WO2021088289A1 - 用仲酰胺/烷烃复合溶剂从含镁卤水中分离镁提取锂的萃取体系、萃取方法和其应用 - Google Patents

用仲酰胺/烷烃复合溶剂从含镁卤水中分离镁提取锂的萃取体系、萃取方法和其应用 Download PDF

Info

Publication number
WO2021088289A1
WO2021088289A1 PCT/CN2020/079079 CN2020079079W WO2021088289A1 WO 2021088289 A1 WO2021088289 A1 WO 2021088289A1 CN 2020079079 W CN2020079079 W CN 2020079079W WO 2021088289 A1 WO2021088289 A1 WO 2021088289A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnesium
lithium
extraction
brine
phase
Prior art date
Application number
PCT/CN2020/079079
Other languages
English (en)
French (fr)
Inventor
杨立新
刘长
李聪
周钦耀
李海博
Original Assignee
湘潭大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 湘潭大学 filed Critical 湘潭大学
Publication of WO2021088289A1 publication Critical patent/WO2021088289A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/006Wet processes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B7/00Halogens; Halogen acids
    • C01B7/01Chlorine; Hydrogen chloride
    • C01B7/012Preparation of hydrogen chloride from the elements
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01DCOMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
    • C01D15/00Lithium compounds
    • C01D15/04Halides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01DCOMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
    • C01D15/00Lithium compounds
    • C01D15/08Carbonates; Bicarbonates
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B26/00Obtaining alkali, alkaline earth metals or magnesium
    • C22B26/10Obtaining alkali metals
    • C22B26/12Obtaining lithium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/20Treatment or purification of solutions, e.g. obtained by leaching
    • C22B3/26Treatment or purification of solutions, e.g. obtained by leaching by liquid-liquid extraction using organic compounds
    • C22B3/40Mixtures
    • C22B3/402Mixtures of acyclic or carbocyclic compounds of different types
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/34Simultaneous production of alkali metal hydroxides and chlorine, oxyacids or salts of chlorine, e.g. by chlor-alkali electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the invention relates to a method for extracting lithium from magnesium-containing brine, in particular to an extraction system, an extraction method and its application for separating magnesium from magnesium-containing brine by using a composite solvent to extract lithium.
  • the proven lithium salt resource reserves in the Qaidam Basin in Qinghai are as high as 19.98 million tons (calculated as LiCl)[ Wu Qian, Liu Xifang, Zheng Mianping. Modern Engineering, 2017, 37(5), 1–5].
  • the extraction method uses the special extraction performance of organic solvents to achieve the purpose of lithium-magnesium separation. It is considered to be the most promising method for extracting lithium for high magnesium-lithium ratio brine [Song JF, Nghiem LD, Li XM, He T..Environ .Sci.:Water Res.Technol.,2017,3(4),593–597], the pros and cons of the extractant is the key factor of its technical process.
  • TBP tributyl phosphate
  • Ji Lianmin and others used TBP and surfactant to form a composite extractant in the CN105039743B authorized invention patent to reduce equipment corrosion and extractant solubility. Damage and degradation in an acidic environment. Yuan Chengye et al. selected neutral phosphorus oxygen compounds in combination with different tertiary amides or only tertiary amides as extractants in a number of Chinese patent applications such as application numbers 201610383061.X and 201610560041.5, all of which are used to increase lithium in brine under the action of iron salt co-extraction. The extraction rate is high, but the loaded organic phase still needs to be back-extracted with concentrated hydrochloric acid.
  • Meng Qingfen and others used pyrrole hexafluorophosphate ionic liquid (CN106498184B) and phosphate ester ionic liquid (CN108866352A), and Gaojie used TBP-BA-FeCl 3 -solvent oil (CN102001692B) as the extractant to extract lithium from salt lake brine. In-depth research.
  • the extraction method has not yet completed the large-scale test verification and screening of the extractant, and the most suitable extraction system has not been found so far.
  • the solvent extraction method for lithium extraction technology there is always the contradiction between extraction and back extraction, and the contradiction between the consumption of acid and alkali. If this contradiction is not fundamentally resolved, the solvent extraction method cannot be a competitive method.
  • Alkanes as a kind of neutral solvent with low density, low viscosity, and environmentally friendly, help the separation of two phases, and may form a new extraction system when combined with other active ingredients.
  • basic chemical products such as lithium chloride, lithium carbonate and lithium hydroxide can be produced on the market.
  • the purpose of the present invention is to provide an economical and effective extraction system for extracting lithium from magnesium-containing brine with a secondary amide/alkane composite solvent, an extraction method and its application in view of the deficiencies in the prior art methods.
  • Extraction system for separating magnesium and extracting lithium from magnesium-containing brine with a secondary amide/alkane composite solvent.
  • the extraction system contains two types of substances A and B; the type A substance is a single compound or a mixture of two or more secondary amides.
  • Composition wherein, a single compound has a structure as shown in formula (I):
  • R 1 is selected from a C2-C12 alkyl group or a C3-C12 cycloalkyl group containing a monocyclic structure
  • R 2 is selected from a C1-C11 alkyl group or a C3-C11 cycloalkyl group containing a monocyclic structure
  • alkyl or cycloalkyl includes various isomers (because R 1 and R 2 can be changed, when When R 1 and R 2 are uniquely determined, the Type A substance is a single compound, and the mixture refers to a substance formed by mixing two or more compounds produced with the change of R 1 and R 2 );
  • type B substances are alkanes composed of a single compound or a mixture of two or more; among them, a single compound has a structure as shown in formula (II):
  • R 3 is selected from C9 to C18 alkyl groups, where the alkyl group includes linear or branched various isomers (because R 3 can be changed, when R 3 is uniquely determined, B
  • the class substance is a single compound, and the mixture refers to a substance formed by mixing two or more compounds produced with the change of R 3);
  • the freezing point of an extraction system containing two types of substances A and B is less than 0°C (the freezing point of a single component constituting the extraction system may be less than, equal to, or greater than 0°C.
  • the freezing point of a single component may be less than, equal to, or greater than 0°C.
  • the conditions of the extraction system when the freezing point of a single component is greater than or equal to 0°C, it may be mixed with other components with a freezing point less than 0°C, dissolve and finally form a mixture with a freezing point less than 0°C).
  • the volume percentage of type A substances in the entire organic phase for extraction is 50-100%, excluding the endpoint value of 100%; type B substances play a diluting role in the entire organic phase.
  • the volume percentage is 0-50%, excluding the endpoint value 0%.
  • cycloalkanes In the extraction system composed of two types of substances A and B, it also contains C9 ⁇ C18 cycloalkanes with a single ring structure in the same diluting molecule.
  • the cycloalkanes include isomers and are composed of a single compound. Or a mixture of two or more.
  • the mixture of alkanes is 200# solvent oil (consisting of alkanes), 260# solvent oil, 300# solvent oil or sulfonated kerosene; among the described naphthenic hydrocarbons, the naphthenic mixture is heavy 200# solvent oil (composed of naphthenic hydrocarbons) produced by the whole plant raffinate oil.
  • the extraction method for separating magnesium and extracting lithium from magnesium-containing brine with a secondary amide/alkane composite solvent includes the following steps:
  • magnesium-containing brine as the pre-extraction brine phase; wherein, in the magnesium-containing brine, the concentration of lithium ions is 0.1-21 g/L, the concentration of magnesium ions is 80-125 g/L, and the concentration of chloride ions is 200 ⁇ 400g/L, the mass ratio of magnesium to lithium is 4.8 ⁇ 1100:1, the density of brine is 1.25 ⁇ 1.38g/cm 3 at 20°C, and the pH value of brine is between 1 ⁇ 7;
  • the magnesium-containing brine also contains one or more of sodium ion, potassium ion, iron ion, ferrous ion, sulfate, boric acid, or borate ion.
  • the magnesium-containing brine includes lithium-containing salt lake brine, but is not limited to this kind of brine.
  • the extraction temperature is 0-50°C; the two-phase mixing is performed by stirring, and the two-phase separation after extraction is performed by centrifugal separation or clarification and sedimentation.
  • the method further includes the following steps:
  • step S5. Return the organic phase after the stripping to step S2 to realize the recycling use of the extraction system.
  • the stripping temperature is 0-50°C; the two-phase mixing is carried out by stirring, and the two-phase separation after stripping is carried out by centrifugal separation or clarification and sedimentation.
  • the water phase after the stripping is further deoiled and purified, concentrated, and then an impurity removal agent is added to remove sulfate radicals and remaining magnesium ions to obtain a refined lithium chloride solution in the water phase;
  • the impurity removal agent used is oxidation
  • the refined lithium chloride solution is concentrated, crystallized, separated and dried to obtain a lithium chloride product.
  • the application of the extraction method for separating magnesium and extracting lithium from magnesium-containing brine by using a secondary amide/alkane composite solvent to obtain lithium carbonate as a lithium product, after the step S4, further includes the following steps:
  • the water phase after the stripping is further deoiled and purified, concentrated, and then an impurity removal agent is added to remove sulfate radicals and remaining magnesium ions to obtain a refined lithium chloride solution in the water phase;
  • the impurity removal agent used is oxidation
  • the application of the extraction method for separating magnesium and extracting lithium from magnesium-containing brine by using a secondary amide/alkane composite solvent in obtaining the lithium product lithium hydroxide, after the step S4, further includes the following steps:
  • the water phase after the stripping is further deoiled and purified, concentrated, and then an impurity removal agent is added to remove sulfate radicals and remaining magnesium ions to obtain a refined lithium chloride solution in the water phase;
  • the impurity removal agent used is oxidation
  • the method further includes the following steps:
  • the source of the secondary amide compound used in the examples of the present invention is synthesized by reacting organic acid chlorides or acid anhydrides with primary amines in a stoichiometric ratio, and then washed with water and purified by distillation under reduced pressure, using the Agilent 7890A/5975C GC/MS instrument. Test evaluation is obtained.
  • the source of the alkane type compound used in the examples of the present invention was purchased from a chemical product company.
  • the secondary amide as the A substance in the extraction system has simple molecular structure, easy source, easy production, and extraction function. It is a new type of special effect component for separating magnesium and extracting lithium from magnesium-containing brine.
  • the secondary amide functional group is lithium magnesium Separation and extraction of the key parts of lithium, the hydrogen atoms on the N–H shift to a low field in the 1 H NMR spectrum before and after the extraction, which plays a key role in the extraction of Li +.
  • Alkanes are used as diluents in the extraction system and are easily obtained from petroleum refining and organic synthesis. They are inexpensive and can effectively improve the physical properties such as the viscosity, density and freezing point of the composite solvent, increase the mixing entropy of the system, and produce synergy. Effect.
  • the loaded organic phase is easy to back-extract with water directly, without the need to use acid to strengthen the back-extraction of Li + , and there is no need to use alkali to neutralize the previous acid to restore the organic
  • the extraction capacity of the phase and the acidity and alkalinity of the water phase greatly reduce the consumption of acid and alkali during the separation of lithium and magnesium in brine, and realize the two-way balance of extraction and stripping. While extracting Li + , it is also easy to carry out Li + stripping. . After the magnesium-containing brine is subjected to multi-stage countercurrent extraction, the separation coefficient of lithium and magnesium is large, and the mass ratio of magnesium to lithium in the water phase after the stripping is significantly reduced.
  • Fig. 1 is an extraction system, an extraction method and a process flow diagram of its application for separating magnesium and extracting lithium from magnesium-containing brine by using a secondary amide/alkane composite solvent according to the present invention.
  • Table 30 shows the common names, corresponding standard names and codes of the secondary amides of substance A involved in the examples of the present invention.
  • Table 31 shows the common names, corresponding normative names and CAS numbers of the substance B alkanes involved in the examples of the present invention.
  • a salt lake brine content of Li + and Mg 2+ Qinghai Tsaidam Basin were 2.01g / L and 113.43g / L, Mg-Li mass ratio of 56.43: 1, wherein the Na +, K +, Cl - , The content of B 2 O 3 and B 2 O 3 are 3.83, 1.60, 325.98, 44.00 and 8.14 g/L, the density of brine is 1.34 g/cm 3 , and the pH of brine is 4.3.
  • the single-stage extraction rate of Li + is 54.59%
  • the single-stage extraction rate of Mg 2+ is 1.22%
  • the separation coefficient of lithium and magnesium is 97.73.
  • the single-stage back extraction rate of Li + is 93.05%
  • the single-stage back extraction rate of Mg 2+ is 31.30%
  • the separation coefficient of lithium and magnesium after the back extraction is 32.33
  • the mass ratio of magnesium to lithium in the water phase drops to 0.42.
  • the single-stage extraction rate of Li + is 58.32%
  • the single-stage extraction rate of Mg 2+ is 5.99%
  • the separation coefficient of lithium and magnesium is 22.23.
  • the single-stage back extraction rate of Li + is 76.28%
  • the single-stage back extraction rate of Mg 2+ is 36.02%
  • the separation coefficient of lithium and magnesium after the back extraction is 8.61
  • the mass ratio of magnesium to lithium in the water phase drops to 2.74.
  • the single-stage extraction rate of Li + is 47.40%
  • the single-stage extraction rate of Mg 2+ is 1.01%
  • the separation coefficient of lithium and magnesium is 93.13.
  • the single-stage back extraction rate of Li + is 87.01%
  • the single-stage back extraction rate of Mg 2+ is 98.33%
  • the separation coefficient of lithium and magnesium after the back extraction is 0.11
  • the mass ratio of magnesium to lithium in the water phase drops to 1.36.
  • the single-stage extraction rate of Li + is 75.54%
  • the single-stage extraction rate of Mg 2+ is 2.62%
  • the separation coefficient of lithium and magnesium is 136.46.
  • the single-stage back extraction rate of Li + is 86.36%
  • the single-stage back extraction rate of Mg 2+ is 82.01%
  • the separation coefficient of lithium and magnesium after the back extraction is 1.38
  • the mass ratio of magnesium to lithium in the water phase drops to 1.86.
  • the single-stage extraction rate of Li + is 50.14%
  • the single-stage extraction rate of Mg 2+ is 3.41%
  • the separation coefficient of lithium and magnesium is 29.75.
  • the single-stage back extraction rate of Li + was 91.13%
  • the rate of single-stage back extraction of Mg 2+ was 42.81%.
  • the separation coefficient of lithium and magnesium was 13.73, and the mass ratio of magnesium to lithium in the water phase dropped to 1.80.
