WO2021088290A1 - 用仲酰胺/烷烃复合溶剂从含钙卤水中分离钙提取锂的萃取体系、萃取方法和其应用 - Google Patents

用仲酰胺/烷烃复合溶剂从含钙卤水中分离钙提取锂的萃取体系、萃取方法和其应用 Download PDF

Info

Publication number
WO2021088290A1
WO2021088290A1 PCT/CN2020/079080 CN2020079080W WO2021088290A1 WO 2021088290 A1 WO2021088290 A1 WO 2021088290A1 CN 2020079080 W CN2020079080 W CN 2020079080W WO 2021088290 A1 WO2021088290 A1 WO 2021088290A1
Authority
WO
WIPO (PCT)
Prior art keywords
calcium
lithium
extraction
brine
phase
Prior art date
Application number
PCT/CN2020/079080
Other languages
English (en)
French (fr)
Inventor
杨立新
李海博
李聪
刘长
周钦耀
Original Assignee
湘潭大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 湘潭大学 filed Critical 湘潭大学
Publication of WO2021088290A1 publication Critical patent/WO2021088290A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B26/00Obtaining alkali, alkaline earth metals or magnesium
    • C22B26/10Obtaining alkali metals
    • C22B26/12Obtaining lithium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01DCOMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
    • C01D15/00Lithium compounds
    • C01D15/02Oxides; Hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01DCOMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
    • C01D15/00Lithium compounds
    • C01D15/04Halides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01DCOMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
    • C01D15/00Lithium compounds
    • C01D15/08Carbonates; Bicarbonates
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B26/00Obtaining alkali, alkaline earth metals or magnesium
    • C22B26/20Obtaining alkaline earth metals or magnesium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/20Treatment or purification of solutions, e.g. obtained by leaching
    • C22B3/26Treatment or purification of solutions, e.g. obtained by leaching by liquid-liquid extraction using organic compounds
    • C22B3/40Mixtures
    • C22B3/402Mixtures of acyclic or carbocyclic compounds of different types
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/34Simultaneous production of alkali metal hydroxides and chlorine, oxyacids or salts of chlorine, e.g. by chlor-alkali electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the invention relates to a method for extracting lithium from calcium-containing brine, in particular to an extraction system, an extraction method and its application for separating calcium from calcium-containing brine with a composite solvent to extract lithium.
  • the freezing crystallization method uses the change of the solubility of calcium chloride with temperature to precipitate the calcium salt in the brine at low temperature.
  • Li Bing et al. evaporated oilfield water to a specific gravity of 1.40 ⁇ 1.54, and frozen it at 0 ⁇ -30°C for 3 ⁇ 15 days to obtain lithium-rich brine (CN103508472A). This method requires a long time and the decrease in the mass ratio of calcium to lithium is limited .
  • Qin Xiaoming and others used a chelating cation exchange resin column to remove metal cations (CN108840354A) with more than two valence in the lithium-containing solution at a pH of 10-12, and Guo Dingjiang, etc., used a nanofilter to remove high salt.
  • the calcium and magnesium impurities in the lithium chloride mixed solution (CN106048218A) and Cao Naizhen et al. used extraction methods to use P204 as the extractant and sulfonated kerosene as the slow release agent to remove the calcium and magnesium ions in the lithium-rich solution (CN105712383A).
  • the solvent extraction method uses the specific extraction performance of organic solvents for lithium ions to achieve the purpose of lithium-calcium or lithium-magnesium separation. It is considered to be the most promising method for extracting lithium for high-magnesium-lithium than salt lake brines. It may also be applied to high-calcium. Lithium than oilfield brine, the pros and cons of extractants and the discovery of new extractants are the key to its technological process. Alkanes, as a kind of neutral solvent with low density, low viscosity, and environmentally friendly, help the separation of two phases, and may form a new extraction system when combined with other active ingredients. After the high-calcium-lithium-ratio brine is separated from lithium-calcium to the low-calcium-lithium ratio brine, basic chemical products such as lithium chloride, lithium carbonate and lithium hydroxide that are particularly needed in the market can be produced.
