用リチウムマンガン複合酸化物およびその製造方法
CN114715957B (zh) 铌包覆镍钴锰三元前驱体及制备方法及应用
CN112624207A (zh) 一种全浓度梯度分布的富锂锰基锂正极材料及其制备方法与应用
JPH0824043B2 (ja) 非水電解質二次電池とその正極活物質の製造法
WO2022237110A1 (zh) 氟掺杂锂正极材料及其制备方法和应用
CN114804235A (zh) 一种高电压镍钴锰酸锂正极材料及其制备方法和应用
CN112952056B (zh) 一种富锂锰基复合正极材料及其制备方法和应用
JP4686871B2 (ja) リチウム二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20893215

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020893215

Country of ref document: EP

Effective date: 20220330

NENP Non-entry into the national phase

Ref country code: DE