WO2021088288A1 - 用仲酰胺/烷基醇复合溶剂从含镁卤水中分离镁提取锂和硼的萃取体系、萃取方法和其应用 - Google Patents

用仲酰胺/烷基醇复合溶剂从含镁卤水中分离镁提取锂和硼的萃取体系、萃取方法和其应用 Download PDF

Info

Publication number
WO2021088288A1
WO2021088288A1 PCT/CN2020/079078 CN2020079078W WO2021088288A1 WO 2021088288 A1 WO2021088288 A1 WO 2021088288A1 CN 2020079078 W CN2020079078 W CN 2020079078W WO 2021088288 A1 WO2021088288 A1 WO 2021088288A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
magnesium
extraction
phase
brine
Prior art date
Application number
PCT/CN2020/079078
Other languages
English (en)
French (fr)
Inventor
杨立新
周钦耀
谢倩玲
李聪
刘长
李海博
Original Assignee
湘潭大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 湘潭大学 filed Critical 湘潭大学
Publication of WO2021088288A1 publication Critical patent/WO2021088288A1/zh
Priority to US17/577,065 priority Critical patent/US20220135416A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/006Wet processes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B35/00Boron; Compounds thereof
    • C01B35/08Compounds containing boron and nitrogen, phosphorus, oxygen, sulfur, selenium or tellurium
    • C01B35/10Compounds containing boron and oxygen
    • C01B35/1045Oxyacids
    • C01B35/1054Orthoboric acid
    • C01B35/1081Preparation by working up other natural sources, e.g. seawater
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B35/00Boron; Compounds thereof
    • C01B35/08Compounds containing boron and nitrogen, phosphorus, oxygen, sulfur, selenium or tellurium
    • C01B35/10Compounds containing boron and oxygen
    • C01B35/1045Oxyacids
    • C01B35/1054Orthoboric acid
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01DCOMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
    • C01D15/00Lithium compounds
    • C01D15/02Oxides; Hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01DCOMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
    • C01D15/00Lithium compounds
    • C01D15/04Halides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01DCOMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
    • C01D15/00Lithium compounds
    • C01D15/08Carbonates; Bicarbonates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01DCOMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
    • C01D3/00Halides of sodium, potassium or alkali metals in general
    • C01D3/04Chlorides
    • C01D3/06Preparation by working up brines; seawater or spent lyes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B26/00Obtaining alkali, alkaline earth metals or magnesium
    • C22B26/10Obtaining alkali metals
    • C22B26/12Obtaining lithium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B26/00Obtaining alkali, alkaline earth metals or magnesium
    • C22B26/20Obtaining alkaline earth metals or magnesium
    • C22B26/22Obtaining magnesium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/20Treatment or purification of solutions, e.g. obtained by leaching
    • C22B3/26Treatment or purification of solutions, e.g. obtained by leaching by liquid-liquid extraction using organic compounds
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/20Treatment or purification of solutions, e.g. obtained by leaching
    • C22B3/26Treatment or purification of solutions, e.g. obtained by leaching by liquid-liquid extraction using organic compounds
    • C22B3/262Treatment or purification of solutions, e.g. obtained by leaching by liquid-liquid extraction using organic compounds using alcohols or phenols
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/20Treatment or purification of solutions, e.g. obtained by leaching
    • C22B3/26Treatment or purification of solutions, e.g. obtained by leaching by liquid-liquid extraction using organic compounds
    • C22B3/32Carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/20Treatment or purification of solutions, e.g. obtained by leaching
    • C22B3/26Treatment or purification of solutions, e.g. obtained by leaching by liquid-liquid extraction using organic compounds
    • C22B3/40Mixtures
    • C22B3/402Mixtures of acyclic or carbocyclic compounds of different types
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/34Simultaneous production of alkali metal hydroxides and chlorine, oxyacids or salts of chlorine, e.g. by chlor-alkali electrolysis