  • the single-stage extraction rate of Li + is 56.55%
  • the single-stage extraction rate of Mg 2+ is 4.29%
  • the separation coefficient of lithium and magnesium is 29.00.
  • the single-stage back extraction rate of Li + is 90.88%
  • the rate of single-stage back extraction of Mg 2+ is 28.56%.
  • the separation coefficient of lithium and magnesium is 24.93, and the mass ratio of magnesium to lithium in the water phase drops to 1.34.
  • the single-stage extraction rate of Li + is 52.95%
  • the single-stage extraction rate of Mg 2+ is 6.98%
  • the separation coefficient of lithium and magnesium is 14.99.
  • the single-stage back extraction rate of Li + is 69.44%
  • the single-stage back extraction rate of Mg 2+ is 86.09%
  • the separation coefficient of lithium and magnesium after the back extraction is 0.36
  • the mass ratio of magnesium to lithium in the water phase drops to 9.22.
  • the single-stage extraction rate of Li + is 48.01%
  • the single-stage extraction rate of Mg 2+ is 2.77%
  • the separation coefficient of lithium and magnesium is 32.38.
  • the single-stage back extraction rate of Li + is 81.14%
  • the single-stage back extraction rate of Mg 2+ is 72.78%
  • the separation coefficient of lithium and magnesium after the back extraction is 1.61
  • the mass ratio of magnesium to lithium in the water phase drops to 2.92.
  • the single-stage extraction rate of Li + is 57.02%
  • the single-stage extraction rate of Mg 2+ is 2.08%
  • the separation coefficient of lithium and magnesium is 62.22.
  • the single-stage back extraction rate of Li + was 75.83%
  • the single-stage back extraction rate of Mg 2+ was 72.62%
  • the separation coefficient of lithium and magnesium after the back extraction was 1.18
  • the mass ratio of magnesium to lithium in the water phase dropped to 1.97.
  • the single-stage extraction rate of Li + is 43.82%
  • the single-stage extraction rate of Mg 2+ is 2.20%
  • the separation coefficient of lithium and magnesium is 34.67.
  • the single-stage back extraction rate of Li + was 75.24%
  • the single-stage back extraction rate of Mg 2+ was 31.68%
  • the separation coefficient of lithium and magnesium after the back extraction was 6.55
  • the mass ratio of magnesium to lithium in the water phase dropped to 1.19.
  • the single-stage extraction rate of Li + is 43.98%
  • the single-stage extraction rate of Mg 2+ is 2.52%
  • the separation coefficient of lithium and magnesium is 30.36.
  • the Li + single-stage back extraction rate was 87.54%
  • the Mg 2+ single-stage back extraction rate was 32.36%
  • the lithium-magnesium separation coefficient was 14.69
  • the magnesium-lithium mass ratio in the water phase dropped to 1.23.
  • the single-stage extraction rate of Li + is 57.60%
  • the single-stage extraction rate of Mg 2+ is 5.99%
  • the separation coefficient of lithium and magnesium is 23.15.
  • the single-stage back extraction rate of Li + is 94.43%
  • the rate of single-stage back extraction of Mg 2+ is 42.89%.
  • the separation coefficient of lithium and magnesium is 22.60, and the mass ratio of magnesium to lithium in the water phase drops to 2.66.
  • the single-stage extraction rate of Li + is 45.67%
  • the single-stage extraction rate of Mg 2+ is 3.58%
  • the separation coefficient of lithium and magnesium is 22.58.
  • the single-stage back extraction rate of Li + is 71.07%
  • the single-stage back extraction rate of Mg 2+ is 80.23%
  • the separation coefficient of lithium and magnesium after the back extraction is 0.61
  • the mass ratio of magnesium to lithium in the water phase drops to 4.99.
  • Table 14 The two-phase separation of Li + and Mg 2+ in a salt lake brine in Qinghai by the composite system of N-octylisohexanamide, 200# solvent oil (composed of naphthenic hydrocarbons) and 260# solvent oil (Wenyi)
  • the single-stage extraction rate of Li + is 62.38%
  • the single-stage extraction rate of Mg 2+ is 1.46%
  • the separation coefficient of lithium and magnesium is 111.26.
  • the single-stage back extraction rate of Li + was 88.18%
  • the rate of single-stage back extraction of Mg 2+ was 79.62%.
  • the separation coefficient of lithium and magnesium was 1.91, and the mass ratio of magnesium to lithium in the water phase dropped to 1.19.
  • the single-stage extraction rate of Li + is 57.90%
  • the single-stage extraction rate of Mg 2+ is 2.86%
  • the separation coefficient of lithium and magnesium is 46.66.
  • the single-stage back-extraction rate of Li + is 83.17%
  • the single-stage back-extraction rate of Mg 2+ is 87.54%.
  • the separation coefficient of lithium and magnesium is 0.70
  • the mass ratio of magnesium to lithium in the water phase drops to 2.93.
  • the contents of Li + , Mg 2+ and Cl - in the magnesium-containing brine are respectively 0.11, 120.62 and 352.42 g/L, the magnesium-lithium mass ratio is equal to 1096.55:1, the brine density is 1.33 g/cm 3 , and the brine pH is 7.0.
  • the magnet in the Erlenmeyer flask, insert the matching air condenser at the mouth of the flask to prevent the liquid from splashing out, put it in the DF-101S type heat-collecting thermostatic heating magnetic stirrer, mix, stir, and extract at 30°C for 30 minutes.
  • the single-stage extraction rate of Li + is 34.85%
  • the single-stage extraction rate of Mg 2+ is 5.06%
  • the separation coefficient of lithium and magnesium is 10.04.
  • the single-stage back extraction rate of Li + is 90.94%
  • the single-stage back extraction rate of Mg 2+ is 71.50%.
  • the separation coefficient of lithium and magnesium is 4.01
  • the mass ratio of magnesium to lithium in the water phase drops to 125.18.
  • the contents of Li + , Mg 2+ and Cl - in the magnesium-containing brine are respectively 0.12, 123.11 and 359.76 g/L, the magnesium-lithium mass ratio is equal to 1005.01:1, the brine density is 1.33 g/cm 3 , and the brine pH value is 5.6.
  • the magnet in the Erlenmeyer flask, insert the matching air condenser at the mouth of the flask to prevent the liquid from splashing out, place it in the DF-101S type heat-collecting thermostatic heating magnetic stirrer, mix, stir, and extract at 20°C for 20 minutes.
  • the single-stage extraction rate of Li + is 52.66%
  • the single-stage extraction rate of Mg 2+ is 7.80%
  • the separation coefficient of lithium and magnesium is 14.39.
  • the single-stage back extraction rate of Li + was 76.20%
  • the single-stage back extraction rate of Mg 2+ was 33.72%.
  • the separation coefficient of lithium and magnesium was 6.29, and the mass ratio of magnesium to lithium in the water phase dropped to 65.87.
  • the single-stage extraction rate of Li + is 33.41%
  • the single-stage extraction rate of Mg 2+ is 5.03%
  • the separation coefficient of lithium and magnesium is 9.49.
  • the single-stage back extraction rate of Li + is 91.75%
  • the single-stage back extraction rate of Mg 2+ is 92.26%
  • the separation coefficient of lithium and magnesium after the back extraction is 0.93
  • the mass ratio of magnesium to lithium in the water phase drops to 152.15.
  • the contents of Li + , Mg 2+ and Cl - in the magnesium-containing brine are respectively 20.42, 99.83 and 395.50 g/L, the magnesium-lithium mass ratio is equal to 4.89:1, the brine density is 1.32 g/cm 3 , and the brine pH value is 4.5.
  • the single-stage extraction rate of Li + is 34.66%
  • the single-stage extraction rate of Mg 2+ is 1.41%
  • the separation coefficient of lithium and magnesium is 37.43.
  • the single-stage back-extraction rate of Li + is 85.22%
  • the rate of single-stage back-extraction of Mg 2+ is 94.13%.
  • the separation coefficient of lithium and magnesium is 0.36
  • the mass ratio of magnesium to lithium in the water phase drops to 0.22.
  • the contents of Li + , Mg 2+ and Cl - in the magnesium-containing brine are 3.63, 81.40 and 255.97 g/L, respectively, the magnesium-lithium mass ratio is 22.45:1, the brine density is 1.25 g/cm, and the brine pH is 5.8.
  • Put a magnet in a conical flask with a ground mouth insert a matching air condenser at the mouth of the flask to prevent the liquid from splashing, place it in a DF-101S heat-collecting thermostatic heating magnetic stirrer, mix, stir, and extract at 0°C for 30 minutes .
  • the single-stage extraction rate of Li + is 30.24%
  • the single-stage extraction rate of Mg 2+ is 0.44%
  • the separation coefficient of lithium and magnesium is 98.09.
  • the single-stage back extraction rate of Li + was 52.07%
  • the single-stage back extraction rate of Mg 2+ was 79.92%
  • the separation coefficient of lithium and magnesium after the back extraction was 0.27
  • the mass ratio of magnesium to lithium in the water phase dropped to 0.51.
  • the magnesium-containing brine Li + , Mg 2+ , Cl - and The contents are 1.21, 80.86, 202.53 and 53.56g/L, respectively, the mass ratio of magnesium to lithium is 66.83:1, the density of brine is 1.25g/cm 3 , and the pH value of brine is 7.0.
  • Put the magnet in the Erlenmeyer flask insert the matching air condenser at the mouth of the flask to prevent the liquid from splashing out, place it in the DF-101S type heat-collecting thermostatic heating magnetic stirrer, mix, stir, and extract at 20°C for 20 minutes.
  • the single-stage extraction rate of Li + is 34.71%
  • the single-stage extraction rate of Mg 2+ is 4.83%
  • the separation coefficient of lithium and magnesium is 10.47.
  • the Li + single-stage back extraction rate was 77.76%
  • the Mg 2+ single-stage back extraction rate was 42.85%
  • the lithium-magnesium separation coefficient after the back-extraction was 4.66
  • the magnesium-lithium mass ratio in the water phase dropped to 5.12.
  • the contents of Li + , Mg 2+ and Cl - in the magnesium-containing brine are respectively 0.19, 109.26 and 319.69 g/L, the magnesium-lithium mass ratio is equal to 575.05:1, the brine density is 1.30 g/cm 3 , and the brine pH is 5.8.
  • the magnet in the Erlenmeyer flask, insert the matching air condenser at the mouth of the flask to prevent the liquid from splashing out, put it in the DF-101S type heat-collecting thermostatic heating magnetic stirrer, mix, stir, and extract at 20°C for 30 minutes.
  • the single-stage extraction rate of Li + is 42.53%
  • the single-stage extraction rate of Mg 2+ is 3.74%
  • the separation coefficient of lithium and magnesium is 19.12.
  • the single-stage back-extraction rate of Li + is 80.97%
  • the single-stage back-extraction rate of Mg 2+ is 67.88%.
  • the separation coefficient of lithium and magnesium is 2.01, and the mass ratio of magnesium to lithium in the water phase drops to 42.39.
  • Example 2 Take 6 mL of the salt lake brine in Example 1 into a 100 mL conical flask, and then add 0.48 g of ferric trichloride hexahydrate with a purity of 99% to it, dissolve it, and then add 21 mL of N-isooctyl valeramide
  • the extractant and 9mL 260# solvent oil (Uta) diluent the diluent accounts for 30% of the volume of the organic phase, and the volume ratio of the organic phase to the salt lake brine is 5:1.
  • the single-stage extraction rate of Li + is 76.28%
  • the single-stage extraction rate of Mg 2+ is 1.37%
  • the separation coefficient of lithium and magnesium is 230.48.
  • the single-stage back extraction rate of Li + is 72.49%
  • the single-stage back extraction rate of Mg 2+ is 89.14%
  • the separation coefficient of lithium and magnesium after the back extraction is 0.32
  • the mass ratio of magnesium to lithium in the water phase drops to 1.25.
  • Example 2 Take 6mL of the salt lake brine in Example 1 in a 100mL conical flask, and then add 0.35g of 99% purity of ferrous dichloride tetrahydrate, dissolve it, and then add 27mL of N-isooctyl isocyanate. Valeramide extractant and 3mL tetradecane diluent, the diluent accounts for 10% of the volume of the organic phase, and the volume ratio of the organic phase to the salt lake brine is 5:1.
  • Table 25 The two-phase separation of Li + and Mg 2+ in Fe 2+ brine in a salt lake in Qinghai by the N-isooctyl isovaleramide and tetradecane composite solvent
  • the single-stage extraction rate of Li + is 63.15%
  • the single-stage extraction rate of Mg 2+ is 9.78%
  • the separation coefficient of lithium and magnesium is 15.84.
  • the single-stage back-extraction rate of Li + is 65.35%
  • the single-stage back-extraction rate of Mg 2+ is 68.89%.
  • the separation coefficient of lithium and magnesium is 0.85
  • the mass ratio of magnesium to lithium in the water phase drops to 9.21.
  • Table 26 The three-stage countercurrent extraction and single-stage back extraction of Li + and Mg 2+ in a salt lake brine in Qinghai by the composite system of N-isobutylisononylamide, N-isooctylpentanamide and 260# solvent oil (Wenyi)
  • the organic phase after the stripping is returned and remixed with the brine phase before the extraction to realize the recycling of the extractant.
  • the water phase solution obtained after the back extraction is degreasing, and after two-effect evaporation is concentrated to a Li + concentration of 30g/L
  • calcium chloride and barium chloride solutions are added respectively to completely precipitate and remove the sulfate radicals, and carbonic acid is added separately
  • Sodium and sodium hydroxide solution are thoroughly precipitated to remove Mg 2+ , and then the remaining solution is evaporated and concentrated, cooled and crystallized, filtered and dried to obtain anhydrous lithium chloride product.
  • the lithium chloride concentrate obtained after purification and purification is placed in an ion-exchange membrane electrolyzer for electrolysis, a lithium hydroxide solution with a mass concentration of 12% is obtained at the cathode, and lithium hydroxide monohydrate is obtained after concentration and crystallization. After washing and drying, an anhydrous lithium hydroxide product is produced. At the same time, hydrogen and chlorine are by-produced, and hydrogen and chlorine are further reacted to produce hydrochloric acid.
  • a salt lake brine content of Li + and Mg 2+ Qinghai Tsaidam Basin were 5.72g / L and 116.36g / L, Mg-Li mass ratio of 20.35: 1, wherein the Na +, K +, Cl - , The content of B 2 O 3 and B 2 O 3 are 2.70, 1.04, 346.21, 37.32 and 16.89 g/L, the density of the brine is 1.36 g/cm 3 , and the pH of the brine is 4.1.
  • Table 27 The three-stage countercurrent extraction and the second-stage countercurrent extraction of Li + and Mg 2+ in a salt lake brine in Qinghai by the composite system of N-isooctyl isovaleramide and 260# solvent oil (Wenyi)
  • the water phase solution obtained after the back extraction is degreasing, and after two-effect evaporation is concentrated to a Li + concentration of 20g/L
  • calcium chloride and barium chloride solutions are respectively added to completely precipitate and remove the sulfate radicals, and carbonic acid is added separately
  • Sodium and sodium hydroxide solutions are thoroughly precipitated to remove Mg 2+ in them , and a refined solution of lithium chloride is obtained.
  • a sodium carbonate solution with a concentration of 250 g/L was added to it at 1.1 times the theoretical amount to produce a lithium carbonate precipitate, which was filtered and dried to obtain a lithium carbonate product.
  • the extracted brine sample and the loaded Li + , Mg 2+ The organic phase.
  • Transfer the loaded organic phase to another 100 mL conical flask, add deionized water at a volume ratio of 1:5 to the organic phase, and place it in a DF-101S type heat-collecting thermostatic heating magnetic stirrer.
  • the mixed liquid was transferred to a 100mL plastic test tube, and centrifuged in an LD5-10 tabletop centrifuge at 4000r/min for 8min to obtain the organic phase and the water phase after the stripping.
  • the two-phase interface is clear.
  • the extracted brine sample and the loaded Li + , Mg 2+ The organic phase.
  • Transfer the loaded organic phase to another 100 mL conical flask, add deionized water according to the volume ratio of 1:5 to the organic phase, and place it in the DF-101S type heat-collecting thermostatic heating magnetic stirrer.
  • the mixed liquid was transferred to a 100mL plastic test tube, and centrifuged in an LD5-10 tabletop centrifuge at 4000r/min for 8min to obtain the organic phase and the water phase after the stripping.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Metallurgy (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Extraction Or Liquid Replacement (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

