WO2023207246A1 - 一种高振实密度三元前驱体及其制备方法 - Google Patents

一种高振实密度三元前驱体及其制备方法 Download PDF

Info

Publication number
WO2023207246A1
WO2023207246A1 PCT/CN2023/074950 CN2023074950W WO2023207246A1 WO 2023207246 A1 WO2023207246 A1 WO 2023207246A1 CN 2023074950 W CN2023074950 W CN 2023074950W WO 2023207246 A1 WO2023207246 A1 WO 2023207246A1
Authority
WO
WIPO (PCT)
Prior art keywords
tap density
ternary precursor
high tap
concentration
surfactant
Prior art date
Application number
PCT/CN2023/074950
Other languages
English (en)
French (fr)
Inventor
余海军
谢英豪
李爱霞
张学梅
李长东
Original Assignee
广东邦普循环科技有限公司
湖南邦普循环科技有限公司
湖南邦普汽车循环有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东邦普循环科技有限公司, 湖南邦普循环科技有限公司, 湖南邦普汽车循环有限公司 filed Critical 广东邦普循环科技有限公司
Priority to DE112023000119.7T priority Critical patent/DE112023000119T5/de
Priority to GB2314786.1A priority patent/GB2624519A/en
Publication of WO2023207246A1 publication Critical patent/WO2023207246A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/006Compounds containing, besides nickel, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/18Preparation of finely divided silica neither in sol nor in gel form; After-treatment thereof
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/50Agglomerated particles
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/11Powder tap density
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention belongs to the technical field of lithium battery cathode materials, and particularly relates to a high tap density ternary precursor and a preparation method thereof.
  • the cathode material is the most important part of the battery, which determines the performance and use field of the battery to a certain extent.
  • Ternary cathode materials have gradually become a mainstream product in the market due to their advantages of high energy density.
  • the co-precipitation method is commonly used to first prepare the nickel cobalt manganese hydroxide precursor, and then mix and sinter the precursor with the lithium source to prepare the cathode material.
  • the structure and properties of ternary precursors directly determine the structure and properties of ternary cathode materials.
  • the cathode material can inherit the morphology and structural characteristics of the precursor.
  • the various properties of the cathode material largely depend on the physical and chemical properties of its precursor.
  • the technical content of the precursor preparation accounts for 60% of the technical content of the entire ternary material. Therefore, the structure and preparation process of the precursor have a crucial impact on the performance of the cathode material.
  • the co-precipitation method is the mainstream preparation method of precursor materials. It can accurately control the content of each component and achieve atomic-level mixing of the components. It can be synthesized by adjusting the solution concentration, pH value, reaction time, reaction temperature, stirring speed, etc. Process parameters can prepare materials with different particle sizes, morphologies, densities, and crystallization degrees.
  • the co-precipitation method is currently the most widely used and its industrialization is relatively mature.
  • the existing co-precipitation method is used to prepare precursor materials, due to the rapid formation and rapid agglomeration of primary particles during co-precipitation, the precipitation rate is relatively fast, resulting in The primary particle size is generally small, the crystallinity is low, the primary particles are not dense enough, the overall density of the precursor is low, and the tap density is low, which affects the cycle performance of the cathode material prepared by subsequent sintering.
  • the present invention aims to solve at least one of the technical problems existing in the prior art.
  • the present invention proposes a high tap density ternary precursor and a preparation method thereof, which can prepare coarse and dense precursor particles.
  • the precursor particles have a high tap density, thereby improving the subsequent sintering of the cathode material. cycle performance.
  • a method for preparing a high tap density ternary precursor including the following steps:
  • step (1) Add nickel, cobalt and manganese metal ion mixed salt solution, precipitant, complexing agent and surfactant to the mixed solution in step (1) to react so that the D50 of the material in the mixed solution reaches 1.0-3.0 ⁇ m;
  • step (3) Perform solid-liquid separation on the material in step (2) to obtain solid material. After drying the solid material, crush it to obtain pulverized material;
  • step (4) Add nickel, cobalt and manganese metal ion mixed salt solution, precipitant, complexing agent and surfactant to the mixed solution in step (4) to react so that the D50 of the material in the mixed solution reaches 5.0-15.0 ⁇ m;
  • step (6) Perform solid-liquid separation on the material in step (5) to obtain a solid material. After washing and drying the solid material, a high tap density ternary precursor is obtained.
  • the alkaline bottom liquid is a mixed liquid of sodium hydroxide and ammonia water
  • the pH value of the alkaline bottom liquid is 10.0-11.0
  • the ammonia concentration is 2.0-10.0g/L.
  • the mass concentration of silica in the mixed solution of step (1) is 1-3%, and the particle size of silica is 1-100 nm.
  • the total concentration of nickel-cobalt-manganese metal ions in the nickel-cobalt-manganese metal ion mixed salt solution is 1.0-2.5 mol/L.
  • the precipitating agent is a sodium hydroxide solution with a concentration of 4.0-8.0 mol/L.
  • the complexing agent is ammonia water with a concentration of 6.0-12.0 mol/L.
  • the surfactant is at least one of an alkyl benzene sulfonate aqueous solution, an alkyl naphthalene sulfonate aqueous solution, and an alkane sulfonate aqueous solution, and the concentration of the surfactant is 0.1-2 mol/L.
  • step (1) the silica emulsion is dispersed ultrasonically for 20-30 minutes and then the alkaline bottom solution is added.
  • the particle size D50 of the pulverized material prepared in step (3) is 100-500 nm.
  • the nickel, cobalt and manganese metal ion mixed salt solution, precipitant, complexing agent and surfactant are added in parallel flow, and the pH of the mixed solution is controlled during the addition process. 10.0-11.0, the ammonia concentration is 2.0-10.0g/L, and the flow rate of the surfactant is controlled to be 0.1-1 times that of the mixed salt solution.
  • the reaction temperature in step (2) and step (5) is 45-65°C.
  • a method for preparing a high tap density ternary precursor includes the following steps:
  • the surfactant is alkyl benzene sulfonate, alkyl naphthalene sulfonate, or alkane sulfonate;
  • alkaline bottom liquid is a mixture of sodium hydroxide and ammonia water.
  • the pH value of the alkaline bottom liquid is 10.0-11.0.
  • the ammonia concentration 2.0g/L-10.0g/L;
  • the bottom liquid is a mixture of sodium hydroxide, ammonia water and surfactant.
  • the pH value of the bottom liquid is 10.0- 11.0, ammonia concentration is 2.0-10.0g/L, surfactant concentration is 2mol/L;
  • a high tap density ternary precursor is prepared by the above preparation method.
  • the general chemical formula of the high tap density ternary precursor is Ni 1-ab Co a Mn b (OH) 2 ⁇ xSiO 2 , where 0 ⁇ a ⁇ 1, 0 ⁇ b ⁇ 1, which is composed of particles agglomerated
  • the secondary particles are in the form of massive cubes, the particle size of the primary particles is 0.1-5.0 ⁇ m (1.0-3.0 ⁇ m in the preparation method), and the particle size of the agglomerated secondary particles is 5.0-15.0 ⁇ m.
  • silica emulsion is added to the alkaline bottom liquid and surfactant is used to carry out co-precipitation reaction.