  • the purpose of the present invention is to provide an economical and effective extraction system, extraction method and application for separating calcium and extracting lithium from calcium-containing brine with a secondary amide/alkane composite solvent in view of the deficiencies in the prior art methods.
  • An extraction system for separating calcium from calcium-containing brine with a secondary amide/alkane compound solvent to extract lithium contains two types of substances A and B; the type A substance is a single compound or a mixture of two or more secondary amides. Composition; wherein, a single compound has a structure as shown in formula (I):
  • R 1 is selected from a C2-C12 alkyl group or a C3-C12 cycloalkyl group containing a monocyclic structure
  • R 2 is selected from a C1-C11 alkyl group or a C3-C11 cycloalkyl group containing a monocyclic structure
  • alkyl or cycloalkyl includes various isomers (because R 1 and R 2 can be changed, when When R 1 and R 2 are uniquely determined, the Type A substance is a single compound, and the mixture refers to a substance formed by mixing two or more compounds produced with the change of R 1 and R 2 );
  • type B substances are alkanes composed of a single compound or a mixture of two or more; among them, a single compound has a structure as shown in formula (II):
  • R 3 is selected from C9 to C18 alkyl groups, where the alkyl group includes linear or branched various isomers (because R 3 can be changed, when R 3 is uniquely determined, B
  • the class substance is a single compound, and the mixture refers to a substance formed by mixing two or more compounds produced with the change of R 3);
  • the freezing point of an extraction system containing two types of substances A and B is less than 0°C (the freezing point of a single component constituting the extraction system may be less than, equal to, or greater than 0°C.
  • the freezing point of a single component may be less than, equal to, or greater than 0°C.
  • the conditions of the extraction system when the freezing point of a single component is greater than or equal to 0°C, it may be mixed with other components with a freezing point less than 0°C, dissolve and finally form a mixture with a freezing point less than 0°C).
  • the volume percentage of type A substances in the entire organic phase for extraction is 50-100%, excluding the endpoint value of 100%; type B substances play a diluting role in the entire organic phase.
  • the volume percentage is 0-50%, excluding the endpoint value 0%.
  • cycloalkanes In the extraction system composed of two types of substances A and B, it also contains C9 ⁇ C18 cycloalkanes with a single ring structure in the same diluting molecule.
  • the cycloalkanes include isomers and are composed of a single compound. Or a mixture of two or more.
  • the mixture of alkanes is 200# solvent oil (consisting of alkanes), 260# solvent oil, 300# solvent oil or sulfonated kerosene; among the described naphthenic hydrocarbons, the naphthenic mixture is heavy 200# solvent oil (composed of naphthenic hydrocarbons) produced by the whole plant raffinate oil.
  • the extraction method for separating calcium from calcium-containing brine with a secondary amide/alkane composite solvent to extract lithium includes the following steps:
  • the calcium-containing brine is used as the pre-extraction brine phase; wherein, in the calcium-containing brine, the concentration of lithium ions is 0.09-24g/L, the concentration of calcium ions is 145-277g/L, and the concentration of chloride ions is 271 ⁇ 511g/L, the mass ratio of calcium to lithium is 7.5 ⁇ 1900:1, the density of brine is 1.30 ⁇ 1.56g/cm 3 at 20°C, adjust the pH value of brine between 1 ⁇ 7 with hydrochloric acid or sulfuric acid;
  • the calcium-containing brine also contains one or more of sodium ion, potassium ion, magnesium ion, iron ion, ferrous ion, boric acid or borate ion.
  • the calcium-containing brine includes lithium-containing oil field brine or lithium-containing underground brine, but is not limited to this kind of brine.
  • the extraction temperature is 0-50°C; the two-phase mixing is performed by stirring, and the two-phase separation after extraction is performed by centrifugal separation or clarification and sedimentation.
  • the method further includes the following steps:
  • step S5. Return the organic phase after the stripping to step S2 to realize the recycling use of the extraction system.
  • the stripping temperature is 0-50°C; the two-phase mixing is carried out by stirring, and the two-phase separation after stripping is carried out by centrifugal separation or clarification and sedimentation.