一种用仲酰胺/烷烃复合溶剂从含镁卤水中分离镁提取锂的萃取体系、萃取方法和其应用。萃取体系中含有仲酰胺和烷烃分别由其单一化合物或两种以上的混合物组成,分子中碳原子总数分别为12~18和9~18,萃取体系的凝固点小于0℃。在有机相与卤水相体积比1~10∶1、卤水密度为1.25~1.38g/cm3和温度0~50℃下进行单级或多级逆流萃取,反萃取得到低镁锂比水相,经过浓缩、除杂与制备,分别得到氯化锂、碳酸锂和氢氧化锂产品。本发明的优异效果:仲酰胺萃取剂分子结构简单,容易生产,烷烃改进复合溶剂的粘度等物理性质;Li+多级萃取率高,锂镁分离系数大,用水反萃取,酸碱消耗大大减少;萃取分离工艺流程缩短,萃取体系溶损小,具有良好的工业应用价值。

Description

用仲酰胺/烷烃复合溶剂从含镁卤水中分离镁提取锂的萃取体系、萃取方法和其应用 技术领域
本发明涉及一种从含镁卤水中提取锂的方法,尤其涉及到用复合溶剂从含镁卤水中分离镁提取锂的萃取体系、萃取方法和其应用。
背景技术
自本世纪以来,锂在新能源领域的应用无论是从深度还是广度上都达到了前所未有、令人震惊的程度,人们将数以千计的电池做成电力车辆的动力来源,将数以万计的电池做成储能装置的组合结构,在3C产品上锂材料的使用也日益广泛和普及,锂的需求量与日俱增。锂作为电池中的关键正负极材料和电解质原料从自然资源中获取至关重要,据2019年美国矿产品年鉴统计,澳大利亚、智利、中国和阿根廷是世界锂矿生产和储藏大国。中国同时拥有卤水型和硬岩型两类锂矿藏,其中盐湖锂资源量约占国内储量的80%,青海柴达木盆地已探明的锂盐资源储量高达1982万吨(以LiCl计)[伍倩,刘喜方,郑绵平等.现代化工,2017,37(5),1–5]。
但我国的卤水锂资源与南美“锂三角”地区的盐湖卤水有显著不同,除西藏扎布耶碳酸盐型卤水外,还分布着大量硫酸镁亚型和氯化镁型卤水,从中提取锂十分困难,锂镁共存需要从中除去大量镁盐,长期以来一直缺乏特别有效的锂镁分离方法。目前用于青海盐湖锂资源开发的生产技术主要有离子吸附法、煅烧浸取法、膜分离法和溶剂萃取法4种,各技术均不同程度地存在缺陷。其中萃取法是利用有机溶剂对锂的特殊萃取性能达到锂镁分离目的,被认为是针对高镁锂比卤水最有前途的提锂方法[Song J.F.,Nghiem L.D.,Li X.M.,He T..Environ.Sci.:Water Res.Technol.,2017,3(4),593–597],萃取剂的优劣是其技术过程的关键因素。以磷酸三丁酯(TBP)为萃取剂、FeCl 3为共萃剂的体系被持续广泛研究,姬连敏等在CN105039743B授权发明专利中使用TBP和表面活性剂组成复合萃取剂减少设备腐蚀、萃取剂溶损和在酸性环境下的降解。袁承业等在申请号201610383061.X和201610560041.5等多项中国专利申请中选用中性磷氧类化合物与不同叔酰胺组合或只用叔酰胺作为萃取剂、都在铁盐共萃作用下提高卤水中锂的萃取率,但负载有机相仍然需用浓盐酸进行反萃取。而孟庆芬等使用吡咯类六氟磷酸盐离子液体(CN106498184B)和磷酸酯类离子液体(CN108866352A)、高洁等使用TBP-BA-FeCl 3-溶剂油(CN102001692B)作为萃取剂对盐湖卤水提取锂也进行了深入研究。
然而总的来看萃取法始终没有完成萃取剂的规模化试验验证和筛选,迄今为止最为合适的萃取体系并未发现。在溶剂萃取法提锂技术中始终存在萃取和反萃取的矛盾、同时消耗酸和碱的矛盾,这种矛盾不从根本上给予解决,溶剂萃取法就不可能是有竞争力的方法,而这归根结底在于萃取体系和萃取技术的发展。烷烃作为一类密度低、粘度小、环境友好的中性溶剂,有助于两相分离,与其他有效成分组合可能构成新的萃取体系。将盐湖高镁锂比卤水实现锂镁分离转变为低镁锂比卤水后,能制得市场上需要的氯化锂、碳酸锂和氢氧化锂等基础化工产品。
发明内容
本发明的目的是针对现有技术方法中存在的不足,提供一种经济有效的用仲酰胺/烷烃复合溶剂从含镁卤水中分离镁提取锂的萃取体系、萃取方法和其应用。
本发明提供的技术方案和工艺过程如下:
1.用仲酰胺/烷烃复合溶剂从含镁卤水中分离镁提取锂的萃取体系,该萃取体系中含有A和 B两类物质;其中A类物质为仲酰胺由单一化合物或两种以上的混合物组成;其中,单一化合物具有如式(I)所示的结构:
Figure PCTCN2020079079-appb-000001
其中,R 1选自C2~C12的烷基或含有单环结构的C3~C12的环烷基,R 2选自C1~C11的烷基或含有单环结构的C3~C11的环烷基,并且R 1和R 2两基团中所含碳原子数目之和为11~17,其中烷基或环烷基包括各种同分异构体(因R 1、R 2是能够变化的,当R 1、R 2唯一确定时,A类物质为单一化合物,混合物是指随着R 1、R 2的变化而产生的两种以上的化合物混合而成的物质);
其中B类物质为烷烃由单一化合物或两种以上的混合物组成;其中,单一化合物具有如式(Ⅱ)所示的结构:
H-R 3                     (Ⅱ);
其中,R 3选自C9~C18的烷基,其中烷基包含直链的或带有支链的各种同分异构体(因R 3是能够变化的,当R 3唯一确定时,B类物质为单一化合物,混合物是指随着R 3的变化而产生的两种以上的化合物混合而成的物质);
含有A和B两类物质的萃取体系的凝固点小于0℃(构成萃取体系的单一组分的凝固点可能小于、等于或者大于0℃,当单一组分的凝固点小于0℃时即能够满足作为本发明萃取体系的条件;当单一组分的凝固点大于等于0℃时有可能与凝固点小于0℃的其他组分混合、发生溶解而最终形成凝固点小于0℃的混合物)。
在所述萃取体系中,A类物质起萃取作用在整个有机相中所占的体积百分数为50~100%,不包括端点值100%;B类物质起稀释作用在整个有机相中所占的体积百分数为0~50%,不包括端点值0%。
在所述的含有A和B两类物质组成的萃取体系中,还包含有同样起稀释作用分子中含有单环结构的C9~C18的环烷烃,该环烷烃包括同分异构体由单一化合物或两种以上的混合物组成。
在所述的B类物质中,烷烃混合物为200#溶剂油(由烷烃组成)、260#溶剂油、300#溶剂油或磺化煤油;在所述的环烷烃中,环烷烃混合物为用重整装置抽余油生产的200#溶剂油(由环烷烃组成)。
2.用仲酰胺/烷烃复合溶剂从含镁卤水中分离镁提取锂的萃取方法,包括下列步骤:
S1、以含镁卤水作为萃取前卤水相;其中,在所述含镁卤水中,锂离子的浓度为0.1~21g/L,镁离子的浓度为80~125g/L,氯离子的浓度为200~400g/L,镁锂质量比为4.8~1100:1,卤水密度20℃时为1.25~1.38g/cm 3,卤水pH值在1~7之间;
S2、以上述1中所述的萃取体系作为萃取前有机相;
S3、将所述萃取前有机相和所述萃取前卤水相按照体积比为1~10:1混合,进行单级萃取或多级逆流萃取,两相分离后得到负载有机相和萃取后卤水相。
在所述含镁卤水中,还含有钠离子、钾离子、铁离子、亚铁离子、硫酸根、硼酸或硼氧酸根离子中的一种或两种以上。
所述的含镁卤水包括含锂盐湖卤水,但不仅限于该种卤水。
进一步地,在所述步骤S3中,萃取温度为0~50℃;两相混合通过搅拌方式进行,萃取后两相分离采取离心分离方式或澄清沉降方式进行。
进一步地,在所述步骤S3后,还包括步骤:
S4、以水作为反萃取剂,对所述负载有机相进行单级反萃取或多级逆流反萃取,反萃相比即反萃取剂与负载有机相体积之比为1:1~20,两相分离后得到反萃取后有机相和反萃取后水相;
S5、使所述反萃取后有机相返回步骤S2,实现萃取体系的循环使用。
进一步地,在所述步骤S4中,反萃取温度为0~50℃;两相混合通过搅拌方式进行,反萃取后两相分离采取离心分离方式或澄清沉降方式进行。
3.用仲酰胺/烷烃复合溶剂从含镁卤水中分离镁提取锂的萃取方法在获得锂产品氯化锂中的应用,在所述步骤S4后,还包括步骤:
S6、对所述反萃取后水相进一步除油净化,浓缩,然后加入除杂剂对其中硫酸根、剩余镁离子进行去除,得到水相精制后的氯化锂溶液;所用除杂剂为氧化钙、氢氧化钙、氯化钙、氯化钡、碳酸钠、草酸钠或氢氧化钠中的一种或两种以上的化合物;
S7、对所述精制后的氯化锂溶液进行浓缩、结晶、分离和干燥过程,制得氯化锂产品。
4.用仲酰胺/烷烃复合溶剂从含镁卤水中分离镁提取锂的萃取方法在获得锂产品碳酸锂中的应用,在所述步骤S4后,还包括步骤:
S6、对所述反萃取后水相进一步除油净化,浓缩,然后加入除杂剂对其中硫酸根、剩余镁离子进行去除,得到水相精制后的氯化锂溶液;所用除杂剂为氧化钙、氢氧化钙、氯化钙、氯化钡、碳酸钠、草酸钠或氢氧化钠中的一种或两种以上的化合物;
S8、在精制后的氯化锂溶液中加入碳酸钠得到碳酸锂沉淀,对碳酸锂沉淀进行分离、干燥过程,制得碳酸锂产品。
5.用仲酰胺/烷烃复合溶剂从含镁卤水中分离镁提取锂的萃取方法在获得锂产品氢氧化锂中的应用,在所述步骤S4后,还包括步骤:
S6、对所述反萃取后水相进一步除油净化,浓缩,然后加入除杂剂对其中硫酸根、剩余镁离子进行去除,得到水相精制后的氯化锂溶液;所用除杂剂为氧化钙、氢氧化钙、氯化钙、氯化钡、碳酸钠、草酸钠或氢氧化钠中的一种或两种以上的化合物;
S9、对所述精制后的氯化锂溶液进行电解,制得氢氧化锂产品,同时副产氢气和氯气、可用于生产盐酸;
或在所述步骤S6后,还包括步骤:
S8、在精制后的氯化锂溶液中加入碳酸钠得到碳酸锂沉淀,对碳酸锂沉淀进行分离、干燥过程,制得碳酸锂产品;
S10、在制得的碳酸锂中加入氢氧化钙乳液,进行固-液反应,分离后得到氢氧化锂溶液,对其进行浓缩、结晶和干燥过程,制得氢氧化锂产品。
在本发明中实施例所用仲酰胺型化合物的来源是由有机酰氯或酸酐与伯胺按化学计量比反应合成,再用水洗涤和减压蒸馏方式纯化,用美国安捷伦7890A/5975C型气质联用仪检测评价获得。在本发明中实施例所用烷烃型化合物的来源是从化工产品公司购得。
本发明与现有技术相比,我们已发现以式(I)和式(Ⅱ)所示的化合物组成的仲酰胺/烷烃复合溶剂作为新的萃取体系,从而获得新的用于从含镁卤水中分离镁提取锂的萃取方法和其应用,取得了意想不到的效果,未见用仲酰胺与烷烃混合组成的溶剂作为卤水提锂萃取体系的文献报道,为当前高镁锂比盐湖卤水锂资源开发提供了新技术。本发明具有以下优点:
1)仲酰胺作为萃取体系中的A物质分子结构简单,来源易得,容易生产,起萃取作用,是一类从含镁卤水中分离镁提取锂的新型特效成分,其中仲酰胺官能团是锂镁分离萃取锂的关键部位,N–H上的氢原子在萃取前后 1H NMR谱向低场发生位移,对Li +的萃取起着关键作用。烷烃 作为萃取体系中的B物质用作稀释剂易从石油炼制和有机合成中获得,价格便宜,能有效改进复合溶剂的粘度、密度和凝固点等物理性质,增大体系的混合熵、产生协同作用效果。
2)在保证Li +一定大小的单级萃取能力的前提下,负载有机相容易用水直接反萃取,不需要使用酸强化Li +的反萃取,同时也不需要使用碱中和前面的酸恢复有机相的萃取能力和水相酸碱性,大大减少卤水锂镁分离过程中的酸碱消耗量,实现了萃取和反萃取过程的双向平衡,在萃取Li +的同时也容易进行Li +的反萃取。含镁卤水经过多级逆流萃取后锂镁分离系数大,反萃取后水相中的镁锂质量比显著降低。
3)整个萃取分离过程大大简化,有机相直接循环使用,设备腐蚀程度小,生产过程易于控制。有机相密度小适合于用水反萃取负载有机相时的两相分离。通过调整萃取体系的分子结构和组成,优选的萃取体系在水中的溶解度与TBP的溶解度比较显著减少。
附图表说明
图1是本发明用仲酰胺/烷烃复合溶剂从含镁卤水中分离镁提取锂的萃取体系、萃取方法和其应用的工艺流程框图。
表30是本发明实施例中涉及到的A物质仲酰胺的常用名称、对应规范名称和代号。
表31是本发明实施例中涉及到的B物质烷烃的常用名称、对应规范名称和CAS号。
具体实施方式
下面结合实施例对本发明做进一步说明:
实施例1
青海柴达木盆地某盐湖卤水中Li +和Mg 2+含量分别为2.01g/L和113.43g/L,镁锂质量比为56.43:1,其中Na +、K +、Cl -
Figure PCTCN2020079079-appb-000002
和B 2O 3含量分别为3.83、1.60、325.98、44.00和8.14g/L,卤水密度为1.34g/cm 3,卤水pH值为4.3。取6mL该种卤水于100mL磨口锥形瓶中,然后在其中加入21mL N-异辛基丁酰胺萃取剂和9mL 260#溶剂油(文益)稀释剂,稀释剂占有机相体积的30%,有机相与盐湖卤水体积比为5:1。在锥形瓶中放入磁子,其瓶口插入配套的空气冷凝管防止液体溅出,置于DF-101S型集热式恒温加热磁力搅拌器中,于20℃下混合搅拌、萃取20min。接着将混合液体转移至100mL塑料试筒中,在LD5-10型台式离心机中以5000r/min转速离心12min,两相界面清晰,分相后得到萃取后卤水样品和负载Li +、Mg 2+的有机相。把负载有机相转移至另一个100mL的磨口锥形瓶中,按与有机相1:5的体积比加入去离子水,置于DF-101S型集热式恒温加热磁力搅拌器中,在20℃下进行反萃取、两相混合20min。然后把混合液体转移至100mL塑料试筒中,在LD5-10型台式离心机中以5000r/min转速离心12min,得到反萃取后的有机相和水相。
分别采用日本岛津AA-7000型原子吸收分光光度计标准加入法和EDTA容量滴定法对萃取和反萃取过程中的卤水相和水相进行定容、配成分析溶液,取样分析Li +和Mg 2+浓度,计算出萃取率E、反萃取率S、分配比D和锂镁分离系数β,结果如表1所示。
表1 N-异辛基丁酰胺和260#溶剂油(文益)复合体系对青海某盐湖卤水中Li +与Mg 2+的两相分离情况 *
Figure PCTCN2020079079-appb-000003
Figure PCTCN2020079079-appb-000004
*其中符号含义分别指定为 a:萃取温度, b:有机相对水相体积比, c:Li +萃取率, d:Mg 2+萃取率, e:Li +分配比, f:Mg 2+分配比, g:锂镁分离系数, h:萃取后有机相中镁锂质量比, i:萃取后卤水中镁锂质量比; j:反萃取温度, k:水相对有机相体积比, l:Li +反萃率, m:Mg 2+反萃率, n:Li +反萃分配比, o:Mg 2+反萃分配比, p:锂镁反萃分离系数, q:反萃取后有机相中镁锂质量比, r:反萃取后水相中镁锂质量比;在下列表2至表29中符号含义亦与此相同。
从表1可以看出,Li +单级萃取率为54.59%,Mg 2+单级萃取率为1.22%,锂镁分离系数为97.73。Li +单级反萃取率为93.05%,Mg 2+单级反萃取率为31.30%,反萃取后锂镁分离系数为32.33,水相中镁锂质量比下降至0.42。
实施例2
取27mL N-丁基壬酰胺萃取剂和3mL 260#溶剂油(文益)稀释剂于100mL磨口锥形瓶中,稀释剂占有机相体积的10%,然后在其中加入6mL实施例1中的盐湖卤水,有机相与盐湖卤水体积比为5:1。在锥形瓶中放入磁子,其瓶口插入配套的空气冷凝管防止液体溅出,置于DF-101S型集热式恒温加热磁力搅拌器中,于20℃下混合搅拌、萃取20min。接着将混合液体转移至250mL塑料试筒中,在LD5-10型台式离心机中以5000r/min转速离心12min,两相界面清晰,分相后得到萃取后卤水样品和负载Li +、Mg 2+的有机相。把负载有机相转移至另一个100mL的磨口锥形瓶中,按与有机相1:5的体积比加入去离子水,置于DF-101S型集热式恒温加热磁力搅拌器中,在20℃下进行反萃取、两相混合20min。然后把混合液体转移至250mL塑料试筒中,在LD5-10型台式离心机中以5000r/min转速离心12min,得到反萃取后的有机相和水相。
分别采用日本岛津AA-7000型原子吸收分光光度计标准加入法和EDTA容量滴定法对萃取和反萃取过程中的卤水相和水相进行定容、配成分析溶液,取样分析Li +和Mg 2+浓度,计算出实验结果如表2所示。
表2 N-丁基壬酰胺和260#溶剂油(文益)复合体系对青海某盐湖卤水中Li +与Mg 2+的两相分离情况
Figure PCTCN2020079079-appb-000005
从表2可以看出,Li +单级萃取率为58.32%,Mg 2+单级萃取率为5.99%,锂镁分离系数为22.23。Li +单级反萃取率为76.28%,Mg 2+单级反萃取率为36.02%,反萃取后锂镁分离系数为8.61,水相中镁锂质量比下降至2.74。
实施例3
取21mL N-异辛基戊酰胺萃取剂和9mL 260#溶剂油(优塔)稀释剂于100mL磨口锥形瓶中,稀释剂占有机相体积的30%,然后在其中加入6mL实施例1中的盐湖卤水,有机相与盐湖卤水体积比为5:1。在锥形瓶中放入磁子,其瓶口插入配套的空气冷凝管防止液体溅出,置于DF-101S型集热式恒温加热磁力搅拌器中,于20℃下混合搅拌、萃取20min。接着将混合液体转移至100 mL塑料试筒中,在LD5-10型台式离心机中以4000r/min转速离心10min,两相界面清晰,分相后得到萃取后卤水样品和负载Li +、Mg 2+的有机相。把负载有机相转移至另一个100mL的磨口锥形瓶中,按与有机相1:5的体积比加入去离子水,置于DF-101S型集热式恒温加热磁力搅拌器中,在20℃下进行反萃取、两相混合20min。然后把混合液体转移至100mL塑料试筒中,在LD5-10型台式离心机中以4000r/min转速离心10min,得到反萃取后的有机相和水相。
分别采用日本岛津AA-7000型原子吸收分光光度计标准加入法和EDTA容量滴定法对萃取和反萃取过程中的卤水相和水相进行定容、配成分析溶液,取样分析Li +和Mg 2+浓度,计算出实验结果如表3所示。