  • the silica particles act as steric hindrance, which can effectively isolate the primary particles generated by the reaction and slow down the agglomeration of the primary particles. , so that the primary particles gradually grow up, and the surfactant plays a growth induction role and promotes the growth of primary particle crystals. Under the coordinated control of low pH, the primary particles can grow slowly and have better crystallinity; at the same time, further , the effective isolation of silica makes the material agglomeration not dense enough, which is conducive to subsequent airflow pulverization.
  • Figure 1 is an SEM image of Example 1 of the present invention.
  • a method for preparing a high tap density ternary precursor including the following steps:
  • the bottom liquid is a mixture of sodium hydroxide and ammonia water.
  • the pH value of the bottom liquid is 10.5 and the ammonia concentration is 6.0g/L;
  • the bottom liquid is a mixture of sodium hydroxide, ammonia water and surfactant.
  • the pH value of the bottom liquid is 10.5.
  • the ammonia concentration is 6.0g/L, and the surfactant concentration is 2mol/L;
  • a high tap density ternary precursor is prepared by the above preparation method. Its general chemical formula is Ni 0.6 Co 0.2 Mn 0.2 (OH) 2 ⁇ xSiO 2 . It is a secondary particle agglomerated by primary particles, and the primary particles are in the form of blocks. Shaped cube, the particle size of the primary particles is 0.1-5.0 ⁇ m, and the particle size of the agglomerated secondary particles is 10.5 ⁇ m.
  • the SEM image of the high tap density ternary precursor is shown in Figure 1.
  • a method for preparing a high tap density ternary precursor including the following steps:
  • the bottom liquid is a mixture of sodium hydroxide and ammonia water.
  • the pH value of the bottom liquid is 10.0 and the ammonia concentration is 2.0g/L;
  • the bottom liquid is a mixture of sodium hydroxide, ammonia water and surfactant.
  • the pH value of the bottom liquid is 10.0.
  • the ammonia concentration is 2.0g/L, and the surfactant concentration is 2mol/L;
  • a high tap density ternary precursor is prepared by the above preparation method. Its general chemical formula is Ni 0.8 Co 0.1 Mn 0.1 (OH) 2 ⁇ xSiO 2 . It is a secondary particle agglomerated by primary particles, and the primary particles are in the form of blocks. Cube-shaped, the particle size of the primary particles is 0.1-5.0 ⁇ m, and the particle size of the agglomerated secondary particles is 5.0 ⁇ m.
  • a method for preparing a high tap density ternary precursor including the following steps:
  • the bottom liquid is a mixture of sodium hydroxide and ammonia water.
  • the pH value of the bottom liquid is 11.0 and the ammonia concentration is 10.0g/L;
  • the bottom liquid is a mixture of sodium hydroxide, ammonia water and surfactant.
  • the pH value of the bottom liquid is 11.0.
  • the ammonia concentration is 10.0g/L, and the surfactant concentration is 2mol/L;
  • a high tap density ternary precursor is prepared by the above preparation method. Its general chemical formula is Ni 0.5 Co 0.2 Mn 0.3 (OH) 2 ⁇ xSiO 2 . It is a secondary particle agglomerated by primary particles, and the primary particles are in the form of blocks. Cube-shaped, the particle size of the primary particles is 0.1-5.0 ⁇ m, and the particle size of the agglomerated secondary particles is 15.0 ⁇ m.
  • a method for preparing a ternary precursor including the following steps:
  • a ternary precursor is prepared by the above preparation method. Its general chemical formula is Ni 0.6 Co 0.2 Mn 0.2 (OH) 2 . It is a secondary particle agglomerated by primary particles, and the particle size of the secondary particles is 10.5 ⁇ m.
  • a method for preparing a ternary precursor including the following steps:
  • the bottom liquid is a mixture of sodium hydroxide and ammonia water.
  • the pH value of the bottom liquid is 10.0 and the ammonia concentration is 2.0g/L;
  • a ternary precursor is prepared by the above preparation method. Its general chemical formula is Ni 0.8 Co 0.1 Mn 0.1 (OH) 2 . It is a secondary particle agglomerated by primary particles, and the particle size of the secondary particles is 5.0 ⁇ m.
  • a method for preparing a ternary precursor including the following steps:
  • the bottom liquid is a mixture of sodium hydroxide and ammonia water.
  • the pH value of the bottom liquid is 11.0 and the ammonia concentration is 10.0g/L;
  • a ternary precursor is prepared by the above preparation method, and its general chemical formula is Ni 0.5 Co 0.2 Mn 0.3 (OH) 2 . It is a secondary particle agglomerated by primary particles, and the particle size of the secondary particles is 15.0 ⁇ m.
  • the tap density of the ternary precursor prepared by the preparation method of the present invention is 1.73g/cm 3 and above, and can reach a maximum of 2.23g/cm 3 .
  • Example 1 and Comparative Example 1 respectively.
  • Example 2 and Comparative Example 2 and Example 3 and Comparative Example 3 that when no silica emulsion is added during the preparation process of the ternary precursor, the tap density of the finally prepared ternary precursor decreases significantly.
  • Example 1 The ternary precursors of Example 1 and Comparative Example 1 were mixed with lithium carbonate respectively according to the total molar ratio of lithium element to nickel cobalt manganese: 1.08:1, mix evenly, and calcine at 850°C for 12 hours in an oxygen atmosphere to obtain the corresponding cathode materials.
  • Example 2 The ternary precursors of Example 2 and Comparative Example 2 were mixed with lithium hydroxide respectively according to the total molar ratio of lithium element to nickel cobalt manganese of 1.08:1, and then calcined in an oxygen atmosphere at 800°C for 12 hours to obtain the corresponding Cathode material.
  • Example 3 The ternary precursors of Example 3 and Comparative Example 3 were mixed with lithium carbonate respectively according to a total molar ratio of lithium element to nickel cobalt manganese of 1.08:1, and then calcined in an oxygen atmosphere at 900°C for 12 hours to obtain corresponding positive electrodes. Material.
  • the positive electrode material obtained above was formulated into a button cell for electrochemical performance testing of lithium-ion batteries.
  • the specific steps are: using N-methylpyrrolidone as the solvent, mix the positive electrode active material and acetylene in a mass ratio of 8:1:1. Mix black and PVDF evenly, apply it on aluminum foil, air dry at 80°C for 8 hours, and then vacuum dry at 120°C for 12 hours. Assemble the battery in an argon-protected glove box.
  • the cathode is a lithium metal sheet
  • the separator is a polypropylene film
  • the electrolyte is 1M LiPF6-EC/DMC (1:1, v/v).
  • the charge and discharge cut-off voltage is 2.7-4.3V.
  • Table 2 The test results are shown in Table 2.
  • the 0.1C discharge capacity can reach 173mAh/g and above, and the highest can reach 208mAh/g; after 100 cycles The discharge specific capacity can reach 167mAh/g and above, and the highest can reach 190mAh/g; the cycle retention rate can reach 91.3%, and the highest can reach 96.5%; at the same time, compare Example 1 and Comparative Example 1, Example 2 and Comparative Example 2 respectively. , Example 3 and Comparative Example 3, it can be seen that when the silica emulsion is not added during the preparation process of the ternary precursor, the performance of the final battery will decrease.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明公开了一种高振实密度三元前驱体及其制备方法,所述制备方包括以下步骤:(1)在碱性底液中加入二氧化硅乳液形成混合液;(2)加入镍钴锰金属离子混合盐溶液、沉淀剂、络合剂及表面活性剂;(3)固液分离,得到固体料,干燥,粉碎得到粉碎料;(4)将粉碎料与碱性底液及表面活性剂混合;(5)重复步骤(2);(6)固液分离,得到固体料,将固体料洗涤、干燥后,即得到高振实密度三元前驱体。由该制备方法制备得到的前驱体颗粒具有较高的振实密度,能给正极材料带来优异的循环性能。