Definitions

  • the invention relates to a method for extracting lithium and boron from magnesium-containing brine, in particular to an extraction system, an extraction method and its application for separating magnesium and extracting lithium and boron from magnesium-containing brine by using a composite solvent.
  • lithium has been called the new "gold” and the "white oil” of the 21st century.
  • Boron is widely used in light industry, daily chemicals, glass ceramics, metallurgy, medicine, electromechanical, electronics, nuclear industry and agriculture.
  • boric acid is produced by the acidification cooling crystallization method, and at the same time, a brine containing a low concentration of lithium and boron is obtained, from which lithium and boron are then extracted.
  • Lithium carbonate (CN103523801B) is prepared by potassium precipitation mother liquor precipitation method. Yu Xiaoping uses a mixed extraction system to simultaneously extract boron and lithium in brine, and then uses acidic solution and alkaline solution to separate lithium and boron in the organic phase. Back extraction (CN108342595A), the former uses different technical means, the extraction of boron and lithium can only be carried out step by step, not suitable for brine with high calcium and/or magnesium content, and the latter involves many steps, long processes, and extraction The stability of the agent is still affected by acid and alkali.
  • Alkyl alcohol is a kind of neutral solvent with stable properties. It has specific coordination extraction ability for boric acid molecules. It is divided into monohydric alcohol and polyhydric alcohol. If it can be combined with the new lithium extractant, it may form an extraction system that exceeds expectations.
  • the solvent extraction method may truly realize the simultaneous co-extraction of lithium and boron, separate from the magnesium salt in a large amount of mother liquor, and convert the salt lake high-magnesium-lithium ratio brine into low-magnesium-lithium ratio brine. It can prepare chemical products such as lithium chloride, lithium carbonate and lithium hydroxide that are needed on the market, and can also purify brine and enrich boron to prepare boric acid products.
  • the purpose of the present invention is to address the deficiencies in the prior art methods and provide an economical and effective extraction system, extraction method and application for separating magnesium from magnesium-containing brine by using a secondary amide/alkyl alcohol composite solvent to extract lithium and boron .
  • An extraction system for separating magnesium and extracting lithium and boron from magnesium-containing brine with a secondary amide/alkyl alcohol composite solvent.
  • the extraction system contains two types of substances A and B; among them, type A is a secondary amide composed of a single compound or two It is composed of a mixture of more than one species; wherein, a single compound has a structure as shown in formula (I):
  • R 1 is selected from a C2-C12 alkyl group or a C3-C12 cycloalkyl group containing a monocyclic structure
  • R 2 is selected from a C1-C11 alkyl group or a C3-C11 cycloalkyl group containing a monocyclic structure
  • alkyl or cycloalkyl includes various isomers (because R 1 and R 2 can be changed, when When R 1 and R 2 are uniquely determined, the Type A substance is a single compound, and the mixture refers to a substance formed by mixing two or more compounds produced with the change of R 1 and R 2 );
  • type B substances are alkyl alcohols consisting of a single compound or a mixture of two or more; among them, a single compound has a structure as shown in formula (II):
  • R 3 is selected from C8 to C20 alkyl groups, where the alkyl groups include linear or branched various isomers (because R 3 can be changed, when R 3 is uniquely determined, B
  • the class substance is a single compound, and the mixture refers to a substance formed by mixing two or more compounds produced with the change of R 3);
  • the freezing point of an extraction system containing two types of substances A and B is less than 0°C (the freezing point of a single component constituting the extraction system may be less than, equal to, or greater than 0°C.
  • the freezing point of a single component may be less than, equal to, or greater than 0°C.
  • the conditions of the extraction system when the freezing point of a single component is greater than or equal to 0°C, it may be mixed with other components with a freezing point less than 0°C, dissolve and finally form a mixture with a freezing point less than 0°C).
  • the type A substance mainly plays the role of extracting lithium.
  • the volume percentage in the entire organic phase is 0-100%, excluding the two endpoints (when the volume percentage of the type A substance is high, there is Facilitate the extraction of lithium from magnesium-containing brine);
  • the B-type substances mainly play the role of extracting boron.
  • the volume percentage in the entire organic phase is 0-100%, excluding the two endpoints (when B When the volume percentage of such substances is high, it is beneficial to extract boron from magnesium-containing brine).
  • the volume percentage of the A substance in the entire organic phase is 50-90%, and the B substance in the entire organic phase The volume percentage is 10-50% (when the volume percentages of the two types of substances A and B are relatively large, it is beneficial to extract lithium and boron from the magnesium-containing brine at the same time).
  • the diluent 260# solvent oil, 300# solvent oil or sulfonated kerosene is also included.
  • the extraction method for separating magnesium from magnesium-containing brine with a secondary amide/alkyl alcohol composite solvent to extract lithium and boron includes the following steps:
  • magnesium-containing brine as the pre-extraction brine phase; wherein, in the magnesium-containing brine, the concentration of lithium ions is 0.1-21 g/L, the concentration of magnesium ions is 80-125 g/L, and the concentration of chloride ions is 200 ⁇ 400g/L, the mass ratio of magnesium to lithium is 4.8 ⁇ 1100:1, the concentration of boric acid and its borate ion is 0.5 ⁇ 20g/L based on B 2 O 3 , and the density of brine is 1.25 ⁇ 1.38g/cm at 20°C 3.
  • Use hydrochloric acid or sulfuric acid to adjust the pH value of brine between 0-7;
  • the magnesium-containing brine also contains one or two or more of sodium ion, potassium ion, iron ion, ferrous ion or sulfate.
  • the magnesium-containing brine includes lithium and boron-containing salt lake brine, but is not limited to this kind of brine.
  • the extraction temperature is 0-50°C; the two-phase mixing is performed by stirring, and the two-phase separation after extraction is performed by centrifugal separation or clarification and sedimentation.
  • the method further includes the following steps:
  • step S5. Return the organic phase after the stripping to step S2 to realize the recycling use of the extraction system.
  • the stripping temperature is 0-50°C; the two-phase mixing is carried out by stirring, and the two-phase separation after stripping is carried out by centrifugal separation or clarification and sedimentation.
  • the application of the extraction method for separating magnesium and extracting lithium and boron from magnesium-containing brine with a secondary amide/alkyl alcohol composite solvent in obtaining boric acid, which is a boron product further includes the following steps after the step S4:
  • the application of the extraction method of separating magnesium and extracting lithium and boron from magnesium-containing brine by using a secondary amide/alkyl alcohol composite solvent in obtaining the lithium product lithium chloride, after the step S4, further includes the following steps:
  • an impurity removing agent is added to remove the sulfate radical and the remaining magnesium ions to obtain a solution refined lithium chloride solution;
  • the impurity removing agent used is calcium oxide and calcium hydroxide , Calcium chloride, barium chloride, sodium carbonate, sodium oxalate or sodium hydroxide, one or more than two compounds;
  • the refined lithium chloride solution is concentrated, crystallized, separated and dried to obtain a lithium chloride product.
  • the application of the extraction method of separating magnesium and extracting lithium and boron from magnesium-containing brine with a secondary amide/alkyl alcohol composite solvent in obtaining lithium carbonate, which is a lithium product further includes the following steps after the step S4:
  • an impurity removing agent is added to remove the sulfate radical and the remaining magnesium ions to obtain a solution refined lithium chloride solution;
  • the impurity removing agent used is calcium oxide and calcium hydroxide , Calcium chloride, barium chloride, sodium carbonate, sodium oxalate or sodium hydroxide, one or more than two compounds;
  • the application of the extraction method of separating magnesium and extracting lithium and boron from magnesium-containing brine with a secondary amide/alkyl alcohol composite solvent in obtaining the lithium product lithium hydroxide, after the step S4, further includes the following steps:
  • an impurity removing agent is added to remove the sulfate radical and the remaining magnesium ions to obtain a solution refined lithium chloride solution;
  • the impurity removing agent used is calcium oxide and calcium hydroxide , Calcium chloride, barium chloride, sodium carbonate, sodium oxalate or sodium hydroxide, one or more than two compounds;
  • the method further includes the following steps:
  • the source of the secondary amide compound used in the examples of the present invention is synthesized by reacting organic acid chlorides or acid anhydrides with primary amines in a stoichiometric ratio, and then washed with water and purified by vacuum distillation, using the Agilent 7890A/5975C GC/MS instrument. Test evaluation is obtained.
  • the source of the alkyl alcohol compound used in the examples of the present invention was purchased from a chemical product company.
  • the secondary amide as the A substance in the extraction system has a simple molecular structure, easy source, and easy production. It is used as an extractant for lithium. It is a new type of special component for separating magnesium and extracting lithium from magnesium-containing brine.
  • the secondary amide functional group It is the key part of lithium-magnesium separation and extraction of lithium. The hydrogen atoms on N–H shift to low-field 1 H NMR spectrum before and after extraction, which plays a key role in the extraction of Li +.
  • Alkyl alcohol as the B substance in the extraction system is used as an extractant for boron in brine, which can effectively improve the physical properties of the composite solvent such as the viscosity and freezing point, increase the mixing entropy of the system, and produce synergistic co-extraction.
  • the loaded organic phase is easy to back-extract with water directly, without the need to use acid to strengthen the back-extraction of Li + , and there is no need to use alkali to neutralize the previous acid to restore the organic
  • the extraction capacity of the phase and the acidity and alkalinity of the water phase greatly reduce the consumption of acid and alkali during the separation of lithium and magnesium in the brine, and realize the two-way balance of the extraction and stripping process. It is also easy to carry out the extraction of lithium and boron while extracting lithium and boron. Back extraction. After the magnesium-containing brine is subjected to multi-stage countercurrent extraction, the separation coefficient of lithium and magnesium is large, and the mass ratio of magnesium to lithium in the water phase after the stripping is significantly reduced.
  • Fig. 1 is an extraction system, an extraction method and a process flow diagram of its application for separating magnesium and extracting lithium and boron from magnesium-containing brine by using a secondary amide/alkyl alcohol composite solvent according to the present invention.
  • Table 34 shows the common names, corresponding standardized names and codes of the secondary amides of substance A involved in the examples of the present invention.
  • Table 35 shows the commonly used names, corresponding standardized names and CAS numbers of substance B alkyl alcohols involved in the examples of the present invention.
  • a salt lake brine Qaidam Basin Qinghai Li +, Mg 2+, and B 2 O 3 contents were 2.00,113.43 and 8.15g / L, Mg-Li mass ratio of 56.67: 1, wherein the Na +, K +, Cl - with The content is 3.83, 1.60, 325.98 and 44.00g/L, the density of brine is 1.34g/cm 3 , and the pH value of brine is 4.3.
  • Alkyl alcohol accounts for 40% of the organic phase volume.
  • the volume ratio of phase to salt lake brine is 5:1.
  • the single-stage extraction rate of Li + is 40.47%
  • the single-stage extraction rate of Mg 2+ is 0.69%
  • the separation coefficient of lithium and magnesium is 98.27.
  • the single-stage back extraction rate of Li + was 74.38%
  • the single-stage back extraction rate of Mg 2+ was 89.14%
  • the separation coefficient of lithium and magnesium after the back extraction was 0.35
  • the mass ratio of magnesium to lithium in the water phase dropped to 1.17.
  • the single-stage extraction rate of B 2 O 3 was 42.66%
  • the single-stage back extraction rate of B 2 O 3 was 82.46%.
  • the magnet in the Erlenmeyer flask insert the matching air condenser at the mouth of the flask to prevent the liquid from splashing out, put it in the DF-101S type heat-collecting thermostatic heating magnetic stirrer, mix, stir, and extract at 20°C for 30 minutes. Then the mixed liquid was transferred to a 100mL plastic test tube, and centrifuged at 4500r/min for 10min in an LD5-10 benchtop centrifuge. The two-phase interface was clear. After phase separation, the extracted organic phase and the remaining brine phase were obtained.
  • the single-stage extraction rate of Li + is 52.43%
  • the single-stage extraction rate of Mg 2+ is 3.83%
  • the separation coefficient of lithium and magnesium is 27.68.
  • the single-stage back extraction rate of Li + was 83.38%
  • the rate of single-stage back extraction of Mg 2+ was 38.25%.
  • the separation coefficient of lithium and magnesium was 8.10, and the mass ratio of magnesium to lithium in the water phase dropped to 1.90.
  • the single-stage extraction rate of B 2 O 3 was 29.95%
  • the single-stage back extraction rate of B 2 O 3 was 93.80%.
  • Example 1 Take 30mL N-isooctylpentanamide and 20mL 2-propylheptanol as extractants in a 100mL ground cone flask, the alkyl alcohol accounts for 40% of the volume of the organic phase, and then add 10mL of Example 1
  • the pH value of salt lake brine is adjusted to 2.0 with concentrated hydrochloric acid, and the volume ratio of organic phase to salt lake brine is 5:1.
  • the mixed liquid was transferred to a 250mL plastic test tube, centrifuged at 4500r/min for 15min in an LD5-10 benchtop centrifuge.
  • the two-phase interface was clear. After phase separation, the extracted organic phase and the remaining brine phase were obtained.
  • Transfer the loaded organic phase to another 100mL conical flask, add deionized water at a volume ratio of 1:4.7 to the organic phase, and place it in a DF-101S type heat-collecting thermostatic heating magnetic stirrer. Perform back extraction at °C and mix the two phases for 30 min.
  • the mixed liquid was transferred to a 250mL plastic test tube, and centrifuged in an LD5-10 benchtop centrifuge at 4500r/min for 15min to obtain the organic phase and the water phase after the stripping.
  • the single-stage extraction rate of Li + is 41.76%
  • the single-stage extraction rate of Mg 2+ is 1.74%
  • the separation coefficient of lithium and magnesium is 40.61.
  • the single-stage back extraction rate of Li + is 66.26%
  • the single-stage back extraction rate of Mg 2+ is 27.80%.
  • the separation coefficient of lithium and magnesium is 5.10
  • the mass ratio of magnesium to lithium in the water phase drops to 1.00.
  • the single-stage extraction rate of B 2 O 3 is 80.84%
  • the single-stage back extraction rate of B 2 O 3 is 69.76%.
  • the mixed liquid was transferred to a 250mL plastic test tube, centrifuged at 4500r/min for 15min in an LD5-10 benchtop centrifuge.
  • the two-phase interface was clear. After phase separation, the extracted organic phase and the remaining brine phase were obtained.
  • Transfer the loaded organic phase to another 100 mL conical flask with a ground mouth, add deionized water at a volume ratio of 1:3.6 to the organic phase, and place it in a DF-101S heat-collecting thermostatic heating magnetic stirrer. Perform back extraction at °C and mix the two phases for 30 min.
  • the mixed liquid was transferred to a 250mL plastic test tube, and centrifuged in an LD5-10 benchtop centrifuge at 4500r/min for 15min to obtain the organic phase and the water phase after the stripping.
  • the single-stage extraction rate of Li + is 49.21%
  • the single-stage extraction rate of Mg 2+ is 1.45%
  • the separation coefficient of lithium and magnesium is 66.09.
  • the single-stage back extraction rate of Li + is 82.67%
  • the single-stage back extraction rate of Mg 2+ is 35.27%.
  • the separation coefficient of lithium and magnesium is 8.77
  • the mass ratio of magnesium to lithium in the water phase drops to 0.72.
  • the single-stage extraction rate of B 2 O 3 is 67.11%
  • the single-stage back extraction rate of B 2 O 3 is 80.13%.
  • the magnet in the Erlenmeyer flask insert the matching air condenser at the mouth of the flask to prevent the liquid from splashing out, put it in the DF-101S type heat-collecting thermostatic heating magnetic stirrer, mix, stir, and extract at 20°C for 30 minutes. Then the mixed liquid was transferred to a 250mL plastic test tube, centrifuged at 4500r/min for 15min in an LD5-10 benchtop centrifuge. The two-phase interface was clear. After phase separation, the extracted organic phase and the remaining brine phase were obtained.
  • the single-stage extraction rate of Li + is 39.08%
  • the single-stage extraction rate of Mg 2+ is 2.86%
  • the separation coefficient of lithium and magnesium is 21.31.
  • the single-stage back extraction rate of Li + is 87.87%
  • the single-stage back extraction rate of Mg 2+ is 38.40%
  • the separation coefficient of lithium and magnesium after the back extraction is 11.62
  • the mass ratio of magnesium to lithium in the water phase drops to 1.84.
  • the single-stage extraction rate of B 2 O 3 was 42.62%
  • the single-stage back extraction rate of B 2 O 3 was 88.74%.
  • the magnet in the Erlenmeyer flask insert the matching air condenser at the mouth of the flask to prevent the liquid from splashing out, put it in the DF-101S type heat-collecting thermostatic heating magnetic stirrer, mix, stir, and extract at 20°C for 30 minutes. Then the mixed liquid was transferred to a 250mL plastic test tube, and centrifuged in an LD5-10 benchtop centrifuge at 4500r/min for 15min. The two-phase interface was clear. After phase separation, the extracted organic phase and the remaining brine phase were obtained.
  • the single-stage extraction rate of Li + is 20.13%
  • the single-stage extraction rate of Mg 2+ is 0.87%
  • the separation coefficient of lithium and magnesium is 28.77.
  • the single-stage back extraction rate of Li + was 96.19%
  • the rate of single-stage back extraction of Mg 2+ was 24.08%.
  • the separation coefficient of lithium and magnesium was 79.80, and the mass ratio of magnesium to lithium in the water phase dropped to 0.61.
  • the single-stage extraction rate of B 2 O 3 was 29.74%
  • the single-stage back extraction rate of B 2 O 3 was 92.11%.
  • a salt lake brine Qaidam Basin Qinghai Li +, Mg 2+, and B 2 O 3 contents were 5.20,116.28 and 17.62g / L, Mg-Li mass ratio of 22.36: 1, wherein the Na +, K +, Cl - with The content is 2.70, 1.04, 346.21 and 37.32g/L, the density of brine is 1.36g/cm 3 , and the pH value of brine is 4.1. Take 10mL of this kind of brine in a 100mL conical flask with a grinding mouth. The pH value is about 2 after acidification with concentrated hydrochloric acid.
  • the extracted organic phase and the remaining brine phase were obtained.
  • Transfer the loaded organic phase to another 100 mL conical flask with a ground mouth, add deionized water at a volume ratio of 1:7.6 to the organic phase, and place it in a DF-101S type heat-collecting thermostatic heating magnetic stirrer.
  • the mixed liquid was transferred to a 250mL plastic test tube, and centrifuged in an LD5-10 benchtop centrifuge at 4500r/min for 15min to obtain the organic phase and the water phase after the stripping.
  • Table 7 The two-phase separation of Li + , Mg 2+ and B 2 O 3 in a salt lake brine in Qinghai by the composite solvent of N-pentylisononylamide and 2-butyloctanol
  • the single-stage extraction rate of Li + is 35.69%, the single-stage extraction rate of Mg 2+ is 1.55%, and the separation coefficient of lithium and magnesium is 35.35.
  • the single-stage back extraction rate of Li + is 61.43%, the rate of single-stage back extraction of Mg 2+ is 21.40%, the separation coefficient of lithium and magnesium after the back extraction is 5.85, and the mass ratio of magnesium to lithium in the water phase drops to 0.34.
  • the single-stage extraction rate of B 2 O 3 is 44.52%, and the single-stage back extraction rate of B 2 O 3 is 78.05%.
  • the mixed liquid was transferred to a 250mL plastic test tube, centrifuged at 4500r/min for 15min in an LD5-10 benchtop centrifuge.
  • the two-phase interface was clear. After phase separation, the extracted organic phase and the remaining brine phase were obtained.
  • Transfer the loaded organic phase to another 100 mL conical flask with ground mouth, add deionized water at a volume ratio of 1:10 to the organic phase, and place it in a DF-101S type heat-collecting thermostatic heating magnetic stirrer. Perform back extraction at °C and mix the two phases for 30 min.
  • the mixed liquid was transferred to a 250mL plastic test tube, and centrifuged in an LD5-10 benchtop centrifuge at 4500r/min for 15min to obtain the organic phase and the water phase after the stripping.
  • Table 8 The two-phase separation of Li + , Mg 2+ and B 2 O 3 in a salt lake brine in Qinghai by the composite solvent of N-pentylisononylamide and 2-hexyldecanol
  • the single-stage extraction rate of Li + is 66.05%
  • the single-stage extraction rate of Mg 2+ is 1.54%
  • the separation coefficient of lithium and magnesium is 124.28.
  • the single-stage back extraction rate of Li + is 88.81%
  • the rate of single-stage back extraction of Mg 2+ is 61.31%.
  • the separation coefficient of lithium and magnesium is 5.01
  • the mass ratio of magnesium to lithium in the water phase drops to 0.91.
  • the single-stage extraction rate of B 2 O 3 was 47.32%
  • the single-stage back extraction rate of B 2 O 3 was 90.46%.
  • the mixed liquid was transferred to a 250mL plastic test tube, centrifuged at 4500r/min for 15min in an LD5-10 benchtop centrifuge.
  • the two-phase interface was clear. After phase separation, the extracted organic phase and the remaining brine phase were obtained.
  • Transfer the loaded organic phase to another 100 mL conical flask with ground mouth, add deionized water at a volume ratio of 1:10 to the organic phase, and place it in a DF-101S type heat-collecting thermostatic heating magnetic stirrer. Perform back extraction at °C and mix the two phases for 30 min.
  • the mixed liquid was transferred to a 250mL plastic test tube, and centrifuged in an LD5-10 benchtop centrifuge at 4500r/min for 15min to obtain the organic phase and the water phase after the stripping.
  • the single-stage extraction rate of Li + is 43.52%
  • the single-stage extraction rate of Mg 2+ is 1.88%
  • the separation coefficient of lithium and magnesium is 40.26.
  • the single-stage back extraction rate of Li + is 91.17%
  • the single-stage back extraction rate of Mg 2+ is 42.20%
  • the separation coefficient of lithium and magnesium after the back extraction is 14.10
  • the mass ratio of magnesium to lithium in the water phase drops to 1.13.
  • the single-stage extraction rate of B 2 O 3 is 46.82%
  • the single-stage back extraction rate of B 2 O 3 is 90.55%.
  • the magnet in the Erlenmeyer flask insert the matching air condenser at the mouth of the flask to prevent the liquid from splashing out, put it in the DF-101S type heat-collecting thermostatic heating magnetic stirrer, mix, stir, and extract at 30°C for 30 minutes. Then the mixed liquid was transferred to a 250mL plastic test tube, centrifuged at 4500r/min for 15min in an LD5-10 benchtop centrifuge. The two-phase interface was clear. After phase separation, the extracted organic phase and the remaining brine phase were obtained.
  • the single-stage extraction rate of Li + is 45.64%
  • the single-stage extraction rate of Mg 2+ is 1.34%
  • the separation coefficient of lithium and magnesium is 61.96.
  • the single-stage back-extraction rate of Li + is 84.15%
  • the single-stage back-extraction rate of Mg 2+ is 20.43%.
  • the separation coefficient of lithium and magnesium is 20.68
  • the mass ratio of magnesium to lithium in the water phase drops to 0.40.
  • the single-stage extraction rate of B 2 O 3 was 43.25%
  • the single-stage back extraction rate of B 2 O 3 was 86.07%.
  • the magnet in the Erlenmeyer flask insert the matching air condenser at the mouth of the flask to prevent the liquid from splashing out, put it in the DF-101S type heat-collecting thermostatic heating magnetic stirrer, mix, stir, and extract at 20°C for 30 minutes. Then the mixed liquid was transferred to a 250mL plastic test tube, centrifuged at 4500r/min for 15min in an LD5-10 benchtop centrifuge. The two-phase interface was clear. After phase separation, the extracted organic phase and the remaining brine phase were obtained.
  • the single-stage extraction rate of Li + is 51.52%
  • the single-stage extraction rate of Mg 2+ is 1.14%
  • the separation coefficient of lithium and magnesium is 92.23.
  • the single-stage back extraction rate of Li + is 90.60%
  • the single-stage back extraction rate of Mg 2+ is 47.43%.
  • the separation coefficient of lithium and magnesium is 10.71
  • the mass ratio of magnesium to lithium in the water phase drops to 0.66.
  • the single-stage extraction rate of B 2 O 3 is 53.06%
  • the single-stage back extraction rate of B 2 O 3 is 77.36%.
  • the magnet in the Erlenmeyer flask insert the matching air condenser at the mouth of the flask to prevent the liquid from splashing out, put it in the DF-101S type heat-collecting thermostatic heating magnetic stirrer, mix, stir, and extract at 20°C for 30 minutes. Then the mixed liquid was transferred to a 250mL plastic test tube, centrifuged at 4500r/min for 15min in an LD5-10 benchtop centrifuge. The two-phase interface was clear. After phase separation, the extracted organic phase and the remaining brine phase were obtained.
  • Table 12 The two-phase separation of Li + , Mg 2+ and B 2 O 3 in a salt lake brine in Qinghai by a composite solvent of N-isopentyl octyl amide, N- isooctyl pentane amide and 2-propylheptanol
  • the single-stage extraction rate of Li + is 59.52%
  • the single-stage extraction rate of Mg 2+ is 2.39%
  • the separation coefficient of lithium and magnesium is 59.99.
  • the single-stage back extraction rate of Li + is 81.36%
  • the single-stage back extraction rate of Mg 2+ is 24.43%
  • the separation coefficient of lithium and magnesium after the back extraction is 13.50
  • the mass ratio of magnesium to lithium in the water phase drops to 0.69.
  • the single-stage extraction rate of B 2 O 3 was 56.89%
  • the single-stage back extraction rate of B 2 O 3 was 67.47%.
  • the magnet in the Erlenmeyer flask insert the matching air condenser at the mouth of the flask to prevent the liquid from splashing out, put it in the DF-101S type heat-collecting thermostatic heating magnetic stirrer, mix, stir, and extract at 20°C for 30 minutes. Then the mixed liquid was transferred to a 250mL plastic test tube, centrifuged at 4500r/min for 15min in an LD5-10 benchtop centrifuge. The two-phase interface was clear. After phase separation, the extracted organic phase and the remaining brine phase were obtained.