  • the application of the extraction method for separating calcium and extracting lithium from calcium-containing brine by using a secondary amide/alkane composite solvent in obtaining the lithium product lithium chloride, after the step S4, further includes the following steps:
  • the water phase after the stripping is further deoiled and purified, concentrated, and then an impurity removal agent is added to remove the remaining calcium ions and a small amount of magnesium ions in it to obtain a refined lithium chloride solution in the water phase;
  • the impurity removal agent used is One or two or more compounds of sodium sulfate, sodium carbonate, sodium oxalate, barium chloride or sodium hydroxide;
  • the refined lithium chloride solution is concentrated, crystallized, separated and dried to obtain a lithium chloride product.
  • the application of the extraction method for separating calcium and extracting lithium from calcium-containing brine by using a secondary amide/alkane composite solvent in obtaining the lithium product lithium carbonate, after the step S4, further includes the following steps:
  • the water phase after the stripping is further deoiled and purified, concentrated, and then an impurity removal agent is added to remove the remaining calcium ions and a small amount of magnesium ions in it to obtain a refined lithium chloride solution in the water phase;
  • the impurity removal agent used is One or two or more compounds of sodium sulfate, sodium carbonate, sodium oxalate, barium chloride or sodium hydroxide;
  • the application of the extraction method for separating calcium and extracting lithium from calcium-containing brine by using a secondary amide/alkane composite solvent in obtaining the lithium product lithium hydroxide, after the step S4, further includes the following steps:
  • the water phase after the stripping is further deoiled and purified, concentrated, and then an impurity removal agent is added to remove the remaining calcium ions and a small amount of magnesium ions in it to obtain a refined lithium chloride solution in the water phase;
  • the impurity removal agent used is One or two or more compounds of sodium sulfate, sodium carbonate, sodium oxalate, barium chloride or sodium hydroxide;
  • the method further includes the following steps:
  • the source of the secondary amide compound is synthesized by the reaction of organic acid chloride or acid anhydride and primary amine according to the stoichiometric ratio, and then washed with water and purified by vacuum distillation. It is detected and evaluated by Agilent 7890A/5975C GC/MS. .
  • the source of the alkane-type compound is purchased from a chemical product company on the market.
  • the secondary amide as the A substance in the extraction system has a simple molecular structure, easy source, easy production, and extraction function. It is a new type of special effect component for separating calcium and extracting lithium from calcium-containing brine.
  • the secondary amide functional group is lithium calcium. Separation and extraction of the key parts of lithium, the hydrogen atoms on the N–H shift to a low field in the 1 H NMR spectrum before and after the extraction, which plays a key role in the extraction of Li +.
  • Alkanes are used as diluents in the extraction system and are easily obtained from petroleum refining and organic synthesis. They are inexpensive and can effectively improve the physical properties such as the viscosity, density and freezing point of the composite solvent, increase the mixing entropy of the system, and produce synergy. Effect.
  • Fig. 1 is an extraction system, an extraction method and a process flow diagram of its application for separating calcium and extracting lithium from calcium-containing brine by using a secondary amide/alkane composite solvent according to the present invention.
  • Table 22 shows the common names, corresponding standardized names and codes of the secondary amides of substance A involved in the examples of the present invention.
  • Table 23 shows the common names, corresponding normative names and CAS numbers of substance B alkanes and cycloalkanes involved in the examples of the present invention.
  • the content of Li + and Ca 2+ in a calcium-containing brine are 3.29g/L and 187.85g/L, respectively, and the mass ratio of calcium to lithium is 57.10:1, where Na + , K + , Mg 2+ , Cl - and B 2 O 3
  • the content is 2.90, 19.69, 2.14, 377.80 and 1.56g/L
  • the density of the brine is 1.41g/cm 3
  • the pH of the brine is 2.5
  • the ion concentration in the brine is prepared according to the composition of the brine from an oil field in Nanyishan, Qinghai Qaidam Basin ,
  • the oil field brine is degreasing in advance with an oil-water separator.