Description

一种高振实密度三元前驱体及其制备方法 技术领域
本发明属于锂电池正极材料技术领域,特别涉及一种高振实密度三元前驱体及其制备方法。
背景技术
锂离子电池自从实现商业化后,它的用途也从最初的3C电子领域逐渐扩展到动力领域,但与此同时,人们对锂离子电池的安全性、能量密度以及使用寿命的要求也越来越高。在电池的制造过程中,正极材料作为电池最为重要的一部分,它在一定程度上决定了电池的性能以及使用领域。
三元正极材料由于具有高能量密度的优势,逐渐成为市场上的主流产品。工业上普遍采用共沉淀法首先制备镍钴锰氢氧化物前驱体,然后将前驱体与锂源混合烧结制备正极材料。三元前驱体作为三元正极材料的主要原料,其结构与性能直接决定了三元正极材料的结构与性能。众所周知,正极材料能继承前驱体的形貌和结构特点,正极材料的各项性能很大程度上取决于其前驱体的理化特性,前驱体制备的技术含量占整个三元材料技术含量的60%以上,所以,前驱体的结构、制备工艺对正极材料的性能有着至关重要的影响。
目前,共沉淀法是前驱体材料的主流制备方法,可以精确控制各组分的含量,并且实现组分的原子级混合,通过调整溶液浓度、pH值、反应时间、反应温度、搅拌转速等合成工艺参数,可以制备不同粒度、形貌、密度、结晶程度的材料。
共沉淀法目前应用最为广泛,产业化也较为成熟,然而,现有的共沉淀法在制备前驱体材料时,由于在共沉淀时,一次颗粒急速形成,并快速团聚,沉淀速率较快,导致一次颗粒粒度普遍较小,结晶度较低,一次颗粒不够致密,前驱体的整体致密度偏低,振实密度较低,从而影响后续烧结制备的正极材料的循环性能。
发明内容
本发明旨在至少解决现有技术中存在的技术问题之一。为此,本发明提出一种高振实密度三元前驱体及其制备方法,可制备得到粗大且致密的前驱体颗粒,前驱体颗粒具有较高的振实密度,从而提高后续烧结而成的正极材料的循环性能。
本发明的上述技术目的是通过以下技术方案得以实现的:
一种高振实密度三元前驱体的制备方法,包括以下步骤:
(1)搅拌状态下在碱性底液中加入二氧化硅乳液形成混合液;
(2)向步骤(1)的混合液中加入镍钴锰金属离子混合盐溶液、沉淀剂、络合剂及表面活性剂进行反应,使混合液中物料的D50达到1.0-3.0μm;
(3)对步骤(2)的物料进行固液分离,得到固体料,将固体料干燥后,粉碎得到粉碎料;
(4)将步骤(3)制得的粉碎料与碱性底液及表面活性剂混合;
(5)向步骤(4)的混合液中加入镍钴锰金属离子混合盐溶液、沉淀剂、络合剂及表面活性剂进行反应,使混合液中物料的D50达到5.0-15.0μm;
(6)对步骤(5)的物料进行固液分离,得到固体料,将固体料洗涤、干燥后,即得到高振实密度三元前驱体。
优选的,所述碱性底液为氢氧化钠和氨水的混合液,所述碱性底液的pH值为10.0-11.0,氨浓度为2.0-10.0g/L。
优选的,步骤(1)的混合液中二氧化硅的质量浓度为1-3%,二氧化硅的颗粒粒径为1-100nm。
优选的,所述镍钴锰金属离子混合盐溶液中镍钴锰金属离子总浓度为1.0-2.5mol/L。
优选的,所述沉淀剂为浓度为4.0-8.0mol/L的氢氧化钠溶液。
优选的,所述络合剂为浓度为6.0-12.0mol/L的氨水。
优选的,所述表面活性剂为烷基苯磺酸盐水溶液、烷基萘磺酸盐水溶液、烷磺酸盐水溶液中的至少一种,所述表面活性剂的浓度为0.1-2mol/L。
优选的,步骤(1)中二氧化硅乳液经过超声分散20-30min后加入碱性底液。
优选的,步骤(3)制得的粉碎料的粒径D50为100-500nm。
优选的,步骤(2)及步骤(5)中镍钴锰金属离子混合盐溶液、沉淀剂、络合剂及表面活性剂的加入方式为并流加入,且加入过程中控制混合液的pH为10.0-11.0,氨浓度为2.0-10.0g/L,控制表面活性剂的流量为混合盐溶液的流量的0.1-1倍。
优选的,步骤(2)及步骤(5)中反应温度为45-65℃。
优选的,一种高振实密度三元前驱体的制备方法,包括以下步骤:
(1)按照元素摩尔比Ni:Co:Mn=1-a-b:a:b,选用镍、钴、锰可溶性盐为原料,配制 镍钴锰金属离子总浓度为1.0-2.5mol/L的混合盐溶液;
(2)配制浓度为4.0-8.0mol/L的氢氧化钠溶液作为沉淀剂;
(3)配制浓度为6.0-12.0mol/L的氨水作为络合剂;
(4)配制浓度为0.1-2mol/L的表面活性剂水溶液,表面活性剂为烷基苯磺酸盐、烷基萘磺酸盐、烷磺酸盐;
(5)向反应釜中加入碱性底液至漫过底层搅拌桨,启动搅拌,碱性底液为氢氧化钠和氨水的混合液,碱性底液的pH值为10.0-11.0,氨浓度为2.0g/L-10.0g/L;
(6)向碱性底液中加入由超声分散20-30min的二氧化硅乳液,使碱性底液中二氧化硅的质量浓度为1-3%,二氧化硅的颗粒粒径为1-100nm;
(7)将步骤(1)配制的混合盐溶液、步骤(2)配制的氢氧化钠溶液、步骤(3)配制的氨水以及步骤(4)配制的表面活性剂水溶液并流加入到反应釜中进行反应,控制釜内反应温度为45-65℃,pH为10.0-11.0,氨浓度为2.0-10.0g/L;控制表面活性剂的流量为混合盐溶液的流量的0.1-1倍;