  • Table 13 The two-phase separation of Li + , Mg 2+ and B 2 O 3 in a salt lake brine in Qinghai by a composite solvent of N-pentylisononylamide, N-isooctylpentanamide and diisobutylmethanol
  • the single-stage extraction rate of Li + is 50.79%
  • the single-stage extraction rate of Mg 2+ is 1.57%
  • the separation coefficient of lithium and magnesium is 64.50.
  • the single-stage back extraction rate of Li + was 76.48%
  • the rate of single-stage back extraction of Mg 2+ was 30.69%.
  • the separation coefficient of lithium and magnesium was 7.34, and the mass ratio of magnesium to lithium in the water phase dropped to 0.71.
  • the single-stage extraction rate of B 2 O 3 is 48.31%
  • the single-stage back extraction rate of B 2 O 3 is 74.74%.
  • Table 14 The two-phase separation of Li + , Mg 2+ and B 2 O 3 in a salt lake brine in Qinghai by the composite solvent of N-isopentyl octyl amide, isooctyl pentane amide and 2-propylheptanol
  • the single-stage extraction rate of Li + is 48.06%
  • the single-stage extraction rate of Mg 2+ is 2.19%
  • the separation coefficient of lithium and magnesium is 41.24.
  • the single-stage back extraction rate of Li + was 84.01%
  • the rate of single-stage back extraction of Mg 2+ was 33.78%.
  • the separation coefficient of lithium and magnesium was 10.31, and the mass ratio of magnesium to lithium in the water phase dropped to 0.41.
  • the single-stage extraction rate of B 2 O 3 is 48.46%
  • the single-stage back extraction rate of B 2 O 3 is 67.51%.
  • the magnet in the Erlenmeyer flask insert the matching air condenser at the mouth of the flask to prevent the liquid from splashing out, put it in the DF-101S type heat-collecting thermostatic heating magnetic stirrer, mix, stir, and extract at 20°C for 30 minutes. Then the mixed liquid was transferred to a 100mL plastic test tube, and centrifuged at 4500r/min for 10min in an LD5-10 benchtop centrifuge. The two-phase interface was clear. After phase separation, the extracted organic phase and the remaining brine phase were obtained.
  • Table 15 The two-phase separation of Li + , Mg 2+ and B 2 O 3 in a salt lake brine in Qinghai by the composite solvent of N-isoamyl octyl amide, 2-propylheptanol and 2-butyl octanol
  • the single-stage extraction rate of Li + is 60.95%
  • the single-stage extraction rate of Mg 2+ is 3.34%
  • the separation coefficient of lithium and magnesium is 45.22.
  • the single-stage back extraction rate of Li + was 72.83%
  • the single-stage back extraction rate of Mg 2+ was 41.99%.
  • the separation coefficient of lithium and magnesium was 3.70
  • the mass ratio of magnesium to lithium in the water phase dropped to 1.79.
  • the single-stage extraction rate of B 2 O 3 is 53.50%
  • the single-stage back extraction rate of B 2 O 3 is 80.81%.
  • the single-stage extraction rate of Li + is 54.63%
  • the single-stage extraction rate of Mg 2+ is 2.52%
  • the separation coefficient of lithium and magnesium is 46.50.
  • the single-stage back extraction rate of Li + was 75.72%
  • the rate of single-stage back extraction of Mg 2+ was 38.46%.
  • the separation coefficient of lithium and magnesium was 4.93
  • the mass ratio of magnesium to lithium in the water phase dropped to 1.35.
  • the single-stage extraction rate of B 2 O 3 was 53.23%
  • the single-stage back extraction rate of B 2 O 3 was 81.99%.
  • the magnet in the Erlenmeyer flask inserts the matching air condenser at the mouth of the flask to prevent the liquid from splashing out, place it in the DF-101S type heat-collecting thermostatic heating magnetic stirrer, mix, stir, and extract at 20°C for 20 minutes. Then the mixed liquid was transferred to a 250mL plastic test tube, and centrifuged at 4500r/min for 10min in an LD5-10 benchtop centrifuge. The two-phase interface was clear. After phase separation, the extracted organic phase and the remaining brine phase were obtained.
  • the single-stage extraction rate of Li + is 57.52%
  • the single-stage extraction rate of Mg 2+ is 5.56%
  • the separation coefficient of lithium and magnesium is 22.99.
  • the single-stage back extraction rate of Li + was 73.74%
  • the rate of single-stage back extraction of Mg 2+ was 46.08%.
  • the separation coefficient of lithium and magnesium was 3.28
  • the mass ratio of magnesium to lithium in the water phase dropped to 3.42.
  • the single-stage extraction rate of B 2 O 3 is 50.54%
  • the single-stage back extraction rate of B 2 O 3 is 89.51%.
  • the contents of Li + , Mg 2+ , Cl - and B 2 O 3 in the magnesium-containing brine are respectively 20.42, 99.83, 399.07 and 0.50g/L, the mass ratio of magnesium to lithium is 4.89:1, and the density of the brine is 1.32g/cm 3 , Its pH value is adjusted to 0.0 with concentrated hydrochloric acid. Put the magnet in the conical flask, insert the matching air condenser at the mouth of the flask to prevent the liquid from splashing out, put it in the DF-101S heat-collecting thermostatic heating magnetic stirrer, mix, stir, and extract at 20°C for 25min.
  • the mixed liquid was transferred to a 100mL plastic test tube, and centrifuged at 4000r/min for 10min in an LD5-10 benchtop centrifuge.
  • the two-phase interface was clear. After phase separation, the extracted organic phase and the remaining brine phase were obtained.
  • Transfer the loaded organic phase to another 100 mL conical flask with ground mouth, add deionized water at a volume ratio of 1:10 to the organic phase, and place it in a DF-101S type heat-collecting thermostatic heating magnetic stirrer. Perform back extraction at °C and mix the two phases for 25 min.
  • the mixed liquid was transferred to a 100mL plastic test tube, and centrifuged at 4200r/min for 10min in an LD5-10 benchtop centrifuge to obtain the organic phase and the water phase after the stripping.
  • Table 18 The two-phase separation of Li + , Mg 2+ and B 2 O 3 in a magnesium-containing brine by the composite solvent of N-isooctyl pentane amide, N-ethyl lauramide and 2-hexyl decanol
  • the single-stage extraction rate of Li + is 39.92%
  • the single-stage extraction rate of Mg 2+ is 2.42%
  • the separation coefficient of lithium and magnesium is 23.80.
  • the single-stage back extraction rate of Li + was 82.43%
  • the rate of single-stage back extraction of Mg 2+ was 84.29%.
  • the separation coefficient of lithium and magnesium was 0.87, and the mass ratio of magnesium to lithium in the water phase dropped to 0.30.
  • the single-stage extraction rate of B 2 O 3 is 43.66%
  • the single-stage back extraction rate of B 2 O 3 is 91.45%.
  • the single-stage extraction rate of Li + is 73.31%
  • the single-stage extraction rate of Mg 2+ is 1.58%
  • the separation coefficient of lithium and magnesium is 170.71.
  • the single-stage back extraction rate of Li + is 96.75%
  • the single-stage back extraction rate of Mg 2+ is 96.63%
  • the separation coefficient of lithium and magnesium after the back extraction is 1.04
  • the mass ratio of magnesium to lithium in the water phase drops to 23.60.
  • the single-stage extraction rate of B 2 O 3 is 46.90%
  • the single-stage back extraction rate of B 2 O 3 is 93.47%.
  • the contents of Li + , Mg 2+ , Cl - and B 2 O 3 in the brine are 3.67, 82.09, 241.84 and 12.37g/L, respectively, the mass ratio of magnesium to lithium is 22.37:1, and the density of the brine is 1.25g/cm 3 ,
  • Its pH value is adjusted to 2.0 with concentrated hydrochloric acid. Put the magnet in the Erlenmeyer flask, place it in the DF-101S type heat-collecting thermostatic heating magnetic stirrer, mix, stir, and extract at 20°C for 30 minutes. Then the mixed liquid was transferred to a 100mL plastic test tube, and centrifuged at 4200r/min for 8min in an LD5-10 benchtop centrifuge.
  • the two-phase interface was clear. After phase separation, the extracted organic phase and the remaining brine phase were obtained. Transfer the loaded organic phase to another 100 mL conical flask with ground mouth, add deionized water at a volume ratio of 1:10 to the organic phase, and place it in a DF-101S type heat-collecting thermostatic heating magnetic stirrer. Perform back extraction at °C and mix the two phases for 30 min. Then the mixed liquid was transferred to a 100mL plastic test tube, and centrifuged in an LD5-10 benchtop centrifuge at 4200r/min for 8min to obtain the organic phase and the water phase after the stripping.
  • the single-stage extraction rate of Li + is 43.56%
  • the single-stage extraction rate of Mg 2+ is 0.75%
  • the separation coefficient of lithium and magnesium is 101.98.
  • the single-stage back extraction rate of Li + is 86.58%
  • the rate of single-stage back extraction of Mg 2+ is 78.07%
  • the separation coefficient of lithium and magnesium after the back extraction is 1.81
  • the mass ratio of magnesium to lithium in the water phase drops to 0.35.
  • the single-stage extraction rate of B 2 O 3 is 50.53%
  • the single-stage back extraction rate of B 2 O 3 is 74.86%.
  • the content of Li + , Mg 2+ , Cl - and B 2 O 3 in the magnesium-containing brine are 0.19, 117.27, 343.25 and 1.62g/L, respectively, the mass ratio of magnesium to lithium is 627.43:1, and the density of the brine is 1.32g/cm 3 , Adjust the brine pH to 2.2. Put the magnet in the Erlenmeyer flask, place it in the DF-101S type heat-collecting thermostatic heating magnetic stirrer, mix, stir, and extract at 20°C for 30 minutes. Then the mixed liquid was transferred to a 100mL plastic test tube and centrifuged at 4200r/min for 10min in an LD5-10 benchtop centrifuge. The two-phase interface was clear.
  • the extracted organic phase and the remaining brine phase were obtained.
  • Transfer the loaded organic phase to another 100 mL conical flask, add deionized water at a volume ratio of 1:1 to the organic phase, and place it in a DF-101S type heat-collecting thermostatic heating magnetic stirrer. Perform back extraction at °C and mix the two phases for 30 min. Then the mixed liquid was transferred to a 100mL plastic test tube, and centrifuged at 4200r/min for 10min in an LD5-10 benchtop centrifuge to obtain the organic phase and the aqueous phase after the stripping.
  • the single-stage extraction rate of Li + is 54.34%
  • the single-stage extraction rate of Mg 2+ is 3.93%
  • the separation coefficient of lithium and magnesium is 29.10.
  • the Li + single-stage back extraction rate was 95.66%
  • the Mg 2+ single-stage back extraction rate was 76.52%
  • the lithium-magnesium separation coefficient after the back-extraction was 6.78
  • the magnesium-lithium mass ratio in the water phase dropped to 36.31.
  • the single-stage extraction rate of B 2 O 3 was 20.73%
  • the single-stage back extraction rate of B 2 O 3 was 94.34%.
  • the mixed liquid is naturally clarified and settled for 60 minutes, and the two phases are separated to obtain the loaded organic phase and the remaining brine phase after extraction.
  • Transfer the loaded organic phase to another 100mL conical flask with a ground mouth, add deionized water at a volume ratio of 1:10 to the organic phase, insert a PTFE stirring rod, and use DW-1-60 DC constant speed
  • the stirrer was subjected to back extraction at 50°C, and the two phases were mixed for 30 minutes.
  • the mixed liquid is allowed to naturally clarify and settle for 60 minutes, and the organic phase and the water phase after the back extraction are obtained after the two phases are separated.
  • Table 22 The two-phase separation of Li + , Mg 2+ and B 2 O 3 in a salt lake brine in Qinghai by the composite solvent of N-isooctylbutanamide and 2-octyldodecanol
  • the single-stage extraction rate of Li + is 34.98%
  • the single-stage extraction rate of Mg 2+ is 1.23%
  • the separation coefficient of lithium and magnesium is 43.21.
  • the single-stage back extraction rate of Li + is 80.71%
  • the single-stage back extraction rate of Mg 2+ is 53.52%
  • the separation coefficient of lithium and magnesium after the back extraction is 3.64
  • the mass ratio of magnesium to lithium in the water phase drops to 1.33.
  • the single-stage extraction rate of B 2 O 3 is 83.66%
  • the single-stage back extraction rate of B 2 O 3 is 60.84%.
  • a salt lake brine content of Li + and Mg 2+ Qinghai Tsaidam Basin were 0.31g / L and 105.72g / L, Mg-Li mass ratio of 341.26: 1, wherein the Na +, K +, Cl - , The content of B 2 O 3 and B 2 O 3 are 5.16, 3.32, 313.09, 11.13 and 1.16 g/L, respectively, the density of brine is 1.31 g/cm 3 , and the pH value is adjusted to 2.0 with concentrated hydrochloric acid.
  • the mixed liquid was transferred to a 100mL plastic test tube, and centrifuged at 4200r/min for 8min in an LD5-10 benchtop centrifuge.
  • the two-phase interface was clear. After phase separation, the extracted organic phase and the remaining brine phase were obtained.
  • Transfer the loaded organic phase to another 100 mL conical flask with a ground mouth, add deionized water at a volume ratio of 1:20 to the organic phase, and place it in a DF-101S heat-collecting thermostatic heating magnetic stirrer. Perform back extraction at °C and mix the two phases for 25 min.
  • the mixed liquid was transferred to a 100mL plastic test tube, and centrifuged in an LD5-10 benchtop centrifuge at 4200r/min for 8min to obtain the organic phase and the water phase after the stripping.
  • the single-stage extraction rate of Li + is 36.36%
  • the single-stage extraction rate of Mg 2+ is 0.90%
  • the separation coefficient of lithium and magnesium is 63.05.
  • the Li + single-stage back extraction rate was 93.65%
  • the Mg 2+ single-stage back extraction rate was 94.65%
  • the lithium-magnesium separation coefficient after the back-extraction was 0.83
  • the magnesium-lithium mass ratio in the water phase dropped to 8.54.
  • the single-stage extraction rate of B 2 O 3 is 65.40%
  • the single-stage back extraction rate of B 2 O 3 is 67.79%.
  • the single-stage extraction rate of Li + is 31.72%
  • the single-stage extraction rate of Mg 2+ is 0.91%
  • the separation coefficient of lithium and magnesium is 50.43.
  • the single-stage back extraction rate of Li + was 92.61%
  • the rate of single-stage back extraction of Mg 2+ was 93.54%.
  • the separation coefficient of lithium and magnesium was 0.87, and the mass ratio of magnesium to lithium in the water phase dropped to 9.90.
  • the single-stage extraction rate of B 2 O 3 is 65.37%
  • the single-stage back extraction rate of B 2 O 3 is 64.45%.
  • the single-stage extraction rate of Li + is 57.14%
  • the single-stage extraction rate of Mg 2+ is 1.60%
  • the separation coefficient of lithium and magnesium is 81.96.
  • the single-stage back extraction rate of Li + is 94.09%
  • the rate of single-stage back extraction of Mg 2+ is 91.69%.
  • the separation coefficient of lithium and magnesium is 1.45
  • the mass ratio of magnesium to lithium in the water phase drops to 1.56.
  • the single-stage extraction rate of B 2 O 3 is 41.02%
  • the single-stage back extraction rate of B 2 O 3 is 92.37%.
  • the mixed liquid was transferred to a 100 mL plastic test tube, and centrifuged in an LD5-10 tabletop centrifuge at 4200 r/min for 8 minutes to obtain the extracted organic phase and the remaining brine phase. Transfer the loaded organic phase to another 100mL conical flask with ground mouth, add deionized water at a volume ratio of 1:6 to the organic phase, and place it in a DF-101S heat-collecting thermostatic heating magnetic stirrer. Perform back extraction at °C and mix the two phases for 25 min. Then the mixed liquid was transferred to a 100mL plastic test tube, and centrifuged in an LD5-10 benchtop centrifuge at 4200r/min for 8min to obtain the organic phase and the water phase after the stripping.
  • the single-stage extraction rate of Li + is 31.81%
  • the single-stage extraction rate of Mg 2+ is 1.17%
  • the separation coefficient of lithium and magnesium is 39.93.
  • the single-stage back extraction rate of Li + is 71.69%
  • the single-stage back extraction rate of Mg 2+ is 82.50%
  • the separation coefficient of lithium and magnesium after the back extraction is 0.54
  • the mass ratio of magnesium to lithium in the water phase drops to 2.83.
  • the single-stage extraction rate of B 2 O 3 was 11.68%
  • the single-stage back extraction rate of B 2 O 3 was 94.11%.
  • the mixed liquid was transferred to a 100 mL plastic test tube, and centrifuged in an LD5-10 tabletop centrifuge at 4200 r/min for 8 minutes to obtain the extracted organic phase and the remaining brine phase.
  • Transfer the loaded organic phase to another 100 mL conical flask with a ground mouth, add deionized water at a volume ratio of 1:20 to the organic phase, and place it in a DF-101S type heat-collecting thermostatic heating magnetic stirrer. Perform back extraction at °C and mix the two phases for 30 min. Then the mixed liquid was transferred to a 100mL plastic test tube, and centrifuged in an LD5-10 benchtop centrifuge at 4200r/min for 8min to obtain the organic phase and the water phase after the stripping.
  • the single-stage extraction rate of Li + is 45.52%
  • the single-stage extraction rate of Mg 2+ is 1.73%
  • the separation coefficient of lithium and magnesium is 47.44.
  • the single-stage back extraction rate of Li + is 90.66%
  • the single-stage back extraction rate of Mg 2+ is 96.40%
  • the separation coefficient of lithium and magnesium after the back extraction is 0.54
  • the mass ratio of magnesium to lithium in the water phase drops to 13.75.
  • the single-stage extraction rate of B 2 O 3 was 44.20%
  • the single-stage back extraction rate of B 2 O 3 was 78.54%.
  • the mixed liquid was transferred to a 100mL plastic test tube, and centrifuged in an LD5-10 benchtop centrifuge at 4300r/min for 15min to obtain the extracted organic phase and the remaining brine phase.
  • Transfer the loaded organic phase to another 100 mL conical flask with a ground mouth, add deionized water at a volume ratio of 1:5 to the organic phase, and place it in a DF-101S type heat-collecting thermostatic heating magnetic stirrer. Perform back extraction at °C and mix the two phases for 25 min. Then the mixed liquid was transferred to a 100mL plastic test tube, and centrifuged in an LD5-10 benchtop centrifuge at 4300r/min for 15min to obtain the organic phase and the water phase after the stripping.
  • the single-stage extraction rate of Li + is 67.33%
  • the single-stage extraction rate of Mg 2+ is 3.72%
  • the separation coefficient of lithium and magnesium is 53.33.
  • the single-stage back-extraction rate of Li + is 88.51%
  • the rate of single-stage back-extraction of Mg 2+ is 75.65%.
  • the separation coefficient of lithium and magnesium is 2.48
  • the mass ratio of magnesium to lithium in the water phase drops to 16.13.
  • the single-stage extraction rate of B 2 O 3 was 29.42%
  • the single-stage back extraction rate of B 2 O 3 was 82.21%.
  • the magnet in the Erlenmeyer flask insert the matching air condenser at the mouth of the flask to prevent the liquid from splashing out, put it in the DF-101S type heat-collecting thermostatic heating magnetic stirrer, mix, stir, and extract at 20°C for 30 minutes. Then the mixed liquid was transferred to a 250mL plastic test tube, and centrifuged at 4500r/min for 10min in an LD5-10 benchtop centrifuge. The two-phase interface was clear. After phase separation, the extracted organic phase and the remaining brine phase were obtained.
  • the single-stage extraction rate of Li + is 5.48%
  • the single-stage extraction rate of Mg 2+ is 0.78%
  • the separation coefficient of lithium and magnesium is 7.38.
  • the Li + single-stage back extraction rate was 36.40%
  • the Mg 2+ single-stage back extraction rate was 39.36%.
  • the lithium-magnesium separation coefficient was 0.88
  • the magnesium-lithium mass ratio in the water phase dropped to 8.72.
  • the single-stage extraction rate of B 2 O 3 is 92.02%
  • the single-stage back extraction rate of B 2 O 3 is 40.34%.
  • Example 2 Take 5 mL of the salt lake brine in Example 1 in a 100 mL conical flask with a ground mouth, adjust its pH to 2.0 with concentrated hydrochloric acid, and then add 0.42 g of ferric trichloride hexahydrate with a purity of 99% to it and dissolve it. Then add 15mL N-isooctylpentanamide and 5mL 3,5,5-trimethylhexanol as extractant, the alkyl alcohol accounts for 25% of the volume of the organic phase, and the volume ratio of the organic phase to the brine is 4:1.
  • the magnet in the Erlenmeyer flask insert the matching air condenser at the mouth of the flask to prevent the liquid from splashing out, put it in the DF-101S type heat-collecting thermostatic heating magnetic stirrer, mix, stir, and extract at 20°C for 30 minutes. Then the mixed liquid was transferred to a 250mL plastic test tube, and centrifuged at 4500r/min for 10min in an LD5-10 benchtop centrifuge. The two-phase interface was clear. After phase separation, the extracted organic phase and the remaining brine phase were obtained.
  • the single-stage extraction rate of Li + is 68.73%
  • the single-stage extraction rate of Mg 2+ is 3.38%
  • the separation coefficient of lithium and magnesium is 62.77.
  • the single-stage back extraction rate of Li + was 83.11%
  • the rate of single-stage back extraction of Mg 2+ was 45.60%.
  • the separation coefficient of lithium and magnesium was 5.88, and the mass ratio of magnesium to lithium in the water phase dropped to 1.53.
  • the single-stage extraction rate of B 2 O 3 is 59.58%
  • the single-stage back extraction rate of B 2 O 3 is 92.44%.
  • Example 2 Take 5 mL of the salt lake brine in Example 1 in a 100 mL conical flask, adjust its pH to 2.0 with concentrated hydrochloric acid, then add 0.30 g of 99% pure ferric dichloride tetrahydrate, and dissolve it. Then add 15mL N-isooctylpentanamide and 5mL 2-butyloctanol as extractants, the alkyl alcohol accounts for 25% of the volume of the organic phase, and the volume ratio of the organic phase to the brine is 4:1.
  • the magnet in the Erlenmeyer flask insert the matching air condenser at the mouth of the flask to prevent the liquid from splashing out, put it in the DF-101S type heat-collecting thermostatic heating magnetic stirrer, mix, stir, and extract at 20°C for 30 minutes. Then the mixed liquid was transferred to a 250mL plastic test tube, and centrifuged at 4500r/min for 10min in an LD5-10 benchtop centrifuge. The two-phase interface was clear. After phase separation, the extracted organic phase and the remaining brine phase were obtained.
  • the single-stage extraction rate of Li + is 55.63%
  • the single-stage extraction rate of Mg 2+ is 2.97%
  • the separation coefficient of lithium and magnesium is 40.93.
  • the single-stage back-extraction rate of Li + is 72.40%
  • the single-stage back-extraction rate of Mg 2+ is 41.40%.
  • the separation coefficient of lithium and magnesium is 3.72
  • the mass ratio of magnesium to lithium in the water phase drops to 1.73.
  • the single-stage extraction rate of B 2 O 3 is 56.60%
  • the single-stage back extraction rate of B 2 O 3 is 93.64%.
  • the mixed liquid was transferred to a 250mL plastic test tube, and centrifuged at 4800r/min for 15min in an LD5-10 benchtop centrifuge.
  • the two-phase interface was clear.
  • the extracted organic phase and the remaining brine phase were obtained.
  • three-stage countercurrent extraction is performed according to the extraction cascade crossover operation steps to obtain the loaded organic phase and the remaining brine phase after the three-stage countercurrent extraction.
  • Table 32 The three-stage countercurrent extraction and the second-stage countercurrent extraction of Li + , Mg 2+ and B 2 O 3 in a salt lake brine in Qinghai by the composite solvent of N-isooctyl isovaleramide and 2-propylheptanol
  • the extraction rate of B 2 O 3 is 80.95% after the brine passes through the three-stage countercurrent, and the second- stage counter-current extraction rate of B 2 O 3 is 95.47%, which shows that the extraction system can extract Li + and also effectively extract B 2 O. 3 .
  • the more multi-stage countercurrent extraction stages the higher the extraction rate of lithium and boron in the brine, and the greater the lithium-magnesium separation coefficient.
  • the more multi-stage countercurrent extraction stages are more beneficial to the reaction.
  • the concentration of Li + and B 2 O 3 in the aqueous phase increased after extraction.
  • the organic phase after the stripping is returned and remixed with the brine phase before the extraction to realize the recycling of the extractant.
  • the water phase solution obtained after the back extraction is degreasing, and after two-effect evaporation is concentrated to a Li + concentration of 30g/L
  • calcium chloride and barium chloride solutions are added respectively to completely precipitate and remove the sulfate radicals, and carbonic acid is added separately
  • Sodium and sodium hydroxide solution are thoroughly precipitated to remove Mg 2+ , and then the remaining solution is evaporated and concentrated, cooled and crystallized, filtered and dried to obtain anhydrous lithium chloride product.
  • the lithium chloride concentrate obtained after purification and purification is placed in an ion-exchange membrane electrolyzer for electrolysis, a lithium hydroxide solution with a mass concentration of 12% is obtained at the cathode, and lithium hydroxide monohydrate is obtained after concentration and crystallization. After washing and drying, an anhydrous lithium hydroxide product is produced. At the same time, hydrogen and chlorine are by-produced, and hydrogen and chlorine are further reacted to produce hydrochloric acid.
  • Example 2 Take 5 mL of the salt lake brine in Example 1 in a 100 mL conical flask, adjust its pH to 2.0 with concentrated hydrochloric acid, then add 0.41 g of ferric trichloride hexahydrate with a purity of 99% to it, and dissolve it. Then add 15mL N-isooctylpentanamide and 5mL 2-butyloctanol as extractants, the alkyl alcohol accounts for 25% of the volume of the organic phase, and the volume ratio of the organic phase to the brine is 4:1.
  • the magnet in the Erlenmeyer flask insert the matching air condenser at the mouth of the flask to prevent the liquid from splashing out, put it in the DF-101S type heat-collecting thermostatic heating magnetic stirrer, mix, stir, and extract at 20°C for 30 minutes. Then the mixed liquid was transferred to a 100mL plastic test tube, and centrifuged at 4500r/min for 10min in an LD5-10 benchtop centrifuge. The two-phase interface was clear. After phase separation, the extracted organic phase and the remaining brine phase were obtained.
  • the single-stage extraction rate of Li + is 71.43%
  • the single-stage extraction rate of Mg 2+ is 6.21%
  • the separation coefficient of lithium and magnesium is 37.77.
  • the single-stage back-extraction rate of Li + is 74.91%
  • the single-stage back-extraction rate of Mg 2+ is 35.82%.
  • the separation coefficient of lithium and magnesium is 5.35
  • the mass ratio of magnesium to lithium in the water phase drops to 2.36.
  • the single-stage extraction rate of B 2 O 3 was 50.61%
  • the single-stage back extraction rate of B 2 O 3 was 92.82%.
  • the brine was subjected to three-stage countercurrent extraction and two-stage countercurrent back-extraction under the same conditions, and then the aqueous phase solution obtained after the back-extraction was degreasing, concentrated by two-effect evaporation to a Li + concentration of 20g/L, and then added separately Calcium chloride and barium chloride solutions are thoroughly precipitated to remove the sulfate radicals, and sodium carbonate and sodium hydroxide solutions are respectively added to thoroughly precipitate and remove the Mg 2+ in them to obtain a refined solution of lithium chloride. Then, a sodium carbonate solution with a concentration of 250 g/L was added to it at 1.1 times the theoretical amount to produce a lithium carbonate precipitate, which was filtered and dried to obtain a lithium carbonate product.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Metallurgy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Extraction Or Liquid Replacement (AREA)