  • the mixed liquid was transferred to a 100mL plastic test tube, and centrifuged at 4000r/min for 10min in an LD5-10 benchtop centrifuge.
  • the two-phase interface was clear. After phase separation, the extracted organic phase and the remaining brine phase were obtained.
  • Transfer the loaded organic phase to another 100 mL conical flask, add deionized water according to the volume ratio of 1:5 to the organic phase, and place it in the DF-101S type heat-collecting thermostatic heating magnetic stirrer. Perform back extraction at °C and mix the two phases for 30 min. Then transfer the mixed liquid to a 100mL plastic test tube, and centrifuge at 4000r/min for 10min in an LD5-10 benchtop centrifuge to obtain the organic phase and the water phase after the stripping.
  • the single-stage extraction rate of Li + is 37.36%
  • the single-stage extraction rate of Ca 2+ is 3.22%
  • the separation coefficient of lithium and calcium is 17.91.
  • the Li + single-stage back extraction rate is 65.02%
  • the Ca 2+ single-stage back extraction rate is 82.05%
  • the lithium-calcium separation coefficient after the back-extraction is 0.41
  • the Li + concentration in the back-extracted water phase is 0.80g/L
  • the quality of calcium and lithium The ratio dropped to 6.22.
  • the mixed liquid was transferred to a 100mL plastic test tube, and centrifuged at 4000r/min for 10min in an LD5-10 benchtop centrifuge.
  • the two-phase interface was clear. After phase separation, the extracted organic phase and the remaining brine phase were obtained.
  • Transfer the loaded organic phase to another 100 mL conical flask, add deionized water according to the volume ratio of 1:5 to the organic phase, and place it in the DF-101S type heat-collecting thermostatic heating magnetic stirrer. Perform back extraction at °C and mix the two phases for 30 min. Then transfer the mixed liquid to a 100mL plastic test tube, and centrifuge at 4000r/min for 10min in an LD5-10 benchtop centrifuge to obtain the organic phase and the water phase after the stripping.
  • the single-stage extraction rate of Li + is 41.54%
  • the single-stage extraction rate of Ca 2+ is 6.25%
  • the separation coefficient of lithium and calcium is 10.64.
  • the Li + single-stage back extraction rate is 80.12%
  • the Ca 2+ single-stage back extraction rate is 91.76%
  • the lithium-calcium separation coefficient after the back-extraction is 0.36
  • the Li + concentration in the back-extracted water phase is 1.10g/L
  • the quality of calcium and lithium The ratio dropped to 9.86.
  • the mixed liquid was transferred to a 100mL plastic test tube, and centrifuged at 4000r/min for 10min in an LD5-10 benchtop centrifuge.
  • the two-phase interface was clear. After phase separation, the extracted organic phase and the remaining brine phase were obtained.
  • Transfer the loaded organic phase to another 100 mL conical flask with ground mouth, add deionized water at a volume ratio of 1:10 to the organic phase, and place it in a DF-101S type heat-collecting thermostatic heating magnetic stirrer. Perform back extraction at °C and mix the two phases for 30 min. Then transfer the mixed liquid to a 100 mL plastic test tube, and centrifuge at 4000 r/min for 10 min in an LD5-10 benchtop centrifuge to obtain the organic phase and the water phase after the stripping.
  • the single-stage extraction rate of Li + is 34.20%
  • the single-stage extraction rate of Ca 2+ is 1.38%
  • the separation coefficient of lithium and calcium is 37.06.
  • the Li + single-stage back extraction rate is 89.87%
  • the Ca 2+ single-stage back extraction rate is 80.31%
  • the lithium-calcium separation coefficient after the back-extraction is 2.17
  • the Li + concentration in the back-extracted water phase is 1.01g/L
  • the quality of calcium and lithium The ratio dropped to 2.06.
  • the mixed liquid was transferred to a 100mL plastic test tube, and centrifuged at 4000r/min for 10min in an LD5-10 benchtop centrifuge.
  • the two-phase interface was clear. After phase separation, the extracted organic phase and the remaining brine phase were obtained.