表3 N-异辛基戊酰胺和260#溶剂油(优塔)复合体系对青海某盐湖卤水中Li +与Mg 2+的两相分离情况
Figure PCTCN2020079079-appb-000006
从表3可以看出,Li +单级萃取率为47.40%,Mg 2+单级萃取率为1.01%,锂镁分离系数为93.13。Li +单级反萃取率为87.01%,Mg 2+单级反萃取率为98.33%,反萃取后锂镁分离系数为0.11,水相中镁锂质量比下降至1.36。
实施例4
取27mL N-异辛基戊酰胺萃取剂和3mL十三烷稀释剂于100mL磨口锥形瓶中,稀释剂占有机相体积的10%,然后在其中加入3mL实施例1中的盐湖卤水,有机相与盐湖卤水体积比为10:1。在锥形瓶中放入磁子,其瓶口插入配套的空气冷凝管防止液体溅出,置于DF-101S型集热式恒温加热磁力搅拌器中,于20℃下混合搅拌、萃取20min。接着将混合液体转移至250mL塑料试筒中,在LD5-10型台式离心机中以5000r/min转速离心12min,两相界面清晰,分相后得到萃取后卤水样品和负载Li +、Mg 2+的有机相。把负载有机相转移至另一个100mL的磨口锥形瓶中,按与有机相1:10的体积比加入去离子水,置于DF-101S型集热式恒温加热磁力搅拌器中,在20℃下进行反萃取、两相混合20min。然后把混合液体转移至250mL塑料试筒中,在LD5-10型台式离心机中以5000r/min转速离心12min,得到反萃取后的有机相和水相。
分别采用日本岛津AA-7000型原子吸收分光光度计标准加入法和EDTA容量滴定法对萃取和反萃取过程中的卤水相和水相进行定容、配成分析溶液,取样分析Li +和Mg 2+浓度,计算出实验结果如表4所示。
表4 N-异辛基戊酰胺和十三烷复合溶剂对青海某盐湖卤水中Li +与Mg 2+的两相分离情况
Figure PCTCN2020079079-appb-000007
从表4可以看出,Li +单级萃取率为75.54%,Mg 2+单级萃取率为2.62%,锂镁分离系数为136.46。 Li +单级反萃取率为86.36%,Mg 2+单级反萃取率为82.01%,反萃取后锂镁分离系数为1.38,水相中镁锂质量比下降至1.86。
实施例5
取22.5mL N-异辛基异戊酰胺萃取剂和2.5mL十四烷稀释剂于100mL磨口锥形瓶中,稀释剂占有机相体积的10%,然后在其中加入5mL实施例1中的盐湖卤水,有机相与盐湖卤水体积比为5:1。在锥形瓶中放入磁子,其瓶口插入配套的空气冷凝管防止液体溅出,置于DF-101S型集热式恒温加热磁力搅拌器中,于20℃下混合搅拌、萃取20min。接着将混合液体转移至250mL塑料试筒中,在LD5-10型台式离心机中以5000r/min转速离心12min,两相界面清晰,分相后得到萃取后卤水样品和负载Li +、Mg 2+的有机相。把负载有机相转移至另一个100mL的磨口锥形瓶中,按与有机相1:5的体积比加入水,置于DF-101S型集热式恒温加热磁力搅拌器中,在20℃下进行反萃取、两相混合20min。然后把混合液体转移至250mL塑料试筒中,在LD5-10型台式离心机中以5000r/min转速离心12min,得到反萃取后的有机相和水相。
分别采用日本岛津AA-7000型原子吸收分光光度计标准加入法和EDTA容量滴定法对萃取和反萃取过程中的卤水相和水相进行定容、配成分析溶液,取样分析Li +和Mg 2+浓度,计算出实验结果如表5所示。
表5 N-异辛基异戊酰胺和十四烷复合溶剂对青海某盐湖卤水中Li +与Mg 2+的两相分离情况
Figure PCTCN2020079079-appb-000008
从表5可以看出,Li +单级萃取率为50.14%,Mg 2+单级萃取率为3.41%,锂镁分离系数为29.75。Li +单级反萃取率为91.13%,Mg 2+单级反萃取率为42.81%,反萃取后锂镁分离系数为13.73,水相中镁锂质量比下降至1.80。
实施例6
取27mL N-异辛基异戊酰胺萃取剂和3mL 260#溶剂油(文益)稀释剂于100mL磨口锥形瓶中,稀释剂占有机相体积的10%,然后在其中加入6mL实施例1中的盐湖卤水,有机相与盐湖卤水体积比为5:1。在锥形瓶中放入磁子,其瓶口插入配套的空气冷凝管防止液体溅出,置于DF-101S型集热式恒温加热磁力搅拌器中,于20℃下混合搅拌、萃取20min。接着将混合液体转移至250mL塑料试筒中,在LD5-10型台式离心机中以5000r/min转速离心12min,两相界面清晰,分相后得到萃取后卤水样品和负载Li +、Mg 2+的有机相。把负载有机相转移至另一个100mL的磨口锥形瓶中,按与有机相1:5的体积比加入水,置于DF-101S型集热式恒温加热磁力搅拌器中,在20℃下进行反萃取、两相混合20min。然后把混合液体转移至250mL塑料试筒中,在LD5-10型台式离心机中以5000r/min转速离心12min,得到反萃取后的有机相和水相。
分别采用日本岛津AA-7000型原子吸收分光光度计标准加入法和EDTA容量滴定法对萃取和反萃取过程中的卤水相和水相进行定容、配成分析溶液,取样分析Li +和Mg 2+浓度,计算出实验结果如表6所示。
表6 N-异辛基异戊酰胺和260#溶剂油(文益)复合体系对青海某盐湖卤水中Li +与Mg 2+的两相分离情况
Figure PCTCN2020079079-appb-000009
从表6可以看出,Li +单级萃取率为56.55%,Mg 2+单级萃取率为4.29%,锂镁分离系数为29.00。Li +单级反萃取率为90.88%,Mg 2+单级反萃取率为28.56%,反萃取后锂镁分离系数为24.93,水相中镁锂质量比下降至1.34。
实施例7
取24mL N-异辛基异戊酰胺萃取剂和6mL 260#混合正构烷烃稀释剂于100mL磨口锥形瓶中,稀释剂占有机相体积的20%,然后在其中加入6mL实施例1中的盐湖卤水,有机相与盐湖卤水体积比为5:1。在锥形瓶中放入磁子,其瓶口插入配套的空气冷凝管防止液体溅出,置于DF-101S型集热式恒温加热磁力搅拌器中,于20℃下混合搅拌、萃取20min。接着将混合液体转移至100mL塑料试筒中,在LD5-10型台式离心机中以4000r/min转速离心8min,两相界面清晰,分相后得到萃取后卤水样品和负载Li +、Mg 2+的有机相。把负载有机相转移至另一个100mL的磨口锥形瓶中,按与有机相1:5的体积比加入去离子水,置于DF-101S型集热式恒温加热磁力搅拌器中,在20℃下进行反萃取、两相混合20min。然后把混合液体转移至100mL塑料试筒中,在LD5-10型台式离心机中以4000r/min转速离心8min,得到反萃取后的有机相和水相。
分别采用日本岛津AA-7000型原子吸收分光光度计标准加入法和EDTA容量滴定法对萃取和反萃取过程中的卤水相和水相进行定容、配成分析溶液,取样分析Li +和Mg 2+浓度,计算出实验结果如表7所示。
表7 N-异辛基异戊酰胺和260#混合正构烷烃复合溶剂对青海某盐湖卤水中Li +与Mg 2+的两相分离情况
Figure PCTCN2020079079-appb-000010
从表7可以看出,Li +单级萃取率为52.95%,Mg 2+单级萃取率为6.98%,锂镁分离系数为14.99。Li +单级反萃取率为69.44%,Mg 2+单级反萃取率为86.09%,反萃取后锂镁分离系数为0.36,水相中镁锂质量比下降至9.22。
实施例8
取24mL N-异辛基异戊酰胺萃取剂和6mL 300#混合正构烷烃稀释剂于100mL磨口锥形瓶中,稀释剂占有机相体积的20%,然后在其中加入6mL实施例1中的盐湖卤水,有机相与盐湖卤水体积比为5:1。在锥形瓶中放入磁子,其瓶口插入配套的空气冷凝管防止液体溅出,置于DF-101S型集热式恒温加热磁力搅拌器中,于0℃下混合搅拌、萃取20min。接着将混合液体转移至100mL塑料试筒中,在LD5-10型台式离心机中以4000r/min转速离心8min,两相界面清晰,分相后得到萃取后卤水样品和负载Li +、Mg 2+的有机相。把负载有机相转移至另一个100mL 的磨口锥形瓶中,按与有机相1:5的体积比加入去离子水,置于DF-101S型集热式恒温加热磁力搅拌器中,在10℃下进行反萃取、两相混合20min。然后把混合液体转移至100mL塑料试筒中,在LD5-10型台式离心机中以4000r/min转速离心8min,得到反萃取后的有机相和水相。
分别采用日本岛津AA-7000型原子吸收分光光度计标准加入法和EDTA容量滴定法对萃取和反萃取过程中的卤水相和水相进行定容、配成分析溶液,取样分析Li +和Mg 2+浓度,计算出实验结果如表8所示。
表8 N-异辛基异戊酰胺和300#混合正构烷烃复合溶剂对青海某盐湖卤水中Li +与Mg 2+的两相分离情况
Figure PCTCN2020079079-appb-000011
从表8可以看出,Li +单级萃取率为48.01%,Mg 2+单级萃取率为2.77%,锂镁分离系数为32.38。Li +单级反萃取率为81.14%,Mg 2+单级反萃取率为72.78%,反萃取后锂镁分离系数为1.61,水相中镁锂质量比下降至2.92。
实施例9
取20mL N-丁基壬酰胺、16mL N-异辛基异戊酰胺作为萃取剂与4mL十二烷(同分异构体混合物)作为稀释剂于100mL磨口锥形瓶中,稀释剂占有机相体积的10%,然后在其中加入10mL实施例1中的盐湖卤水,有机相与盐湖卤水体积比为4:1。在锥形瓶中放入磁子,其瓶口插入配套的空气冷凝管防止液体溅出,置于DF-101S型集热式恒温加热磁力搅拌器中,于10℃下混合搅拌、萃取20min。接着将混合液体转移至100mL塑料试筒中,在LD5-10型台式离心机中以4000r/min转速离心8min,两相界面清晰,分相后得到萃取后卤水样品和负载Li +、Mg 2+的有机相。把负载有机相转移至另一个100mL的磨口锥形瓶中,按与有机相1:4的体积比加入去离子水,置于DF-101S型集热式恒温加热磁力搅拌器中,在10℃下进行反萃取、两相混合20min。然后把混合液体转移至100mL塑料试筒中,在LD5-10型台式离心机中以4000r/min转速离心8min,得到反萃取后的有机相和水相。
分别采用日本岛津AA-7000型原子吸收分光光度计标准加入法和EDTA容量滴定法对萃取和反萃取过程中的卤水相和水相进行定容、配成分析溶液,取样分析Li +和Mg 2+浓度,计算出实验结果如表9所示。
表9 N-丁基壬酰胺、N-异辛基异戊酰胺和十二烷(同分异构体混合物)复合溶剂对青海某盐湖卤水中Li +与Mg 2+的两相分离情况
Figure PCTCN2020079079-appb-000012
从表9可以看出,Li +单级萃取率为57.02%,Mg 2+单级萃取率为2.08%,锂镁分离系数为62.22。 Li +单级反萃取率为75.83%,Mg 2+单级反萃取率为72.62%,反萃取后锂镁分离系数为1.18,水相中镁锂质量比下降至1.97。
实施例10
取10.5mL N-异丁基异壬酰胺、10.5mL N-异戊基辛酰胺萃取剂和9mL 260#溶剂油(文益)稀释剂于100mL磨口锥形瓶中,稀释剂占有机相体积的30%,然后在其中加入6mL实施例1中的盐湖卤水,有机相与盐湖卤水体积比为5:1。在锥形瓶中放入磁子,其瓶口插入配套的空气冷凝管防止液体溅出,置于DF-101S型集热式恒温加热磁力搅拌器中,于20℃下混合搅拌、萃取20min。接着将混合液体转移至250mL塑料试筒中,在LD5-10型台式离心机中以5000r/min转速离心12min,两相界面清晰,分相后得到萃取后卤水样品和负载Li +、Mg 2+的有机相。把负载有机相转移至另一个100mL的磨口锥形瓶中,按与有机相1:5的体积比加入去离子水,置于DF-101S型集热式恒温加热磁力搅拌器中,在20℃下进行反萃取、两相混合20min。然后把混合液体转移至250mL塑料试筒中,在LD5-10型台式离心机中以5000r/min转速离心12min,得到反萃取后的有机相和水相。
分别采用日本岛津AA-7000型原子吸收分光光度计标准加入法和EDTA容量滴定法对萃取和反萃取过程中的卤水相和水相进行定容、配成分析溶液,取样分析Li +和Mg 2+浓度,计算出实验结果如表10所示。
表10 N-异丁基异壬酰胺、N-异戊基辛酰胺和260#溶剂油(文益)复合体系对青海某盐湖卤水中Li +与Mg 2+的两相分离情况
Figure PCTCN2020079079-appb-000013
从表10可以看出,Li +单级萃取率为43.82%,Mg 2+单级萃取率为2.20%,锂镁分离系数为34.67。Li +单级反萃取率为75.24%,Mg 2+单级反萃取率为31.68%,反萃取后锂镁分离系数为6.55,水相中镁锂质量比下降至1.19。
实施例11
取10.5mL N-异丁基异壬酰胺、10.5mL N-异辛基戊酰胺萃取剂和9mL 260#溶剂油(文益)稀释剂于100mL磨口锥形瓶中,稀释剂占有机相体积的30%,然后在其中加入6mL实施例1中的盐湖卤水,有机相与盐湖卤水体积比为5:1。在锥形瓶中放入磁子,其瓶口插入配套的空气冷凝管防止液体溅出,置于DF-101S型集热式恒温加热磁力搅拌器中,于20℃下混合搅拌、萃取20min。接着将混合液体转移至250mL塑料试筒中,在LD5-10型台式离心机中以5000r/min转速离心12min,两相界面清晰,分相后得到萃取后卤水样品和负载Li +、Mg 2+的有机相。把负载有机相转移至另一个100mL的磨口锥形瓶中,按与有机相1:5的体积比加入去离子水,置于DF-101S型集热式恒温加热磁力搅拌器中,在20℃下进行反萃取、两相混合20min。然后把混合液体转移至250mL塑料试筒中,在LD5-10型台式离心机中以5000r/min转速离心12min,得到反萃取后的有机相和水相。
分别采用日本岛津AA-7000型原子吸收分光光度计标准加入法和EDTA容量滴定法对萃取和反萃取过程中的卤水相和水相进行定容、配成分析溶液,取样分析Li +和Mg 2+浓度,计算出实验结果如表11所示。
表11 N-异丁基异壬酰胺、N-异辛基戊酰胺和260#溶剂油(文益)复合体系对青海某盐湖卤水中Li +与Mg 2+的两相分离情况
Figure PCTCN2020079079-appb-000014
从表11可以看出,Li +单级萃取率为43.98%,Mg 2+单级萃取率为2.52%,锂镁分离系数为30.36。Li +单级反萃取率为87.54%,Mg 2+单级反萃取率为32.36%,反萃取后锂镁分离系数为14.69,水相中镁锂质量比下降至1.23。
实施例12
取22.5mL N-戊基异壬酰胺萃取剂和2.5mL十二烷稀释剂于100mL磨口锥形瓶中,稀释剂占有机相体积的10%,然后在其中加入5mL实施例1中的盐湖卤水,有机相与盐湖卤水体积比为5:1。在锥形瓶中放入磁子,其瓶口插入配套的空气冷凝管防止液体溅出,置于DF-101S型集热式恒温加热磁力搅拌器中,于20℃下混合搅拌、萃取20min。接着将混合液体转移至250mL塑料试筒中,在LD5-10型台式离心机中以5000r/min转速离心12min,两相界面清晰,分相后得到萃取后卤水样品和负载Li +、Mg 2+的有机相。把负载有机相转移至另一个100mL的磨口锥形瓶中,按与有机相1:5的体积比加入去离子水,置于DF-101S型集热式恒温加热磁力搅拌器中,在20℃下进行反萃取、两相混合20min。然后把混合液体转移至250mL塑料试筒中,在LD5-10型台式离心机中以5000r/min转速离心12min,得到反萃取后的有机相和水相。
分别采用日本岛津AA-7000型原子吸收分光光度计标准加入法和EDTA容量滴定法对萃取和反萃取过程中的卤水相和水相进行定容、配成分析溶液,取样分析Li +和Mg 2+浓度,计算出实验结果如表12所示。
表12 N-戊基异壬酰胺和十二烷复合溶剂对青海某盐湖卤水中Li +与Mg 2+的两相分离情况
Figure PCTCN2020079079-appb-000015
从表12可以看出,Li +单级萃取率为57.60%,Mg 2+单级萃取率为5.99%,锂镁分离系数为23.15。Li +单级反萃取率为94.43%,Mg 2+单级反萃取率为42.89%,反萃取后锂镁分离系数为22.60,水相中镁锂质量比下降至2.66。
实施例13
取24mL N-戊基异壬酰胺萃取剂和6mL 260#溶剂油(文益)稀释剂于100mL磨口锥形瓶中,稀释剂占有机相体积的20%,然后在其中加入6mL实施例1中的盐湖卤水,有机相与盐湖卤水体积比为5:1。在锥形瓶中放入磁子,其瓶口插入配套的空气冷凝管防止液体溅出,置于DF-101S型集热式恒温加热磁力搅拌器中,于10℃下混合搅拌、萃取20min。接着将混合液体转移至100mL塑料试筒中,在LD5-10型台式离心机中以4000r/min转速离心8min,两相界面清晰,分相 后得到萃取后卤水样品和负载Li +、Mg 2+的有机相。把负载有机相转移至另一个100mL的磨口锥形瓶中,按与有机相1:5的体积比加入去离子水,置于DF-101S型集热式恒温加热磁力搅拌器中,在10℃下进行反萃取、两相混合20min。然后把混合液体转移至100mL塑料试筒中,在LD5-10型台式离心机中以4000r/min转速离心8min,得到反萃取后的有机相和水相。
分别采用日本岛津AA-7000型原子吸收分光光度计标准加入法和EDTA容量滴定法对萃取和反萃取过程中的卤水相和水相进行定容、配成分析溶液,取样分析Li +和Mg 2+浓度,计算出实验结果如表13所示。
表13 N-戊基异壬酰胺和260#溶剂油(文益)复合体系对青海某盐湖卤水中Li +与Mg 2+的两相分离情况