Abstract

一种用仲酰胺/烷基醇复合溶剂从含镁卤水中分离镁提取锂和硼的萃取体系、萃取方法和其应用。萃取体系中含有仲酰胺和烷基醇分别作为萃取锂和硼的萃取剂由其单一化合物或两种以上的混合物组成,分子中碳原子总数分别为12~18和8~20,萃取体系的凝固点小于0℃。在有机相与卤水相体积比1~10∶1、卤水密度为1.25~1.38g/cm 3、卤水pH值0~7和温度0~50℃下进行单级或多级逆流萃取,反萃取得到低镁锂比水相,经过浓缩、除杂与制备,分别得到氯化锂、碳酸锂、氢氧化锂和硼酸。本发明的仲酰胺分子结构简单,由烷基醇改进的复合溶剂能同时萃取锂和硼;多级萃取率高,用水反萃取,酸碱消耗大大减少;萃取分离流程缩短,萃取体系溶损小,具有工业应用价值。

Description

用仲酰胺/烷基醇复合溶剂从含镁卤水中分离镁提取锂和硼的萃取体系、萃取方法和其应用 技术领域
本发明涉及一种从含镁卤水中提取锂和硼的方法,尤其涉及到用复合溶剂从含镁卤水中分离镁提取锂和硼的萃取体系、萃取方法和其应用。
背景技术
近年来,锂被称之为新的“黄金”、誉为21世纪的“白色石油”,作为新能源领域的基础材料需求量与日剧增。硼在轻工日化、玻璃陶瓷、冶金、医药、机电、电子、核工业和农业方面都有着广泛应用。在青海柴达木盆地盐湖卤水中蕴藏着大量的锂资源和硼资源,一直受到人们关注。对于硼含量高于0.3%的卤水采用酸化冷却结晶法生产硼酸,同时得到含有低浓度锂和硼的卤水,从中再提取锂和硼。从其工艺过程上可分为3种情形:(1)先提取硼未提取锂,如李丽娟等采用C12–C20的一元醇从含镁盐湖卤水中分离硼酸(CN108017067A),史先乔等使用异辛醇/2-辛醇/煤油混合萃取剂从含锂卤水中深度除硼至水相硼含量低至10ppm(CN107459163A);(2)先提取锂未提取硼,如谢超等将硫酸镁亚型盐湖原水纳滤分离、蒸发浓缩和低碳醇溶析结晶制取氯化锂的工艺(CN108358221A),欧阳红勇等以有机醇为萃取剂对卤盐固相进行萃取、经减压蒸馏得到锂盐的方法(CN106082285B);(3)同时提取锂和硼,如谭秀民等采用蒸发工艺浓缩地下卤水数倍后,采用离子交换法提取硼酸,经高温蒸发析出钠盐、低温冷却结晶析出钾盐,由析钾母液沉淀法制取碳酸锂(CN103523801B),余晓平等采用一种混合萃取体系对卤水中的硼和锂进行同步萃取,然后分别采用酸性溶液和碱性溶液对有机相中的锂和硼进行反萃取(CN108342595A),在此前者采用不同技术手段、硼和锂的提取只能分步进行,不适用于钙和/或镁含量较高的卤水,而后者涉及的步骤多、流程长,萃取剂的稳定性仍然受到酸碱影响。
从缩短工艺流程、提高资源综合利用角度来看,只提取硼或锂单元素的有效性不如同时提取锂和硼双元素的有效性,但锂、硼两种元素性质差别大,同时提取锂和硼需要相关技术要素紧密切合,这也是盐湖化工领域中长期存在、亟待解决的问题之一。烷基醇是一类性质稳定的中性溶剂,对硼酸分子有特定的配位萃取能力,有一元醇和多元醇之分,如能与新型锂萃取剂组合有可能形成超出预期的萃取体系,产生技术过程更加优越、技术水平更加友好的新方法,溶剂萃取法有可能真正实现锂硼同时共萃,与大量母液中的镁盐分开,把盐湖高镁锂比卤水转变为低镁锂比卤水,制备出市场上需要的氯化锂、碳酸锂和氢氧化锂等化工产品,同时也能净化卤水、富集硼元素制备出硼酸产品。
发明内容
本发明的目的是针对现有技术方法中存在的不足,提供一种经济有效的用仲酰胺/烷基醇复合溶剂从含镁卤水中分离镁提取锂和硼的萃取体系、萃取方法和其应用。
本发明提供的技术方案和工艺过程如下:
1.用仲酰胺/烷基醇复合溶剂从含镁卤水中分离镁提取锂和硼的萃取体系,该萃取体系中含有A和B两类物质;其中A类物质为仲酰胺由单一化合物或两种以上的混合物组成;其中,单一化合物具有如式(I)所示的结构:
Figure PCTCN2020079078-appb-000001
其中,R 1选自C2~C12的烷基或含有单环结构的C3~C12的环烷基,R 2选自C1~C11的烷基或含有单环结构的C3~C11的环烷基,并且R 1和R 2两基团中所含碳原子数目之和为11~17,其中烷基或环烷基包括各种同分异构体(因R 1、R 2是能够变化的,当R 1、R 2唯一确定时,A类物质为单一化合物,混合物是指随着R 1、R 2的变化而产生的两种以上的化合物混合而成的物质);
其中B类物质为烷基醇由单一化合物或两种以上的混合物组成;其中,单一化合物具有如式(Ⅱ)所示的结构:
R 3-OH               (Ⅱ);
其中,R 3选自C8~C20的烷基,其中烷基包含直链的或带有支链的各种同分异构体(因R 3是能够变化的,当R 3唯一确定时,B类物质为单一化合物,混合物是指随着R 3的变化而产生的两种以上的化合物混合而成的物质);
含有A和B两类物质的萃取体系的凝固点小于0℃(构成萃取体系的单一组分的凝固点可能小于、等于或者大于0℃,当单一组分的凝固点小于0℃时即能够满足作为本发明萃取体系的条件;当单一组分的凝固点大于等于0℃时有可能与凝固点小于0℃的其他组分混合、发生溶解而最终形成凝固点小于0℃的混合物)。
在萃取体系中,所述A类物质主要起萃取锂的作用在整个有机相中所占的体积百分数为0~100%,不包括两个端点值(当A类物质所占体积百分数高时有利于从含镁卤水中提取锂);在萃取体系中所述B类物质主要起萃取硼的作用在整个有机相中所占的体积百分数为0~100%,不包括两个端点值(当B类物质所占体积百分数高时有利于从含镁卤水中提取硼)。
在萃取体系中,萃取体系有利于同时萃取锂和硼时,所述A类物质在整个有机相中所占的体积百分数为50~90%,所述B类物质在整个有机相中所占的体积百分数为10~50%(当A和B两类物质体积百分数都比较大时,有利于从含镁卤水中同时提取锂和硼)。
在所述萃取体系中,还包含有起稀释作用的稀释剂260#溶剂油、300#溶剂油或磺化煤油。
2.用仲酰胺/烷基醇复合溶剂从含镁卤水中分离镁提取锂和硼的萃取方法,包括以下步骤:
S1、以含镁卤水作为萃取前卤水相;其中,在所述含镁卤水中,锂离子的浓度为0.1~21g/L,镁离子的浓度为80~125g/L,氯离子的浓度为200~400g/L,镁锂质量比为4.8~1100:1,硼酸及其硼氧酸根离子的浓度以B 2O 3合计为0.5~20g/L,卤水密度20℃时为1.25~1.38g/cm 3,用盐酸或硫酸调节卤水pH值在0~7之间;
S2、以上述1中所述的萃取体系作为萃取前有机相;
S3、将所述萃取前有机相和所述萃取前卤水相按照体积比为1~10:1混合,进行单级萃取或多级逆流萃取,两相分离后得到负载有机相和萃取后卤水相。
在所述含镁卤水中,还含有钠离子、钾离子、铁离子、亚铁离子或硫酸根中的一种或两种以上。
所述的含镁卤水包括含锂和硼的盐湖卤水,但不仅限于该种卤水。
进一步地,在所述步骤S3中,萃取温度为0~50℃;两相混合通过搅拌方式进行,萃取后两相分离采取离心分离方式或澄清沉降方式进行。
进一步地,在所述步骤S3后,还包括步骤:
S4、以水作为反萃取剂,对所述负载有机相进行单级反萃取或多级逆流反萃取,反萃相比即反萃取剂与负载有机相体积之比为1:1~20,两相分离后得到反萃取后有机相和反萃取后水相;
S5、使所述反萃取后有机相返回步骤S2,实现萃取体系的循环使用。
进一步地,在所述步骤S4中,反萃取温度为0~50℃;两相混合通过搅拌方式进行,反萃取后两相分离采取离心分离方式或澄清沉降方式进行。
3.用仲酰胺/烷基醇复合溶剂从含镁卤水中分离镁提取锂和硼的萃取方法在获得硼产品硼酸中的应用,在所述步骤S4后,还包括步骤:
S6、对所述反萃取后水相进一步除油净化,浓缩,用盐酸或硫酸调节水相pH值、从溶液中析出硼酸,经洗涤、干燥后制得硼酸产品。
4.用仲酰胺/烷基醇复合溶剂从含镁卤水中分离镁提取锂和硼的萃取方法在获得锂产品氯化锂中的应用,在所述步骤S4后,还包括步骤:
S6、对所述反萃取后水相进一步除油净化,浓缩,用盐酸或硫酸调节水相pH值、从溶液中析出硼酸,经洗涤、干燥后制得硼酸产品;
S7、在所述析出硼酸后的含锂溶液中,加入除杂剂对其中硫酸根、剩余镁离子进行去除,得到溶液精制后的氯化锂溶液;所用除杂剂为氧化钙、氢氧化钙、氯化钙、氯化钡、碳酸钠、草酸钠或氢氧化钠中的一种或两种以上的化合物;
S8、对所述精制后的氯化锂溶液进行浓缩、结晶、分离和干燥过程,制得氯化锂产品。
5.用仲酰胺/烷基醇复合溶剂从含镁卤水中分离镁提取锂和硼的萃取方法在获得锂产品碳酸锂中的应用,在所述步骤S4后,还包括步骤:
S6、对所述反萃取后水相进一步除油净化,浓缩,用盐酸或硫酸调节水相pH值、从溶液中析出硼酸,经洗涤、干燥后制得硼酸产品;
S7、在所述析出硼酸后的含锂溶液中,加入除杂剂对其中硫酸根、剩余镁离子进行去除,得到溶液精制后的氯化锂溶液;所用除杂剂为氧化钙、氢氧化钙、氯化钙、氯化钡、碳酸钠、草酸钠或氢氧化钠中的一种或两种以上的化合物;
S9、在精制后的氯化锂溶液中加入碳酸钠得到碳酸锂沉淀,对碳酸锂沉淀进行分离、干燥过程,制得碳酸锂产品。
6.用仲酰胺/烷基醇复合溶剂从含镁卤水中分离镁提取锂和硼的萃取方法在获得锂产品氢氧化锂中的应用,在所述步骤S4后,还包括步骤:
S6、对所述反萃取后水相进一步除油净化,浓缩,用盐酸或硫酸调节水相pH值、从溶液中析出硼酸,经洗涤、干燥后制得硼酸产品;
S7、在所述析出硼酸后的含锂溶液中,加入除杂剂对其中硫酸根、剩余镁离子进行去除,得到溶液精制后的氯化锂溶液;所用除杂剂为氧化钙、氢氧化钙、氯化钙、氯化钡、碳酸钠、草酸钠或氢氧化钠中的一种或两种以上的化合物;
S10、对所述精制后的氯化锂溶液进行电解,制得氢氧化锂产品,同时副产氢气和氯气、可用于生产盐酸;
或在所述步骤S7后,还包括步骤:
S9、在精制后的氯化锂溶液中加入碳酸钠得到碳酸锂沉淀,对碳酸锂沉淀进行分离、干燥过程,制得碳酸锂产品;
S11、在制得的碳酸锂中加入氢氧化钙乳液,进行固-液反应,分离后得到氢氧化锂溶液,对其进行浓缩、结晶和干燥过程,制得氢氧化锂产品。
在本发明中实施例所用仲酰胺型化合物的来源是由有机酰氯或酸酐与伯胺按化学计量比反 应合成,再用水洗涤和减压蒸馏方式纯化,用美国安捷伦7890A/5975C型气质联用仪检测评价获得。在本发明中实施例所用烷基醇型化合物的来源是从化工产品公司购得。
本发明与现有技术相比,我们已发现以式(I)和式(Ⅱ)所示的化合物组成的仲酰胺/烷基醇复合溶剂作为新的萃取体系,从而获得新的用于从含镁卤水中分离镁提取锂和硼的萃取方法和其应用,取得了意想不到的效果,未见用仲酰胺与烷基醇混合组成的溶剂作为卤水提锂萃取体系的文献报道,为当前高镁锂比盐湖卤水锂资源开发提供了新技术。本发明具有以下优点:
1)仲酰胺作为萃取体系中的A物质分子结构简单,来源易得,容易生产,用作锂的萃取剂,是一类从含镁卤水中分离镁提取锂的新型特效成分,其中仲酰胺官能团是锂镁分离萃取锂的关键部位,N–H上的氢原子在萃取前后 1H NMR谱向低场发生位移,对Li +的萃取起着关键作用。烷基醇作为萃取体系中的B物质用作卤水中硼的萃取剂,能有效改进复合溶剂的粘度和凝固点等物理性质,增大体系的混合熵、产生协同共萃作用。
2)在保证Li +一定大小的单级萃取能力的前提下,负载有机相容易用水直接反萃取,不需要使用酸强化Li +的反萃取,同时也不需要使用碱中和前面的酸恢复有机相的萃取能力和水相酸碱性,大大减少卤水锂镁分离过程中的酸碱消耗量,实现了萃取和反萃取过程的双向平衡,在萃取锂和硼的同时也容易进行锂和硼的反萃取。含镁卤水经过多级逆流萃取后锂镁分离系数大,反萃取后水相中的镁锂质量比显著降低。
3)整个萃取分离过程大大简化,有机相直接循环使用,设备腐蚀程度小,生产过程易于控制。有机相密度小适合于用水反萃取负载有机相时的两相分离。通过调整萃取体系的分子结构和组成,优选的萃取体系在水中的溶解度与TBP的溶解度比较显著减少。
附图表说明
图1是本发明用仲酰胺/烷基醇复合溶剂从含镁卤水中分离镁提取锂和硼的萃取体系、萃取方法和其应用的工艺流程框图。
表34是本发明实施例中涉及到的A物质仲酰胺的常用名称、对应规范名称和代号。
表35是本发明实施例中涉及到的B物质烷基醇的常用名称、对应规范名称和CAS号。
具体实施方式
下面结合实施例对本发明做进一步说明:
实施例1
青海柴达木盆地某盐湖卤水中Li +、Mg 2+和B 2O 3含量分别为2.00、113.43和8.15g/L,镁锂质量比为56.67:1,其中Na +、K +、Cl -
Figure PCTCN2020079078-appb-000002
含量分别为3.83、1.60、325.98和44.00g/L,卤水密度为1.34g/cm 3,卤水pH值为4.3。取10mL该种卤水于100mL磨口锥形瓶中,然后在其中加入30mL N-异辛基戊酰胺和20mL 2-丙基庚醇作为萃取剂,烷基醇占有机相体积的40%,有机相与盐湖卤水体积比为5:1。在锥形瓶中放入磁子,其瓶口插入配套的空气冷凝管防止液体溅出,置于DF-101S型集热式恒温加热磁力搅拌器中,于20℃下混合搅拌、萃取30min。接着将混合液体转移至250mL塑料试筒中,在LD5-10型台式离心机中以4500r/min转速离心15min,两相界面清晰,分相后得到萃取后负载有机相和剩余卤水相。把负载有机相转移至另一个100mL的磨口锥形瓶中,按与有机相1:4.6的体积比加入去离子水,置于DF-101S型集热式恒温加热磁力搅拌器中,在20℃下进行反萃取、两相混合30min。然后把混合液体转移至250mL塑料试筒中,在LD5-10型台式离心机中以4500r/min转速离心15min,得到反萃取后的有机相和水相。
分别采用日本岛津AA-7000型原子吸收分光光度计标准加入法、EDTA滴定法和甘露醇法对 萃取和反萃取过程中的卤水相和水相进行定容、配成分析溶液,取样分析Li +、Mg 2+和B 2O 3含量,计算出萃取率E、反萃取率S、分配比D和锂镁分离系数β,结果如表1所示。
表1 N-异辛基戊酰胺和2-丙基庚醇复合溶剂对青海某盐湖卤水中Li +、Mg 2+和B 2O 3的两相分离情况 *
Figure PCTCN2020079078-appb-000003
*其中符号含义分别指定为 a:有机相对水相体积比, b:Li +萃取率, c:Mg 2+萃取率, d:Li +分配比, e:Mg 2+分配比, f:锂镁分离系数, g:萃取后有机相中镁锂质量比, h:萃取后卤水中镁锂质量比, i:B 2O 3萃取率; j:水相对有机相体积比, k:Li +反萃率, l:Mg 2+反萃率, m:Li +反萃分配比, n:Mg 2+反萃分配比, o:锂镁反萃分离系数, p:反萃取后有机相中镁锂质量比, q:反萃取后水相中镁锂质量比, r:B 2O 3反萃取率;在下列表2至表33中符号含义亦与此相同。
从表1可以看出,Li +单级萃取率为40.47%,Mg 2+单级萃取率为0.69%,锂镁分离系数为98.27。Li +单级反萃取率为74.38%,Mg 2+单级反萃取率为89.14%,反萃取后锂镁分离系数为0.35,水相中镁锂质量比下降至1.17。B 2O 3单级萃取率为42.66%,B 2O 3单级反萃取率为82.46%。
实施例2
取15mL N-辛基异丁酰胺和5mL 2-庚基十一醇作为萃取剂一起置于100mL磨口锥形瓶中,烷基醇占有机相体积的25%,然后在其中加入5mL实施例1中的盐湖卤水,其pH值用浓盐酸调至2.0,有机相与盐湖卤水体积比为4:1。在锥形瓶中放入磁子,其瓶口插入配套的空气冷凝管防止液体溅出,置于DF-101S型集热式恒温加热磁力搅拌器中,于20℃下混合搅拌、萃取30min。接着将混合液体转移至100mL塑料试筒中,在LD5-10型台式离心机中以4500r/min转速离心10min,两相界面清晰,分相后得到萃取后负载有机相和剩余卤水相。把负载有机相转移至另一个100mL的磨口锥形瓶中,按与有机相1:4的体积比加入去离子水,置于DF-101S型集热式恒温加热磁力搅拌器中,在20℃下进行反萃取、两相混合30min。然后把混合液体转移至100mL塑料试筒中,在LD5-10型台式离心机中以4500r/min转速离心10min,得到反萃取后的有机相和水相。
分别采用日本岛津AA-7000型原子吸收分光光度计标准加入法、EDTA滴定法和甘露醇法对萃取和反萃取过程中的卤水相和水相进行定容、配成分析溶液,取样分析Li +、Mg 2+和B 2O 3含量,计算出实验结果如表2所示。
表2 N-辛基异丁酰胺和2-庚基十一醇复合溶剂对青海某盐湖卤水中Li +、Mg 2+和B 2O 3的两相分离情况
Figure PCTCN2020079078-appb-000004
从表2可以看出,Li +单级萃取率为52.43%,Mg 2+单级萃取率为3.83%,锂镁分离系数为27.68。Li +单级反萃取率为83.38%,Mg 2+单级反萃取率为38.25%,反萃取后锂镁分离系数为8.10,水相中镁锂质量比下降至1.90。B 2O 3单级萃取率为29.95%,B 2O 3单级反萃取率为93.80%。
实施例3
取30mL N-异辛基戊酰胺和20mL 2-丙基庚醇作为萃取剂于100mL磨口锥形瓶中,烷基醇占有机相体积的40%,然后在其中加入10mL实施例1中的盐湖卤水,其pH值用浓盐酸调至2.0,有机相与盐湖卤水体积比为5:1。在锥形瓶中放入磁子,其瓶口插入配套的空气冷凝管防止液体溅出,置于DF-101S型集热式恒温加热磁力搅拌器中,于20℃下混合搅拌、萃取30min。接着将混合液体转移至250mL塑料试筒中,在LD5-10型台式离心机中以4500r/min转速离心15min,两相界面清晰,分相后得到萃取后负载有机相和剩余卤水相。把负载有机相转移至另一个100mL的磨口锥形瓶中,按与有机相1:4.7的体积比加入去离子水,置于DF-101S型集热式恒温加热磁力搅拌器中,在20℃下进行反萃取、两相混合30min。然后把混合液体转移至250mL塑料试筒中,在LD5-10型台式离心机中以4500r/min转速离心15min,得到反萃取后的有机相和水相。
分别采用日本岛津AA-7000型原子吸收分光光度计标准加入法、EDTA滴定法和甘露醇法对萃取和反萃取过程中的卤水相和水相进行定容、配成分析溶液,取样分析Li +、Mg 2+和B 2O 3含量,计算出实验结果如表3所示。
表3 N-异辛基戊酰胺和2-丙基庚醇复合溶剂对青海某盐湖卤水中Li +、Mg 2+和B 2O 3的两相分离情况
Figure PCTCN2020079078-appb-000005
从表3可以看出,Li +单级萃取率为41.76%,Mg 2+单级萃取率为1.74%,锂镁分离系数为40.61。Li +单级反萃取率为66.26%,Mg 2+单级反萃取率为27.80%,反萃取后锂镁分离系数为5.10,水相中镁锂质量比下降至1.00。B 2O 3单级萃取率为80.84%,B 2O 3单级反萃取率为69.76%。
实施例4
取30mL N-异辛基戊酰胺和10mL 2-丙基庚醇作为萃取剂于100mL磨口锥形瓶中,烷基醇占有机相体积的25%,然后在其中加入10mL实施例1中的盐湖卤水,其pH值用浓盐酸调至2.0,有机相与盐湖卤水体积比为4:1。在锥形瓶中放入磁子,其瓶口插入配套的空气冷凝管防止液体溅出,置于DF-101S型集热式恒温加热磁力搅拌器中,于20℃下混合搅拌、萃取30min。接着将混合液体转移至250mL塑料试筒中,在LD5-10型台式离心机中以4500r/min转速离心15min,两相界面清晰,分相后得到萃取后负载有机相和剩余卤水相。把负载有机相转移至另一个100mL的磨口锥形瓶中,按与有机相1:3.6的体积比加入去离子水,置于DF-101S型集热式恒温加热磁力搅拌器中,在20℃下进行反萃取、两相混合30min。然后把混合液体转移至250mL塑料试筒中,在LD5-10型台式离心机中以4500r/min转速离心15min,得到反萃取后的有机相和水相。
分别采用日本岛津AA-7000型原子吸收分光光度计标准加入法、EDTA滴定法和甘露醇法对萃取和反萃取过程中的卤水相和水相进行定容、配成分析溶液,取样分析Li +、Mg 2+和B 2O 3含量,计算出实验结果如表4所示。
表4 N-异辛基戊酰胺和2-丙基庚醇复合溶剂对青海某盐湖卤水中Li +、Mg 2+和B 2O 3的两相分离情况
Figure PCTCN2020079078-appb-000006
从表4可以看出,Li +单级萃取率为49.21%,Mg 2+单级萃取率为1.45%,锂镁分离系数为66.09。Li +单级反萃取率为82.67%,Mg 2+单级反萃取率为35.27%,反萃取后锂镁分离系数为8.77,水相中镁锂质量比下降至0.72。B 2O 3单级萃取率为67.11%,B 2O 3单级反萃取率为80.13%。
实施例5
取30mL N-异辛基异戊酰胺和10mL 2-辛基十二醇作为萃取剂于100mL磨口锥形瓶中,烷基醇占有机相体积的25%,然后在其中加入10mL实施例1中的盐湖卤水,其pH值用浓盐酸调至2.0,有机相与盐湖卤水体积比为4:1。在锥形瓶中放入磁子,其瓶口插入配套的空气冷凝管防止液体溅出,置于DF-101S型集热式恒温加热磁力搅拌器中,于20℃下混合搅拌、萃取30min。接着将混合液体转移至250mL塑料试筒中,在LD5-10型台式离心机中以4500r/min转速离心15min,两相界面清晰,分相后得到萃取后负载有机相和剩余卤水相。把负载有机相转移至另一个100mL的磨口锥形瓶中,按与有机相1:7.5的体积比加入水,置于DF-101S型集热式恒温加热磁力搅拌器中,在20℃下进行反萃取、两相混合30min。然后把混合液体转移至250mL塑料试筒中,在LD5-10型台式离心机中以4500r/min转速离心15min,得到反萃取后的有机相和水相。
分别采用日本岛津AA-7000型原子吸收分光光度计标准加入法、EDTA滴定法和甘露醇法对萃取和反萃取过程中的卤水相和水相进行定容、配成分析溶液,取样分析Li +、Mg 2+和B 2O 3含量,计算出实验结果如表5所示。
表5 N-异辛基异戊酰胺和2-辛基十二醇复合溶剂对青海某盐湖卤水中Li +、Mg 2+和B 2O 3的两相分离情况
Figure PCTCN2020079078-appb-000007
从表5可以看出,Li +单级萃取率为39.08%,Mg 2+单级萃取率为2.86%,锂镁分离系数为21.31。Li +单级反萃取率为87.87%,Mg 2+单级反萃取率为38.40%,反萃取后锂镁分离系数为11.62,水相中镁锂质量比下降至1.84。B 2O 3单级萃取率为42.62%,B 2O 3单级反萃取率为88.74%。
实施例6
取16mL N-戊基异壬酰胺和4mL 3-辛醇作为萃取剂于100mL磨口锥形瓶中,烷基醇占有机相体积的20%,然后在其中加入10mL实施例1中的盐湖卤水,其pH值用浓盐酸调至2.0,有机相与盐湖卤水体积比为2:1。在锥形瓶中放入磁子,其瓶口插入配套的空气冷凝管防止液体溅出,置于DF-101S型集热式恒温加热磁力搅拌器中,于20℃下混合搅拌、萃取30min。接着将 混合液体转移至250mL塑料试筒中,在LD5-10型台式离心机中以4500r/min转速离心15min,两相界面清晰,分相后得到萃取后负载有机相和剩余卤水相。把负载有机相转移至另一个100mL的磨口锥形瓶中,按与有机相1:4的体积比加入水,置于DF-101S型集热式恒温加热磁力搅拌器中,在20℃下进行反萃取、两相混合30min。然后把混合液体转移至250mL塑料试筒中,在LD5-10型台式离心机中以4500r/min转速离心15min,得到反萃取后的有机相和水相。
分别采用日本岛津AA-7000型原子吸收分光光度计标准加入法、EDTA滴定法和甘露醇法对萃取和反萃取过程中的卤水相和水相进行定容、配成分析溶液,取样分析Li +、Mg 2+和B 2O 3含量,计算出实验结果如表6所示。
表6 N-戊基异壬酰胺和3-辛醇复合溶剂对青海某盐湖卤水中Li +、Mg 2+和B 2O 3的两相分离情况
Figure PCTCN2020079078-appb-000008
从表6可以看出,Li +单级萃取率为20.13%,Mg 2+单级萃取率为0.87%,锂镁分离系数为28.77。Li +单级反萃取率为96.19%,Mg 2+单级反萃取率为24.08%,反萃取后锂镁分离系数为79.80,水相中镁锂质量比下降至0.61。B 2O 3单级萃取率为29.74%,B 2O 3单级反萃取率为92.11%。
实施例7
青海柴达木盆地某盐湖卤水中Li +、Mg 2+和B 2O 3含量分别为5.20、116.28和17.62g/L,镁锂质量比为22.36:1,其中Na +、K +、Cl -
Figure PCTCN2020079078-appb-000009
含量分别为2.70、1.04、346.21和37.32g/L,卤水密度为1.36g/cm 3,卤水pH值为4.1。取10mL该种卤水于100mL磨口锥形瓶中,其pH值通过加浓盐酸酸化后约为2,然后在其中加入30mL N-戊基异壬酰胺和10mL 2-丁基辛醇作为萃取剂,烷基醇占有机相体积的25%,有机相与盐湖卤水体积比为4:1。在锥形瓶中放入磁子,其瓶口插入配套的空气冷凝管防止液体溅出,置于DF-101S型集热式恒温加热磁力搅拌器中,于20℃下混合搅拌、萃取30min。接着将混合液体转移至250mL塑料试筒中,在LD5-10型台式离心机中以4500r/min转速离心15min,两相界面清晰,分相后得到萃取后负载有机相和剩余卤水相。把负载有机相转移至另一个100mL的磨口锥形瓶中,按与有机相1:7.6的体积比加入去离子水,置于DF-101S型集热式恒温加热磁力搅拌器中,在20℃下进行反萃取、两相混合30min。然后把混合液体转移至250mL塑料试筒中,在LD5-10型台式离心机中以4500r/min转速离心15min,得到反萃取后的有机相和水相。
分别采用日本岛津AA-7000型原子吸收分光光度计标准加入法、EDTA滴定法和甘露醇法对萃取和反萃取过程中的卤水相和水相进行定容、配成分析溶液,取样分析Li +、Mg 2+和B 2O 3含量,计算出实验结果如表7所示。
表7 N-戊基异壬酰胺和2-丁基辛醇复合溶剂对青海某盐湖卤水中Li +、Mg 2+和B 2O 3的两相分离情况
Figure PCTCN2020079078-appb-000010
Figure PCTCN2020079078-appb-000011
从表7可以看出,Li +单级萃取率为35.69%,Mg 2+单级萃取率为1.55%,锂镁分离系数为35.35。Li +单级反萃取率为61.43%,Mg 2+单级反萃取率为21.40%,反萃取后锂镁分离系数为5.85,水相中镁锂质量比下降至0.34。B 2O 3单级萃取率为44.52%,B 2O 3单级反萃取率为78.05%。
实施例8
取24mL N-戊基异壬酰胺和6mL 2-己基癸醇作为萃取剂于100mL磨口锥形瓶中,烷基醇占有机相体积的20%,然后在其中加入3mL实施例1中的盐湖卤水,有机相与盐湖卤水体积比为10:1。在锥形瓶中放入磁子,其瓶口插入配套的空气冷凝管防止液体溅出,置于DF-101S型集热式恒温加热磁力搅拌器中,于20℃下混合搅拌、萃取30min。接着将混合液体转移至250mL塑料试筒中,在LD5-10型台式离心机中以4500r/min转速离心15min,两相界面清晰,分相后得到萃取后负载有机相和剩余卤水相。把负载有机相转移至另一个100mL的磨口锥形瓶中,按与有机相1:10的体积比加入去离子水,置于DF-101S型集热式恒温加热磁力搅拌器中,在20℃下进行反萃取、两相混合30min。然后把混合液体转移至250mL塑料试筒中,在LD5-10型台式离心机中以4500r/min转速离心15min,得到反萃取后的有机相和水相。