  • Transfer the loaded organic phase to another 100 mL conical flask with a ground mouth, add deionized water at a volume ratio of 1:5 to the organic phase, and place it in a DF-101S type heat-collecting thermostatic heating magnetic stirrer. Perform back extraction at °C and mix the two phases for 30 min. Then transfer the mixed liquid to a 100mL plastic test tube, and centrifuge at 4000r/min for 10min in an LD5-10 benchtop centrifuge to obtain the organic phase and the water phase after the stripping.
  • the single-stage extraction rate of Li + is 40.71%
  • the single-stage extraction rate of Ca 2+ is 8.02%
  • the lithium-calcium separation coefficient is 7.88.
  • the Li + single-stage back extraction rate is 82.86%
  • the Ca 2+ single-stage back extraction rate is 74.71%
  • the lithium-calcium separation coefficient after the back-extraction is 1.64
  • the Li + concentration in the back-extracted water phase is 1.11g/L
  • the quality of calcium and lithium The ratio dropped to 10.15.
  • the magnet in the Erlenmeyer flask insert the matching air condenser at the mouth of the flask to prevent the liquid from splashing out, put it in the DF-101S type heat-collecting thermostatic heating magnetic stirrer, mix, stir, and extract at 20°C for 30 minutes. Then the mixed liquid was transferred to a 100mL plastic test tube, and centrifuged at 4000r/min for 10min in an LD5-10 benchtop centrifuge. The two-phase interface was clear. After phase separation, the extracted organic phase and the remaining brine phase were obtained.
  • the single-stage extraction rate of Li + is 42.24%
  • the single-stage extraction rate of Ca 2+ is 9.97%
  • the lithium-calcium separation coefficient is 6.60.
  • the Li + single-stage back extraction rate is 69.33%
  • the Ca 2+ single-stage back extraction rate is 75.39%
  • the lithium-calcium separation coefficient after the back-extraction is 0.74
  • the Li + concentration in the back-extracted water phase is 0.96g/L
  • the calcium-lithium mass The ratio dropped to 14.66.
  • the magnet in the Erlenmeyer flask insert the matching air condenser at the mouth of the flask to prevent the liquid from splashing out, put it in the DF-101S type heat-collecting thermostatic heating magnetic stirrer, mix, stir, and extract at 20°C for 30 minutes. Then the mixed liquid was transferred to a 100mL plastic test tube, and centrifuged at 4000r/min for 10min in an LD5-10 benchtop centrifuge. The two-phase interface was clear. After phase separation, the extracted organic phase and the remaining brine phase were obtained.
  • the single-stage extraction rate of Li + is 41.47%
  • the single-stage extraction rate of Ca 2+ is 6.33%
  • the separation coefficient of lithium and calcium is 10.49.
  • the single-stage back extraction rate of Li + is 90.23%
  • the single-stage back extraction rate of Ca 2+ is 80.01%
  • the separation coefficient of lithium and calcium after the back extraction is 2.31
  • the concentration of Li + in the back-extracted water phase is 1.23g/L
  • the quality of calcium and lithium The ratio dropped to 7.72.
  • Example 1 Take 6mL of the calcium-containing brine in Example 1 into a 100mL conical flask, and then add 0.77g of 99% pure ferric chloride hexahydrate, dissolve it, and then add 12mL N-isooctyl isophthalate.
  • Valeramide, 12mL N-pentylisononylamide as the extractant and 6mL 260# solvent oil as the diluent the diluent accounts for 20% of the volume of the organic phase, and the volume ratio of the organic phase to the calcium-containing brine is 5:1.
  • the magnet in the Erlenmeyer flask insert the matching air condenser at the mouth of the flask to prevent the liquid from splashing out, put it in the DF-101S type heat-collecting thermostatic heating magnetic stirrer, mix, stir, and extract at 20°C for 30 minutes. Then the mixed liquid was transferred to a 100mL plastic test tube, and centrifuged at 4000r/min for 10min in an LD5-10 benchtop centrifuge. The two-phase interface was clear. After phase separation, the extracted organic phase and the remaining brine phase were obtained.