Figure PCTCN2020079079-appb-000016
从表13可以看出,Li +单级萃取率为45.67%,Mg 2+单级萃取率为3.58%,锂镁分离系数为22.58。Li +单级反萃取率为71.07%,Mg 2+单级反萃取率为80.23%,反萃取后锂镁分离系数为0.61,水相中镁锂质量比下降至4.99。
实施例14
取24mL N-辛基异己酰胺萃取剂和3mL 200#溶剂油(由环烷烃组成)、3mL 260#溶剂油(文益)稀释剂于100mL磨口锥形瓶中,稀释剂占有机相体积的20%,然后在其中加入6mL实施例1中的盐湖卤水,有机相与盐湖卤水体积比为5:1。在锥形瓶中放入磁子,其瓶口插入配套的空气冷凝管防止液体溅出,置于DF-101S型集热式恒温加热磁力搅拌器中,于20℃下混合搅拌、萃取20min。接着将混合液体转移至100mL塑料试筒中,在LD5-10型台式离心机中以4200r/min转速离心8min,两相界面清晰,分相后得到萃取后卤水样品和负载Li +、Mg 2+的有机相。把负载有机相转移至另一个100mL的磨口锥形瓶中,按与有机相1:5的体积比加入去离子水,置于DF-101S型集热式恒温加热磁力搅拌器中,在20℃下进行反萃取、两相混合20min。然后把混合液体转移至100mL塑料试筒中,在LD5-10型台式离心机中以4200r/min转速离心8min,得到反萃取后的有机相和水相。
分别采用日本岛津AA-7000型原子吸收分光光度计标准加入法和EDTA容量滴定法对萃取和反萃取过程中的卤水相和水相进行定容、配成分析溶液,取样分析Li +和Mg 2+浓度,计算出实验结果如表14所示。
表14 N-辛基异己酰胺、200#溶剂油(由环烷烃组成)和260#溶剂油(文益)复合体系对青海某盐湖卤水中Li +与Mg 2+的两相分离情况
Figure PCTCN2020079079-appb-000017
从表14可以看出,Li +单级萃取率为62.38%,Mg 2+单级萃取率为1.46%,锂镁分离系数为111.26。Li +单级反萃取率为88.18%,Mg 2+单级反萃取率为79.62%,反萃取后锂镁分离系数为1.91,水相中镁锂质量比下降至1.19。
实施例15
取21mL N-异辛基辛酰胺萃取剂和9mL 260#溶剂油(文益)稀释剂于100mL磨口锥形瓶中,稀释剂占有机相体积的30%,然后在其中加入10mL实施例1中的盐湖卤水,有机相与盐湖卤水体积比为3:1。在锥形瓶中放入磁子,其瓶口插入配套的空气冷凝管防止液体溅出,置于DF-101S型集热式恒温加热磁力搅拌器中,于20℃下混合搅拌、萃取20min。接着将混合液体转移至250mL塑料试筒中,在LD5-10型台式离心机中以5000r/min转速离心12min,两相界面清晰,分相后得到萃取后卤水样品和负载Li +、Mg 2+的有机相。把负载有机相转移至另一个100mL的磨口锥形瓶中,按与有机相1:3的体积比加入去离子水,置于DF-101S型集热式恒温加热磁力搅拌器中,在20℃下进行反萃取、两相混合20min。然后把混合液体转移至250mL塑料试筒中,在LD5-10型台式离心机中以5000r/min转速离心12min,得到反萃取后的有机相和水相。
分别采用日本岛津AA-7000型原子吸收分光光度计标准加入法和EDTA容量滴定法对萃取和反萃取过程中的卤水相和水相进行定容、配成分析溶液,取样分析Li +和Mg 2+浓度,计算出实验结果如表15所示。
表15 N-异辛基辛酰胺和260#溶剂油(文益)复合体系对青海某盐湖卤水中Li +与Mg 2+的两相分离情况
Figure PCTCN2020079079-appb-000018
从表15可以看出,Li +单级萃取率为32.57%,Mg 2+单级萃取率为2.93%,锂镁分离系数为15.97。Li +单级反萃取率为79.14%,Mg 2+单级反萃取率为83.90%,反萃取后锂镁分离系数为0.73,水相中镁锂质量比下降至5.38。
实施例16
取20mL N-异辛基戊酰胺、4mL N-环丙基癸酰胺(受热后液体)萃取剂和6mL 260#溶剂油(优塔)稀释剂于100mL磨口锥形瓶中,稀释剂占有机相体积的20%,然后在其中加入6mL实施例1中的盐湖卤水,有机相与盐湖卤水体积比为5:1。在锥形瓶中放入磁子,其瓶口插入配套的空气冷凝管防止液体溅出,置于DF-101S型集热式恒温加热磁力搅拌器中,于20℃下混合搅拌、萃取20min。接着将混合液体转移至100mL塑料试筒中,在LD5-10型台式离心机中以4000r/min转速离心8min,两相界面清晰,分相后得到萃取后卤水样品和负载Li +、Mg 2+的有机相。把负载有机相转移至另一个100mL的磨口锥形瓶中,按与有机相1:5的体积比加入去离子水,置于DF-101S型集热式恒温加热磁力搅拌器中,在20℃下进行反萃取、两相混合20min。然后把混合液体转移至100mL塑料试筒中,在LD5-10型台式离心机中以4000r/min转速离心8min,得到反萃取后的有机相和水相。
分别采用日本岛津AA-7000型原子吸收分光光度计标准加入法和EDTA容量滴定法对萃取和反萃取过程中的卤水相和水相进行定容、配成分析溶液,取样分析Li +和Mg 2+浓度,计算出实验结果如表16所示。
表16 N-异辛基戊酰胺、N-环丙基癸酰胺和260#溶剂油(优塔)复合体系对青海某盐湖卤水中Li +与Mg 2+的两相分离情况
Figure PCTCN2020079079-appb-000019
从表16可以看出,Li +单级萃取率为57.90%,Mg 2+单级萃取率为2.86%,锂镁分离系数为46.66。Li +单级反萃取率为83.17%,Mg 2+单级反萃取率为87.54%,反萃取后锂镁分离系数为0.70,水相中镁锂质量比下降至2.93。
实施例17
取18mL N-异辛基戊酰胺、3mL N-乙基十二酰胺(受热后液体)萃取剂和9mL 260#溶剂油(优塔)稀释剂于100mL磨口锥形瓶中,稀释剂占有机相体积的30%,然后在其中加入6mL含镁卤水,有机相与卤水体积比为5:1。该含镁卤水中Li +、Mg 2+和Cl -含量分别为0.11、120.62和352.42g/L,镁锂质量比等于1096.55:1,卤水密度为1.33g/cm 3,卤水pH值为7.0。在锥形瓶中放入磁子,其瓶口插入配套的空气冷凝管防止液体溅出,置于DF-101S型集热式恒温加热磁力搅拌器中,于30℃下混合搅拌、萃取30min。接着将混合液体转移至100mL塑料试筒中,在LD5-10型台式离心机中以4300r/min转速离心8min,两相界面清晰,分相后得到萃取后卤水样品和负载Li +、Mg 2+的有机相。把负载有机相转移至另一个100mL的磨口锥形瓶中,按与有机相1:20的体积比加入去离子水,置于DF-101S型集热式恒温加热磁力搅拌器中,在30℃下进行反萃取、两相混合30min。然后把混合液体转移至100mL塑料试筒中,在LD5-10型台式离心机中以4300r/min转速离心8min,得到反萃取后的有机相和水相。
分别采用日本岛津AA-7000型原子吸收分光光度计标准加入法和EDTA容量滴定法对萃取和反萃取过程中的卤水相和水相进行定容、配成分析溶液,取样分析Li +和Mg 2+浓度,计算出实验结果如表17所示。
表17 N-异辛基戊酰胺、N-乙基十二酰胺和260#溶剂油(优塔)复合体系对某含镁卤水中Li +与Mg 2+的两相分离情况
Figure PCTCN2020079079-appb-000020
从表17可以看出,Li +单级萃取率为34.85%,Mg 2+单级萃取率为5.06%,锂镁分离系数为10.04。Li +单级反萃取率为90.94%,Mg 2+单级反萃取率为71.50%,反萃取后锂镁分离系数为4.01,水相中镁锂质量比下降至125.18。
实施例18
取9.9mL N-异辛基戊酰胺、0.1mL N-乙基-1-(4-戊基环己基)甲酰胺作为萃取剂与9.9mL十二烷基环己烷、0.1mL 260#溶剂油(优塔)作为稀释剂于100mL磨口锥形瓶中,稀释剂占有机相 体积的50%,然后在其中加入2mL含镁卤水,有机相与卤水体积比为10:1。该含镁卤水中Li +、Mg 2+和Cl -含量分别为0.12、123.11和359.76g/L,镁锂质量比等于1005.01:1,卤水密度为1.33g/cm 3,卤水pH值为5.6。在锥形瓶中放入磁子,其瓶口插入配套的空气冷凝管防止液体溅出,置于DF-101S型集热式恒温加热磁力搅拌器中,于20℃下混合搅拌、萃取20min。接着将混合液体转移至100mL塑料试筒中,在LD5-10型台式离心机中以4200r/min转速离心8min,两相界面清晰,分相后得到萃取后卤水样品和负载Li +、Mg 2+的有机相。把负载有机相转移至另一个100mL的磨口锥形瓶中,按与有机相1:10的体积比加入去离子水,置于DF-101S型集热式恒温加热磁力搅拌器中,在20℃下进行反萃取、两相混合20min。然后把混合液体转移至100mL塑料试筒中,在LD5-10型台式离心机中以4000r/min转速离心8min,得到反萃取后的有机相和水相。
分别采用日本岛津AA-7000型原子吸收分光光度计标准加入法和EDTA容量滴定法对萃取和反萃取过程中的卤水相和水相进行定容、配成分析溶液,取样分析Li +和Mg 2+浓度,计算出实验结果如表18所示。
表18 N-异辛基戊酰胺、N-乙基-1-(4-戊基环己基)甲酰胺、十二烷基环己烷和260#溶剂油(优塔)复合体系对某含镁卤水中Li +与Mg 2+的两相分离情况
Figure PCTCN2020079079-appb-000021
从表18可以看出,Li +单级萃取率为52.66%,Mg 2+单级萃取率为7.80%,锂镁分离系数为14.39。Li +单级反萃取率为76.20%,Mg 2+单级反萃取率为33.72%,反萃取后锂镁分离系数为6.29,水相中镁锂质量比下降至65.87。
实施例19
取14.25mL N-异辛基丁酰胺、0.2mL N-异辛基-1-环丙基甲酰胺、0.2mL N-己基-3-环戊基丙酰胺、0.2mL N-环十二基乙酰胺(受热后液体)作为萃取剂与0.15mL 260#溶剂油(优塔)作为稀释剂于100mL磨口锥形瓶中,稀释剂占有机相体积的1%,然后在其中加入15mL实施例18中的含镁卤水,卤水pH值用浓盐酸调整至1.0,有机相与含镁卤水体积比为1:1。在锥形瓶中放入磁子,其瓶口插入配套的空气冷凝管防止液体溅出,置于DF-101S型集热式恒温加热磁力搅拌器中,于0℃下混合搅拌、萃取20min。接着将混合液体转移至100mL塑料试筒中,在LD5-10型台式离心机中以4000r/min转速离心8min,两相界面清晰,分相后得到萃取后卤水样品和负载Li +、Mg 2+的有机相。把负载有机相转移至另一个100mL的磨口锥形瓶中,按与有机相1:1的体积比加入去离子水,置于DF-101S型集热式恒温加热磁力搅拌器中,在0℃下进行反萃取、两相混合20min。然后把混合液体转移至100mL塑料试筒中,在LD5-10型台式离心机中以4000r/min转速离心8min,得到反萃取后的有机相和水相。
分别采用日本岛津AA-7000型原子吸收分光光度计标准加入法和EDTA容量滴定法对萃取和反萃取过程中的卤水相和水相进行定容、配成分析溶液,取样分析Li +和Mg 2+浓度,计算出实验结果如表19所示。
表19 N-异辛基丁酰胺、N-异辛基-1-环丙基甲酰胺、N-己基-3-环戊基丙酰胺、N-环十二基乙酰胺和260#溶剂油(优塔)复合体系对某含镁卤水中Li +与Mg 2+的两相分离情况
Figure PCTCN2020079079-appb-000022
从表19可以看出,Li +单级萃取率为33.41%,Mg 2+单级萃取率为5.03%,锂镁分离系数为9.49。Li +单级反萃取率为91.75%,Mg 2+单级反萃取率为92.26%,反萃取后锂镁分离系数为0.93,水相中镁锂质量比下降至152.15。
实施例20
取9.6mL N-异辛基丁酰胺、0.2mL N-十二基乙酰胺(受热后液体)、0.2mL N-异辛基新癸酰胺作为萃取剂与10mL 260#溶剂油(优塔)作为稀释剂于100mL磨口锥形瓶中,稀释剂占有机相体积的50%,然后在其中加入2mL含镁卤水,有机相与卤水体积比为10:1。该含镁卤水中Li +、Mg 2+和Cl -含量分别为20.42、99.83和395.50g/L,镁锂质量比等于4.89:1,卤水密度为1.32g/cm 3,卤水pH值为4.5。在锥形瓶中插入聚四氟乙烯搅拌杆,用DW-1-60型直流恒速搅拌器于50℃下混合搅拌、萃取20min。接着使混合液体自然澄清沉降60min,两相分离后得到萃取后卤水样品和负载Li +、Mg 2+的有机相。把负载有机相转移至另一个100mL的磨口锥形瓶中,按与有机相1:20的体积比加入去离子水,插入聚四氟乙烯搅拌杆,用DW-1-60型直流恒速搅拌器在50℃下进行反萃取、两相混合20min。然后让混合液体自然澄清沉降60min,两相分离后得到反萃取后的有机相和水相。
分别采用日本岛津AA-7000型原子吸收分光光度计标准加入法和EDTA容量滴定法对萃取和反萃取过程中的卤水相和水相进行定容、配成分析溶液,取样分析Li +和Mg 2+浓度,计算出实验结果如表20所示。
表20 N-异辛基丁酰胺、N-十二基乙酰胺、N-异辛基新癸酰胺和260#溶剂油(优塔)复合体系对某含镁卤水中Li +与Mg 2+的两相分离情况
Figure PCTCN2020079079-appb-000023
从表20可以看出,Li +单级萃取率为34.66%,Mg 2+单级萃取率为1.41%,锂镁分离系数为37.43。Li +单级反萃取率为85.22%,Mg 2+单级反萃取率为94.13%,反萃取后锂镁分离系数为0.36,水相中镁锂质量比下降至0.22。
实施例21
取29.2mL N-异辛基戊酰胺、0.5mL N-环十二基乙酰胺作为萃取剂与0.1mL壬烷、0.1mL十八烷、0.05mL异丙基环己烷、0.05mL十二烷基环己烷作为稀释剂于100mL磨口锥形瓶中,其中萃取剂占有机相体积的99%,稀释剂占有机相体积的1%。然后在其中加入30mL含镁卤水,有机相与卤水体积比为1:1。该含镁卤水中Li +、Mg 2+和Cl -含量分别为3.63、81.40和255.97g/L,镁锂质量比等于22.45:1,卤水密度为1.25g/cm,卤水pH值为5.8。在磨口锥形瓶中放入磁子, 其瓶口插入配套的空气冷凝管防止液体溅出,置于DF-101S集热式恒温加热磁力搅拌器中,于0℃下混合搅拌、萃取30min。接着将混合液体转移至100mL塑料试筒中,在LD5-10型台式离心机中以4200r/min转速离心8min,两相界面清晰,分相后得到萃取后卤水样品和负载Li +、Mg 2+的有机相。把负载有机相转移至另一个100mL磨口锥形瓶中,按与有机相1:1的体积比加入去离子水,置于DF-101S集热式恒温加热磁力搅拌器中,在0℃下进行反萃取、两相混合30min。然后把混合液体转移至100mL塑料试筒中,在LD5-10型台式离心机中以4200r/min转速离心8min,得到反萃取后的有机相和水相。
分别采用日本岛津AA-7000型原子吸收分光光度计标准加入法和EDTA容量滴定法对萃取和反萃取过程中的卤水相和水相进行定容、配成分析溶液,取样分析Li +和Mg 2+浓度,计算出实验结果如表21所示。
表21 N-异辛基戊酰胺、N-环十二基乙酰胺、壬烷、十八烷、异丙基环己烷和十二烷基环己烷复合溶剂对某含镁卤水中Li +与Mg 2+的两相分离情况
Figure PCTCN2020079079-appb-000024
从表21可以看出,Li +单级萃取率为30.24%,Mg 2+单级萃取率为0.44%,锂镁分离系数为98.09。Li +单级反萃取率为52.07%,Mg 2+单级反萃取率为79.92%,反萃取后锂镁分离系数为0.27,水相中镁锂质量比下降至0.51。
实施例22
取9.9mL N-异辛基戊酰胺、0.1mL N-(4-叔丁基环己基)辛酰胺作为萃取剂与0.1mL异丙基环己烷、9.9mL 260#溶剂油(优塔)作为稀释剂于100mL磨口锥形瓶中,稀释剂占有机相体积的50%,然后在其中加入2mL含镁卤水,有机相与卤水体积比为10:1。该含镁卤水中Li +、Mg 2+、Cl -
Figure PCTCN2020079079-appb-000025
含量分别为1.21、80.86、202.53和53.56g/L,镁锂质量比等于66.83:1,卤水密度为1.25g/cm 3,卤水pH值为7.0。在锥形瓶中放入磁子,其瓶口插入配套的空气冷凝管防止液体溅出,置于DF-101S型集热式恒温加热磁力搅拌器中,于20℃下混合搅拌、萃取20min。接着将混合液体转移至100mL塑料试筒中,在LD5-10型台式离心机中以4200r/min转速离心8min,两相界面清晰,分相后得到萃取后卤水样品和负载Li +、Mg 2+的有机相。把负载有机相转移至另一个100mL的磨口锥形瓶中,按与有机相1:10的体积比加入去离子水,置于DF-101S型集热式恒温加热磁力搅拌器中,在20℃下进行反萃取、两相混合20min。然后把混合液体转移至100mL塑料试筒中,在LD5-10型台式离心机中以4200r/min转速离心8min,得到反萃取后的有机相和水相。
分别采用日本岛津AA-7000型原子吸收分光光度计标准加入法和EDTA容量滴定法对萃取和反萃取过程中的卤水相和水相进行定容、配成分析溶液,取样分析Li +和Mg 2+浓度,计算出实验结果如表22所示。
表22 N-异辛基戊酰胺、N-(4-叔丁基环己基)辛酰胺、异丙基环己烷和260#溶剂油(优塔)复合体系对某含镁卤水中Li +与Mg 2+的两相分离情况