(8)当检测到反应釜内物料的D50达到1.0-3.0μm时,停止进料;
(9)将釜内物料进行固液分离,得到固体料,将固体料干燥后,采用气流粉碎机进行粉碎,粉碎后出料粒径D50为100-500nm;
(10)将粉碎料加入到反应釜中,并加入底液至漫过底层搅拌桨,启动搅拌,底液为氢氧化钠、氨水和表面活性剂的混合液,底液的pH值为10.0-11.0,氨浓度为2.0-10.0g/L,表面活性剂浓度为2mol/L;
(11)将步骤(1)配制的混合盐溶液、步骤(2)配制的氢氧化钠溶液、步骤(3)配制的氨水以及步骤(4)配制的表面活性剂水溶液并流加入到反应釜中进行反应,控制釜内反应温度为45-65℃,pH为10.0-11.0,氨浓度为2.0-10.0g/L;控制表面活性剂的流量为混合盐溶液的流量的0.1-1倍;
(12)当检测到反应釜内物料的D50达到5.0-15.0μm时,停止进料;
(13)将釜内物料进行固液分离,得到固体料;
(14)将固体料进行洗涤、干燥,再经过筛、除磁后,即得到高振实密度三元前驱体。
一种高振实密度三元前驱体,由如上所述的制备方法制备得到。
优选的,所述高振实密度三元前驱体的化学通式为Ni1-a-bCoaMnb(OH)2·xSiO2,其中,0<a<1,0<b<1,其是由一次颗粒团聚的 二次颗粒,一次颗粒呈块状立方体,一次颗粒的粒度为0.1-5.0μm(制备方法中是1.0-3.0μm),团聚的二次颗粒的粒度为5.0-15.0μm。
本发明的有益效果是:
本发明通过在碱性底液中加入二氧化硅乳液并采用表面活性剂进行共沉淀反应,二氧化硅颗粒起到空间位阻的作用,能够有效隔绝反应生成的一次颗粒,减缓一次颗粒的团聚,使一次颗粒逐渐长大,表面活性剂则起到生长诱导的作用,促进一次颗粒晶体的生长,通过在低pH的协同控制下,使一次颗粒能够缓慢的生长,结晶度更好;同时进一步的,二氧化硅的有效隔离使材料团聚不够紧密,利于后续进行气流粉碎,经气流粉碎后产生类一次颗粒的粉碎料,并将其加入反应釜内使其继续生长,从而得到的一次颗粒较为致密、粒径较为粗大的块状立方体。其致密的结晶程度,进一步提高了材料的振实密度,粒径的二次生长,进一步提高了后续烧结正极材料的循环性能。
附图说明
图1为本发明实施例1的SEM图。
具体实施方式
下面结合具体实施例对本发明做进一步的说明。
实施例1
一种高振实密度三元前驱体的制备方法,包括如下步骤:
(1)按照元素摩尔比Ni:Co:Mn=6:2:2,选用硫酸镍、硫酸钴、硫酸锰为原料,配制镍钴锰金属离子总浓度为1.5mol/L的混合盐溶液;
(2)配制浓度为6.0mol/L的氢氧化钠溶液作为沉淀剂;
(3)配制浓度为8.0mol/L的氨水作为络合剂;
(4)配制浓度为1mol/L的十二烷基苯磺酸钠表面活性剂水溶液;
(5)向反应釜中加入底液至漫过底层搅拌桨,启动搅拌,底液为氢氧化钠和氨水的混合液,底液的pH值为10.5,氨浓度为6.0g/L;
(6)向底液中加入由超声分散25min的二氧化硅乳液,使底液中二氧化硅的质量浓度为2%,二氧化硅的颗粒粒径为1-100nm;
(7)将步骤(1)配制的混合盐溶液、步骤(2)配制的氢氧化钠溶液、步骤(3)配制的氨水以及步骤(4)配制的表面活性剂水溶液并流加入到反应釜中进行反应,控制釜内反应温度为55℃,pH为10.5,氨浓度为6g/L;控制表面活性剂的流量为混合盐溶液的流量的0.5倍;
(8)当检测到反应釜内物料的D50达到2.0μm时,停止进料;
(9)将釜内物料进行固液分离,得到固体料,将固体料干燥后,采用气流粉碎机进行粉碎,粉碎后出料粒径D50为320nm;
(10)将粉碎料加入到反应釜中,并加入底液至漫过底层搅拌桨,启动搅拌,底液为氢氧化钠、氨水和表面活性剂的混合液,底液的pH值为10.5,氨浓度为6.0g/L,表面活性剂浓度为2mol/L;
(11)将步骤(1)配制的混合盐溶液、步骤(2)配制的氢氧化钠溶液、步骤(3)配制的氨水以及步骤(4)配制的表面活性剂水溶液并流加入到反应釜中进行反应,控制釜内反应温度为55℃,pH为10.5,氨浓度为6.0g/L;控制表面活性剂的流量为混合盐溶液的流量的0.5倍;
(12)当检测到反应釜内物料的D50达到10.5μm时,停止进料;
(13)将釜内物料进行固液分离,得到固体料;
(14)将固体料进行洗涤、干燥,再依次经过筛、除磁,即得到高振实密度三元前驱体。
一种高振实密度三元前驱体,由上述制备方法制备得到,其化学通式为Ni0.6Co0.2Mn0.2(OH)2·xSiO2,其是由一次颗粒团聚的二次颗粒,一次颗粒呈块状立方体,一次颗粒的粒度为0.1-5.0μm,团聚的二次颗粒的粒度为10.5μm,该高振实密度三元前驱体的SEM图如图1所示。
实施例2
一种高振实密度三元前驱体的制备方法,包括如下步骤:
(1)按照元素摩尔比Ni:Co:Mn=8:1:1,选用氯化镍、氯化钴、氯化锰为原料,配制镍钴锰金属离子总浓度为1.0mol/L的混合盐溶液;
(2)配制浓度为4.0mol/L的氢氧化钠溶液作为沉淀剂;
(3)配制浓度为6.0mol/L的氨水作为络合剂;
(4)配制浓度为0.1mol/L的十二烷基萘磺酸钠表面活性剂水溶液;