  • the single-stage extraction rate of Li + is 47.02%
  • the single-stage extraction rate of Ca 2+ is 6.88%
  • the separation coefficient of lithium and calcium is 12.02.
  • the Li + single-stage back extraction rate is 76.88%
  • the Ca 2+ single-stage back extraction rate is 81.75%
  • the lithium-calcium separation coefficient after the back-extraction is 0.74
  • the Li + concentration in the back-extracted water phase is 1.19g/L
  • the quality of calcium and lithium The ratio dropped to 8.88.
  • the Li + , Ca 2+ and Cl - contents of the calcium-containing brine are 0.29, 210.92 and 374.60 g/L, respectively, the calcium-lithium mass ratio is equal to 735.44:1, the brine density is 1.41 g/cm 3 , and the brine pH is 6.0.
  • the magnet in the Erlenmeyer flask, insert the matching air condenser at the mouth of the flask to prevent the liquid from splashing out, put it in the DF-101S type heat-collecting thermostatic heating magnetic stirrer, mix, stir, and extract at 20°C for 30 minutes.
  • the single-stage extraction rate of Li + is 40.09%
  • the single-stage extraction rate of Ca 2+ is 4.07%
  • the separation coefficient of lithium and calcium is 15.77.
  • the Li + single-stage back extraction rate is 63.05%
  • the Ca 2+ single-stage back extraction rate is 65.38%
  • the separation coefficient of lithium and calcium after the back extraction is 0.90
  • the concentration of Li + in the back-extracted water phase is 0.072g/L
  • Example 8 was added to it Calcium-containing brine, the volume ratio of organic phase to calcium-containing brine is 10:1.
  • the two-phase interface is clear. After phase separation, the extracted brine sample and the loaded Li + , Ca 2+ are obtained .
  • the single-stage extraction rate of Li + is 77.82%
  • the single-stage extraction rate of Ca 2+ is 1.80%
  • the separation coefficient of lithium and calcium is 191.41.
  • the Li + single-stage stripping rate is 70.76%
  • the Ca 2+ single-stage stripping rate is 69.89%
  • the lithium-calcium separation coefficient after the stripping is 1.04
  • the Li + concentration in the stripping water phase is 0.16g/L
  • the water phase The mass ratio of calcium to lithium dropped to 16.80.
  • the single-stage extraction rate of Li + is 59.21%
  • the single-stage extraction rate of Ca 2+ is 6.92%
  • the lithium-calcium separation coefficient is 19.53.
  • the single-stage back extraction rate of Li + is 68.44%
  • the single-stage back extraction rate of Ca 2+ is 76.05%
  • the separation coefficient of lithium and calcium after the back extraction is 0.68
  • the concentration of Li + in the back-extracted water phase is 0.12g/L
  • Example 8 add 3 mL of the calcium-containing brine in Example 8 into it, and the volume ratio of the organic phase to the calcium-containing brine is 10:1.
  • the single-stage extraction rate of Li + is 40.41%
  • the single-stage extraction rate of Ca 2+ is 2.48%
  • the separation coefficient of lithium and calcium is 26.67.
  • the single-stage back extraction rate of Li + is 84.62%
  • the single-stage back extraction rate of Ca 2+ is 97.26%
  • the separation coefficient of lithium and calcium after the back extraction is 0.16
  • the concentration of Li + in the back-extracted water phase is 0.098g/L
  • the Li + , Ca 2+ and Cl - contents of the calcium-containing brine are respectively 23.87, 179.61 and 439.65 g/L, the calcium-to-lithium mass ratio is equal to 7.52:1, the brine density is 1.40 g/cm 3 , and the brine pH is 6.5.
  • the magnet in the Erlenmeyer flask, insert the matching air condenser at the mouth of the flask to prevent the liquid from splashing out, put it in the DF-101S type heat-collecting thermostatic heating magnetic stirrer, mix, stir, and extract at 20°C for 30 minutes.