Figure PCTCN2020079079-appb-000026
Figure PCTCN2020079079-appb-000027
从表22可以看出,Li +单级萃取率为34.71%,Mg 2+单级萃取率为4.83%,锂镁分离系数为10.47。Li +单级反萃取率为77.76%,Mg 2+单级反萃取率为42.85%,反萃取后锂镁分离系数为4.66,水相中镁锂质量比下降至5.12。
实施例23
取19.2mL N-异辛基戊酰胺萃取剂、0.5mL辛基环己烷和4.3mL 260#溶剂油(优塔)稀释剂于100mL磨口锥形瓶中,稀释剂占有机相体积的20%,然后在其中加入8mL含镁卤水,有机相与卤水体积比为3:1。该含镁卤水中Li +、Mg 2+和Cl -含量分别为0.19、109.26和319.69g/L,镁锂质量比等于575.05:1,卤水密度为1.30g/cm 3,卤水pH值为5.8。在锥形瓶中放入磁子,其瓶口插入配套的空气冷凝管防止液体溅出,置于DF-101S型集热式恒温加热磁力搅拌器中,于20℃下混合搅拌、萃取30min。接着将混合液体转移至100mL塑料试筒中,在LD5-10型台式离心机中以4300r/min转速离心8min,两相界面清晰,分相后得到萃取后卤水样品和负载Li +、Mg 2+的有机相。把负载有机相转移至另一个100mL的磨口锥形瓶中,按与有机相1:3的体积比加入去离子水,置于DF-101S型集热式恒温加热磁力搅拌器中,在20℃下进行反萃取、两相混合30min。然后把混合液体转移至100mL塑料试筒中,在LD5-10型台式离心机中以4300r/min转速离心8min,得到反萃取后的有机相和水相。
分别采用日本岛津AA-7000型原子吸收分光光度计标准加入法和EDTA容量滴定法对萃取和反萃取过程中的卤水相和水相进行定容、配成分析溶液,取样分析Li +和Mg 2+浓度,计算出实验结果如表23所示。
表23 N-异辛基戊酰胺、辛基环己烷和260#溶剂油(优塔)复合体系对某含镁卤水中Li +与Mg 2+的两相分离情况
Figure PCTCN2020079079-appb-000028
从表23可以看出,Li +单级萃取率为42.53%,Mg 2+单级萃取率为3.74%,锂镁分离系数为19.12。Li +单级反萃取率为80.97%,Mg 2+单级反萃取率为67.88%,反萃取后锂镁分离系数为2.01,水相中镁锂质量比下降至42.39。
实施例24
取6mL实施例1中的盐湖卤水于100mL磨口锥形瓶中,然后在其中加入纯度为99%的六水合三氯化铁0.48g,使其溶解后再加入21mL N-异辛基戊酰胺萃取剂和9mL 260#溶剂油(优塔)稀释剂,稀释剂占有机相体积的30%,有机相与盐湖卤水体积比为5:1。在锥形瓶中放入磁子,其瓶口插入配套的空气冷凝管防止液体溅出,置于DF-101S型集热式恒温加热磁力搅拌器中,于20℃下混合搅拌、萃取20min。接着将混合液体转移至100mL塑料试筒中,在LD5-10型台式离心机中以4000r/min转速离心10min,两相界面清晰,分相后得到萃取后卤水样品和负载Li +、 Mg 2+的有机相。把负载有机相转移至另一个100mL的磨口锥形瓶中,按与有机相1:5的体积比加入去离子水,置于DF-101S型集热式恒温加热磁力搅拌器中,在20℃下进行反萃取、两相混合20min。然后把混合液体转移至100mL塑料试筒中,在LD5-10型台式离心机中以4000r/min转速离心10min,得到反萃取后的有机相和水相。
分别采用日本岛津AA-7000型原子吸收分光光度计标准加入法和EDTA容量滴定法对萃取和反萃取过程中的卤水相和水相进行定容、配成分析溶液,取样分析Li +和Mg 2+浓度,计算出实验结果如表24所示。
表24 N-异辛基戊酰胺和260#溶剂油(优塔)复合体系对青海某盐湖含Fe 3+卤水中Li +与Mg 2+的两相分离情况
Figure PCTCN2020079079-appb-000029
从表24可以看出,Li +单级萃取率为76.28%,Mg 2+单级萃取率为1.37%,锂镁分离系数为230.48。Li +单级反萃取率为72.49%,Mg 2+单级反萃取率为89.14%,反萃取后锂镁分离系数为0.32,水相中镁锂质量比下降至1.25。
实施例25
取6mL实施例1中的盐湖卤水于100mL磨口锥形瓶中,然后在其中加入纯度为99%的四水合二氯化亚铁0.35g,使其溶解后再加入27mL N-异辛基异戊酰胺萃取剂和3mL十四烷稀释剂,稀释剂占有机相体积的10%,有机相与盐湖卤水体积比为5:1。在锥形瓶中放入磁子,其瓶口插入配套的空气冷凝管防止液体溅出,置于DF-101S型集热式恒温加热磁力搅拌器中,于20℃下混合搅拌、萃取20min。接着将混合液体转移至100mL塑料试筒中,在LD5-10型台式离心机中以4000r/min转速离心10min,两相界面清晰,分相后得到萃取后卤水样品和负载Li +、Mg 2+的有机相。把负载有机相转移至另一个100mL的磨口锥形瓶中,按与有机相1:5的体积比加入去离子水,置于DF-101S型集热式恒温加热磁力搅拌器中,在20℃下进行反萃取、两相混合20min。然后把混合液体转移至100mL塑料试筒中,在LD5-10型台式离心机中以4000r/min转速离心10min,得到反萃取后的有机相和水相。
分别采用日本岛津AA-7000型原子吸收分光光度计标准加入法和EDTA容量滴定法对萃取和反萃取过程中的卤水相和水相进行定容、配成分析溶液,取样分析Li +和Mg 2+浓度,计算出实验结果如表25所示。
表25 N-异辛基异戊酰胺和十四烷复合溶剂对青海某盐湖含Fe 2+卤水中Li +与Mg 2+的两相分离情况
Figure PCTCN2020079079-appb-000030
从表25可以看出,Li +单级萃取率为63.15%,Mg 2+单级萃取率为9.78%,锂镁分离系数为15.84。Li +单级反萃取率为65.35%,Mg 2+单级反萃取率为68.89%,反萃取后锂镁分离系数为0.85,水相中镁锂质量比下降至9.21。
实施例26
取18mL N-异丁基异壬酰胺、18mL N-异辛基戊酰胺萃取剂和4mL 260#溶剂油(文益)稀释剂于100mL磨口锥形瓶中,稀释剂占有机相体积的10%,然后在其中加入10mL实施例1中的盐湖卤水,有机相与盐湖卤水体积比为4:1。在锥形瓶中放入磁子,其瓶口插入配套的空气冷凝管防止液体溅出,置于DF-101S型集热式恒温加热磁力搅拌器中,于5℃下混合搅拌、萃取20min。接着将混合液体转移至250mL塑料试筒中,在LD5-10型台式离心机中以4800r/min转速离心12min,两相界面清晰,分相后得到萃取后卤水样品和负载Li +、Mg 2+的有机相。接着按照萃取串级交叉操作步骤进行三级逆流萃取,得到三级逆流萃取后的负载有机相和剩余卤水相。
把三级逆流萃取后的负载有机相转移至另一个100mL的磨口锥形瓶中,按与有机相1:4的体积比加入去离子水,置于DF-101S型集热式恒温加热磁力搅拌器中,在5℃下进行单级反萃取、两相混合20min。然后把混合液体转移至250mL塑料试筒中,在LD5-10型台式离心机中以4800r/min转速离心12min,得到反萃取后的有机相和水相。
分别采用日本岛津AA-7000型原子吸收分光光度计标准加入法和EDTA容量滴定法对萃取和反萃取过程中的卤水相和水相进行定容、配成分析溶液,取样分析Li +和Mg 2+浓度,计算出实验结果如表26所示。
表26 N-异丁基异壬酰胺、N-异辛基戊酰胺和260#溶剂油(文益)复合体系对青海某盐湖卤水中Li +与Mg 2+的三级逆流萃取和单级反萃取情况
Figure PCTCN2020079079-appb-000031
从表26可以看出,卤水经过三级逆流萃取后Li +萃取率为83.84%,Mg 2+萃取率为4.46%,锂镁分离系数达到110.97。Li +单级反萃取率为76.16%,Mg 2+单级反萃取率为37.58%,反萃取后锂镁分离系数为5.31,镁锂质量比下降至1.48,卤水中的Li +与Mg 2+实现有效分离。多级逆流萃取级数越多卤水中的Li +萃取率越高、锂镁分离系数越大,在减少水相用量的情况下多级逆流反萃取级数越多越有利于反萃取后水相中Li +浓度的提高。
把反萃取后有机相返回与萃取前卤水相重新混合,实现萃取剂的循环使用。
接着把反萃取后得到的水相溶液进行除油、经过二效蒸发浓缩至Li +浓度为30g/L后,分别加入氯化钙、氯化钡溶液彻底沉淀除去其中的硫酸根,分别加入碳酸钠、氢氧化钠溶液彻底沉淀除去其中的Mg 2+,然后对剩余溶液进行蒸发浓缩、冷却结晶、过滤干燥后制得无水氯化锂产品。
把经过除杂精制后得到的氯化锂浓缩液置于离子膜电解槽中进行电解,在阴极得到质量浓度为12%的氢氧化锂溶液,经浓缩、结晶后得到单水氢氧化锂,再经水洗、干燥后制到无水氢氧化锂产品。同时副产氢气和氯气,使氢气和氯气进一步反应制得盐酸。
实施例27
青海柴达木盆地某盐湖卤水中Li +和Mg 2+含量分别为5.72g/L和116.36g/L,镁锂质量比为20.35:1,其中Na +、K +、Cl -
Figure PCTCN2020079079-appb-000032
和B 2O 3含量分别为2.70、1.04、346.21、37.32和16.89g/L, 卤水密度为1.36g/cm 3,卤水pH值为4.1。取5mL该种卤水于100mL磨口锥形瓶中,然后在其中加入22.5mL N-异辛基异戊酰胺萃取剂和2.5mL 260#溶剂油(文益)稀释剂,稀释剂占有机相体积的10%,有机相与盐湖卤水体积比为5:1。在锥形瓶中放入磁子,其瓶口插入配套的空气冷凝管防止液体溅出,置于DF-101S型集热式恒温加热磁力搅拌器中,于20℃下混合搅拌、萃取20min。接着将混合液体转移至250mL塑料试筒中,在LD5-10型台式离心机中以4800r/min转速离心12min,两相界面清晰,分相后得到萃取后卤水样品和负载Li +、Mg 2+的有机相。接着按照萃取串级交叉操作步骤进行三级逆流萃取,得到三级逆流萃取后的负载有机相和剩余卤水相。
把三级逆流萃取后的负载有机相转移至另一个100mL的磨口锥形瓶中,按与有机相1:5的体积比加入去离子水,置于DF-101S型集热式恒温加热磁力搅拌器中,在20℃下进行单级反萃取、两相混合20min。然后把混合液体转移至250mL塑料试筒中,在LD5-10型台式离心机中以4800r/min转速离心12min,得到反萃取后的有机相和水相。接着按照串级交叉操作步骤进行二级逆流反萃取,得到二级逆流反萃取后的有机相和水相。
分别采用日本岛津AA-7000型原子吸收分光光度计标准加入法和EDTA容量滴定法对萃取和反萃取过程中的卤水相和水相进行定容、配成分析溶液,取样分析Li +和Mg 2+浓度,计算出实验结果如表27所示。
表27 N-异辛基异戊酰胺和260#溶剂油(文益)复合体系对青海某盐湖卤水中Li +与Mg 2+的三级逆流萃取和二级逆流反萃取情况
Figure PCTCN2020079079-appb-000033
从表27可以看出,卤水经过三级逆流萃取后Li +萃取率为75.10%,Mg 2+萃取率为2.52%,锂镁分离系数达到116.67。负载有机相经过二级逆流反萃取后Li +反萃取率为81.91%,Mg 2+反萃取率为64.16%,反萃取后锂镁分离系数为2.53,镁锂质量比下降至0.53,卤水中的Li +与Mg 2+实现有效分离。
接着把反萃取后得到的水相溶液进行除油、经过二效蒸发浓缩至Li +浓度为20g/L后,分别加入氯化钙、氯化钡溶液彻底沉淀除去其中的硫酸根,分别加入碳酸钠、氢氧化钠溶液彻底沉淀除去其中的Mg 2+,得到氯化锂精制溶液。然后在其中按其理论用量的1.1倍加入浓度为250g/L的碳酸钠溶液,产生碳酸锂沉淀,经过过滤、干燥后制得碳酸锂产品。
在获得的碳酸锂中加入氢氧化钙乳液,加热并强力搅拌进行固-液反应生成氢氧化锂溶液和碳酸钙沉淀,两相分离后得到氢氧化锂溶液,对其进行减压浓缩、结晶和在130–140℃下干燥后制得单水氢氧化锂,再在150–180℃下减压加热制得无水氢氧化锂产品。
对比例1
取25mL十三烷作为萃取剂于100mL磨口锥形瓶中,然后在其中加入5mL实施例1中的盐湖卤水,萃取剂与盐湖卤水体积比为5:1。在锥形瓶中放入磁子,其瓶口插入配套的空气冷凝管防止液体溅出,置于DF-101S型集热式恒温加热磁力搅拌器中,于20℃下混合搅拌、萃取20min。接着将混合液体转移至100mL塑料试筒中,在LD5-10型台式离心机中以4000r/min转速离心8min,两相界面清晰,分相后得到萃取后卤水样品和负载Li +、Mg 2+的有机相。把负载有机相转移至另一个100mL的磨口锥形瓶中,按与有机相1:5的体积比加入去离子水,置于DF-101S 型集热式恒温加热磁力搅拌器中,在20℃下进行反萃取、两相混合20min。然后把混合液体转移至100mL塑料试筒中,在LD5-10型台式离心机中以4000r/min转速离心8min,得到反萃取后的有机相和水相。
分别采用日本岛津AA-7000型原子吸收分光光度计标准加入法和EDTA容量滴定法对萃取和反萃取过程中的卤水相和水相进行定容、配成分析溶液,取样分析Li +和Mg 2+浓度,计算出实验结果如表28所示。
表28 十三烷溶剂对青海某盐湖卤水中Li +与Mg 2+的两相分离情况
Figure PCTCN2020079079-appb-000034
从表28可以看出,此时Li +的单级萃取率不高只有9.64%,表明该种烷烃溶剂对盐湖卤水中的Li +萃取能力不大,与仲酰胺作为萃取剂时对盐湖卤水中的锂镁分离效果形成显著对比。此对比例用以作为前面实施例的反例,对仲酰胺的萃取能力给予进一步说明。
对比例2
取25mL 260#溶剂油(优塔)作为萃取剂于100mL磨口锥形瓶中,然后在其中加入5mL实施例1中的盐湖卤水,萃取剂与盐湖卤水体积比为5:1。在锥形瓶中放入磁子,其瓶口插入配套的空气冷凝管防止液体溅出,置于DF-101S型集热式恒温加热磁力搅拌器中,于20℃下混合搅拌、萃取20min。接着将混合液体转移至100mL塑料试筒中,在LD5-10型台式离心机中以4000r/min转速离心8min,两相界面清晰,分相后得到萃取后卤水样品和负载Li +、Mg 2+的有机相。把负载有机相转移至另一个100mL的磨口锥形瓶中,按与有机相1:5的体积比加入去离子水,置于DF-101S型集热式恒温加热磁力搅拌器中,在20℃下进行反萃取、两相混合20min。然后把混合液体转移至100mL塑料试筒中,在LD5-10型台式离心机中以4000r/min转速离心8min,得到反萃取后的有机相和水相。
分别采用日本岛津AA-7000型原子吸收分光光度计标准加入法和EDTA容量滴定法对萃取和反萃取过程中的卤水相和水相进行定容、配成分析溶液,取样分析Li +和Mg 2+浓度,计算出实验结果如表29所示。
表29 260#溶剂油(优塔)对青海某盐湖卤水中Li +与Mg 2+的两相分离情况
Figure PCTCN2020079079-appb-000035
从表29可以看出,此时Li +的单级萃取率不高只有4.91%,表明该种烷烃溶剂对盐湖卤水中的Li +萃取能力不大,与仲酰胺作为萃取剂时对盐湖卤水中的锂镁分离效果形成显著对比。此对比例用以作为前面实施例的反例,对仲酰胺的萃取能力给予进一步说明。
以上仅为本发明选择提供的部分实施案例而已,本发明的实施方式不受上述实施例的限制。 对于本领域技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、组合和改进等,都包含在本技术发明的保护范围之内。
表30 实施例中涉及到的A物质仲酰胺的常用名称、对应规范名称和代号
序号 部分A物质仲酰胺常用名称 部分A物质仲酰胺对应规范名称 代号
1 N-异辛基丁酰胺 N-(2-乙基己基)正丁酰胺 Z842
2 N-丁基壬酰胺 N-正丁基正壬酰胺 Z491
3 N-异丁基异壬酰胺 N-(2-甲基丙基)-3,5,5-三甲基己酰胺 Z494
4 N-异戊基辛酰胺 N-(3-甲基丁基)正辛酰胺 Z582
5 N-异辛基戊酰胺 N-(2-乙基己基)正戊酰胺 Z852
6 N-异辛基异戊酰胺 N-(2-乙基己基)-3-甲基丁酰胺 Z854
7 N-乙基十二酰胺 N-乙基正十二酰胺 Z2121
8 N-戊基异壬酰胺 N-正戊基-3,5,5-三甲基己酰胺 Z593
9 N-辛基异己酰胺 N-正辛基-4-甲基戊酰胺 Z863
10 N-异辛基-3,3-二甲基丁酰胺 N-(2-乙基己基)-3,3-二甲基丁酰胺 Z866
11 N-十二基乙酰胺 N-正十二基乙酰胺 Z1221
12 N-异辛基辛酰胺 N-(2-乙基己基)正辛酰胺 Z882
13 N-异辛基新癸酰胺 N-(2-乙基己基)-7,7-二甲基辛酰胺 Z8104
14 N-异辛基-1-环丙基甲酰胺 N-(2-乙基己基)-1-环丙基甲酰胺 Z84h1
15 N-环丙基癸酰胺 N-环丙基正癸酰胺 Z3h101
16 N-乙基-1-(4-戊基环己基)甲酰胺 N-乙基-1-(4-正戊基环己基)甲酰胺 Z212h1
17 N-己基-3-环戊基丙酰胺 N-正己基-3-环戊基丙酰胺 Z68h1
18 N-环十二基乙酰胺 N-环十二基乙酰胺 Z12h21
19 N-(4-叔丁基环己基)辛酰胺 N-(4-叔丁基环己基)正辛酰胺 Z10h82
表31 实施例中涉及到的B物质烷烃的常用名称、对应规范名称和CAS号 *
Figure PCTCN2020079079-appb-000036
Figure PCTCN2020079079-appb-000037
*CAS号为美国化学文摘社登记号。