分别采用日本岛津AA-7000型原子吸收分光光度计标准加入法、EDTA滴定法和甘露醇法对萃取和反萃取过程中的卤水相和水相进行定容、配成分析溶液,取样分析Li +、Mg 2+和B 2O 3含量,计算出实验结果如表8所示。
表8 N-戊基异壬酰胺和2-己基癸醇复合溶剂对青海某盐湖卤水中Li +、Mg 2+和B 2O 3的两相分离情况
Figure PCTCN2020079078-appb-000012
从表8可以看出,Li +单级萃取率为66.05%,Mg 2+单级萃取率为1.54%,锂镁分离系数为124.28。Li +单级反萃取率为88.81%,Mg 2+单级反萃取率为61.31%,反萃取后锂镁分离系数为5.01,水相中镁锂质量比下降至0.91。B 2O 3单级萃取率为47.32%,B 2O 3单级反萃取率为90.46%。
实施例9
取20mL N-异辛基庚酰胺和5mL 2-己基癸醇作为萃取剂于100mL磨口锥形瓶中,烷基醇占有机相体积的20%,然后在其中加入5mL实施例1中的盐湖卤水,其pH值用浓盐酸调至2.0,有机相与盐湖卤水体积比为5:1。在锥形瓶中放入磁子,其瓶口插入配套的空气冷凝管防止液体溅出,置于DF-101S型集热式恒温加热磁力搅拌器中,于20℃下混合搅拌、萃取30min。接着将混合液体转移至250mL塑料试筒中,在LD5-10型台式离心机中以4500r/min转速离心15min,两相界面清晰,分相后得到萃取后负载有机相和剩余卤水相。把负载有机相转移至另一个100mL的磨口锥形瓶中,按与有机相1:10的体积比加入去离子水,置于DF-101S型集热式恒温加热磁力搅拌器中,在20℃下进行反萃取、两相混合30min。然后把混合液体转移至250mL塑料试筒中,在LD5-10型台式离心机中以4500r/min转速离心15min,得到反萃取后的有机相和水相。
分别采用日本岛津AA-7000型原子吸收分光光度计标准加入法、EDTA滴定法和甘露醇法对萃取和反萃取过程中的卤水相和水相进行定容、配成分析溶液,取样分析Li +、Mg 2+和B 2O 3含量,计算出实验结果如表9所示。
表9 N-异辛基庚酰胺和2-己基癸醇复合溶剂对青海某盐湖卤水中Li +、Mg 2+和B 2O 3的两相分离情况
Figure PCTCN2020079078-appb-000013
从表9可以看出,Li +单级萃取率为43.52%,Mg 2+单级萃取率为1.88%,锂镁分离系数为40.26。Li +单级反萃取率为91.17%,Mg 2+单级反萃取率为42.20%,反萃取后锂镁分离系数为14.10,水相中镁锂质量比下降至1.13。B 2O 3单级萃取率为46.82%,B 2O 3单级反萃取率为90.55%。
实施例10
取20mL N-异辛基辛酰胺和5mL 2,6-二甲基-2-辛醇作为萃取剂于100mL磨口锥形瓶中,烷基醇占有机相体积的20%,然后在其中加入5mL实施例1中的盐湖卤水,其pH值用浓盐酸调至2.0,有机相与盐湖卤水体积比为5:1。在锥形瓶中放入磁子,其瓶口插入配套的空气冷凝管防止液体溅出,置于DF-101S型集热式恒温加热磁力搅拌器中,于30℃下混合搅拌、萃取30min。接着将混合液体转移至250mL塑料试筒中,在LD5-10型台式离心机中以4500r/min转速离心15min,两相界面清晰,分相后得到萃取后负载有机相和剩余卤水相。把负载有机相转移至另一个100mL的磨口锥形瓶中,按与有机相1:10的体积比加入去离子水,置于DF-101S型集热式恒温加热磁力搅拌器中,在30℃下进行反萃取、两相混合30min。然后把混合液体转移至250mL塑料试筒中,在LD5-10型台式离心机中以4500r/min转速离心15min,得到反萃取后的有机相和水相。
分别采用日本岛津AA-7000型原子吸收分光光度计标准加入法、EDTA滴定法和甘露醇法对萃取和反萃取过程中的卤水相和水相进行定容、配成分析溶液,取样分析Li +、Mg 2+和B 2O 3含量,计算出实验结果如表10所示。
表10 N-异辛基辛酰胺和2,6-二甲基-2-辛醇复合溶剂对青海某盐湖卤水中Li +、Mg 2+和B 2O 3的两相分离情况
Figure PCTCN2020079078-appb-000014
从表10可以看出,Li +单级萃取率为45.64%,Mg 2+单级萃取率为1.34%,锂镁分离系数为61.96。Li +单级反萃取率为84.15%,Mg 2+单级反萃取率为20.43%,反萃取后锂镁分离系数为20.68,水相中镁锂质量比下降至0.40。B 2O 3单级萃取率为43.25%,B 2O 3单级反萃取率为86.07%。
实施例11
取10mL N-异丁基异壬酰胺(受热后液体)、10mL N-异辛基异戊酰胺和5mL 2-丙基庚醇作为萃取剂于100mL磨口锥形瓶中,烷基醇占有机相体积的20%,然后在其中加入5mL实施例1中的盐湖卤水,其pH值用浓盐酸调至2.0,有机相与盐湖卤水体积比为5:1。在锥形瓶中放入磁子,其瓶口插入配套的空气冷凝管防止液体溅出,置于DF-101S型集热式恒温加热磁力搅拌器中,于20℃下混合搅拌、萃取30min。接着将混合液体转移至250mL塑料试筒中,在LD5-10型台式离心机中以4500r/min转速离心15min,两相界面清晰,分相后得到萃取后负载有机相和剩余卤水相。把负载有机相转移至另一个100mL的磨口锥形瓶中,按与有机相1:10的体积比加入去离子水,置于DF-101S型集热式恒温加热磁力搅拌器中,在20℃下进行反萃取、两相混合30min。然后把混合液体转移至250mL塑料试筒中,在LD5-10型台式离心机中以4500r/min转速离心15min,得到反萃取后的有机相和水相。
分别采用日本岛津AA-7000型原子吸收分光光度计标准加入法、EDTA滴定法和甘露醇法对萃取和反萃取过程中的卤水相和水相进行定容、配成分析溶液,取样分析Li +、Mg 2+和B 2O 3含量,计算出实验结果如表11所示。
表11 N-异丁基异壬酰胺、N-异辛基异戊酰胺和2-丙基庚醇复合溶剂对青海某盐湖卤水中Li +、Mg 2+和B 2O 3的两相分离情况
Figure PCTCN2020079078-appb-000015
从表11可以看出,Li +单级萃取率为51.52%,Mg 2+单级萃取率为1.14%,锂镁分离系数为92.23。Li +单级反萃取率为90.60%,Mg 2+单级反萃取率为47.43%,反萃取后锂镁分离系数为10.71,水相中镁锂质量比下降至0.66。B 2O 3单级萃取率为53.06%,B 2O 3单级反萃取率为77.36%。
实施例12
取15mL N-异戊基辛酰胺、15mL N-异辛基戊酰胺和10mL 2-丙基庚醇作为萃取剂于100mL磨口锥形瓶中,烷基醇占有机相体积的25%,然后在其中加入10mL实施例1中的盐湖卤水,其pH值用浓盐酸调至2.0,有机相与盐湖卤水体积比为4:1。在锥形瓶中放入磁子,其瓶口插入配套的空气冷凝管防止液体溅出,置于DF-101S型集热式恒温加热磁力搅拌器中,于20℃下混合搅拌、萃取30min。接着将混合液体转移至250mL塑料试筒中,在LD5-10型台式离心机中以4500r/min转速离心15min,两相界面清晰,分相后得到萃取后负载有机相和剩余卤水相。把负载有机相转移至另一个100mL的磨口锥形瓶中,按与有机相1:7.5的体积比加入去离子水,置于DF-101S型集热式恒温加热磁力搅拌器中,在20℃下进行反萃取、两相混合30min。然后把混合液体转移至250mL塑料试筒中,在LD5-10型台式离心机中以4500r/min转速离心15min,得到反萃取后的有机相和水相。
分别采用日本岛津AA-7000型原子吸收分光光度计标准加入法、EDTA滴定法和甘露醇法对萃取和反萃取过程中的卤水相和水相进行定容、配成分析溶液,取样分析Li +、Mg 2+和B 2O 3含量,计算出实验结果如表12所示。
表12 N-异戊基辛酰胺、N-异辛基戊酰胺和2-丙基庚醇复合溶剂对青海某盐湖卤水中Li +、Mg 2+和B 2O 3的两相分离情况
Figure PCTCN2020079078-appb-000016
从表12可以看出,Li +单级萃取率为59.52%,Mg 2+单级萃取率为2.39%,锂镁分离系数为59.99。Li +单级反萃取率为81.36%,Mg 2+单级反萃取率为24.43%,反萃取后锂镁分离系数为13.50,水相中镁锂质量比下降至0.69。B 2O 3单级萃取率为56.89%,B 2O 3单级反萃取率为67.47%。
实施例13
取10mL N-戊基异壬酰胺、10mL N-异辛基戊酰胺和5mL二异丁基甲醇作为萃取剂于100mL磨口锥形瓶中,烷基醇占有机相体积的20%,然后在其中加入5mL实施例1中的盐湖卤水,其pH值用浓盐酸调至2.0,有机相与盐湖卤水体积比为5:1。在锥形瓶中放入磁子,其瓶口插入配套的空气冷凝管防止液体溅出,置于DF-101S型集热式恒温加热磁力搅拌器中,于20℃下混合搅拌、萃取30min。接着将混合液体转移至250mL塑料试筒中,在LD5-10型台式离心机中以4500r/min转速离心15min,两相界面清晰,分相后得到萃取后负载有机相和剩余卤水相。把负载有机相转移至另一个100mL的磨口锥形瓶中,按与有机相1:10的体积比加入去离子水,置于DF-101S型集热式恒温加热磁力搅拌器中,在20℃下进行反萃取、两相混合30min。然后把混合液体转移至250mL塑料试筒中,在LD5-10型台式离心机中以4500r/min转速离心15min,得到反萃取后的有机相和水相。
分别采用日本岛津AA-7000型原子吸收分光光度计标准加入法、EDTA滴定法和甘露醇法对萃取和反萃取过程中的卤水相和水相进行定容、配成分析溶液,取样分析Li +、Mg 2+和B 2O 3含量,计算出实验结果如表13所示。
表13 N-戊基异壬酰胺、N-异辛基戊酰胺和二异丁基甲醇复合溶剂对青海某盐湖卤水中Li +、Mg 2+和B 2O 3的两相分离情况
Figure PCTCN2020079078-appb-000017
从表13可以看出,Li +单级萃取率为50.79%,Mg 2+单级萃取率为1.57%,锂镁分离系数为64.50。Li +单级反萃取率为76.48%,Mg 2+单级反萃取率为30.69%,反萃取后锂镁分离系数为7.34,水相中镁锂质量比下降至0.71。B 2O 3单级萃取率为48.31%,B 2O 3单级反萃取率为74.74%。
实施例14
取15mL N-异戊基辛酰胺、15mL异辛基戊酰胺和10mL 2-丙基庚醇作为萃取剂于100mL磨口锥形瓶中,烷基醇占有机相体积的25%,然后在其中加入10mL实施例7中的盐湖卤水,其pH值用浓盐酸调至2.0,有机相与盐湖卤水体积比为4:1。在锥形瓶中放入磁子,其瓶口插入配套的空气冷凝管防止液体溅出,置于DF-101S型集热式恒温加热磁力搅拌器中,于20℃下混合搅拌、萃取30min。接着将混合液体转移至250mL塑料试筒中,在LD5-10型台式离心机中以 4500r/min转速离心15min,两相界面清晰,分相后得到萃取后负载有机相和剩余卤水相。把负载有机相转移至另一个100mL的磨口锥形瓶中,按与有机相1:7.4的体积比加入去离子水,置于DF-101S型集热式恒温加热磁力搅拌器中,在20℃下进行反萃取、两相混合30min。然后把混合液体转移至250mL塑料试筒中,在LD5-10型台式离心机中以4500r/min转速离心15min,得到反萃取后的有机相和水相。
分别采用日本岛津AA-7000型原子吸收分光光度计标准加入法、EDTA滴定法和甘露醇法对萃取和反萃取过程中的卤水相和水相进行定容、配成分析溶液,取样分析Li +、Mg 2+和B 2O 3含量,计算出实验结果如表14所示。
表14 N-异戊基辛酰胺、异辛基戊酰胺和2-丙基庚醇复合溶剂对青海某盐湖卤水中Li +、Mg 2+和B 2O 3的两相分离情况
Figure PCTCN2020079078-appb-000018
从表14可以看出,Li +单级萃取率为48.06%,Mg 2+单级萃取率为2.19%,锂镁分离系数为41.24。Li +单级反萃取率为84.01%,Mg 2+单级反萃取率为33.78%,反萃取后锂镁分离系数为10.31,水相中镁锂质量比下降至0.41。B 2O 3单级萃取率为48.46%,B 2O 3单级反萃取率为67.51%。
实施例15
取15mL N-异戊基辛酰胺、2.5mL 2-丙基庚醇和2.5mL 2-丁基辛醇作为萃取剂一起置于100mL磨口锥形瓶中,烷基醇占有机相体积的25%,然后在其中加入5mL实施例1中的盐湖卤水,其pH值用浓盐酸调至2.0,有机相与盐湖卤水体积比为4:1。在锥形瓶中放入磁子,其瓶口插入配套的空气冷凝管防止液体溅出,置于DF-101S型集热式恒温加热磁力搅拌器中,于20℃下混合搅拌、萃取30min。接着将混合液体转移至100mL塑料试筒中,在LD5-10型台式离心机中以4500r/min转速离心10min,两相界面清晰,分相后得到萃取后负载有机相和剩余卤水相。把负载有机相转移至另一个100mL的磨口锥形瓶中,按与有机相1:8的体积比加入去离子水,置于DF-101S型集热式恒温加热磁力搅拌器中,在20℃下进行反萃取、两相混合30min。然后把混合液体转移至100mL塑料试筒中,在LD5-10型台式离心机中以4500r/min转速离心10min,得到反萃取后的有机相和水相。
分别采用日本岛津AA-7000型原子吸收分光光度计标准加入法、EDTA滴定法和甘露醇法对萃取和反萃取过程中的卤水相和水相进行定容、配成分析溶液,取样分析Li +、Mg 2+和B 2O 3含量,计算出实验结果如表15所示。
表15 N-异戊基辛酰胺、2-丙基庚醇和2-丁基辛醇复合溶剂对青海某盐湖卤水中Li +、Mg 2+和B 2O 3的两相分离情况
Figure PCTCN2020079078-appb-000019
Figure PCTCN2020079078-appb-000020
从表15可以看出,Li +单级萃取率为60.95%,Mg 2+单级萃取率为3.34%,锂镁分离系数为45.22。Li +单级反萃取率为72.83%,Mg 2+单级反萃取率为41.99%,反萃取后锂镁分离系数为3.70,水相中镁锂质量比下降至1.79。B 2O 3单级萃取率为53.50%,B 2O 3单级反萃取率为80.81%。
实施例16
取35mL N-异辛基戊酰胺和10mL 2-丁基辛醇作为萃取剂、5mL 260#溶剂油作为稀释剂一起置于100mL磨口锥形瓶中,烷基醇和稀释剂分别占有机相体积的20%和10%,然后在其中加入10mL实施例1中的盐湖卤水,其pH值用浓盐酸调至2.0,有机相与盐湖卤水体积比为5:1。在锥形瓶中放入磁子,其瓶口插入配套的空气冷凝管防止液体溅出,置于DF-101S型集热式恒温加热磁力搅拌器中,于0℃下混合搅拌、萃取30min。接着将混合液体转移至250mL塑料试筒中,在LD5-10型台式离心机中以4800r/min转速离心15min,两相界面清晰,分相后得到萃取后负载有机相和剩余卤水相。把负载有机相转移至另一个100mL的磨口锥形瓶中,按与有机相1:9.5的体积比加入去离子水,置于DF-101S型集热式恒温加热磁力搅拌器中,在0℃下进行反萃取、两相混合30min。然后把混合液体转移至250mL塑料试筒中,在LD5-10型台式离心机中以4800r/min转速离心15min,得到反萃取后的有机相和水相。
分别采用日本岛津AA-7000型原子吸收分光光度计标准加入法、EDTA滴定法和甘露醇法对萃取和反萃取过程中的卤水相和水相进行定容、配成分析溶液,取样分析Li +、Mg 2+和B 2O 3含量,计算出实验结果如表16所示。
表16 N-异辛基戊酰胺、2-丁基辛醇和260#溶剂油复合体系对青海某盐湖卤水中Li +、Mg 2+和B 2O 3的两相分离情况
Figure PCTCN2020079078-appb-000021
从表16可以看出,Li +单级萃取率为54.63%,Mg 2+单级萃取率为2.52%,锂镁分离系数为46.50。Li +单级反萃取率为75.72%,Mg 2+单级反萃取率为38.46%,反萃取后锂镁分离系数为4.93,水相中镁锂质量比下降至1.35。B 2O 3单级萃取率为53.23%,B 2O 3单级反萃取率为81.99%。
实施例17
取10mL N-戊基异壬酰胺、10mL N-环戊基壬酰胺(受热后液体)和5mL 2-丙基庚醇作为萃取剂一起置于100mL磨口锥形瓶中,烷基醇占有机相体积的20%,然后在其中加入5mL实施例1中的盐湖卤水,其pH值用浓盐酸调至2.0,有机相与盐湖卤水体积比为5:1。在锥形瓶中放入磁子,其瓶口插入配套的空气冷凝管防止液体溅出,置于DF-101S型集热式恒温加热磁力搅拌器中,于20℃下混合搅拌、萃取20min。接着将混合液体转移至250mL塑料试筒中,在LD5-10型台式离心机中以4500r/min转速离心10min,两相界面清晰,分相后得到萃取后负载有机相和剩余卤水相。把负载有机相转移至另一个100mL的磨口锥形瓶中,按与有机相1:5的体积比加入去离子水,置于DF-101S型集热式恒温加热磁力搅拌器中,在20℃下进行反萃取、两相混合20min。然后把混合液体转移至250mL塑料试筒中,在LD5-10型台式离心机中以4500r/min转速离心10min,得到反萃取后的有机相和水相。
分别采用日本岛津AA-7000型原子吸收分光光度计标准加入法、EDTA滴定法和甘露醇法对萃取和反萃取过程中的卤水相和水相进行定容、配成分析溶液,取样分析Li +、Mg 2+和B 2O 3含量,计算出实验结果如表17所示。
表17 N-戊基异壬酰胺、N-环戊基壬酰胺和2-丙基庚醇复合溶剂对青海某盐湖卤水中Li +、Mg 2+和B 2O 3的两相分离情况
Figure PCTCN2020079078-appb-000022
从表17可以看出,Li +单级萃取率为57.52%,Mg 2+单级萃取率为5.56%,锂镁分离系数为22.99。Li +单级反萃取率为73.74%,Mg 2+单级反萃取率为46.08%,反萃取后锂镁分离系数为3.28,水相中镁锂质量比下降至3.42。B 2O 3单级萃取率为50.54%,B 2O 3单级反萃取率为89.51%。
实施例18
取12mL N-异辛基戊酰胺、2mL N-乙基月桂酰胺(受热后液体)和6mL 2-己基癸醇作为萃取剂一起置于100mL磨口锥形瓶中,烷基醇占有机相体积的30%,然后在其中加入2mL含镁卤水,有机相与卤水体积比为10:1。该含镁卤水中Li +、Mg 2+、Cl -和B 2O 3含量分别为20.42、99.83、399.07和0.50g/L,镁锂质量比为4.89:1,卤水密度为1.32g/cm 3,其pH值用浓盐酸调至0.0。在锥形瓶中放入磁子,其瓶口插入配套的空气冷凝管防止液体溅出,置于DF-101S型集热式恒温加热磁力搅拌器中,于20℃下混合搅拌、萃取25min。接着将混合液体转移至100mL塑料试筒中,在LD5-10型台式离心机中以4000r/min转速离心10min,两相界面清晰,分相后得到萃取后负载有机相和剩余卤水相。把负载有机相转移至另一个100mL的磨口锥形瓶中,按与有机相1:10的体积比加入去离子水,置于DF-101S型集热式恒温加热磁力搅拌器中,在20℃下进行反萃取、两相混合25min。然后把混合液体转移至100mL塑料试筒中,在LD5-10型台式离心机中以4200r/min转速离心10min,得到反萃取后的有机相和水相。
分别采用日本岛津AA-7000型原子吸收分光光度计标准加入法、EDTA滴定法和甘露醇法对萃取和反萃取过程中的卤水相和水相进行定容、配成分析溶液,取样分析Li +、Mg 2+和B 2O 3含量,计算出实验结果如表18所示。
表18 N-异辛基戊酰胺、N-乙基月桂酰胺和2-己基癸醇复合溶剂对某含镁卤水中Li +、Mg 2+和B 2O 3的两相分离情况
Figure PCTCN2020079078-appb-000023
从表18可以看出,Li +单级萃取率为39.92%,Mg 2+单级萃取率为2.42%,锂镁分离系数为23.80。Li +单级反萃取率为82.43%,Mg 2+单级反萃取率为84.29%,反萃取后锂镁分离系数为0.87,水相中镁锂质量比下降至0.30。B 2O 3单级萃取率为43.66%,B 2O 3单级反萃取率为91.45%。
实施例19
取12mL N-异戊基辛酰胺和3mL 2-丙基庚醇作为萃取剂于100mL磨口锥形瓶中,烷基醇占有机相体积的20%,然后在其中加入5mL含镁卤水,有机相与卤水体积比为3:1。该含镁卤水中Li +、Mg 2+、Cl -和B 2O 3含量分别为0.11、120.62、358.58和1.89g/L,镁锂质量比为1096.55:1,卤水密度为1.33g/cm 3,其pH值用浓盐酸调至0.76。在锥形瓶中放入磁子,其瓶口插入配套的空气冷凝管防止液体溅出,置于DF-101S型集热式恒温加热磁力搅拌器中,于20℃下混合搅拌、萃取30min。接着将混合液体转移至100mL塑料试筒中,在LD5-10型台式离心机中以4000r/min转速离心8min,两相界面清晰,分相后得到萃取后负载有机相和剩余卤水相。把负载有机相转移至另一个100mL的磨口锥形瓶中,按与有机相1:3的体积比加入去离子水,置于DF-101S型集热式恒温加热磁力搅拌器中,在20℃下进行反萃取、两相混合30min。然后把混合液体转移至100mL塑料试筒中,在LD5-10型台式离心机中以4000r/min转速离心8min,得到反萃取后的有机相和水相。
分别采用日本岛津AA-7000型原子吸收分光光度计标准加入法、EDTA滴定法和甘露醇法对萃取和反萃取过程中的卤水相和水相进行定容、配成分析溶液,取样分析Li +、Mg 2+和B 2O 3含量,计算出实验结果如表19所示。
表19 N-异戊基辛酰胺和2-丙基庚醇复合溶剂对某含镁卤水中Li +、Mg 2+和B 2O 3的两相分离情况
Figure PCTCN2020079078-appb-000024
从表19可以看出,Li +单级萃取率为73.31%,Mg 2+单级萃取率为1.58%,锂镁分离系数为170.71。Li +单级反萃取率为96.75%,Mg 2+单级反萃取率为96.63%,反萃取后锂镁分离系数为1.04,水相中镁锂质量比下降至23.60。B 2O 3单级萃取率为46.90%,B 2O 3单级反萃取率为93.47%。
实施例20
取23.85mL N-异辛基丁酰胺、2.0mL N-异辛基新癸酰胺、1.0mL N-异辛基-1-环丙基甲酰胺、3.0mL 3-辛醇和0.15mL 260#溶剂油分别作为萃取剂和稀释剂于100mL磨口锥形瓶中,烷基醇和稀释剂分别占有机相体积的10%和0.5%,然后在其中加入3mL实施例7中的盐湖卤水稀释液,有机相与卤水体积比为10:1。此时卤水中Li +、Mg 2+、Cl -和B 2O 3含量分别为3.67、82.09、241.84和12.37g/L,镁锂质量比为22.37:1,卤水密度为1.25g/cm 3,其pH值用浓盐酸调至2.0。在锥形瓶中放入磁子,置于DF-101S型集热式恒温加热磁力搅拌器中,于20℃下混合搅拌、萃取30min。接着将混合液体转移至100mL塑料试筒中,在LD5-10型台式离心机中以4200r/min转速离心8min,两相界面清晰,分相后得到萃取后负载有机相和剩余卤水相。把负载有机相转移至另一个100mL的磨口锥形瓶中,按与有机相1:10的体积比加入去离子水,置于DF-101S型集热式恒温加热磁力搅拌器中,在20℃下进行反萃取、两相混合30min。然后把混合液体转移至100mL塑料试筒中,在LD5-10型台式离心机中以4200r/min转速离心8min,得到反萃取后的有机相和水相。
分别采用日本岛津AA-7000型原子吸收分光光度计标准加入法、EDTA滴定法和甘露醇法对萃取和反萃取过程中的卤水相和水相进行定容、配成分析溶液,取样分析Li +、Mg 2+和B 2O 3含量, 计算出实验结果如表20所示。
表20 N-异辛基丁酰胺、N-异辛基新癸酰胺、N-异辛基-1-环丙基甲酰胺、3-辛醇和260#溶剂油复合体系对青海某盐湖卤水中Li +、Mg 2+和B 2O 3的两相分离情况
Figure PCTCN2020079078-appb-000025
从表20可以看出,Li +单级萃取率为43.56%,Mg 2+单级萃取率为0.75%,锂镁分离系数为101.98。Li +单级反萃取率为86.58%,Mg 2+单级反萃取率为78.07%,反萃取后锂镁分离系数为1.81,水相中镁锂质量比下降至0.35。B 2O 3单级萃取率为50.53%,B 2O 3单级反萃取率为74.86%。
实施例21
取4.5mL N-异戊基辛酰胺、4.5mL N-异辛基戊酰胺和1.0mL 2-丙基庚醇作为萃取剂于100mL磨口锥形瓶中,烷基醇占有机相体积的10%,然后在其中加入10mL含镁卤水,有机相与卤水体积比为1:1。该含镁卤水中Li +、Mg 2+、Cl -和B 2O 3含量分别为0.19、117.27、343.25和1.62g/L,镁锂质量比为627.43:1,卤水密度为1.32g/cm 3,卤水pH值调整为2.2。在锥形瓶中放入磁子,置于DF-101S型集热式恒温加热磁力搅拌器中,于20℃下混合搅拌、萃取30min。接着将混合液体转移至100mL塑料试筒中,在LD5-10型台式离心机中以4200r/min转速离心10min,两相界面清晰,分相后得到萃取后负载有机相和剩余卤水相。把负载有机相转移至另一个100mL的磨口锥形瓶中,按与有机相1:1的体积比加入去离子水,置于DF-101S型集热式恒温加热磁力搅拌器中,在20℃下进行反萃取、两相混合30min。然后把混合液体转移至100mL塑料试筒中,在LD5-10型台式离心机中以4200r/min转速离心10min,得到反萃取后的有机相和水相。
分别采用日本岛津AA-7000型原子吸收分光光度计标准加入法、EDTA滴定法和甘露醇法对萃取和反萃取过程中的卤水相和水相进行定容、配成分析溶液,取样分析Li +、Mg 2+和B 2O 3含量,计算出实验结果如表21所示。
表21 N-异戊基辛酰胺、N-异辛基戊酰胺和2-丙基庚醇复合溶剂对某含镁卤水中Li +、Mg 2+和B 2O 3的两相分离情况
Figure PCTCN2020079078-appb-000026
从表21可以看出,Li +单级萃取率为54.34%,Mg 2+单级萃取率为3.93%,锂镁分离系数为29.10。Li +单级反萃取率为95.66%,Mg 2+单级反萃取率为76.52%,反萃取后锂镁分离系数为6.78,水相中镁锂质量比下降至36.31。B 2O 3单级萃取率为20.73%,B 2O 3单级反萃取率为94.34%。
实施例22
取15mL N-异辛基丁酰胺和15mL 2-辛基十二醇作为萃取剂于100mL磨口锥形瓶中,烷基醇占有机相体积的50%,然后在其中加入3mL实施例1中的盐湖卤水,其pH值用浓盐酸调至 2.0,有机相与卤水体积比为10:1。在锥形瓶中插入聚四氟乙烯搅拌杆,用DW-1-60型直流恒速搅拌器于50℃下混合搅拌、萃取30min。接着使混合液体自然澄清沉降60min,两相分离后得到萃取后负载有机相和剩余卤水相。把负载有机相转移至另一个100mL的磨口锥形瓶中,按与有机相1:10的体积比加入去离子水,插入聚四氟乙烯搅拌杆,用DW-1-60型直流恒速搅拌器在50℃下进行反萃取、两相混合30min。然后让混合液体自然澄清沉降60min,两相分离后得到反萃取后的有机相和水相。
分别采用日本岛津AA-7000型原子吸收分光光度计标准加入法、EDTA滴定法和甘露醇法对萃取和反萃取过程中的卤水相和水相进行定容、配成分析溶液,取样分析Li +、Mg 2+和B 2O 3含量,计算出实验结果如表22所示。