  • Table 12 The two-phase separation of Li + and Ca 2+ in a calcium-containing brine in the composite solvent of N-pentylisononylamide, N-ethyl lauramide, nonane and octylcyclohexane
  • the single-stage extraction rate of Li + is 41.01%
  • the single-stage extraction rate of Ca 2+ is 7.66%
  • the separation coefficient of lithium and calcium is 8.66.
  • the single-stage back extraction rate of Li + is 79.12%
  • the single-stage back extraction rate of Ca 2+ is 86.56%
  • the separation coefficient of lithium and calcium after the back extraction is 0.59
  • the concentration of Li + in the back-extracted water phase is 7.74g/L
  • the Li + , Ca 2+ and Cl - contents of the calcium-containing brine are 0.21, 210.79 and 373.96 g/L, respectively, the calcium-to-lithium mass ratio is equal to 1002.31:1, the brine density is 1.41 g/cm 3 , and the brine pH is 6.5.
  • the magnet in the Erlenmeyer flask, insert the matching air condenser at the mouth of the flask to prevent the liquid from splashing out, put it in the DF-101S type heat-collecting thermostatic heating magnetic stirrer, mix, stir, and extract at 20°C for 30 minutes.
  • Table 13 The two-phase separation of Li + and Ca 2+ in a calcium-containing brine by the composite solvent of N-pentylisononylamide, N-(4-tert-butylcyclohexyl)octylamide and octadecane
  • the single-stage extraction rate of Li + is 32.72%
  • the single-stage extraction rate of Ca 2+ is 9.67%
  • the lithium-calcium separation coefficient is 4.54.
  • the single-stage back extraction rate of Li + is 79.46%
  • the single-stage back extraction rate of Ca 2+ is 92.28%
  • the separation coefficient of lithium and calcium after the back extraction is 0.32
  • the concentration of Li + in the back-extracted water phase is 0.055g/L
  • the mass ratio of calcium to lithium dropped to 344.01.
  • the Li + , Ca 2+ and Cl - contents of the calcium-containing brine are 3.99, 274.10 and 508.82 g/L, respectively, the calcium-lithium mass ratio is equal to 68.65:1, the brine density is 1.54 g/cm 3 , and the brine pH value is 1.0.
  • Put the magnet in the Erlenmeyer flask insert the matching air condenser at the mouth of the flask to prevent the liquid from splashing out, and place it in the DF-101S heat-collecting thermostatic heating magnetic stirrer at 20°C for mixing, stirring, and extracting for 30 minutes.
  • the single-stage extraction rate of Li + is 33.68%
  • the single-stage extraction rate of Ca 2+ is 4.14%
  • the separation coefficient of lithium and calcium is 11.81.
  • the Li + single-stage stripping rate was 73.99%
  • the Ca 2+ single-stage stripping rate was 85.91%
  • the lithium-calcium separation coefficient after the stripping was 0.47
  • the concentration of Li + in the stripped water phase was 0.99g/L.
  • the mass ratio of calcium to lithium dropped to 9.80.
  • the contents of Li + , Ca 2+ and Cl - in the calcium-containing brine are 2.51, 147.61 and 273.95 g/L, respectively, the mass ratio of calcium to lithium is 58.80:1, the density of the brine is 1.30 g/cm 3 , and the pH of the brine is 5.3.
  • the magnet in the Erlenmeyer flask, insert the matching air condenser at the mouth of the flask to prevent the liquid from splashing out, put it in the DF-101S type heat-collecting thermostatic heating magnetic stirrer, mix, stir, and extract at 20°C for 30 minutes.
  • the single-stage extraction rate of Li + is 35.31%
  • the single-stage extraction rate of Ca 2+ is 1.01%
  • the separation coefficient of lithium and calcium is 54.55.
  • the Li + single-stage back extraction rate is 75.81%
  • the Ca 2+ single-stage back extraction rate is 84.05%
  • the lithium-calcium separation coefficient after the back extraction is 0.59
  • the concentration of Li + in the back-extracted water phase is 0.67g/L
  • the Li + , Ca 2+ and Cl - contents of the calcium-containing brine are respectively 0.41, 212.60 and 378.21 g/L, the calcium-to-lithium mass ratio is equal to 515.53:1, the brine density is 1.41 g/cm 3 , and the brine pH is 7.0.
