WO2023155541A1 - 抑制正极材料微裂纹的前驱体及其制备方法和应用 - Google Patents

抑制正极材料微裂纹的前驱体及其制备方法和应用 Download PDF

Info

Publication number
WO2023155541A1
WO2023155541A1 PCT/CN2022/135887 CN2022135887W WO2023155541A1 WO 2023155541 A1 WO2023155541 A1 WO 2023155541A1 CN 2022135887 W CN2022135887 W CN 2022135887W WO 2023155541 A1 WO2023155541 A1 WO 2023155541A1
Authority
WO
WIPO (PCT)
Prior art keywords
precursor
concentration
inner core
preparation
sodium hydroxide
Prior art date
Application number
PCT/CN2022/135887
Other languages
English (en)
French (fr)
Inventor
余海军
谢英豪
李爱霞
张学梅
李长东
Original Assignee
广东邦普循环科技有限公司
湖南邦普循环科技有限公司
湖南邦普汽车循环有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东邦普循环科技有限公司, 湖南邦普循环科技有限公司, 湖南邦普汽车循环有限公司 filed Critical 广东邦普循环科技有限公司
Publication of WO2023155541A1 publication Critical patent/WO2023155541A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/006Compounds containing, besides nickel, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • C01G53/44Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the embodiments of the present application relate to the technical field of precursors of positive electrode materials for lithium batteries, for example, a precursor for suppressing microcracks in positive electrode materials and its preparation method and application.
  • Li-ion batteries Due to its own series of advantages, lithium-ion batteries gradually extend from the field of consumer electronics to other industrial production fields. In order to meet consumers' requirements for the range of electric vehicles, the development of high energy density Li-ion batteries has received great attention.
  • Layered Li[Ni x Co y Mn 1-xy ]O 2 (NCM) and Li[Ni x Co y Al 1-xy ]O 2 (NCA) have relatively low cost, superior reversible capacity and rate performance, and are It is a high energy density lithium ion battery cathode material with great development potential.
  • microcracks that form expose new surfaces inside the particle, further accelerating structural decay.
  • the main reason for the decrease in cycle life of high-nickel cathode materials is microcracks, which will reduce the thermal stability, structural stability and cycle stability of cathode materials at the same time.
  • microcracks become the main cause of capacity fading in high-nickel cathode materials. Once cracks appear on the surface of the particles, they provide channels for the penetration of the electrolyte. Although microcracks can be closed during discharge, the action of the internal electrolyte is irreversible. The electrolyte will irreversibly further damage the internal structure of the particles, make the cracks more serious, and eventually lead to the disintegration and degradation of the particles.
  • the reaction of the electrolyte and the cathode material produces a NiO-like rock-salt phase, which increases the impedance of the material and thus affects the uniformity of the SOC. This creates more intergranular and intragranular cracks, making the disintegration and comminution of particles more serious.
  • the three-dimensional diffusion paths of Li ions are strongly influenced by the electrolyte. With the penetration of the electrolyte, the three-dimensional diffusion channels of lithium ions are gradually reduced, which will increase the difference between the diffusion paths of electrons and lithium ions.
  • the impact of the electrolyte on the interior and surface of the particles can lead to SOC inhomogeneity, which leads to cracks and ultimately the failure of the material.
  • the present application aims to solve at least one of the technical problems in the above-mentioned prior art. For this reason, the embodiment of the present application proposes a precursor for suppressing microcracks of positive electrode materials, its preparation method and application.
  • the embodiment of the present application proposes a precursor for suppressing microcracks in positive electrode materials, the precursor is spherical or spherical particles, the particles are composed of an outer shell and an inner core, and the general chemical formula of the outer shell is is Ni 1-ab Co a Mn b (OH) 2 , wherein, 0 ⁇ a ⁇ 1, 0 ⁇ b ⁇ 1, 0 ⁇ a+b ⁇ 1, the general chemical formula of the inner core is Ni 1-xy Co x Mn y O, wherein, 0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1, 0 ⁇ x+y ⁇ 1, the inner core is a porous structure.
  • the inner core has a porosity of 25-75%.
  • the specific surface area of the inner core is 22-30 m 2 /g, and the D50 of the inner core is 2.0-9.0 ⁇ m.
  • the specific surface area of the particles is 6-15 m 2 /g, and the D50 of the particles is 5.0-20.0 ⁇ m.
  • the application also provides the preparation method of the precursor, comprising the following steps:
  • soluble salts of nickel, cobalt, and manganese are used to prepare the mixed salt solution A, and the soluble salts are at least one of sulfate, nitrate, or chloride salt.
  • the total metal ion concentration of the mixed salt solution A is 1.0-2.5 mol/L; the total metal ion concentration of the mixed salt solution C is 1.0-2.5 mol/L.
  • step S1 the concentration of sodium hydroxide in the mixed solution B is 4.0-8.0 mol/L, and the concentration of sodium silicate is 0.1-1.0 mol/L in terms of SiO 2 .
  • the pH value of the first bottom liquid and/or the second bottom liquid is 10.8-11.5, and the ammonia concentration is 2.0-10.0 g/L.
  • the concentration of the ammonia water is 6.0-12.0 mol/L.
  • step S3 the mass concentration of the first sodium hydroxide solution is 25-60%, and the soaking temperature is 85-130°C. Further preferably, the soaking time is 2-4h.
  • step S2 and/or step S4 the reaction temperature is controlled to be 45-65° C., the pH is 10.8-11.5, and the ammonia concentration is 2.0-10.0 g/L.
  • step S3 the calcination temperature is 700-1000° C., and the calcination time is 1-2 h.
  • step S4 the concentration of the second sodium hydroxide solution is 4.0-10.0 mol/L.
  • the present application also provides the application of the precursor in the preparation of lithium-ion cathode materials or lithium-ion batteries.
  • Some embodiments of the present application firstly form a coprecipitate through the mixed solution of nickel-cobalt-manganese salt, sodium hydroxide and sodium silicate to obtain a composite material of nickel-cobalt-manganese hydroxide and nickel-cobalt-manganese silicate, and the composite material Carry out high-temperature calcination to crystallize nickel-cobalt-manganese silicate, which is convenient for removing silicon by hot soaking in concentrated alkali, and prepare loose and porous nickel-cobalt-manganese oxide as the core of the target precursor, and place the core in the reactor as the seed crystal.
  • a radial nickel-cobalt-manganese hydroxide shell is formed on the surface of the inner core, and a precursor material with a core-shell structure is obtained.
  • M nickel-cobalt-manganese, and when the concentration of sodium hydroxide is higher, hydroxysilicate is generated:
  • the silicon is removed from the core of the precursor, lattice vacancies appear.
  • it can effectively relieve the internal stress changes caused by charging and discharging, thereby inhibiting microcracks and improving the quality of the material.
  • Excellent cycle performance; the precursor does not require the addition of doping elements, which avoids the problem of a decrease in the specific capacity of the material caused by doping elements.