表22 N-异辛基丁酰胺和2-辛基十二醇复合溶剂对青海某盐湖卤水中Li +、Mg 2+和B 2O 3的两相分离情况
Figure PCTCN2020079078-appb-000027
从表22可以看出,Li +单级萃取率为34.98%,Mg 2+单级萃取率为1.23%,锂镁分离系数为43.21。Li +单级反萃取率为80.71%,Mg 2+单级反萃取率为53.52%,反萃取后锂镁分离系数为3.64,水相中镁锂质量比下降至1.33。B 2O 3单级萃取率为83.66%,B 2O 3单级反萃取率为60.84%。
实施例23
青海柴达木盆地某盐湖卤水中Li +和Mg 2+含量分别为0.31g/L和105.72g/L,镁锂质量比为341.26:1,其中Na +、K +、Cl -
Figure PCTCN2020079078-appb-000028
和B 2O 3含量分别为5.16、3.32、313.09、11.13和1.16g/L,卤水密度为1.31g/cm 3,其pH值用浓盐酸调整至2.0。取3mL该种卤水于100mL磨口锥形瓶中,然后在其中加入13mL N-异辛基戊酰胺、2mL N-十二基乙酰胺(受热后液体)、9mL 2-丁基辛醇和6mL 260#溶剂油分别作为萃取剂和稀释剂,烷基醇和稀释剂分别占有机相体积的30%和20%,有机相与盐湖卤水体积比为10:1。在锥形瓶中放入磁子,置于DF-101S型集热式恒温加热磁力搅拌器中,于20℃下混合搅拌、萃取25min。接着将混合液体转移至100mL塑料试筒中,在LD5-10型台式离心机中以4200r/min转速离心8min,两相界面清晰,分相后得到萃取后负载有机相和剩余卤水相。把负载有机相转移至另一个100mL的磨口锥形瓶中,按与有机相1:20的体积比加入去离子水,置于DF-101S型集热式恒温加热磁力搅拌器中,在20℃下进行反萃取、两相混合25min。然后把混合液体转移至100mL塑料试筒中,在LD5-10型台式离心机中以4200r/min转速离心8min,得到反萃取后的有机相和水相。
分别采用日本岛津AA-7000型原子吸收分光光度计标准加入法、EDTA滴定法和甘露醇法对萃取和反萃取过程中的卤水相和水相进行定容、配成分析溶液,取样分析Li +、Mg 2+和B 2O 3含量,计算出实验结果如表23所示。
表23 N-异辛基戊酰胺、N-十二基乙酰胺、2-丁基辛醇和260#溶剂油复合体系对青海某盐湖卤水中Li +、Mg 2+和B 2O 3的两相分离情况
Figure PCTCN2020079078-appb-000029
Figure PCTCN2020079078-appb-000030
从表23可以看出,Li +单级萃取率为36.36%,Mg 2+单级萃取率为0.90%,锂镁分离系数为63.05。Li +单级反萃取率为93.65%,Mg 2+单级反萃取率为94.65%,反萃取后锂镁分离系数为0.83,水相中镁锂质量比下降至8.54。B 2O 3单级萃取率为65.40%,B 2O 3单级反萃取率为67.79%。
实施例24
取14.9mL N-异辛基戊酰胺、0.1g N-环十二基乙酰胺(混合受热后液体)、14.85mL 2-丙基庚醇和0.15mL 260#溶剂油分别作为萃取剂和稀释剂于100mL磨口锥形瓶中,烷基醇和稀释剂分别占有机相体积的49.5%和0.5%,然后在其中加入3mL实施例23中的盐湖卤水,其pH值用浓盐酸调至2.0,有机相与卤水体积比为10:1。在锥形瓶中放入磁子,置于DF-101S型集热式恒温加热磁力搅拌器中,于20℃下混合搅拌、萃取25min。接着将混合液体转移至100mL塑料试筒中,在LD5-10型台式离心机中以4200r/min转速离心8min,两相界面清晰,分相后得到萃取后负载有机相和剩余卤水相。把负载有机相转移至另一个100mL的磨口锥形瓶中,按与有机相1:20的体积比加入去离子水,置于DF-101S型集热式恒温加热磁力搅拌器中,在20℃下进行反萃取、两相混合25min。然后把混合液体转移至100mL塑料试筒中,在LD5-10型台式离心机中以4200r/min转速离心8min,得到反萃取后的有机相和水相。
分别采用日本岛津AA-7000型原子吸收分光光度计标准加入法、EDTA滴定法和甘露醇法对萃取和反萃取过程中的卤水相和水相进行定容、配成分析溶液,取样分析Li +、Mg 2+和B 2O 3含量,计算出实验结果如表24所示。
表24 N-异辛基戊酰胺、N-环十二基乙酰胺、2-丙基庚醇和260#溶剂油复合体系对青海某盐湖卤水中Li +、Mg 2+和B 2O 3的两相分离情况
Figure PCTCN2020079078-appb-000031
从表24可以看出,Li +单级萃取率为31.72%,Mg 2+单级萃取率为0.91%,锂镁分离系数为50.43。Li +单级反萃取率为92.61%,Mg 2+单级反萃取率为93.54%,反萃取后锂镁分离系数为0.87,水相中镁锂质量比下降至9.90。B 2O 3单级萃取率为65.37%,B 2O 3单级反萃取率为64.45%。
实施例25
取18mL N-异辛基戊酰胺、1mL N-环丙基癸酰胺(受热后液体)、1mL N-己基-3-环戊基丙酰胺和5mL 2-辛基十二醇作为萃取剂于100mL磨口锥形瓶中,烷基醇占有机相体积的20%,然后在其中加入5mL实施例1中的盐湖卤水,其pH值用加浓盐酸调至2.0,有机相与卤水体积比为5:1。在锥形瓶中放入磁子,置于DF-101S型集热式恒温加热磁力搅拌器中,于20℃下混合搅拌、萃取25min。接着将混合液体转移至100mL塑料试筒中,在LD5-10型台式离心机中以4200r/min转速离心8min,两相界面清晰,分相后得到萃取后负载有机相和剩余卤水相。把负载有机相转移至另一个100mL的磨口锥形瓶中,按与有机相1:5的体积比加入去离子水,置于DF-101S型 集热式恒温加热磁力搅拌器中,在20℃下进行反萃取、两相混合25min。然后把混合液体转移至100mL塑料试筒中,在LD5-10型台式离心机中以4200r/min转速离心8min,得到反萃取后的有机相和水相。
分别采用日本岛津AA-7000型原子吸收分光光度计标准加入法、EDTA滴定法和甘露醇法对萃取和反萃取过程中的卤水相和水相进行定容、配成分析溶液,取样分析Li +、Mg 2+和B 2O 3含量,计算出实验结果如表25所示。
表25 N-异辛基戊酰胺、N-环丙基癸酰胺、N-己基-3-环戊基丙酰胺和2-辛基十二醇复合溶剂对青海某盐湖卤水中Li +、Mg 2+和B 2O 3的两相分离情况
Figure PCTCN2020079078-appb-000032
从表25可以看出,Li +单级萃取率为57.14%,Mg 2+单级萃取率为1.60%,锂镁分离系数为81.96。Li +单级反萃取率为94.09%,Mg 2+单级反萃取率为91.69%,反萃取后锂镁分离系数为1.45,水相中镁锂质量比下降至1.56。B 2O 3单级萃取率为41.02%,B 2O 3单级反萃取率为92.37%。
实施例26
取24mL N-异辛基戊酰胺和6mL 2-丙基庚醇作为萃取剂于100mL磨口锥形瓶中,烷基醇占有机相体积的20%,然后在其中加入5mL含镁卤水,有机相与卤水体积比为6:1。该含镁卤水中Li +、Mg 2+、Cl -
Figure PCTCN2020079078-appb-000033
和B 2O 3含量分别为1.21、80.86、202.53、53.56和1.23g/L,镁锂质量比为66.83:1,卤水密度为1.25g/cm 3,卤水pH值为7.0。在锥形瓶中放入磁子,置于DF-101S型集热式恒温加热磁力搅拌器中,于20℃下混合搅拌、萃取25min。接着将混合液体转移至100mL塑料试筒中,在LD5-10型台式离心机中以4200r/min转速离心8min,得到萃取后负载有机相和剩余卤水相。把负载有机相转移至另一个100mL的磨口锥形瓶中,按与有机相1:6的体积比加入去离子水,置于DF-101S型集热式恒温加热磁力搅拌器中,在20℃下进行反萃取、两相混合25min。然后把混合液体转移至100mL塑料试筒中,在LD5-10型台式离心机中以4200r/min转速离心8min,得到反萃取后的有机相和水相。
分别采用日本岛津AA-7000型原子吸收分光光度计标准加入法、EDTA滴定法和甘露醇法对萃取和反萃取过程中的卤水相和水相进行定容、配成分析溶液,取样分析Li +、Mg 2+和B 2O 3含量,计算出实验结果如表26所示。
表26 N-异辛基戊酰胺和2-丙基庚醇复合溶剂对某含镁卤水中Li +、Mg 2+和B 2O 3的两相分离情况
Figure PCTCN2020079078-appb-000034
从表26可以看出,Li +单级萃取率为31.81%,Mg 2+单级萃取率为1.17%,锂镁分离系数为39.93。 Li +单级反萃取率为71.69%,Mg 2+单级反萃取率为82.50%,反萃取后锂镁分离系数为0.54,水相中镁锂质量比下降至2.83。B 2O 3单级萃取率为11.68%,B 2O 3单级反萃取率为94.11%。
实施例27
取13.9mL N-异辛基戊酰胺、1mL N-十二基乙酰胺(受热后液体)、0.1g N-(4-叔丁基环己基)辛酰胺、3mL 2-丁基辛醇和12mL 260#溶剂油分别作为萃取剂和稀释剂于100mL磨口锥形瓶中,烷基醇和稀释剂分别占有机相体积的10%和40%。然后在其中加入3mL实施例23中的盐湖卤水,其pH值用浓盐酸调至1.3,有机相与卤水体积比为10:1。在锥形瓶中放入磁子,置于DF-101S型集热式恒温加热磁力搅拌器中,于25℃下混合搅拌、萃取30min。接着将混合液体转移至100mL塑料试筒中,在LD5-10型台式离心机中以4200r/min转速离心8min,得到萃取后负载有机相和剩余卤水相。把负载有机相转移至另一个100mL的磨口锥形瓶中,按与有机相1:20的体积比加入去离子水,置于DF-101S型集热式恒温加热磁力搅拌器中,在25℃下进行反萃取、两相混合30min。然后把混合液体转移至100mL塑料试筒中,在LD5-10型台式离心机中以4200r/min转速离心8min,得到反萃取后的有机相和水相。
分别采用日本岛津AA-7000型原子吸收分光光度计标准加入法、EDTA滴定法和甘露醇法对萃取和反萃取过程中的卤水相和水相进行定容、配成分析溶液,取样分析Li +、Mg 2+和B 2O 3含量,计算出实验结果如表27所示。
表27 N-异辛基戊酰胺、N-十二基乙酰胺、N-(4-叔丁基环己基)辛酰胺、2-丁基辛醇和260#溶剂油复合体系对青海某盐湖卤水中Li +、Mg 2+和B 2O 3的两相分离情况
Figure PCTCN2020079078-appb-000035
从表27可以看出,Li +单级萃取率为45.52%,Mg 2+单级萃取率为1.73%,锂镁分离系数为47.44。Li +单级反萃取率为90.66%,Mg 2+单级反萃取率为96.40%,反萃取后锂镁分离系数为0.54,水相中镁锂质量比下降至13.75。B 2O 3单级萃取率为44.20%,B 2O 3单级反萃取率为78.54%。
实施例28
取24.5mL N-异辛基戊酰胺、0.25mL N-乙基-1-(4-戊基环己基)甲酰胺和0.25mL 2-丁基辛醇作为萃取剂于100mL磨口锥形瓶中,其中仲酰胺占有机相体积的99%、烷基醇占有机相体积的1%。然后在其中加入5mL实施例23中的盐湖卤水,其pH值用浓盐酸调至1.3,有机相与卤水体积比为5:1。在锥形瓶中放入磁子,置于DF-101S型集热式恒温加热磁力搅拌器中,于25℃下混合搅拌、萃取25min。接着将混合液体转移至100mL塑料试筒中,在LD5-10型台式离心机中以4300r/min转速离心15min,得到萃取后负载有机相和剩余卤水相。把负载有机相转移至另一个100mL的磨口锥形瓶中,按与有机相1:5的体积比加入去离子水,置于DF-101S型集热式恒温加热磁力搅拌器中,在25℃下进行反萃取、两相混合25min。然后把混合液体转移至100mL塑料试筒中,在LD5-10型台式离心机中以4300r/min转速离心15min,得到反萃取后的有机相和水相。
分别采用日本岛津AA-7000型原子吸收分光光度计标准加入法、EDTA滴定法和甘露醇法对萃取和反萃取过程中的卤水相和水相进行定容、配成分析溶液,取样分析Li +、Mg 2+和B 2O 3含量,计算出实验结果如表28所示。
表28 N-异辛基戊酰胺、N-乙基-1-(4-戊基环己基)甲酰胺和2-丁基辛醇复合溶剂对青海某盐湖卤水中Li +、Mg 2+和B 2O 3的两相分离情况
Figure PCTCN2020079078-appb-000036
从表28可以看出,Li +单级萃取率为67.33%,Mg 2+单级萃取率为3.72%,锂镁分离系数为53.33。Li +单级反萃取率为88.51%,Mg 2+单级反萃取率为75.65%,反萃取后锂镁分离系数为2.48,水相中镁锂质量比下降至16.13。B 2O 3单级萃取率为29.42%,B 2O 3单级反萃取率为82.21%。仲酰胺萃取剂在有机相中的体积占比高时,更有利于卤水中Li +的萃取。
实施例29
取0.2mL N-异辛基庚酰胺和19.8mL 2-丙基庚醇作为萃取剂于100mL磨口锥形瓶中,其中仲酰胺占有机相体积的1%、烷基醇占有机相体积的99%。然后在其中加入5mL实施例1中的盐湖卤水,其pH值用硫酸调整至2.0,有机相与卤水体积比为4:1。在锥形瓶中放入磁子,其瓶口插入配套的空气冷凝管防止液体溅出,置于DF-101S型集热式恒温加热磁力搅拌器中,于20℃下混合搅拌、萃取30min。接着将混合液体转移至250mL塑料试筒中,在LD5-10型台式离心机中以4500r/min转速离心10min,两相界面清晰,分相后得到萃取后负载有机相和剩余卤水相。把负载有机相转移至另一个100mL的磨口锥形瓶中,按与有机相1:4的体积比加入去离子水,置于DF-101S型集热式恒温加热磁力搅拌器中,在20℃下进行反萃取、两相混合30min。然后把混合液体转移至250mL塑料试筒中,在LD5-10型台式离心机中以4500r/min转速离心10min,得到反萃取后的有机相和水相。
分别采用日本岛津AA-7000型原子吸收分光光度计标准加入法、EDTA滴定法和甘露醇法对萃取和反萃取过程中的卤水相和水相进行定容、配成分析溶液,取样分析Li +、Mg 2+和B 2O 3含量,计算出实验结果如表29所示。
表29 N-异辛基庚酰胺和2-丙基庚醇复合溶剂对青海某盐湖卤水中Li +、Mg 2+和B 2O 3的两相分离情况
Figure PCTCN2020079078-appb-000037
从表29可以看出,Li +单级萃取率为5.48%,Mg 2+单级萃取率为0.78%,锂镁分离系数为7.38。Li +单级反萃取率为36.40%,Mg 2+单级反萃取率为39.36%,反萃取后锂镁分离系数为0.88,水相中镁锂质量比下降至8.72。B 2O 3单级萃取率为92.02%,B 2O 3单级反萃取率为40.34%。烷基醇萃取剂在有机相中的体积占比高时,更有利于卤水中B 2O 3的萃取。
实施例30
取5mL实施例1中的盐湖卤水于100mL磨口锥形瓶中,其pH值用浓盐酸调至2.0,然后 在其中加入纯度为99%的六水合三氯化铁0.42g,使其溶解后再加入15mL N-异辛基戊酰胺和5mL 3,5,5-三甲基己醇作为萃取剂,烷基醇占有机相体积的25%,有机相与卤水体积比为4:1。在锥形瓶中放入磁子,其瓶口插入配套的空气冷凝管防止液体溅出,置于DF-101S型集热式恒温加热磁力搅拌器中,于20℃下混合搅拌、萃取30min。接着将混合液体转移至250mL塑料试筒中,在LD5-10型台式离心机中以4500r/min转速离心10min,两相界面清晰,分相后得到萃取后负载有机相和剩余卤水相。把负载有机相转移至另一个100mL的磨口锥形瓶中,按与有机相1:4的体积比加入去离子水,置于DF-101S型集热式恒温加热磁力搅拌器中,在20℃下进行反萃取、两相混合30min。然后把混合液体转移至250mL塑料试筒中,在LD5-10型台式离心机中以4500r/min转速离心10min,得到反萃取后的有机相和水相。
分别采用日本岛津AA-7000型原子吸收分光光度计标准加入法、EDTA滴定法和甘露醇法对萃取和反萃取过程中的卤水相和水相进行定容、配成分析溶液,取样分析Li +、Mg 2+和B 2O 3含量,计算出实验结果如表30所示。
表30 N-异辛基戊酰胺和3,5,5-三甲基己醇复合溶剂对青海某盐湖含Fe 3+卤水中Li +、Mg 2+和B 2O 3的两相分离情况
Figure PCTCN2020079078-appb-000038
从表30可以看出,Li +单级萃取率为68.73%,Mg 2+单级萃取率为3.38%,锂镁分离系数为62.77。Li +单级反萃取率为83.11%,Mg 2+单级反萃取率为45.60%,反萃取后锂镁分离系数为5.88,水相中镁锂质量比下降至1.53。B 2O 3单级萃取率为59.58%,B 2O 3单级反萃取率为92.44%。
实施例31
取5mL实施例1中的盐湖卤水于100mL磨口锥形瓶中,其pH值用浓盐酸调至2.0,然后在其中加入纯度为99%的四水合二氯化铁0.30g,使其溶解后再加入15mL N-异辛基戊酰胺和5mL 2-丁基辛醇作为萃取剂,烷基醇占有机相体积的25%,有机相与卤水体积比为4:1。在锥形瓶中放入磁子,其瓶口插入配套的空气冷凝管防止液体溅出,置于DF-101S型集热式恒温加热磁力搅拌器中,于20℃下混合搅拌、萃取30min。接着将混合液体转移至250mL塑料试筒中,在LD5-10型台式离心机中以4500r/min转速离心10min,两相界面清晰,分相后得到萃取后负载有机相和剩余卤水相。把负载有机相转移至另一个100mL的磨口锥形瓶中,按与有机相1:4的体积比加入去离子水,置于DF-101S型集热式恒温加热磁力搅拌器中,在20℃下进行反萃取、两相混合30min。然后把混合液体转移至250mL塑料试筒中,在LD5-10型台式离心机中以4500r/min转速离心10min,得到反萃取后的有机相和水相。
分别采用日本岛津AA-7000型原子吸收分光光度计标准加入法、EDTA滴定法和甘露醇法对萃取和反萃取过程中的卤水相和水相进行定容、配成分析溶液,取样分析Li +、Mg 2+和B 2O 3含量,计算出实验结果如表31所示。
表31 N-异辛基戊酰胺和2-丁基辛醇复合溶剂对青海某盐湖含Fe 2+卤水中Li +、Mg 2+和B 2O 3的两相分离情况
Figure PCTCN2020079078-appb-000039
Figure PCTCN2020079078-appb-000040
从表31可以看出,Li +单级萃取率为55.63%,Mg 2+单级萃取率为2.97%,锂镁分离系数为40.93。Li +单级反萃取率为72.40%,Mg 2+单级反萃取率为41.40%,反萃取后锂镁分离系数为3.72,水相中镁锂质量比下降至1.73。B 2O 3单级萃取率为56.60%,B 2O 3单级反萃取率为93.64%。
实施例32
取20mL N-异辛基异戊酰胺和5mL 2-丙基庚醇作为萃取剂于100mL磨口锥形瓶中,烷基醇占有机相体积的20%,然后在其中加入5mL实施例1中的盐湖卤水,其pH值用浓盐酸调至2.0,有机相与卤水体积比为5:1。在锥形瓶中放入磁子,其瓶口插入配套的空气冷凝管防止液体溅出,置于DF-101S型集热式恒温加热磁力搅拌器中,于20℃下混合搅拌、萃取30min。接着将混合液体转移至250mL塑料试筒中,在LD5-10型台式离心机中以4800r/min转速离心15min,两相界面清晰,分相后得到萃取后负载有机相和剩余卤水相。接着按照萃取串级交叉操作步骤进行三级逆流萃取,得到三级逆流萃取后的负载有机相和剩余卤水相。
把三级逆流萃取后的负载有机相转移至另一个100mL的磨口锥形瓶中,按与有机相1:5的体积比加入去离子水,置于DF-101S型集热式恒温加热磁力搅拌器中,在20℃下进行单级反萃取、两相混合30min。然后把混合液体转移至250mL塑料试筒中,在LD5-10型台式离心机中以4800r/min转速离心15min,得到反萃取后的有机相和水相。接着按照串级交叉操作步骤进行二级逆流反萃取,得到二级逆流反萃取后的有机相和水相。
分别采用日本岛津AA-7000型原子吸收分光光度计标准加入法、EDTA滴定法和甘露醇法对萃取和反萃取过程中的卤水相和水相进行定容、配成分析溶液,取样分析Li +、Mg 2+和B 2O 3含量,计算出实验结果如表32所示。
表32 N-异辛基异戊酰胺和2-丙基庚醇复合溶剂对青海某盐湖卤水中Li +、Mg 2+和B 2O 3的三级逆流萃取和二级逆流反萃取情况
Figure PCTCN2020079078-appb-000041
从表32可以看出,卤水经过三级逆流萃取后Li +萃取率为76.42%,Mg 2+萃取率为2.47%,锂镁分离系数达到127.94。负载有机相经过二级逆流反萃取后Li +反萃取率为92.65%,Mg 2+反萃取率为72.10%,反萃取后锂镁分离系数为4.88,水相中镁锂质量比下降至1.43,卤水中的Li +与Mg 2+实现有效分离。其中卤水经过三级逆流后B 2O 3的萃取率为80.95%,B 2O 3的二级逆流反萃取率为95.47%,表明该萃取体系能提取Li +的同时也能有效提取B 2O 3。多级逆流萃取级数越多,卤水中的锂和硼的萃取率越高、锂镁分离系数越大,在减少水相用量的情况下,多级逆流反萃取级数越多越有利于反萃取后水相中Li +和B 2O 3浓度的提高。
把反萃取后有机相返回与萃取前卤水相重新混合,实现萃取剂的循环使用。
接着把反萃取后得到的水相溶液进行除油、经过二效蒸发浓缩至Li +浓度为30g/L后,分别 加入氯化钙、氯化钡溶液彻底沉淀除去其中的硫酸根,分别加入碳酸钠、氢氧化钠溶液彻底沉淀除去其中的Mg 2+,然后对剩余溶液进行蒸发浓缩、冷却结晶、过滤干燥后制得无水氯化锂产品。
把经过除杂精制后得到的氯化锂浓缩液置于离子膜电解槽中进行电解,在阴极得到质量浓度为12%的氢氧化锂溶液,经浓缩、结晶后得到单水氢氧化锂,再经水洗、干燥后制到无水氢氧化锂产品。同时副产氢气和氯气,使氢气和氯气进一步反应制得盐酸。
实施例33
取5mL实施例1中的盐湖卤水于100mL磨口锥形瓶中,其pH值用浓盐酸调至2.0,然后在其中加入纯度为99%的六水合三氯化铁0.41g,使其溶解后再加入15mL N-异辛基戊酰胺和5mL 2-丁基辛醇作为萃取剂,烷基醇占有机相体积的25%,有机相与卤水体积比为4:1。在锥形瓶中放入磁子,其瓶口插入配套的空气冷凝管防止液体溅出,置于DF-101S型集热式恒温加热磁力搅拌器中,于20℃下混合搅拌、萃取30min。接着将混合液体转移至100mL塑料试筒中,在LD5-10型台式离心机中以4500r/min转速离心10min,两相界面清晰,分相后得到萃取后负载有机相和剩余卤水相。把负载有机相转移至另一个100mL的磨口锥形瓶中,按与有机相1:4的体积比加入去离子水,置于DF-101S型集热式恒温加热磁力搅拌器中,在20℃下进行反萃取、两相混合30min。然后把混合液体转移至100mL塑料试筒中,在LD5-10型台式离心机中以4500r/min转速离心10min,得到反萃取后的有机相和水相。
分别采用日本岛津AA-7000型原子吸收分光光度计标准加入法、EDTA滴定法和甘露醇法对萃取和反萃取过程中的卤水相和水相进行定容、配成分析溶液,取样分析Li +、Mg 2+和B 2O 3含量,计算出实验结果如表33所示。
表33 N-异辛基戊酰胺和2-丁基辛醇复合溶剂对青海某盐湖含Fe 3+卤水中Li +、Mg 2+和B 2O 3的两相分离情况
Figure PCTCN2020079078-appb-000042
从表33可以看出,Li +单级萃取率为71.43%,Mg 2+单级萃取率为6.21%,锂镁分离系数为37.77。Li +单级反萃取率为74.91%,Mg 2+单级反萃取率为35.82%,反萃取后锂镁分离系数为5.35,水相中镁锂质量比下降至2.36。B 2O 3单级萃取率为50.61%,B 2O 3单级反萃取率为92.82%。
对该卤水在同样条件下进行三级逆流萃取和二级逆流反萃取,接着把反萃取后得到的水相溶液进行除油、经过二效蒸发浓缩至Li +浓度为20g/L后,分别加入氯化钙、氯化钡溶液彻底沉淀除去其中的硫酸根,分别加入碳酸钠、氢氧化钠溶液彻底沉淀除去其中的Mg 2+,得到氯化锂精制溶液。然后在其中按其理论用量的1.1倍加入浓度为250g/L的碳酸钠溶液,产生碳酸锂沉淀,经过过滤、干燥后制得碳酸锂产品。
在获得的碳酸锂中加入氢氧化钙乳液,加热并强力搅拌进行固-液反应生成氢氧化锂溶液和碳酸钙沉淀,两相分离后得到氢氧化锂溶液,对其进行减压浓缩、结晶和在130–140℃下干燥后制得单水氢氧化锂,再在150–180℃下减压加热制得无水氢氧化锂产品。
以上仅为本发明选择提供的部分实施案例而已,本发明的实施方式不受上述实施例的限制。对于本领域技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、组合和改进等以及依此进行形式和细节上的各种变化,都归属于本项技 术发明的保护范围。
表34 实施例中涉及到的A物质仲酰胺的常用名称、对应规范名称和代号
序号 部分A物质仲酰胺常用名称 部分A物质仲酰胺对应规范名称 代号
1 N-异辛基丁酰胺 N-(2-乙基己基)正丁酰胺 Z842
2 N-辛基异丁酰胺 N-正辛基-2-甲基丙酰胺 Z843
3 N-异丁基异壬酰胺 N-(2-甲基丙基)-3,5,5-三甲基己酰胺 Z494
4 N-异戊基辛酰胺 N-(3-甲基丁基)正辛酰胺 Z582
5 N-异辛基戊酰胺 N-(2-乙基己基)正戊酰胺 Z852
6 N-异辛基异戊酰胺 N-(2-乙基己基)-3-甲基丁酰胺 Z854
7 N-乙基月桂酰胺 N-乙基正十二酰胺 Z2121
8 N-戊基异壬酰胺 N-戊基-3,5,5-三甲基己酰胺 Z593
9 N-十二基乙酰胺 N-正十二基乙酰胺 Z1221
10 N-异辛基庚酰胺 N-(2-乙基己基)正庚酰胺 Z872
11 N-异辛基辛酰胺 N-(2-乙基己基)正辛酰胺 Z882
12 N-异辛基新癸酰胺 N-(2-乙基己基)-7,7-二甲基辛酰胺 Z8104
13 N-异辛基-1-环丙基甲酰胺 N-(2-乙基己基)-1-环丙基甲酰胺 Z84h2
14 N-环丙基癸酰胺 N-环丙基正癸酰胺 Z3h101
15 N-乙基-1-(4-戊基环己基)甲酰胺 N-乙基-1-(4-正戊基环己基)甲酰胺 Z212h1
16 N-环戊基壬酰胺 N-环戊基正壬酰胺 Z5h91
17 N-己基-3-环戊基丙酰胺 N-正己基-3-环戊基丙酰胺 Z68h1
18 N-环十二基乙酰胺 N-环十二基乙酰胺 Z12h21
19 N-(4-叔丁基环己基)辛酰胺 N-(4-叔丁基环己基)正辛酰胺 Z10h82
表35 实施例中涉及到的B物质烷基醇的常用名称、对应规范名称和CAS号 *
序号 部分B物质烷基醇常用名称 部分B物质烷基醇对应规范名称 CAS号
1 3-辛醇 3-辛醇 589-98-0
2 二异丁基甲醇 2,6-二甲基-4-庚醇 108-82-7
3 3,5,5-三甲基己醇 3,5,5-三甲基-1-己醇 3452-97-9
4 2-丙基庚醇 2-正丙基-1-庚醇 10042-59-8
5 2,6-二甲基-2-辛醇 2,6-二甲基-2-辛醇 18479-57-7
6 2-丁基辛醇 2-正丁基-1-辛醇 3913-02-8
7 2-己基癸醇 2-正己基-1-癸醇 2425-77-6
8 2-庚基十一醇 2-正庚基-1-十一醇 5333-44-8
9 2-辛基十二醇 2-正辛基-1-十二醇 5333-42-6
*CAS号为美国化学文摘社登记号。