(5)向反应釜中加入底液至漫过底层搅拌桨,启动搅拌,底液为氢氧化钠和氨水的混合液,底液的pH值为10.0,氨浓度为2.0g/L;
(6)向底液中加入由超声分散20min的二氧化硅乳液,使底液中二氧化硅的质量浓度为1%,二氧化硅的颗粒粒径为1-100nm;
(7)将步骤(1)配制的混合盐溶液、步骤(2)配制的氢氧化钠溶液、步骤(3) 配制的氨水以及步骤(4)配制的表面活性剂水溶液并流加入到反应釜中进行反应,控制釜内反应温度为45℃,pH为10.0,氨浓度为2.0g/L;控制表面活性剂的流量为混合盐溶液的流量的0.1倍;
(8)当检测到反应釜内物料的D50达到1.0μm时,停止进料;
(9)将釜内物料进行固液分离,得到固体料,将固体料干燥后,采用气流粉碎机进行粉碎,粉碎后出料粒径D50为135nm;
(10)将粉碎料加入到反应釜中,并加入底液至漫过底层搅拌桨,启动搅拌,底液为氢氧化钠、氨水和表面活性剂的混合液,底液的pH值为10.0,氨浓度为2.0g/L,表面活性剂浓度为2mol/L;
(11)将步骤(1)配制的混合盐溶液、步骤(2)配制的氢氧化钠溶液、步骤(3)配制的氨水以及步骤(4)配制的表面活性剂水溶液并流加入到反应釜中进行反应,控制釜内反应温度为45℃,pH为10.0,氨浓度为2.0g/L;控制表面活性剂的流量为混合盐溶液的流量的0.1倍;
(12)当检测到反应釜内物料的D50达到5.0μm时,停止进料;
(13)将釜内物料进行固液分离,得到固体料;
(14)将固体料进行洗涤、干燥,再依次经过筛、除磁,即得到高振实密度三元前驱体。
一种高振实密度三元前驱体,由上述制备方法制备得到,其化学通式为Ni0.8Co0.1Mn0.1(OH)2·xSiO2,其是由一次颗粒团聚的二次颗粒,一次颗粒呈块状立方体,一次颗粒的粒度为0.1-5.0μm,团聚的二次颗粒的粒度为5.0μm。
实施例3
一种高振实密度三元前驱体的制备方法,包括如下步骤:
(1)按照元素摩尔比Ni:Co:Mn=5:2:3,选用硝酸镍、硝酸钴、硝酸锰为原料,配制镍钴锰金属离子总浓度为2.5mol/L的混合盐溶液;
(2)配制浓度为8.0mol/L的氢氧化钠溶液作为沉淀剂;
(3)配制浓度为12.0mol/L的氨水作为络合剂;
(4)配制浓度为2mol/L的十二烷基硫酸钠表面活性剂水溶液;
(5)向反应釜中加入底液至漫过底层搅拌桨,启动搅拌,底液为氢氧化钠和氨水的混合液,底液的pH值为11.0,氨浓度为10.0g/L;
(6)向底液中加入由超声分散30min的二氧化硅乳液,使底液中二氧化硅的质量 浓度为3%,二氧化硅的颗粒粒径为1-100nm;
(7)将步骤(1)配制的混合盐溶液、步骤(2)配制的氢氧化钠溶液、步骤(3)配制的氨水以及步骤(4)配制的表面活性剂水溶液并流加入到反应釜中进行反应,控制釜内反应温度为65℃,pH为11.0,氨浓度为10.0g/L;控制表面活性剂的流量为混合盐溶液的流量的1倍;
(8)当检测到反应釜内物料的D50达到3.0μm时,停止进料;
(9)将釜内物料进行固液分离,得到固体料,将固体料干燥后,采用气流粉碎机进行粉碎,粉碎后出料粒径D50为470nm;
(10)将粉碎料加入到反应釜中,并加入底液至漫过底层搅拌桨,启动搅拌,底液为氢氧化钠、氨水和表面活性剂的混合液,底液的pH值为11.0,氨浓度为10.0g/L,表面活性剂浓度为2mol/L;
(11)将步骤(1)配制的混合盐溶液、步骤(2)配制的氢氧化钠溶液、步骤(3)配制的氨水以及步骤(4)配制的表面活性剂水溶液并流加入到反应釜中进行反应,控制釜内反应温度为65℃,pH为11.0,氨浓度为10.0g/L;控制表面活性剂的流量为混合盐溶液的流量的1倍;
(12)当检测到反应釜内物料的D50达到15.0μm时,停止进料;
(13)将釜内物料进行固液分离,得到固体料;
(14)将固体料进行洗涤、干燥,再依次经过筛、除磁,即得到高振实密度三元前驱体。
一种高振实密度三元前驱体,由上述制备方法制备得到,其化学通式为Ni0.5Co0.2Mn0.3(OH)2·xSiO2,其是由一次颗粒团聚的二次颗粒,一次颗粒呈块状立方体,一次颗粒的粒度为0.1-5.0μm,团聚的二次颗粒的粒度为15.0μm。
对比例1
一种三元前驱体的制备方法,包括如下步骤:
(1)按照元素摩尔比Ni:Co:Mn=6:2:2,选用硫酸镍、硫酸钴、硫酸锰为原料,配制镍钴锰金属离子总浓度为1.5mol/L的混合盐溶液;
(2)配制浓度为6.0mol/L的氢氧化钠溶液作为沉淀剂;
(3)配制浓度为8.0mol/L的氨水作为络合剂;
(4)配制浓度为1mol/L的十二烷基苯磺酸钠表面活性剂水溶液;
(5)向反应釜中加入底液至漫过底层搅拌桨,启动搅拌,底液为氢氧化钠和氨水 的混合液,底液的pH值为10.5,氨浓度为6.0g/L;
(6)将步骤(1)配制的混合盐溶液、步骤(2)配制的氢氧化钠溶液、步骤(3)配制的氨水以及步骤(4)配制的表面活性剂水溶液并流加入到反应釜中进行反应,控制釜内反应温度为55℃,pH为10.5,氨浓度为6g/L;控制表面活性剂的流量为混合盐溶液的流量的0.5倍;
(7)当检测到反应釜内物料的D50达到10.5μm时,停止进料;
(8)将釜内物料进行固液分离,得到固体料;