  • FIG. 1 is a SEM image of the precursor prepared in Example 1 of the present application.
  • a precursor for suppressing microcracks in positive electrode materials is prepared.
  • the precursor is a spherical or quasi-spherical particle.
  • the particle is composed of an outer shell and an inner core.
  • the general chemical formula of the outer shell is Ni 0.6 Co 0.2 Mn 0.2 (OH) 2
  • the shell is radial
  • the chemical formula of the core is Ni 0.6 Co 0.2 Mn 0.2 O
  • the core is a loose porous structure
  • the specific surface area of the core is 26m 2 /g
  • D50 is 4.0 ⁇ m
  • the specific surface area of the whole particle is 8m 2 /g.
  • D50 is 6.0 ⁇ m.
  • the specific preparation process is:
  • Step 2 preparation concentration is that the sodium hydroxide of 4.0mol/L and concentration (in terms of SiO ) is the mixed solution B of the sodium silicate of 0.1mol/L as precipitation agent;
  • Step 3 preparation concentration is the ammoniacal liquor of 6.0mol/L as complexing agent
  • Step 4 add the bottom liquid to the reactor until it overflows the bottom stirring paddle, start stirring, the pH value of the bottom liquid is 11.5, and the ammonia concentration is 10.0g/L;
  • Step 5 add the mixed salt solution A prepared in step 1, the mixed solution B prepared in step 2, and the ammonia water prepared in step 3 into the reaction kettle in parallel to react, and control the reaction temperature in the kettle to 65°C, pH to 11.5, The concentration is 10.0g/L;
  • Step 6 when it is detected that the D50 of the material in the reactor reaches 4.0 ⁇ m, stop feeding;
  • Step 7 performing solid-liquid separation on the materials in the kettle to obtain solid materials
  • Step 8 calcining the solid material at a temperature of 1000° C. for 2 hours to obtain a calcined material
  • Step 9 soaking the calcined material in a sodium hydroxide solution with a mass concentration of 60% for 4 hours at a temperature of 130° C., and then washing with pure water to obtain a wet material;
  • Step 11 preparation concentration is the sodium hydroxide solution of 10.0mol/L as precipitation agent
  • Step 12 add the bottom liquid to the reaction kettle until it overflows the bottom stirring paddle, the pH value of the bottom liquid is 10.8, the ammonia concentration is 8.0g/L, and the wet material obtained in step 9 is added, and the stirring is started;
  • Step 13 adding the mixed salt solution C prepared in step 10, the sodium hydroxide solution prepared in step 11, and the ammonia water prepared in step 3 into the reactor for reaction, controlling the reaction temperature in the reactor to be 55°C and the pH to be 10.8, The ammonia concentration is 8.0g/L;
  • Step 14 when it is detected that the D50 of the material in the reactor reaches 6.0 ⁇ m, stop feeding;
  • Step 15 performing solid-liquid separation on the materials in the kettle to obtain solid materials
  • step 16 the solid material is washed and dried, and then sieved and demagnetized in sequence to obtain the target precursor.
  • a precursor for suppressing microcracks in positive electrode materials is prepared.
  • the precursor is spherical or spherical-like particles, and the particles are composed of an outer shell and an inner core.
  • the general chemical formula of the outer shell is Ni 0.8 Co 0.1 Mn 0.1 (OH) 2
  • the shell is radial
  • the chemical formula of the core is Ni 0.8 Co 0.1 Mn 0.1 O
  • the core is a loose porous structure
  • the specific surface area of the core is 28m 2 /g
  • D50 is 2.0 ⁇ m
  • the specific surface area of the whole particle is 13m 2 /g.
  • D50 is 10.0 ⁇ m
  • the specific preparation process is as follows:
  • Step 2 preparation concentration is that the sodium hydroxide of 4.0mol/L and concentration (in terms of SiO ) is the mixed solution B of the sodium silicate of 0.1mol/L as precipitation agent;
  • Step 3 preparation concentration is the ammoniacal liquor of 6.0mol/L as complexing agent
  • Step 4 add the bottom liquid to the reaction kettle until it overflows the bottom stirring paddle, start stirring, the pH value of the bottom liquid is 11.2, and the ammonia concentration is 5g/L;
  • Step 5 add the mixed salt solution A prepared in step 1, the mixed solution B prepared in step 2, and the ammonia water prepared in step 3 into the reactor for reaction.
  • the concentration is 5.0g/L;
  • Step 6 when it is detected that the D50 of the material in the reactor reaches 2.0 ⁇ m, stop feeding;
  • Step 7 performing solid-liquid separation on the materials in the kettle to obtain solid materials
  • Step 8 calcining the solid material at a temperature of 700° C. for 2 hours to obtain a calcined material
  • Step 9 soaking the calcined material in a sodium hydroxide solution with a mass concentration of 25% for 4 hours at a temperature of 85° C., and then washing with pure water to obtain a wet material;
  • Step 11 preparation concentration is the sodium hydroxide solution of 4.0mol/L as precipitation agent
  • Step 12 add the bottom liquid to the reaction kettle until it overflows the bottom stirring paddle, the pH value of the bottom liquid is 10.8, the ammonia concentration is 10.0g/L, and the wet material obtained in step 9 is added, and the stirring is started;
  • Step 13 adding the mixed salt solution C prepared in step 10, the sodium hydroxide solution prepared in step 11, and the ammonia water prepared in step 3 into the reactor for reaction, controlling the reaction temperature in the reactor to be 56° C., and the pH to be 10.8.
  • the ammonia concentration is 10.0g/L;
  • Step 14 when it is detected that the D50 of the material in the reactor reaches 10.0 ⁇ m, stop feeding;
  • Step 15 performing solid-liquid separation on the materials in the kettle to obtain solid materials
  • step 16 the solid material is washed and dried, and then sieved and demagnetized in turn to obtain the target precursor.
  • a precursor for suppressing microcracks in positive electrode materials is prepared.
  • the precursor is a spherical or quasi-spherical particle.
  • the particle is composed of an outer shell and an inner core.
  • the general chemical formula of the outer shell is Ni 0.5 Co 0.2 Mn 0.3 (OH) 2
  • the shell is radial
  • the chemical formula of the core is Ni 0.5 Co 0.2 Mn 0.3 O
  • the core is a loose porous structure
  • the specific surface area of the core is 23m 2 /g
  • D50 is 5.0 ⁇ m
  • the specific surface area of the whole particle is 11m 2 /g.
  • D50 is 12.0 ⁇ m
  • the specific preparation process is as follows:
  • Step 2 preparation concentration is that the sodium hydroxide of 6.0mol/L and concentration (in terms of SiO ) is the mixed solution B of the sodium silicate of 0.5mol/L as precipitation agent;
  • Step 3 preparation concentration is the ammoniacal liquor of 8.0mol/L as complexing agent
  • Step 4 add the bottom liquid to the reactor until it overflows the bottom stirring paddle, start stirring, the pH value of the bottom liquid is 11.4, and the ammonia concentration is 6.0g/L;
  • Step 5 add the mixed salt solution A prepared in step 1, the mixed solution B prepared in step 2, and the ammonia water prepared in step 3 into the reaction kettle in parallel to react, and control the reaction temperature in the kettle to 55°C, pH to 11.4, The concentration is 6.0g/L;