Claims (14)

  1. 用仲酰胺/烷基醇复合溶剂从含镁卤水中分离镁提取锂和硼的萃取体系,其特征在于,萃取体系中含有A和B两类物质;其中A类物质为仲酰胺由单一化合物或两种以上的混合物组成;其中,单一化合物具有如式(I)所示的结构:
    Figure PCTCN2020079078-appb-100001
    其中,R 1选自C2~C12的烷基或含有单环结构的C3~C12的环烷基,R 2选自C1~C11的烷基或含有单环结构的C3~C11的环烷基,并且R 1和R 2两基团中所含碳原子数目之和为11~17,其中烷基或环烷基包括各种同分异构体;
    其中B类物质为烷基醇由单一化合物或两种以上的混合物组成;其中,单一化合物具有如式(Ⅱ)所示的结构:
    R 3——OH   (Ⅱ);
    其中,R 3选自C8~C20的烷基,其中烷基包含直链的或带有支链的各种同分异构体;
    含有A和B两类物质的萃取体系的凝固点小于0℃。
  2. 根据权利要求1所述的用仲酰胺/烷基醇复合溶剂从含镁卤水中分离镁提取锂和硼的萃取体系,其特征在于,所述A类物质主要起萃取锂的作用在整个有机相中所占的体积百分数为0~100%,不包括两个端点值;所述B类物质主要起萃取硼的作用在整个有机相中所占的体积百分数为0~100%,不包括两个端点值。
  3. 根据权利要求1所述的用仲酰胺/烷基醇复合溶剂从含镁卤水中分离镁提取锂和硼的萃取体系,其特征在于,萃取体系有利于同时萃取锂和硼时,所述A类物质在整个有机相中所占的体积百分数为50~90%,所述B类物质在整个有机相中所占的体积百分数为10~50%。
  4. 根据权利要求1所述的用仲酰胺/烷基醇复合溶剂从含镁卤水中分离镁提取锂和硼的萃取体系,其特征在于,还包含有起稀释作用的稀释剂260#溶剂油、300#溶剂油或磺化煤油。
  5. 用仲酰胺/烷基醇复合溶剂从含镁卤水中分离镁提取锂和硼的萃取方法,其特征在于,包括下列步骤:
    S1、以含镁卤水作为萃取前卤水相;其中,在所述含镁卤水中,锂离子的浓度为0.1~21g/L,镁离子的浓度为80~125g/L,氯离子的浓度为200~400g/L,镁锂质量比为4.8~1100:1,硼酸及其硼氧酸根离子的浓度以B 2O 3合计为0.5~20g/L,卤水密度20℃时为1.25~1.38g/cm 3,用盐酸或硫酸调节卤水pH值在0~7之间;
    S2、以权利要求1至4中任一项所述的萃取体系作为萃取前有机相;
    S3、将所述萃取前有机相和所述萃取前卤水相按照体积比为1~10:1混合,进行单级萃取或多级逆流萃取,两相分离后得到负载有机相和萃取后卤水相。
  6. 根据权利要求5所述的用仲酰胺/烷基醇复合溶剂从含镁卤水中分离镁提取锂和硼的萃取方法,其特征在于,在所述含镁卤水中,还含有钠离子、钾离子、铁离子、亚铁离子或硫酸根中的一种或两种以上。
  7. 根据权利要求5所述的用仲酰胺/烷基醇复合溶剂从含镁卤水中分离镁提取锂和硼的萃取方法,其特征在于,所述的含镁卤水包括含锂和硼的盐湖卤水,但不仅限于该种卤水。
  8. 根据权利要求5所述的用仲酰胺/烷基醇复合溶剂从含镁卤水中分离镁提取锂和硼的萃取方法,其特征在于,在所述步骤S3中,萃取温度为0~50℃;两相混合通过搅拌方式进行,萃取 后两相分离采取离心分离方式或澄清沉降方式进行。
  9. 根据权利要求5所述的用仲酰胺/烷基醇复合溶剂从含镁卤水中分离镁提取锂和硼的萃取方法,其特征在于,在所述步骤S3后,还包括步骤:
    S4、以水作为反萃取剂,对所述负载有机相进行单级反萃取或多级逆流反萃取,反萃相比即反萃取剂与负载有机相体积之比为1:1~20,两相分离后得到反萃取后有机相和反萃取后水相;
    S5、使所述反萃取后有机相返回步骤S2,实现萃取体系的循环使用。
  10. 根据权利要求9所述的用仲酰胺/烷基醇复合溶剂从含镁卤水中分离镁提取锂和硼的萃取方法,其特征在于,在所述步骤S4中,反萃取温度为0~50℃;两相混合通过搅拌方式进行,反萃取后两相分离采取离心分离方式或澄清沉降方式进行。
  11. 用仲酰胺/烷基醇复合溶剂从含镁卤水中分离镁提取锂和硼的萃取方法在获得硼产品硼酸中的应用,其特征在于,在所述步骤S4后,还包括步骤:
    S6、对所述反萃取后水相进一步除油净化,浓缩,用盐酸或硫酸调节水相pH值、从溶液中析出硼酸,经洗涤、干燥后制得硼酸产品。
  12. 用仲酰胺/烷基醇复合溶剂从含镁卤水中分离镁提取锂和硼的萃取方法在获得锂产品氯化锂中的应用,其特征在于,在所述步骤S4后,还包括步骤:
    S6、对所述反萃取后水相进一步除油净化,浓缩,用盐酸或硫酸调节水相pH值、从溶液中析出硼酸,经洗涤、干燥后制得硼酸产品;
    S7、在所述析出硼酸后的含锂溶液中,加入除杂剂对其中硫酸根、剩余镁离子进行去除,得到溶液精制后的氯化锂溶液;所用除杂剂为氧化钙、氢氧化钙、氯化钙、氯化钡、碳酸钠、草酸钠或氢氧化钠中的一种或两种以上的化合物;
    S8、对所述精制后的氯化锂溶液进行浓缩、结晶、分离和干燥过程,制得氯化锂产品。
  13. 用仲酰胺/烷基醇复合溶剂从含镁卤水中分离镁提取锂和硼的萃取方法在获得锂产品碳酸锂中的应用,其特征在于,在所述步骤S4后,还包括步骤:
    S6、对所述反萃取后水相进一步除油净化,浓缩,用盐酸或硫酸调节水相pH值、从溶液中析出硼酸,经洗涤、干燥后制得硼酸产品;
    S7、在所述析出硼酸后的含锂溶液中,加入除杂剂对其中硫酸根、剩余镁离子进行去除,得到溶液精制后的氯化锂溶液;所用除杂剂为氧化钙、氢氧化钙、氯化钙、氯化钡、碳酸钠、草酸钠或氢氧化钠中的一种或两种以上的化合物;
    S9、在精制后的氯化锂溶液中加入碳酸钠得到碳酸锂沉淀,对碳酸锂沉淀进行分离、干燥过程,制得碳酸锂产品。
  14. 用仲酰胺/烷基醇复合溶剂从含镁卤水中分离镁提取锂和硼的萃取方法在获得锂产品氢氧化锂中的应用,其特征在于,在所述步骤S4后,还包括步骤:
    S6、对所述反萃取后水相进一步除油净化,浓缩,用盐酸或硫酸调节水相pH值、从溶液中析出硼酸,经洗涤、干燥后制得硼酸产品;
    S7、在所述析出硼酸后的含锂溶液中,加入除杂剂对其中硫酸根、剩余镁离子进行去除,得到溶液精制后的氯化锂溶液;所用除杂剂为氧化钙、氢氧化钙、氯化钙、氯化钡、碳酸钠、草酸钠或氢氧化钠中的一种或两种以上的化合物;
    S10、对所述精制后的氯化锂溶液进行电解,制得氢氧化锂产品,同时副产氢气和氯气、可用于生产盐酸;
    或在所述步骤S7后,还包括步骤:
    S9、在精制后的氯化锂溶液中加入碳酸钠得到碳酸锂沉淀,对碳酸锂沉淀进行分离、干燥过 程,制得碳酸锂产品;
    S11、在制得的碳酸锂中加入氢氧化钙乳液,进行固-液反应,分离后得到氢氧化锂溶液,对其进行浓缩、结晶和干燥过程,制得氢氧化锂产品。
PCT/CN2020/079078 2019-11-08 2020-03-13 用仲酰胺/烷基醇复合溶剂从含镁卤水中分离镁提取锂和硼的萃取体系、萃取方法和其应用 WO2021088288A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/577,065 US20220135416A1 (en) 2019-11-08 2022-01-17 Extraction system, extraction method for separating magnesium and extracting lithium and boron from magnesium-containing brine with complex solvent of secondary amide/alkyl alcohol as well as applications thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911089221.XA CN110656248B (zh) 2019-11-08 2019-11-08 用仲酰胺/烷基醇复合溶剂从含镁卤水中分离镁提取锂和硼的萃取体系、萃取方法和其应用
CN201911089221.X 2019-11-08