(9)将固体料进行洗涤、干燥,再依次经过筛、除磁,即得到目标三元前驱体。
一种三元前驱体,由上述制备方法制备得到,其化学通式为Ni0.6Co0.2Mn0.2(OH)2,其是由一次颗粒团聚的二次颗粒,二次颗粒的粒度为10.5μm。
对比例2
一种三元前驱体的制备方法,包括如下步骤:
(1)按照元素摩尔比Ni:Co:Mn=8:1:1,选用氯化镍、氯化钴、氯化锰为原料,配制镍钴锰金属离子总浓度为1.0mol/L的混合盐溶液;
(2)配制浓度为4.0mol/L的氢氧化钠溶液作为沉淀剂;
(3)配制浓度为6.0mol/L的氨水作为络合剂;
(4)配制浓度为0.1mol/L的十二烷基萘磺酸钠表面活性剂水溶液;
(5)向反应釜中加入底液至漫过底层搅拌桨,启动搅拌,底液为氢氧化钠和氨水的混合液,底液的pH值为10.0,氨浓度为2.0g/L;
(6)将步骤(1)配制的混合盐溶液、步骤(2)配制的氢氧化钠溶液、步骤(3)配制的氨水以及步骤(4)配制的表面活性剂水溶液并流加入到反应釜中进行反应,控制釜内反应温度为45℃,pH为10.0,氨浓度为2.0g/L;控制表面活性剂的流量为混合盐溶液的流量的0.1倍;
(7)当检测到反应釜内物料的D50达到5.0μm时,停止进料;
(8)将釜内物料进行固液分离,得到固体料;
(9)将固体料进行洗涤、干燥,再依次经过筛、除磁,即得到目标三元前驱体。
一种三元前驱体,由上述制备方法制备得到,其化学通式为Ni0.8Co0.1Mn0.1(OH)2,其是由一次颗粒团聚的二次颗粒,二次颗粒的粒度为5.0μm。
对比例3
一种三元前驱体的制备方法,包括如下步骤:
(1)按照元素摩尔比Ni:Co:Mn=5:2:3,选用硝酸镍、硝酸钴、硝酸锰为原料,配制镍钴锰金属离子总浓度为2.5mol/L的混合盐溶液;
(2)配制浓度为8.0mol/L的氢氧化钠溶液作为沉淀剂;
(3)配制浓度为12.0mol/L的氨水作为络合剂;
(4)配制浓度为2mol/L的十二烷基硫酸钠表面活性剂水溶液;
(5)向反应釜中加入底液至漫过底层搅拌桨,启动搅拌,底液为氢氧化钠和氨水的混合液,底液的pH值为11.0,氨浓度为10.0g/L;
(6)将步骤(1)配制的混合盐溶液、步骤(2)配制的氢氧化钠溶液、步骤(3)配制的氨水以及步骤(4)配制的表面活性剂水溶液并流加入到反应釜中进行反应,控制釜内反应温度为65℃,pH为11.0,氨浓度为10.0g/L;控制表面活性剂的流量为混合盐溶液的流量的1倍;
(7)当检测到反应釜内物料的D50达到15.0μm时,停止进料;
(8)将釜内物料进行固液分离,得到固体料;
(9)将固体料进行洗涤、干燥,再依次经过筛、除磁,即得到目标三元前驱体。
一种三元前驱体,由上述制备方法制备得到,其化学通式为Ni0.5Co0.2Mn0.3(OH)2,其是由一次颗粒团聚的二次颗粒,二次颗粒的粒度为15.0μm。
试验例:
按照《GB/T 5162金属粉末振实密度的测定》分别测量实施例1-3及对比例1-3的三元前驱体的振实密度,测量结果见表1。
表1:三元前驱体的振实密度测量结果
由表1可知,本发明的制备方法制备得到的三元前驱体的振实密度在1.73g/cm3及以上,最高能达到2.23g/cm3,同时分别对比实施例1及对比例1、实施例2及对比例2、实施例3及对比例3可知,在三元前驱体制备过程中不加二氧化硅乳液时,最终制备得到的三元前驱体的振实密度明显下降。
将实施例1及对比例1的三元前驱体分别与碳酸锂按照锂元素与镍钴锰总摩尔比为 1.08:1,混合均匀,在氧气氛围、850℃下煅烧12h,分别得到对应的正极材料。
将实施例2及对比例2的三元前驱体分别与氢氧化锂按照锂元素与镍钴锰总摩尔比为1.08:1,混合均匀,在氧气氛围、800℃下煅烧12h,分别得到对应的正极材料。
将实施例3及对比例3的三元前驱体分别与碳酸锂按照锂元素与镍钴锰总摩尔比为1.08:1,混合均匀,在氧气氛围、900℃下煅烧12h,分别得到对应的正极材料。
将以上得到的正极材料配成扣式电池进行锂离子电池电化学性能测试,其具体步骤为:以N-甲基吡咯烷酮为溶剂,按照质量比8︰1︰1的比例将正极活性物质与乙炔黑、PVDF混合均匀,涂覆于铝箔上,经80℃鼓风干燥8h后,于120℃真空干燥12h。在氩气保护的手套箱中装配电池,负极为金属锂片,隔膜为聚丙烯膜,电解液为1M LiPF6-EC/DMC(1︰1,v/v)。电流密度为1C=160mA/g,充放电截止电压为2.7-4.3V。测试结果如表2所示。
表2:电池电性能测试结果
由表2可知,本发明的制备方法制备得到的三元前驱体制备得到的正极材料组装成电池后,0.1C放电容量能达到173mAh/g及以上,最高能达到208mAh/g;100次循环后放电比容量能达到167mAh/g及以上,最高能达到190mAh/g;循环保持率能达到91.3%,最高能达到96.5%;同时分别对比实施例1及对比例1、实施例2及对比例2、实施例3及对比例3可知,在三元前驱体制备过程中不加二氧化硅乳液时,最终电池的各项性能都会下降。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (10)