Claims (13)

  1. 用仲酰胺/烷烃复合溶剂从含镁卤水中分离镁提取锂的萃取体系,其特征在于,萃取体系中含有A和B两类物质;其中A类物质为仲酰胺由单一化合物或两种以上的混合物组成;其中,单一化合物具有如式(I)所示的结构:
    Figure PCTCN2020079079-appb-100001
    其中,R 1选自C2~C12的烷基或含有单环结构的C3~C12的环烷基,R 2选自C1~C11的烷基或含有单环结构的C3~C11的环烷基,并且R 1和R 2两基团中所含碳原子数目之和为11~17,其中烷基或环烷基包括各种同分异构体;
    其中B类物质为烷烃由单一化合物或两种以上的混合物组成;其中,单一化合物具有如式(Ⅱ)所示的结构:
    H——R 3       (Ⅱ);
    其中,R 3选自C9~C18的烷基,其中烷基包括直链的或带有支链的各种同分异构体;
    含有A和B两类物质的萃取体系的凝固点小于0℃。
  2. 根据权利要求1所述的用仲酰胺/烷烃复合溶剂从含镁卤水中分离镁提取锂的萃取体系,其特征在于,所述A类物质起萃取作用在整个有机相中所占的体积百分数为50~100%,不包括端点值100%;所述B类物质起稀释作用在整个有机相中所占的体积百分数为0~50%,不包括端点值0%。
  3. 根据权利要求1所述的用仲酰胺/烷烃复合溶剂从含镁卤水中分离镁提取锂的萃取体系,其特征在于,还包含有同样起稀释作用分子中含有单环结构的C9~C18的环烷烃,该环烷烃包括同分异构体由单一化合物或两种以上的混合物组成。
  4. 根据权利要求3所述的用仲酰胺/烷烃复合溶剂从含镁卤水中分离镁提取锂的萃取体系,其特征在于,在所述的B类物质中,烷烃混合物为200#溶剂油、260#溶剂油、300#溶剂油或磺化煤油;在所述的环烷烃中,环烷烃混合物为用重整装置抽余油生产的200#溶剂油。
  5. 用仲酰胺/烷烃复合溶剂从含镁卤水中分离镁提取锂的萃取方法,其特征在于,包括下列步骤:
    S1、以含镁卤水作为萃取前卤水相;其中,在所述含镁卤水中,锂离子的浓度为0.1~21g/L,镁离子的浓度为80~125g/L,氯离子的浓度为200~400g/L,镁锂质量比为4.8~1100:1,卤水密度20℃时为1.25~1.38g/cm 3,卤水pH值在1~7之间;
    S2、以权利要求1至4中任一项所述的萃取体系作为萃取前有机相;
    S3、将所述萃取前有机相和所述萃取前卤水相按照体积比为1~10:1混合,进行单级萃取或多级逆流萃取,两相分离后得到负载有机相和萃取后卤水相。
  6. 根据权利要求5所述的用仲酰胺/烷烃复合溶剂从含镁卤水中分离镁提取锂的萃取方法,其特征在于,在所述含镁卤水中,还含有钠离子、钾离子、铁离子、亚铁离子、硫酸根、硼酸或硼氧酸根离子中的一种或两种以上。
  7. 根据权利要求5所述的用仲酰胺/烷烃复合溶剂从含镁卤水中分离镁提取锂的萃取方法,其特征在于,所述的含镁卤水包括含锂盐湖卤水,但不仅限于该种卤水。
  8. 根据权利要求5所述的用仲酰胺/烷烃复合溶剂从含镁卤水中分离镁提取锂的萃取方法, 其特征在于,在所述步骤S3中,萃取温度为0~50℃;两相混合通过搅拌方式进行,萃取后两相分离采取离心分离方式或澄清沉降方式进行。
  9. 根据权利要求5所述的用仲酰胺/烷烃复合溶剂从含镁卤水中分离镁提取锂的萃取方法,其特征在于,在所述步骤S3后,还包括步骤:
    S4、以水作为反萃取剂,对所述负载有机相进行单级反萃取或多级逆流反萃取,反萃相比即反萃取剂与负载有机相体积之比为1:1~20,两相分离后得到反萃取后有机相和反萃取后水相;
    S5、使所述反萃取后有机相返回步骤S2,实现萃取体系的循环使用。
  10. 根据权利要求9所述的用仲酰胺/烷烃复合溶剂从含镁卤水中分离镁提取锂的萃取方法,其特征在于,在所述步骤S4中,反萃取温度为0~50℃;两相混合通过搅拌方式进行,反萃取后两相分离采取离心分离方式或澄清沉降方式进行。
  11. 用仲酰胺/烷烃复合溶剂从含镁卤水中分离镁提取锂的萃取方法在获得锂产品氯化锂中的应用,其特征在于,在所述步骤S4后,还包括步骤:
    S6、对所述反萃取后水相进一步除油净化,浓缩、然后加入除杂剂对其中硫酸根、剩余镁离子进行去除,得到水相精制后的氯化锂溶液;所用除杂剂为氧化钙、氢氧化钙、氯化钙、氯化钡、碳酸钠、草酸钠或氢氧化钠中的一种或两种以上的化合物;
    S7、对所述精制后的氯化锂溶液进行浓缩、结晶、分离和干燥过程,制得氯化锂产品。
  12. 用仲酰胺/烷烃复合溶剂从含镁卤水中分离镁提取锂的萃取方法在获得锂产品碳酸锂中的应用,其特征在于,在所述步骤S4后,还包括步骤:
    S6、对所述反萃取后水相进一步除油净化,浓缩、然后加入除杂剂对其中硫酸根、剩余镁离子进行去除,得到水相精制后的氯化锂溶液;所用除杂剂为氧化钙、氢氧化钙、氯化钙、氯化钡、碳酸钠、草酸钠或氢氧化钠中的一种或两种以上的化合物;
    S8、在精制后的氯化锂溶液中加入碳酸钠得到碳酸锂沉淀,对碳酸锂沉淀进行分离、干燥过程,制得碳酸锂产品。
  13. 用仲酰胺/烷烃复合溶剂从含镁卤水中分离镁提取锂的萃取方法在获得锂产品氢氧化锂中的应用,其特征在于,在所述步骤S4后,还包括步骤:
    S6、对所述反萃取后水相进一步除油净化,浓缩、然后加入除杂剂对其中硫酸根、剩余镁离子进行去除,得到水相精制后的氯化锂溶液;所用除杂剂为氧化钙、氢氧化钙、氯化钙、氯化钡、碳酸钠、草酸钠或氢氧化钠中的一种或两种以上的化合物;
    S9、对所述精制后的氯化锂溶液进行电解,制得氢氧化锂产品,同时副产氢气和氯气、可用于生产盐酸;
    或在所述步骤S6后,还包括步骤:
    S8、在精制后的氯化锂溶液中加入碳酸钠得到碳酸锂沉淀,对碳酸锂沉淀进行分离、干燥过程,制得碳酸锂产品;
    S10、在制得的碳酸锂中加入氢氧化钙乳液,进行固-液反应,分离后得到氢氧化锂溶液,对其进行浓缩、结晶和干燥过程,制得氢氧化锂产品。
PCT/CN2020/079079 2019-11-08 2020-03-13 用仲酰胺/烷烃复合溶剂从含镁卤水中分离镁提取锂的萃取体系、萃取方法和其应用 WO2021088289A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911093159.1 2019-11-08
CN201911093159.1A CN110656249B (zh) 2019-11-08 2019-11-08 用仲酰胺/烷烃复合溶剂从含镁卤水中分离镁提取锂的萃取体系、萃取方法和其应用