  • Step 6 when it is detected that the D50 of the material in the reactor reaches 5.0 ⁇ m, stop feeding;
  • Step 7 performing solid-liquid separation on the materials in the kettle to obtain solid materials
  • Step 8 calcining the solid material at a temperature of 900° C. for 2 hours to obtain a calcined material
  • Step 9 soaking the calcined material in a sodium hydroxide solution with a mass concentration of 40% for 3 hours at a temperature of 105° C., and then washing with pure water to obtain a wet material;
  • Step 11 preparation concentration is the sodium hydroxide solution of 7.0mol/L as precipitation agent
  • Step 12 add the bottom liquid to the reaction kettle until it overflows the bottom stirring paddle, the pH value of the bottom liquid is 10.9, the ammonia concentration is 8.0g/L, and the wet material obtained in step 9 is added, and the stirring is started;
  • Step 13 adding the mixed salt solution C prepared in step 10, the sodium hydroxide solution prepared in step 11, and the ammonia water prepared in step 3 into the reaction kettle in parallel to carry out the reaction, controlling the reaction temperature in the kettle to be 55° C., and the pH to be 10.9,
  • the ammonia concentration is 8.0g/L;
  • Step 14 when it is detected that the D50 of the material in the reactor reaches 12.0 ⁇ m, stop feeding;
  • Step 15 performing solid-liquid separation on the materials in the kettle to obtain solid materials
  • step 16 the solid material is washed and dried, and then sieved and demagnetized in sequence to obtain the target precursor.
  • Example 2 a precursor Ni 0.6 Co 0.2 Mn 0.2 (OH) 2 is prepared.
  • the difference from Example 1 is that no inner core seed is prepared, and only steps 10-16 are performed.
  • the specific process is as follows:
  • Step 2 preparation concentration is the sodium hydroxide solution of 10.0mol/L as precipitation agent
  • Step 3 preparation concentration is the ammoniacal liquor of 6.0mol/L as complexing agent
  • Step 4 add the bottom liquid to the reaction kettle until it overflows the bottom stirring paddle, the pH value of the bottom liquid is 10.8, the ammonia concentration is 8.0g/L, and start stirring;
  • Step 5 the mixed salt solution C prepared in step 1, the sodium hydroxide solution prepared in step 2, and the ammonia water prepared in step 3 are added to the reaction kettle in parallel for reaction, and the reaction temperature in the kettle is controlled to be 55° C. and the pH is 10.8.
  • the ammonia concentration is 8.0g/L;
  • Step 6 when it is detected that the D50 of the material in the reactor reaches 6.0 ⁇ m, stop feeding;
  • Step 7 performing solid-liquid separation on the materials in the kettle to obtain solid materials
  • step 8 the solid material is washed and dried, and then sieved and demagnetized in sequence to obtain the target precursor.
  • Example 2 a precursor Ni 0.8 Co 0.1 Mn 0.1 (OH) 2 is prepared.
  • the difference from Example 2 is that no inner core seed is prepared, and only steps 10-16 are performed.
  • the specific process is as follows:
  • Step 2 preparation concentration is the sodium hydroxide solution of 4.0mol/L as precipitation agent
  • Step 3 preparation concentration is the ammoniacal liquor of 6.0mol/L as complexing agent
  • Step 4 add the bottom liquid to the reaction kettle until it overflows the bottom stirring paddle, the pH value of the bottom liquid is 10.8, the ammonia concentration is 10.0g/L, and start stirring;
  • Step 5 adding the mixed salt solution C prepared in step 1, the sodium hydroxide solution prepared in step 2, and the ammonia water prepared in step 3 into the reaction kettle in parallel to carry out the reaction, controlling the reaction temperature in the kettle to be 56° C., and the pH to be 10.8, The ammonia concentration is 10.0g/L;
  • Step 6 when it is detected that the D50 of the material in the reactor reaches 10.0 ⁇ m, stop feeding;
  • Step 7 performing solid-liquid separation on the materials in the kettle to obtain solid materials
  • step 8 the solid material is washed and dried, and then sieved and demagnetized in sequence to obtain the target precursor.
  • Example 3 a precursor Ni 0.5 Co 0.2 Mn 0.3 (OH) 2 is prepared.
  • No inner core seed is prepared, and only steps 10-16 are performed.
  • the specific process is as follows:
  • Step 2 preparation concentration is the sodium hydroxide solution of 7.0mol/L as precipitation agent
  • Step 3 preparation concentration is the ammoniacal liquor of 8.0mol/L as complexing agent
  • Step 4 add the bottom liquid to the reaction kettle until it overflows the bottom stirring paddle, the pH value of the bottom liquid is 10.9, the ammonia concentration is 8.0g/L, and start stirring;
  • Step 5 the mixed salt solution C prepared in step 1, the sodium hydroxide solution prepared in step 2, and the ammonia water prepared in step 3 are added to the reaction kettle in parallel for reaction, and the reaction temperature in the kettle is controlled to be 55° C. and the pH is 10.9.
  • the ammonia concentration is 8.0g/L;
  • Step 6 when it is detected that the D50 of the material in the reactor reaches 12.0 ⁇ m, stop feeding;
  • Step 7 performing solid-liquid separation on the materials in the kettle to obtain solid materials
  • step 8 the solid material is washed and dried, and then sieved and demagnetized in sequence to obtain the target precursor.
  • Example 1 33 Example 2 35 Example 3 42
  • Example 1 and Comparative Example 1 were mixed with lithium carbonate respectively according to the total molar ratio of lithium element to nickel, cobalt and manganese of 1.8:1, and were calcined in an oxygen atmosphere at 850°C for 12 hours to obtain corresponding positive electrode materials respectively.
  • Example 2 and Comparative Example 2 were mixed with lithium hydroxide according to the total molar ratio of lithium element to nickel-cobalt-manganese of 1.8:1, mixed uniformly, and calcined in an oxygen atmosphere at 800°C for 12 hours to obtain corresponding positive electrode materials respectively.
  • Example 3 and Comparative Example 3 were mixed with lithium carbonate respectively according to the total molar ratio of lithium element to nickel-cobalt-manganese of 1.8:1, and were calcined in an oxygen atmosphere at 900°C for 12 hours to obtain corresponding positive electrode materials respectively.
  • the positive electrode material obtained above is made into a button battery to test the electrochemical performance of a lithium ion battery.
  • the specific steps are: using N-methylpyrrolidone as a solvent, the positive electrode active material and acetylene are mixed according to the mass ratio of 8:1:1. Black and PVDF are mixed evenly, coated on aluminum foil, air-dried at 80°C for 8 hours, and then vacuum-dried at 120°C for 12 hours.
  • the battery was assembled in an argon-protected glove box, the negative electrode was a metal lithium sheet, the separator was a polypropylene film, and the electrolyte was 1M LiPF6-EC/DMC (1:1, v/v).
  • the cycle performance was tested at a current density of 1C, and the results are shown in Table 2.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本文公布一种抑制正极材料微裂纹的前驱体及其制备方法和应用,所述前驱体为球形或类球形的颗粒,颗粒由外壳和内核组成,所述外壳的化学通式为Ni 1-a-bCo aMn b(OH) 2,所述内核的化学通式为Ni 1-x-yCo xMn yO,所述内核为多孔结构。本申请的内核经过脱除硅后,出现了晶格空位,当其烧结为正极材料时可有效缓解内部因充放电带来的应力变化,从而起到抑制微裂纹的作用,提高材料的循环性能。