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/577,065 Continuation-In-Part US20220135416A1 (en) 2019-11-08 2022-01-17 Extraction system, extraction method for separating magnesium and extracting lithium and boron from magnesium-containing brine with complex solvent of secondary amide/alkyl alcohol as well as applications thereof

Publications (1)

Publication Number Publication Date
WO2021088288A1 true WO2021088288A1 (zh) 2021-05-14

Family

ID=69043174

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/079078 WO2021088288A1 (zh) 2019-11-08 2020-03-13 用仲酰胺/烷基醇复合溶剂从含镁卤水中分离镁提取锂和硼的萃取体系、萃取方法和其应用

Country Status (4)

Country Link
US (1) US20220135416A1 (zh)
CN (1) CN110656248B (zh)
AR (1) AR120410A1 (zh)
WO (1) WO2021088288A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115679121A (zh) * 2021-07-26 2023-02-03 浙江新化化工股份有限公司 锂的萃取方法
CN117987647A (zh) * 2024-04-03 2024-05-07 赣南科技学院 从废旧三元锂电池硫酸浸出液中去除杂质铁和铝的方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110669947B (zh) * 2019-11-08 2021-05-25 湘潭大学 用仲酰胺/烷基醇复合溶剂从含钙卤水中分离钙提取锂和硼的萃取体系、萃取方法和其应用
CN110656248B (zh) * 2019-11-08 2021-03-23 湘潭大学 用仲酰胺/烷基醇复合溶剂从含镁卤水中分离镁提取锂和硼的萃取体系、萃取方法和其应用
WO2023136569A1 (ko) * 2022-01-11 2023-07-20 강원대학교 산학협력단 해수 및 기수를 이용한 전기분해식 염소생성시스템에서 발생하는 침전물과 황산을 이용하여 마그네슘을 회수하는 방법

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2384631A1 (en) * 1999-09-27 2001-04-05 Ibc Advanced Technologies, Inc. Polyamide-containing ligands covalently bonded to supports, polyamide-containing resins, and methods for removing metals from solutions
US20160207793A1 (en) * 2015-01-16 2016-07-21 Kabushiki Kaisha Toshiba Rare earth adsorbent and rare earth adsorption method using the same
CN106319244A (zh) * 2016-09-09 2017-01-11 山东省医学科学院药物研究所 功能性离子液体的应用以及从盐湖卤水中萃取锂的方法
US20170306439A1 (en) * 2015-04-23 2017-10-26 Ut-Battelle, Llc Methods for liquid extraction of rare earth metals using ionic liquids
CN107447108A (zh) * 2016-06-01 2017-12-08 中国科学院上海有机化学研究所 一种萃取组合物、萃取体系、萃取方法及反萃取方法
CN110656248A (zh) * 2019-11-08 2020-01-07 湘潭大学 用仲酰胺/烷基醇复合溶剂从含镁卤水中分离镁提取锂和硼的萃取体系、萃取方法和其应用
CN110669947A (zh) * 2019-11-08 2020-01-10 湘潭大学 用仲酰胺/烷基醇复合溶剂从含钙卤水中分离钙提取锂和硼的萃取体系、萃取方法和其应用

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101497484B (zh) * 2008-01-30 2010-11-03 深圳市东江环保股份有限公司 一种处理三氯化铁蚀刻废液的方法
CN102659563B (zh) * 2012-03-06 2014-09-17 河南金丹乳酸科技股份有限公司 从重相乳酸中提取乳酸的有机萃取相
CN103055539B (zh) * 2012-05-24 2015-04-01 中国科学院上海有机化学研究所 从含锂卤水中提取锂盐的方法
CN103468967B (zh) * 2013-09-04 2015-07-15 重庆材料研究院有限公司 一种高浓度铂溶液中铂的萃取方法
CN103468968B (zh) * 2013-09-04 2015-07-29 重庆材料研究院有限公司 一种铂铑混合料液中铂铑的提取方法
JP6556685B2 (ja) * 2016-11-18 2019-08-07 田中貴金属工業株式会社 白金抽出剤、白金の抽出方法、及び白金の回収方法
CN106498184B (zh) * 2016-12-07 2019-04-26 青海柴达木兴华锂盐有限公司 一种锂的萃取体系
CN108017067A (zh) * 2017-12-08 2018-05-11 中国科学院青海盐湖研究所 从含镁盐湖卤水中萃取硼酸的萃取体系及其萃取方法
CN108342595B (zh) * 2018-01-26 2020-11-06 天津科技大学 一种卤水中硼锂共萃取方法
CN108384970B (zh) * 2018-03-02 2019-11-05 哈尔滨工业大学(威海) 从含钛铁多金属氯化物酸性溶液中萃取钛和铁的萃取剂溶液及萃取方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2384631A1 (en) * 1999-09-27 2001-04-05 Ibc Advanced Technologies, Inc. Polyamide-containing ligands covalently bonded to supports, polyamide-containing resins, and methods for removing metals from solutions
US20160207793A1 (en) * 2015-01-16 2016-07-21 Kabushiki Kaisha Toshiba Rare earth adsorbent and rare earth adsorption method using the same
US20170306439A1 (en) * 2015-04-23 2017-10-26 Ut-Battelle, Llc Methods for liquid extraction of rare earth metals using ionic liquids
CN107447108A (zh) * 2016-06-01 2017-12-08 中国科学院上海有机化学研究所 一种萃取组合物、萃取体系、萃取方法及反萃取方法
CN106319244A (zh) * 2016-09-09 2017-01-11 山东省医学科学院药物研究所 功能性离子液体的应用以及从盐湖卤水中萃取锂的方法
CN110656248A (zh) * 2019-11-08 2020-01-07 湘潭大学 用仲酰胺/烷基醇复合溶剂从含镁卤水中分离镁提取锂和硼的萃取体系、萃取方法和其应用
CN110669947A (zh) * 2019-11-08 2020-01-10 湘潭大学 用仲酰胺/烷基醇复合溶剂从含钙卤水中分离钙提取锂和硼的萃取体系、萃取方法和其应用

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115679121A (zh) * 2021-07-26 2023-02-03 浙江新化化工股份有限公司 锂的萃取方法
CN115679121B (zh) * 2021-07-26 2024-01-23 浙江新化化工股份有限公司 锂的萃取方法
CN117987647A (zh) * 2024-04-03 2024-05-07 赣南科技学院 从废旧三元锂电池硫酸浸出液中去除杂质铁和铝的方法

Also Published As

Publication number Publication date
CN110656248A (zh) 2020-01-07
AR120410A1 (es) 2022-02-09
US20220135416A1 (en) 2022-05-05
CN110656248B (zh) 2021-03-23

Similar Documents

Publication Publication Date Title
WO2021088288A1 (zh) 用仲酰胺/烷基醇复合溶剂从含镁卤水中分离镁提取锂和硼的萃取体系、萃取方法和其应用
WO2021088285A1 (zh) 用仲酰胺/烷基醇复合溶剂从含钙卤水中分离钙提取锂和硼的萃取体系、萃取方法和其应用
WO2021088290A1 (zh) 用仲酰胺/烷烃复合溶剂从含钙卤水中分离钙提取锂的萃取体系、萃取方法和其应用
WO2021088286A1 (zh) 用仲酰胺型溶剂从含镁卤水中分离镁提取锂的萃取体系、萃取方法和其应用
WO2021088287A1 (zh) 用仲酰胺/叔酰胺复合溶剂从含镁卤水中分离镁提取锂的萃取体系、萃取方法和其应用
WO2011041935A1 (zh) 从发酵液中萃取柠檬酸和/或柠檬酸钠的方法
WO2021088289A1 (zh) 用仲酰胺/烷烃复合溶剂从含镁卤水中分离镁提取锂的萃取体系、萃取方法和其应用
CN106756023A (zh) 深度分离硫酸锰中钙镁杂质的方法
CN110669938B (zh) 用仲酰胺/烷基酮复合溶剂从含镁卤水中分离镁提取锂的萃取体系、萃取方法和其应用
CN113073210A (zh) 一种从低温含镁卤水中分离镁提取锂的萃取方法和其应用
CN114572949A (zh) 一种磷酸二氢锂生产工艺
CN104805290B (zh) 从pta薄膜蒸发器下料残渣中回收醋酸与钴锰的方法
CN103290239A (zh) 从氧化铝生产流程中提取钒的方法
CN110777267B (zh) 用仲酰胺/叔酰胺复合溶剂从含钙卤水中分离钙提取锂的萃取体系、萃取方法和其应用
CN110643836B (zh) 用仲酰胺/烷基酯复合溶剂从含镁卤水中分离镁提取锂的萃取体系、萃取方法和其应用
CN110643834B (zh) 用仲酰胺/烷基酯复合溶剂从含钙卤水中分离钙提取锂的萃取体系、萃取方法和其应用
CN110643813B (zh) 用仲酰胺/烷基酮复合溶剂从含钙卤水中分离钙提取锂的萃取体系、萃取方法和其应用
CN112551564B (zh) 一种铝酸钠溶液的深度净化方法
CN103979503A (zh) 一种制备碲酸的方法
CN110777268B (zh) 用仲酰胺/磷酸三烷酯复合溶剂从含镁卤水中分离镁提取锂的萃取体系、萃取方法和其应用
CN109942643A (zh) 一种蔗糖脂肪酸酯的提纯分离方法
CN103879972B (zh) 一种金属硫酸盐的生产工艺
CN113061722B (zh) 一种从低温含钙卤水中分离钙提取锂的萃取方法和其应用
CN114959264B (zh) 一种环境友好型萃取体系及基于其的提钪方法
US3382040A (en) Preparation of alumina with pretreatment of sodium aluminate liquor with alcohol vapors

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20885736

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20885736

Country of ref document: EP

Kind code of ref document: A1