  1. 一种高振实密度三元前驱体的制备方法,其特征在于:包括以下步骤:
    (1)搅拌状态下在碱性底液中加入二氧化硅乳液形成混合液;
    (2)向步骤(1)的混合液中加入镍钴锰金属离子混合盐溶液、沉淀剂、络合剂及表面活性剂进行反应,使混合液中物料的D50达到1.0-3.0μm;
    (3)对步骤(2)的物料进行固液分离,得到固体料,将固体料干燥后,粉碎得到粉碎料;
    (4)将步骤(3)制得的粉碎料与碱性底液及表面活性剂混合;
    (5)向步骤(4)的混合液中加入镍钴锰金属离子混合盐溶液、沉淀剂、络合剂及表面活性剂进行反应,使混合液中物料的D50达到5.0-15.0μm;
    (6)对步骤(5)的物料进行固液分离,得到固体料,将固体料洗涤、干燥,即得到高振实密度三元前驱体。
  2. 根据权利要求1所述的高振实密度三元前驱体的制备方法,其特征在于:所述碱性底液为氢氧化钠和氨水的混合液,所述碱性底液的pH值为10.0-11.0,氨浓度为2.0-10.0g/L。
  3. 根据权利要求1所述的高振实密度三元前驱体的制备方法,其特征在于:步骤(1)的混合液中二氧化硅的质量浓度为1-3%,二氧化硅的颗粒粒径为1-100nm。
  4. 根据权利要求1所述的高振实密度三元前驱体的制备方法,其特征在于:所述镍钴锰金属离子混合盐溶液中镍钴锰金属离子总浓度为1.0-2.5mol/L。
  5. 根据权利要求1所述的高振实密度三元前驱体的制备方法,其特征在于:所述沉淀剂为浓度为4.0-8.0mol/L的氢氧化钠溶液。
  6. 根据权利要求1所述的高振实密度三元前驱体的制备方法,其特征在于:所述络合剂为浓度为6.0-12.0mol/L的氨水。
  7. 根据权利要求1所述的高振实密度三元前驱体的制备方法,其特征在于:所述表面活性剂为烷基苯磺酸盐水溶液、烷基萘磺酸盐水溶液、烷磺酸盐水溶液 中的至少一种,所述表面活性剂的浓度为0.1-2mol/L。
  8. 根据权利要求1所述的高振实密度三元前驱体的制备方法,其特征在于:步骤(3)制得的粉碎料的粒径D50为100-500nm。
  9. 一种高振实密度三元前驱体,其特征在于:由权利要求1-8中任一项所述的制备方法制备得到。
  10. 根据权利要求9所述的高振实密度三元前驱体,其特征在于:所述高振实密度三元前驱体的化学通式为Ni1-a-bCoaMnb(OH)2·xSiO2,其中,0<a<1,0<b<1,其是由一次颗粒团聚的二次颗粒,一次颗粒呈块状立方体,一次颗粒的粒度为0.1-5.0μm,团聚的二次颗粒的粒度为5.0-15.0μm。
PCT/CN2023/074950 2022-04-24 2023-02-08 一种高振实密度三元前驱体及其制备方法 WO2023207246A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE112023000119.7T DE112023000119T5 (de) 2022-04-24 2023-02-08 Ternärer Vorläufer mit hoher Klopfdichte und Verfahren zu dessen Herstellung
GB2314786.1A GB2624519A (en) 2022-04-24 2023-02-08 Ternary precursor with high tap density and method for preparing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210445604.1 2022-04-24
CN202210445604.1A CN114735762B (zh) 2022-04-24 2022-04-24 一种高振实密度三元前驱体及其制备方法