Description

抑制正极材料微裂纹的前驱体及其制备方法和应用 技术领域
本申请实施例涉及锂电池正极材料前驱体技术领域,例如一种抑制正极材料微裂纹的前驱体及其制备方法和应用。
背景技术
锂离子电池因其自身的一系列优点逐渐从消费电子领域延伸至其他工业生产领域。为了满足消费者对电动汽车里程的要求,高能量密度锂离子电池的开发受到了极大的关注。层状Li[Ni xCo yMn 1-x-y]O 2(NCM)和Li[Ni xCo yAl 1-x-y]O 2(NCA)具有相对低廉的成本、优越的可逆容量和倍率性能,是极具发展潜力的高能量密度锂离子电池正极材料。
然而,正极材料在充放电过程中,Li离子的嵌入和脱出会导致晶格参数的变化,进而导致材料微裂纹的形成。形成的微裂纹会暴露粒子内部的新表面,进一步加速结构衰减。镍含量越高,特别是当镍含量超过80%时,裂纹的破坏效果越明显。高镍正极材料循环寿命下降的主要原因是微裂纹,裂纹会造成正极材料的热稳定性、结构稳定性和循环稳定性同时降低。
其中的原因是,在充放电过程中,由于一次颗粒在长周期内循环时发生膨胀和收缩,随着粒子的反复膨胀和收缩,经过几次循环后,初生粒子内部会出现低角度的晶界。Li离子的脱嵌会降低结构的稳定性,在一定程度上,放大晶内应变,形成裂纹,尤其是颗粒内部,缓冲空间小,更易产生微裂纹。
裂纹一旦形成,对材料的损害比裂纹本身的危害要大得多。电解液会顺着裂纹进入二次颗粒内部,与二次粒子内部的Ni 4+发生反应,导致过渡金属溶解,严重破坏粒子结构。由于电解液和裂纹的这种作用,微裂纹成为高镍正极材料容量衰减的主要原因。一旦颗粒表面出现裂纹,就为电解液的渗透提供了通道。虽然微裂纹在放电过程中可以闭合,但内部电解质的作用是不可逆的。电解液会不可逆地进一步破坏颗粒的内部结构,使裂纹更加严重,最终导致颗粒解体降解。电解液和正极材料的反应产生了类NiO岩盐相,增加了材料的阻抗,从而影响了SOC的均匀性。这会产生更多的晶间和晶内裂纹,使颗粒的解体和粉碎更加严重。此外,锂离子的三维扩散路径受到电解质的强烈影响。随着电解 质的渗透,锂离子的三维扩散通道逐渐减少,这将增大电子与锂离子扩散路径的差值。最终,电解质对颗粒内部和表面的影响会导致SOC不均匀性,从而发生裂纹,最终导致材料的失效。
发明内容
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
本申请旨在至少解决上述现有技术中存在的技术问题之一。为此,本申请实施例提出一种抑制正极材料微裂纹的前驱体及其制备方法和应用。
根据本申请的一个方面,本申请实施例提出了一种抑制正极材料微裂纹的前驱体,所述前驱体为球形或类球形的颗粒,颗粒由外壳和内核组成,所述外壳的化学通式为Ni 1-a-bCo aMn b(OH) 2,其中,0<a<1,0<b<1,0<a+b<1,所述内核的化学通式为Ni 1-x-yCo xMn yO,其中,0<x<1,0<y<1,0<x+y<1,所述内核为多孔结构。
在本申请的一些实施方式中,所述内核的孔隙率为25-75%。
在本申请的一些实施方式中,所述内核的比表面积为22-30m 2/g,所述内核的D50为2.0-9.0μm。
在本申请的一些实施方式中,所述颗粒的比表面积为6-15m 2/g,所述颗粒的D50为5.0-20.0μm。
本申请还提供所述的前驱体的制备方法,包括以下步骤:
S1:按照元素摩尔比Ni:Co:Mn=(1-x-y):x:y配制镍钴锰的混合盐溶液A,将氢氧化钠和硅酸钠混合配制成混合溶液B,按照元素摩尔比Ni:Co:Mn=(1-a-b):a:b配制镍钴锰的混合盐溶液C;
S2:向第一底液中并流加入所述混合盐溶液A、所述混合溶液B和氨水进行反应,控制温度、pH、氨浓度,直至反应物料的D50达到目标值,停止进料,将反应物料固液分离,得到固体料;
S3:将所述固体料进行煅烧,得到煅烧料,将所述煅烧料置于第一氢氧化钠溶液中浸泡,固液分离得到湿料;
S4:将所述湿料加入到第二底液中,再并流加入所述混合盐溶液C、第二氢氧化钠溶液和氨水进行反应,控制温度、pH、氨浓度,直至反应物料的D50 达到目标值,停止进料,将反应物料固液分离,得到所述前驱体。
在本申请的一些实施方式中,配制所述混合盐溶液A采用镍、钴、锰的可溶性盐,可溶性盐为硫酸盐、硝酸盐或氯化盐中的至少一种。
在本申请的一些实施方式中,所述混合盐溶液A的金属离子总浓度为1.0-2.5mol/L;所述混合盐溶液C的金属离子总浓度为1.0-2.5mol/L。
在本申请的一些实施方式中,步骤S1中,所述混合溶液B中氢氧化钠的浓度为4.0-8.0mol/L,以SiO 2计,硅酸钠的浓度为0.1-1.0mol/L。
在本申请的一些实施方式中,所述第一底液和/或所述第二底液的pH值为10.8-11.5,氨浓度为2.0-10.0g/L。
在本申请的一些实施方式中,所述氨水的浓度为6.0-12.0mol/L。
在本申请的一些实施方式中,步骤S3中,所述第一氢氧化钠溶液的质量浓度为25-60%,所述浸泡的温度为85-130℃。进一步优选的,所述浸泡的时间为2-4h。
在本申请的一些实施方式中,步骤S2和/或步骤S4中,控制反应的温度为45-65℃,pH为10.8-11.5,氨浓度为2.0-10.0g/L。
在本申请的一些实施方式中,步骤S3中,所述煅烧的温度为700-1000℃,煅烧时间为1-2h。
在本申请的一些实施方式中,步骤S4中,所述第二氢氧化钠溶液的浓度为4.0-10.0mol/L。
本申请还提供所述的前驱体在制备锂离子正极材料或锂离子电池中的应用。
根据本申请的一种优选的实施方式,至少具有以下有益效果:
1、本申请一些实施例首先通过镍钴锰盐与氢氧化钠和硅酸钠的混合液形成共沉淀物,得到氢氧化镍钴锰与硅酸镍钴锰的复合材料,并将该复合材料进行高温煅烧,使硅酸镍钴锰结晶化,便于通过浓碱热浸泡除去硅,制得疏松多孔的镍钴锰氧化物作为目标前驱体的内核,将内核置于反应釜内作为晶种,从而在内核表面形成放射状的镍钴锰氢氧化物外壳,得到具有核壳结构的前驱体材料。
反应方程式如下:
M为镍钴锰,在氢氧化钠浓度较高的情况下,生成羟基硅酸盐:
3M 2++2SiO 3 2-+2OH -+H 2O=M 3Si 2O 9H 4
M 2++2OH -=M(OH) 2
高温煅烧:
M 3Si 2O 9H 4=MO+2MSiO 3+2H 2O
M(OH) 2=MO+H 2O
浓碱热浸泡:
MSiO 3+2NaOH=MO+H 2O+Na 2SiO 3