Publications (1)

Publication Number Publication Date
WO2021088289A1 true WO2021088289A1 (zh) 2021-05-14

Family

ID=69043283

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/079079 WO2021088289A1 (zh) 2019-11-08 2020-03-13 用仲酰胺/烷烃复合溶剂从含镁卤水中分离镁提取锂的萃取体系、萃取方法和其应用

Country Status (2)

Country Link
CN (1) CN110656249B (zh)
WO (1) WO2021088289A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110656249B (zh) * 2019-11-08 2021-03-23 湘潭大学 用仲酰胺/烷烃复合溶剂从含镁卤水中分离镁提取锂的萃取体系、萃取方法和其应用
CN110777266B (zh) * 2019-11-08 2021-05-25 湘潭大学 用仲酰胺/烷烃复合溶剂从含钙卤水中分离钙提取锂的萃取体系、萃取方法和其应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2384631A1 (en) * 1999-09-27 2001-04-05 Ibc Advanced Technologies, Inc. Polyamide-containing ligands covalently bonded to supports, polyamide-containing resins, and methods for removing metals from solutions
CN106319244A (zh) * 2016-09-09 2017-01-11 山东省医学科学院药物研究所 功能性离子液体的应用以及从盐湖卤水中萃取锂的方法
US9731981B2 (en) * 2015-01-16 2017-08-15 Kabushiki Kaisha Toshiba Rare earth adsorbent and rare earth adsorption method using the same
US20170306439A1 (en) * 2015-04-23 2017-10-26 Ut-Battelle, Llc Methods for liquid extraction of rare earth metals using ionic liquids
CN107447108A (zh) * 2016-06-01 2017-12-08 中国科学院上海有机化学研究所 一种萃取组合物、萃取体系、萃取方法及反萃取方法
CN110656249A (zh) * 2019-11-08 2020-01-07 湘潭大学 用仲酰胺/烷烃复合溶剂从含镁卤水中分离镁提取锂的萃取体系、萃取方法和其应用
CN110777266A (zh) * 2019-11-08 2020-02-11 湘潭大学 用仲酰胺/烷烃复合溶剂从含钙卤水中分离钙提取锂的萃取体系、萃取方法和其应用

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7183432B2 (en) * 2004-06-04 2007-02-27 Iowa State University Research Foundation, Inc. Synthesis of ynamides
CN103055538B (zh) * 2012-05-24 2015-11-25 中国科学院上海有机化学研究所 采用萃取法从含锂卤水中提取锂盐的方法
CN104357675A (zh) * 2014-11-26 2015-02-18 中国科学院青海盐湖研究所 一种盐湖卤水中萃取锂的方法
CN107447116B (zh) * 2016-06-01 2021-01-19 中国科学院上海有机化学研究所 一种萃取组合物、萃取体系、萃取方法及反萃取方法
CN107619929B (zh) * 2016-07-15 2020-08-07 中国科学院上海有机化学研究所 酰胺类化合物的应用,含其的萃取组合物及萃取体系
CN107619931B (zh) * 2016-07-15 2020-08-07 中国科学院上海有机化学研究所 酰胺类化合物的应用,含其的萃取组合物及萃取体系

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2384631A1 (en) * 1999-09-27 2001-04-05 Ibc Advanced Technologies, Inc. Polyamide-containing ligands covalently bonded to supports, polyamide-containing resins, and methods for removing metals from solutions
US9731981B2 (en) * 2015-01-16 2017-08-15 Kabushiki Kaisha Toshiba Rare earth adsorbent and rare earth adsorption method using the same
US20170306439A1 (en) * 2015-04-23 2017-10-26 Ut-Battelle, Llc Methods for liquid extraction of rare earth metals using ionic liquids
CN107447108A (zh) * 2016-06-01 2017-12-08 中国科学院上海有机化学研究所 一种萃取组合物、萃取体系、萃取方法及反萃取方法
CN106319244A (zh) * 2016-09-09 2017-01-11 山东省医学科学院药物研究所 功能性离子液体的应用以及从盐湖卤水中萃取锂的方法
CN110656249A (zh) * 2019-11-08 2020-01-07 湘潭大学 用仲酰胺/烷烃复合溶剂从含镁卤水中分离镁提取锂的萃取体系、萃取方法和其应用
CN110777266A (zh) * 2019-11-08 2020-02-11 湘潭大学 用仲酰胺/烷烃复合溶剂从含钙卤水中分离钙提取锂的萃取体系、萃取方法和其应用

Also Published As

Publication number Publication date
CN110656249A (zh) 2020-01-07
CN110656249B (zh) 2021-03-23

Similar Documents

Publication Publication Date Title
WO2021088287A1 (zh) 用仲酰胺/叔酰胺复合溶剂从含镁卤水中分离镁提取锂的萃取体系、萃取方法和其应用
WO2021088285A1 (zh) 用仲酰胺/烷基醇复合溶剂从含钙卤水中分离钙提取锂和硼的萃取体系、萃取方法和其应用
WO2021088286A1 (zh) 用仲酰胺型溶剂从含镁卤水中分离镁提取锂的萃取体系、萃取方法和其应用
WO2021088290A1 (zh) 用仲酰胺/烷烃复合溶剂从含钙卤水中分离钙提取锂的萃取体系、萃取方法和其应用
WO2021088289A1 (zh) 用仲酰胺/烷烃复合溶剂从含镁卤水中分离镁提取锂的萃取体系、萃取方法和其应用
WO2017045485A1 (zh) 一种从低锂卤水中分离镁和富集锂生产碳酸锂的方法
CN106498184A (zh) 一种锂的萃取体系
US20220135416A1 (en) Extraction system, extraction method for separating magnesium and extracting lithium and boron from magnesium-containing brine with complex solvent of secondary amide/alkyl alcohol as well as applications thereof
CN113073210A (zh) 一种从低温含镁卤水中分离镁提取锂的萃取方法和其应用
CN109468459B (zh) 锂萃取剂以及从盐湖卤水中提取锂的方法
CN105439176B (zh) 一种从高镁含锂卤水中提取制备高纯锂盐的工艺方法
CN110669938B (zh) 用仲酰胺/烷基酮复合溶剂从含镁卤水中分离镁提取锂的萃取体系、萃取方法和其应用
WO2019114815A1 (zh) 一种锂元素的萃取溶剂及其萃取方法
CN114572949A (zh) 一种磷酸二氢锂生产工艺
Ji et al. Mechanism and process for the extraction of lithium from the high magnesium brine with N, N-bis (2-ethylhexyl)-2-methoxyacetamide in kerosene and FeCl3
CN110643836B (zh) 用仲酰胺/烷基酯复合溶剂从含镁卤水中分离镁提取锂的萃取体系、萃取方法和其应用
CN110777267B (zh) 用仲酰胺/叔酰胺复合溶剂从含钙卤水中分离钙提取锂的萃取体系、萃取方法和其应用
CN103805782A (zh) 一种含镍溶液的净化方法
CN109825722A (zh) 一种从高铝锂比氯化物浸出液中提取锂的方法
CN110777268B (zh) 用仲酰胺/磷酸三烷酯复合溶剂从含镁卤水中分离镁提取锂的萃取体系、萃取方法和其应用
CN110643813B (zh) 用仲酰胺/烷基酮复合溶剂从含钙卤水中分离钙提取锂的萃取体系、萃取方法和其应用
CN110643834B (zh) 用仲酰胺/烷基酯复合溶剂从含钙卤水中分离钙提取锂的萃取体系、萃取方法和其应用
CN103805783A (zh) 一种净化含镍溶液的方法
CN113061722B (zh) 一种从低温含钙卤水中分离钙提取锂的萃取方法和其应用
CN109762987B (zh) 二烷基砜萃取剂以及从盐湖卤水中提取锂的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20883807

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20883807

Country of ref document: EP

Kind code of ref document: A1