Publications (1)

Publication Number Publication Date
WO2023207246A1 true WO2023207246A1 (zh) 2023-11-02

Family

ID=82283875

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/074950 WO2023207246A1 (zh) 2022-04-24 2023-02-08 一种高振实密度三元前驱体及其制备方法

Country Status (4)

Country Link
CN (1) CN114735762B (zh)
DE (1) DE112023000119T5 (zh)
GB (1) GB2624519A (zh)
WO (1) WO2023207246A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114735762B (zh) * 2022-04-24 2024-04-09 广东邦普循环科技有限公司 一种高振实密度三元前驱体及其制备方法
CN115159591A (zh) * 2022-07-27 2022-10-11 浙江格派钴业新材料有限公司 一种一次大颗粒富锂锰基前驱体的制备方法
CN115490276B (zh) * 2022-09-23 2024-01-05 广东邦普循环科技有限公司 一种表面改性的正极材料前驱体及其制备方法和应用
CN115818735A (zh) * 2022-12-20 2023-03-21 蜂巢能源科技股份有限公司 一种无钴三元正极材料的制备方法与锂离子电池

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104362335A (zh) * 2014-11-29 2015-02-18 冀明 一种镍钴锰酸锂正极材料的制备方法
JP2015227263A (ja) * 2014-05-30 2015-12-17 住友金属鉱山株式会社 ニッケルコバルトマンガン複合水酸化物とその製造方法
CN113193190A (zh) * 2021-04-06 2021-07-30 北京理工大学 一种纤维增强的ncm三元正极复合材料及其制备方法
CN113603154A (zh) * 2021-07-30 2021-11-05 广东佳纳能源科技有限公司 一种高电压镍钴锰三元前驱体及其制备方法
CN114735762A (zh) * 2022-04-24 2022-07-12 广东邦普循环科技有限公司 一种高振实密度三元前驱体及其制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105399154A (zh) * 2015-11-25 2016-03-16 兰州金川新材料科技股份有限公司 一种镍钴锰三元氢氧化物的生产方法
CN112582603A (zh) * 2019-09-27 2021-03-30 天津理工大学 一种锂离子电池高镍层状正极材料的制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015227263A (ja) * 2014-05-30 2015-12-17 住友金属鉱山株式会社 ニッケルコバルトマンガン複合水酸化物とその製造方法
CN104362335A (zh) * 2014-11-29 2015-02-18 冀明 一种镍钴锰酸锂正极材料的制备方法
CN113193190A (zh) * 2021-04-06 2021-07-30 北京理工大学 一种纤维增强的ncm三元正极复合材料及其制备方法
CN113603154A (zh) * 2021-07-30 2021-11-05 广东佳纳能源科技有限公司 一种高电压镍钴锰三元前驱体及其制备方法
CN114735762A (zh) * 2022-04-24 2022-07-12 广东邦普循环科技有限公司 一种高振实密度三元前驱体及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CHENG LEI; WANG ZHI-XING; HE ZHEN-JIANG ;LI XIN-HAI; GUO HUA-JUN: "Influences of Different Preparation Methods on Structure,Morphology and Electrochemical Performance of 0. 5Li2MnO3·0.5Li( Ni1 /3Co1 /3Mn1/3)O2 Cathode Material", KUANGYE-GONGCHENG = MINING AND METALLURGICAL ENGINEERING, vol. 34, no. 6, 15 December 2014 (2014-12-15), pages 123 - 127, XP009550102, ISSN: 0253-6099 *

Also Published As

Publication number Publication date
DE112023000119T5 (de) 2024-04-11
GB2624519A (en) 2024-05-22
GB202314786D0 (en) 2023-11-08
CN114735762B (zh) 2024-04-09
CN114735762A (zh) 2022-07-12

Similar Documents

Publication Publication Date Title
WO2023207246A1 (zh) 一种高振实密度三元前驱体及其制备方法
CN112750999B (zh) 正极材料及其制备方法和锂离子电池
CN110380024B (zh) P3结构的钠过渡金属氧化物及其制备方法和钠离子电池
CN112531158B (zh) 一种高镍三元单晶材料及其制备方法
CN111785960B (zh) 五氧化二钒/rGO包覆镍钴锰酸锂正极材料及制备方法
CN106784795B (zh) 一种单晶类球形锰酸锂材料及其制备方法、正极材料
WO2015039490A1 (zh) 富锂正极材料及其制备方法
CN115924993B (zh) 一种镍铁锰氢氧化物及其制备方法
CN110391417B (zh) 一种类单晶富锂锰基正极材料的制备方法
CN102983326A (zh) 一种球形锂镍钴复合氧化物正极材料的制备方法
CN115863625B (zh) 一种层状钠离子中高熵复合氧化物正极材料
CN106910887A (zh) 一种富锂锰基正极材料、其制备方法及包含该正极材料的锂离子电池
WO2023226554A1 (zh) 一种高电压镍钴锰酸锂正极材料及其制备方法和应用
CN104953109B (zh) 一种提升耐高温性能的核壳结构锰酸锂及其合成方法
WO2023207248A1 (zh) 核壳结构nca正极材料前驱体及其制备方法和应用
WO2023221624A1 (zh) 熔融盐制备三元正极材料的方法及其应用
CN113113590B (zh) 一种核壳结构的单晶正极材料及其制备方法
WO2023155541A1 (zh) 抑制正极材料微裂纹的前驱体及其制备方法和应用
CN113603159A (zh) 一种多层铝掺杂的镍钴锰前驱体及其制备方法
WO2023109194A1 (zh) 高峰强比的正极材料及其制备方法和应用
WO2023221628A1 (zh) 一种高容量的铜掺杂钴酸锂正极材料及其制备方法和应用
CN111777103B (zh) 一种制备镍钴铝酸锂正极材料的方法
CN103715422A (zh) 电解法制备锂离子电池的高镍系正极材料的方法
CN106684350B (zh) 一种高电压正极材料镍锰酸锂的制备方法
CN112952056B (zh) 一种富锂锰基复合正极材料及其制备方法和应用

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 202314786

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20230208

WWE Wipo information: entry into national phase

Ref document number: P202390209

Country of ref document: ES

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23794682

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 112023000119

Country of ref document: DE