2、该前驱体的内核经过脱除硅后,出现了晶格空位,当其烧结为正极材料时可有效缓解内部因充放电带来的应力变化,从而起到抑制微裂纹的作用,提高材料的循环性能;该前驱体无需掺杂元素的添加,避免了掺杂元素导致材料比容量下降的问题。
在阅读并理解了附图和详细描述后,可以明白其他方面。
附图说明
附图用来提供对本文技术方案的进一步理解,并且构成说明书的一部分,与本申请的实施例一起用于解释本文的技术方案,并不构成对本文技术方案的限制。
下面结合附图和实施例对本申请做进一步的说明,其中:
图1为本申请实施例1制备的前驱体的SEM图。
具体实施方式
以下将结合实施例对本申请的构思及产生的技术效果进行清楚、完整地描述,以充分地理解本申请的目的、特征和效果。显然,所描述的实施例只是本申请的一部分实施例,而不是全部实施例,基于本申请的实施例,本领域的技术人员在不付出创造性劳动的前提下所获得的其他实施例,均属于本申请保护的范围。
实施例1
本实施例制备了一种抑制正极材料微裂纹的前驱体,前驱体为球形或类球形的颗粒,颗粒由外壳和内核组成,外壳的化学通式为Ni 0.6Co 0.2Mn 0.2(OH) 2,外壳呈放射状,内核的化学通式为Ni 0.6Co 0.2Mn 0.2O,内核为疏松多孔结构,内核的比表面积为26m 2/g,D50为4.0μm,颗粒整体的比表面积为8m 2/g,D50为 6.0μm。具体制备过程为:
步骤1,按照元素摩尔比Ni:Co:Mn=0.6:0.2:0.2,选用硫酸镍、硫酸钴、硫酸锰为原料,配制金属离子总浓度为1.0mol/L的镍钴锰的混合盐溶液A;
步骤2,配制浓度为4.0mol/L的氢氧化钠和浓度(以SiO 2计)为0.1mol/L的硅酸钠的混合溶液B作为沉淀剂;
步骤3,配制浓度为6.0mol/L的氨水作为络合剂;
步骤4,向反应釜中加入底液至漫过底层搅拌桨,启动搅拌,底液的pH值为11.5,氨浓度为10.0g/L;
步骤5,将步骤1配制的混合盐溶液A、步骤2配制的混合溶液B、步骤3配制的氨水并流加入到反应釜中进行反应,控制釜内反应温度为65℃,pH为11.5,氨浓度为10.0g/L;
步骤6,当检测到反应釜内物料的D50达到4.0μm时,停止进料;
步骤7,将釜内物料进行固液分离,得到固体料;
步骤8,将固体料在温度为1000℃下煅烧2h,得到煅烧料;
步骤9,将煅烧料置于质量浓度为60%的氢氧化钠溶液中浸泡4h,浸泡温度为130℃,再经纯水洗涤,得到湿料;
步骤10,按照元素摩尔比Ni:Co:Mn=0.6:0.2:0.2,选用硫酸镍、硫酸钴、硫酸锰为原料,配制金属离子总浓度为2.5mol/L的镍钴锰的混合盐溶液C;
步骤11,配制浓度为10.0mol/L的氢氧化钠溶液作为沉淀剂;
步骤12,向反应釜中加入底液至漫过底层搅拌桨,底液的pH值为10.8,氨浓度为8.0g/L,并加入步骤9得到的湿料,启动搅拌;
步骤13,将步骤10配制的混合盐溶液C、步骤11配制的氢氧化钠溶液、步骤3配制的氨水并流加入到反应釜中进行反应,控制釜内反应温度为55℃,pH为10.8,氨浓度为8.0g/L;
步骤14,当检测到反应釜内物料的D50达到6.0μm时,停止进料;
步骤15,将釜内物料进行固液分离,得到固体料;
步骤16,将固体料进行洗涤、干燥,再依次经过筛、除磁后即得到目标前驱体。
实施例2
本实施例制备了一种抑制正极材料微裂纹的前驱体,前驱体为球形或类球 形的颗粒,颗粒由外壳和内核组成,外壳的化学通式为Ni 0.8Co 0.1Mn 0.1(OH) 2,外壳呈放射状,内核的化学通式为Ni 0.8Co 0.1Mn 0.1O,内核为疏松多孔结构,内核的比表面积为28m 2/g,D50为2.0μm,颗粒整体的比表面积为13m 2/g,D50为10.0μm,具体制备过程为:
步骤1,按照元素摩尔比Ni:Co:Mn=0.8:0.1:0.1,选用氯化镍、氯化钴、氯化锰为原料,配制金属离子总浓度为1.0mol/L的镍钴锰的混合盐溶液A;
步骤2,配制浓度为4.0mol/L的氢氧化钠和浓度(以SiO 2计)为0.1mol/L的硅酸钠的混合溶液B作为沉淀剂;
步骤3,配制浓度为6.0mol/L的氨水作为络合剂;
步骤4,向反应釜中加入底液至漫过底层搅拌桨,启动搅拌,底液的pH值为11.2,氨浓度为5g/L;
步骤5,将步骤1配制的混合盐溶液A、步骤2配制的混合溶液B、步骤3配制的氨水并流加入到反应釜中进行反应,控制釜内反应温度为58℃,pH为11.2,氨浓度为5.0g/L;
步骤6,当检测到反应釜内物料的D50达到2.0μm时,停止进料;
步骤7,将釜内物料进行固液分离,得到固体料;
步骤8,将固体料在温度为700℃下煅烧2h,得到煅烧料;
步骤9,将煅烧料置于质量浓度为25%的氢氧化钠溶液中浸泡4h,浸泡温度为85℃,再经纯水洗涤,得到湿料;
步骤10,按照元素摩尔比Ni:Co:Mn=0.8:0.1:0.1,选用硫酸镍、硫酸钴、硫酸锰为原料,配制金属离子总浓度为1.0mol/L的镍钴锰的混合盐溶液C;
步骤11,配制浓度为4.0mol/L的氢氧化钠溶液作为沉淀剂;
步骤12,向反应釜中加入底液至漫过底层搅拌桨,底液的pH值为10.8,氨浓度为10.0g/L,并加入步骤9得到的湿料,启动搅拌;
步骤13,将步骤10配制的混合盐溶液C、步骤11配制的氢氧化钠溶液、步骤3配制的氨水并流加入到反应釜中进行反应,控制釜内反应温度为56℃,pH为10.8,氨浓度为10.0g/L;
步骤14,当检测到反应釜内物料的D50达到10.0μm时,停止进料;
步骤15,将釜内物料进行固液分离,得到固体料;
步骤16,将固体料进行洗涤、干燥,再依次经过筛、除磁后即得到目标前 驱体。
实施例3
本实施例制备了一种抑制正极材料微裂纹的前驱体,前驱体为球形或类球形的颗粒,颗粒由外壳和内核组成,外壳的化学通式为Ni 0.5Co 0.2Mn 0.3(OH) 2,外壳呈放射状,内核的化学通式为Ni 0.5Co 0.2Mn 0.3O,内核为疏松多孔结构,内核的比表面积为23m 2/g,D50为5.0μm,颗粒整体的比表面积为11m 2/g,D50为12.0μm,具体制备过程为:
步骤1,按照元素摩尔比Ni:Co:Mn=0.5:0.2:0.3,选用硝酸镍、硝酸钴、硝酸锰为原料,配制金属离子总浓度为1.5mol/L的镍钴锰的混合盐溶液A;
步骤2,配制浓度为6.0mol/L的氢氧化钠和浓度(以SiO 2计)为0.5mol/L的硅酸钠的混合溶液B作为沉淀剂;
步骤3,配制浓度为8.0mol/L的氨水作为络合剂;
步骤4,向反应釜中加入底液至漫过底层搅拌桨,启动搅拌,底液的pH值为11.4,氨浓度为6.0g/L;
步骤5,将步骤1配制的混合盐溶液A、步骤2配制的混合溶液B、步骤3配制的氨水并流加入到反应釜中进行反应,控制釜内反应温度为55℃,pH为11.4,氨浓度为6.0g/L;
步骤6,当检测到反应釜内物料的D50达到5.0μm时,停止进料;
步骤7,将釜内物料进行固液分离,得到固体料;
步骤8,将固体料在温度为900℃下煅烧2h,得到煅烧料;
步骤9,将煅烧料置于质量浓度为40%的氢氧化钠溶液中浸泡3h,浸泡温度为105℃,再经纯水洗涤,得到湿料;
步骤10,按照元素摩尔比Ni:Co:Mn=0.5:0.2:0.3,选用硫酸镍、硫酸钴、硫酸锰为原料,配制金属离子总浓度为1.5mol/L的镍钴锰的混合盐溶液C;
步骤11,配制浓度为7.0mol/L的氢氧化钠溶液作为沉淀剂;
步骤12,向反应釜中加入底液至漫过底层搅拌桨,底液的pH值为10.9,氨浓度为8.0g/L,并加入步骤9得到的湿料,启动搅拌;
步骤13,将步骤10配制的混合盐溶液C、步骤11配制的氢氧化钠溶液、步骤3配制的氨水并流加入到反应釜中进行反应,控制釜内反应温度为55℃,pH为10.9,氨浓度为8.0g/L;
步骤14,当检测到反应釜内物料的D50达到12.0μm时,停止进料;
步骤15,将釜内物料进行固液分离,得到固体料;
步骤16,将固体料进行洗涤、干燥,再依次经过筛、除磁后即得到目标前驱体。
对比例1
本对比例制备了一种前驱体Ni 0.6Co 0.2Mn 0.2(OH) 2,与实施例1的区别在于,不制备内核晶种,只进行步骤10-16,具体过程为:
步骤1,按照元素摩尔比Ni:Co:Mn=0.6:0.2:0.2,选用硫酸镍、硫酸钴、硫酸锰为原料,配制金属离子总浓度为2.5mol/L的镍钴锰的混合盐溶液C;
步骤2,配制浓度为10.0mol/L的氢氧化钠溶液作为沉淀剂;
步骤3,配制浓度为6.0mol/L的氨水作为络合剂;
步骤4,向反应釜中加入底液至漫过底层搅拌桨,底液的pH值为10.8,氨浓度为8.0g/L,启动搅拌;
步骤5,将步骤1配制的混合盐溶液C、步骤2配制的氢氧化钠溶液、步骤3配制的氨水并流加入到反应釜中进行反应,控制釜内反应温度为55℃,pH为10.8,氨浓度为8.0g/L;
步骤6,当检测到反应釜内物料的D50达到6.0μm时,停止进料;
步骤7,将釜内物料进行固液分离,得到固体料;
步骤8,将固体料进行洗涤、干燥,再依次经过筛、除磁后即得到目标前驱体。
对比例2
本对比例制备了一种前驱体Ni 0.8Co 0.1Mn 0.1(OH) 2,与实施例2的区别在于,不制备内核晶种,只进行步骤10-16,具体过程为:
步骤1,按照元素摩尔比Ni:Co:Mn=0.8:0.1:0.1,选用硫酸镍、硫酸钴、硫酸锰为原料,配制金属离子总浓度为1.0mol/L的镍钴锰的混合盐溶液C;
步骤2,配制浓度为4.0mol/L的氢氧化钠溶液作为沉淀剂;
步骤3,配制浓度为6.0mol/L的氨水作为络合剂;
步骤4,向反应釜中加入底液至漫过底层搅拌桨,底液的pH值为10.8,氨浓度为10.0g/L,启动搅拌;
步骤5,将步骤1配制的混合盐溶液C、步骤2配制的氢氧化钠溶液、步骤 3配制的氨水并流加入到反应釜中进行反应,控制釜内反应温度为56℃,pH为10.8,氨浓度为10.0g/L;
步骤6,当检测到反应釜内物料的D50达到10.0μm时,停止进料;
步骤7,将釜内物料进行固液分离,得到固体料;
步骤8,将固体料进行洗涤、干燥,再依次经过筛、除磁后即得到目标前驱体。
对比例3
本对比例制备了一种前驱体Ni 0.5Co 0.2Mn 0.3(OH) 2,与实施例3的区别在于,不制备内核晶种,只进行步骤10-16,具体过程为:
步骤1,按照元素摩尔比Ni:Co:Mn=0.5:0.2:0.3,选用硫酸镍、硫酸钴、硫酸锰为原料,配制金属离子总浓度为1.5mol/L的镍钴锰的混合盐溶液C;
步骤2,配制浓度为7.0mol/L的氢氧化钠溶液作为沉淀剂;
步骤3,配制浓度为8.0mol/L的氨水作为络合剂;
步骤4,向反应釜中加入底液至漫过底层搅拌桨,底液的pH值为10.9,氨浓度为8.0g/L,启动搅拌;
步骤5,将步骤1配制的混合盐溶液C、步骤2配制的氢氧化钠溶液、步骤3配制的氨水并流加入到反应釜中进行反应,控制釜内反应温度为55℃,pH为10.9,氨浓度为8.0g/L;
步骤6,当检测到反应釜内物料的D50达到12.0μm时,停止进料;
步骤7,将釜内物料进行固液分离,得到固体料;
步骤8,将固体料进行洗涤、干燥,再依次经过筛、除磁后即得到目标前驱体。
试验例
1、内核孔隙率测试
采用压汞仪测定实施例1-3中,步骤9得到的湿料即内核的孔隙率,测定结果见表1所示。
表1
  孔隙率%
实施例1 33
实施例2 35
实施例3 42
1、电化学性能测试
将实施例1、对比例1,分别与碳酸锂按照锂元素与镍钴锰总摩尔比为1.8:1,混合均匀,在氧气氛围、850℃下煅烧12h,分别得到对应的正极材料。
将实施例2、对比例2,分别与氢氧化锂按照锂元素与镍钴锰总摩尔比为1.8:1,混合均匀,在氧气氛围、800℃下煅烧12h,分别得到对应的正极材料。
将实施例3、对比例3,分别与碳酸锂按照锂元素与镍钴锰总摩尔比为1.8:1,混合均匀,在氧气氛围、900℃下煅烧12h,分别得到对应的正极材料。
将以上得到的正极材料配成扣式电池进行锂离子电池电化学性能测试,其具体步骤为:以N-甲基吡咯烷酮为溶剂,按照质量比8:1:1的比例将正极活性物质与乙炔黑、PVDF混合均匀,涂覆于铝箔上,经80℃鼓风干燥8h后,于120℃真空干燥12h。在氩气保护的手套箱中装配电池,负极为金属锂片,隔膜为聚丙烯膜,电解液为1M LiPF6-EC/DMC(1:1,v/v)。电流密度为1C=160mA/g,充放电截止电压为2.7-4.3V。测试在1C电流密度下的循环性能,结果如表2所示。
表2
Figure PCTCN2022135887-appb-000001
从表2可见,实施例的比容量、循环性能均高于对比例,这是由于实施例具有内部疏松多孔的内核结构,可有效缓解正极材料内部因充放电带来的应力变化,从而起到抑制微裂纹的作用,提高材料的比容量和循环性能。
上面结合附图对本申请实施例作了详细说明,但是本申请不限于上述实施 例,在所属技术领域普通技术人员所具备的知识范围内,还可以在不脱离本申请宗旨的前提下作出各种变化。此外,在不冲突的情况下,本申请的实施例及实施例中的特征可以相互组合。

Claims (10)

  1. 一种抑制正极材料微裂纹的前驱体,其中,所述前驱体为球形或类球形的颗粒,颗粒由外壳和内核组成,所述外壳的化学通式为Ni 1-a-bCo aMn b(OH) 2,其中,0<a<1,0<b<1,0<a+b<1,所述内核的化学通式为Ni 1-x-yCo xMn yO,其中,0<x<1,0<y<1,0<x+y<1,所述内核为多孔结构。
  2. 根据权利要求1所述的前驱体,其中,所述内核的孔隙率为25-75%。
  3. 根据权利要求1所述的前驱体,其中,所述内核的比表面积为22-30m 2/g,所述内核的D50为2.0-9.0μm。
  4. 根据权利要求1所述的前驱体,其中,所述颗粒的比表面积为6-15m 2/g,所述颗粒的D50为5.0-20.0μm。
  5. 如权利要求1-4任一项所述的前驱体的制备方法,其包括以下步骤:
    S1:按照元素摩尔比Ni:Co:Mn=(1-x-y):x:y配制镍钴锰的混合盐溶液A,将氢氧化钠和硅酸钠混合配制成混合溶液B,按照元素摩尔比Ni:Co:Mn=(1-a-b):a:b配制镍钴锰的混合盐溶液C;
    S2:向第一底液中并流加入所述混合盐溶液A、所述混合溶液B和氨水进行反应,控制温度、pH、氨浓度,直至反应物料的D50达到目标值,停止进料,将反应物料固液分离,得到固体料;
    S3:将所述固体料进行煅烧,得到煅烧料,将所述煅烧料置于第一氢氧化钠溶液中浸泡,固液分离得到湿料;
    S4:将所述湿料加入到第二底液中,再并流加入所述混合盐溶液C、第二氢氧化钠溶液和氨水进行反应,控制温度、pH、氨浓度,直至反应物料的D50达到目标值,停止进料,将反应物料固液分离,得到所述前驱体。
  6. 根据权利要求5所述的制备方法,其中,所述混合盐溶液A的金属离子总浓度为1.0-2.5mol/L;所述混合盐溶液C的金属离子总浓度为1.0-2.5mol/L。
  7. 根据权利要求5所述的制备方法,其中,步骤S1中,所述混合溶液B中氢氧化钠的浓度为4.0-8.0mol/L,以SiO 2计,硅酸钠的浓度为0.1-1.0mol/L。
  8. 根据权利要求5所述的制备方法,其中,所述第一底液和/或所述第二底 液的pH值为10.8-11.5,氨浓度为2.0-10.0g/L。
  9. 根据权利要求5所述的制备方法,其中,步骤S3中,所述第一氢氧化钠溶液的质量浓度为25-60%,所述浸泡的温度为85-130℃。
  10. 如权利要求1-4任一项所述的前驱体在制备锂离子正极材料或锂离子电池中的应用。
PCT/CN2022/135887 2022-02-16 2022-12-01 抑制正极材料微裂纹的前驱体及其制备方法和应用 WO2023155541A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210141801.4A CN114590846A (zh) 2022-02-16 2022-02-16 抑制正极材料微裂纹的前驱体及其制备方法和应用
CN202210141801.4 2022-02-16

Publications (1)

Publication Number Publication Date
WO2023155541A1 true WO2023155541A1 (zh) 2023-08-24

Family

ID=81804851

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/135887 WO2023155541A1 (zh) 2022-02-16 2022-12-01 抑制正极材料微裂纹的前驱体及其制备方法和应用

Country Status (2)

Country Link
CN (1) CN114590846A (zh)
WO (1) WO2023155541A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114590846A (zh) * 2022-02-16 2022-06-07 广东邦普循环科技有限公司 抑制正极材料微裂纹的前驱体及其制备方法和应用
CN114920306B (zh) * 2022-06-29 2024-03-26 荆门市格林美新材料有限公司 正极材料前驱体、正极材料、其制备方法和钠离子电池

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110817978A (zh) * 2019-11-13 2020-02-21 河北彩客化学股份有限公司 一种锂电池用正极材料前驱体及其制备方法
CN112968153A (zh) * 2021-02-02 2021-06-15 天津巴莫科技有限责任公司 一种核壳结构正极材料及其制备方法
CN113247970A (zh) * 2021-06-21 2021-08-13 金驰能源材料有限公司 一种中空型正极材料及其前驱体、以及制备方法
CN113461069A (zh) * 2021-05-18 2021-10-01 合肥国轩高科动力能源有限公司 一种锂离子电池正极材料前驱体及其制备方法和锂离子电池正极材料
CN113880148A (zh) * 2021-10-22 2022-01-04 广东佳纳能源科技有限公司 一种三元前驱体及其制备方法与应用
CN113889615A (zh) * 2021-08-30 2022-01-04 中南大学 一种无钴高镍三元浓度梯度核壳结构锂离子电池正极材料及其制备方法
CN114590846A (zh) * 2022-02-16 2022-06-07 广东邦普循环科技有限公司 抑制正极材料微裂纹的前驱体及其制备方法和应用

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110817978A (zh) * 2019-11-13 2020-02-21 河北彩客化学股份有限公司 一种锂电池用正极材料前驱体及其制备方法
CN112968153A (zh) * 2021-02-02 2021-06-15 天津巴莫科技有限责任公司 一种核壳结构正极材料及其制备方法
CN113461069A (zh) * 2021-05-18 2021-10-01 合肥国轩高科动力能源有限公司 一种锂离子电池正极材料前驱体及其制备方法和锂离子电池正极材料
CN113247970A (zh) * 2021-06-21 2021-08-13 金驰能源材料有限公司 一种中空型正极材料及其前驱体、以及制备方法
CN113889615A (zh) * 2021-08-30 2022-01-04 中南大学 一种无钴高镍三元浓度梯度核壳结构锂离子电池正极材料及其制备方法
CN113880148A (zh) * 2021-10-22 2022-01-04 广东佳纳能源科技有限公司 一种三元前驱体及其制备方法与应用
CN114590846A (zh) * 2022-02-16 2022-06-07 广东邦普循环科技有限公司 抑制正极材料微裂纹的前驱体及其制备方法和应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DU BAODONG, MO YAN, JIN HONGFEI, LI XIRAN, QU YANYU, LI DE, CAO BOKAI, JIA XIAOBO, LU YANG, CHEN YONG: "Radially Microstructural Design of LiNi 0.8 Co 0.1 Mn 0.1 O 2 Cathode Material toward Long-Term Cyclability and High Rate Capability at High Voltage", ACS APPLIED ENERGY MATERIALS, vol. 3, no. 7, 27 July 2020 (2020-07-27), pages 6657 - 6669, XP093084759, ISSN: 2574-0962, DOI: 10.1021/acsaem.0c00803 *

Also Published As

Publication number Publication date
CN114590846A (zh) 2022-06-07

Similar Documents

Publication Publication Date Title
CN112750999B (zh) 正极材料及其制备方法和锂离子电池
WO2023155541A1 (zh) 抑制正极材料微裂纹的前驱体及其制备方法和应用
WO2020043140A1 (zh) 三元正极材料及其制备方法、锂离子电池
US20220255066A1 (en) Composite positive electrode material for lithium ion battery, lithium ion battery, and vehicle
CN106784790B (zh) 一种镍钴锰酸锂三元正极材料的制备方法
JP2022179559A (ja) リチウム二次電池用リチウム複合酸化物及びその製造方法
KR20170102293A (ko) 리튬 이온 배터리용 분급 구조를 갖는 다성분 재료, 이의 제조 방법, 리튬 이온 배터리 및 리튬 이온 배터리의 양극
CN107240692A (zh) 一种球形掺杂锰酸锂的制备方法
WO2023179245A1 (zh) 一种高镍三元正极材料及其制备方法和应用
CN114361440A (zh) 一种具有核壳结构的高电压三元正极材料及其制备方法
JP2021169405A (ja) リチウム二次電池用リチウム複合酸化物及びその製造方法
KR20160091172A (ko) 잔류 리튬이 감소된 양극활물질의 제조 방법 및 이에 의하여 제조된 잔류 리튬이 감소된 양극활물질
JP7150911B2 (ja) リチウム二次電池用リチウム複合酸化物及びその製造方法
WO2023207246A1 (zh) 一种高振实密度三元前驱体及其制备方法
JP7271848B2 (ja) リチウムイオン二次電池用正極活物質の製造方法
CN114804235B (zh) 一种高电压镍钴锰酸锂正极材料及其制备方法和应用
CN110863245A (zh) 三元正极材料及其制备方法、锂离子电池和电动汽车
WO2024016662A1 (zh) 一种正极材料用复合包覆剂、一种高镍单晶正极材料和电池
CN115732661A (zh) 一种正极活性材料及其应用
CN112701276A (zh) 一种四元多晶正极材料及其制备方法和应用
CN115498171A (zh) 一种高镍三元正极材料及其制备方法和应用
CN116031380A (zh) 类多晶钠离子正极材料及其制备方法和应用
KR101338371B1 (ko) 리튬-니켈-코발트-알루미늄 복합 산화물의 제조 방법, 이에 의하여 제조된 리튬-니켈-코발트-알루미늄 복합 산화물 및 이를 포함하는 리튬 이차 전지
CN112824327A (zh) 一种三元电极材料的回收方法
Hou et al. A stable Li-deficient oxide as high-performance cathode for advanced lithium-ion batteries

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22926845

Country of ref document: EP

Kind code of ref document: A1