  • the magnet in the Erlenmeyer flask, insert the matching air condenser at the mouth of the flask to prevent the liquid from splashing out, put it in the DF-101S type heat-collecting thermostatic heating magnetic stirrer, mix, stir, and extract at 20°C for 30 minutes.
  • the single-stage extraction rate of Li + is 30.72%
  • the single-stage extraction rate of Ca 2+ is 7.84%
  • the separation coefficient of lithium and calcium is 5.19.
  • the single-stage back extraction rate of Li + is 78.26%
  • the single-stage back extraction rate of Ca 2+ is 75.62%
  • the separation coefficient of lithium and calcium after the back extraction is 1.16
  • the concentration of Li + in the back-extracted water phase is 0.099g/L.
  • the mass ratio of calcium to lithium dropped to 127.13.
  • the Li + , Ca 2+ and Cl - contents of the calcium-containing brine are 0.094, 178.60 and 316.43 g/L, respectively, the calcium-to-lithium mass ratio is equal to 1900.00:1, the brine density is 1.36 g/cm 3 , and the brine pH is 7.0.
  • the magnet in the Erlenmeyer flask, insert the matching air condenser at the mouth of the flask to prevent the liquid from splashing out, put it in the DF-101S type heat-collecting thermostatic heating magnetic stirrer, mix, stir, and extract at 20°C for 30 minutes.
  • the single-stage extraction rate of Li + is 42.68%
  • the single-stage extraction rate of Ca 2+ is 7.05%
  • the separation coefficient of lithium and calcium is 9.82.
  • the Li + single-stage stripping rate is 71.45%
  • the Ca 2+ single-stage stripping rate is 73.65%
  • the lithium-calcium separation coefficient after the stripping is 0.90
  • the Li + concentration in the stripping water phase is 0.029g/L
  • the water phase The mass ratio of calcium to lithium dropped to 323.51.
  • the single-stage extraction rate of Li + is 35.58%
  • the single-stage extraction rate of Ca 2+ is 7.72%
  • the lithium-calcium separation coefficient is 6.60.
  • the single-stage back extraction rate of Li + is 71.03%
  • the single-stage back extraction rate of Ca 2+ is 83.64%
  • the separation coefficient of lithium and calcium after the back extraction is 0.48
  • the concentration of Li + in the back-extracted water phase is 0.072g/L
  • the quality of calcium and lithium The ratio dropped to 187.90.
  • the mixed liquid was transferred to a 100mL plastic test tube, and centrifuged at 4000r/min for 10min in an LD5-10 benchtop centrifuge.
  • the two-phase interface was clear.
  • the extracted organic phase and the remaining brine phase were obtained.
  • three-stage countercurrent extraction is performed according to the extraction cascade crossover operation steps to obtain the loaded organic phase and the remaining brine phase after the three-stage countercurrent extraction.
  • Table 19 The three-stage countercurrent extraction and the second-stage countercurrent extraction of Li + and Ca 2+ in a calcium-containing brine by the N-pentylisononylamide and 260# solvent oil composite system
  • the organic phase after the stripping is returned and remixed with the brine phase before the extraction to realize the recycling of the extractant.
  • the water phase solution obtained after the back extraction is degreasing, and after two-effect evaporation is concentrated to a Li + concentration of 30g/L
  • sodium sulfate and sodium carbonate solutions are respectively added to completely precipitate and remove Ca 2+
  • chlorination is added separately
  • the barium and sodium hydroxide solution are completely precipitated to remove the sulfate radical and Mg 2+ , and then the remaining solution is evaporated and concentrated, cooled and crystallized, filtered and dried to obtain anhydrous lithium chloride product.
  • the lithium chloride concentrate obtained after purification and purification is placed in an ion-exchange membrane electrolyzer for electrolysis, a lithium hydroxide solution with a mass concentration of 12% is obtained at the cathode, and lithium hydroxide monohydrate is obtained after concentration and crystallization. After washing and drying, an anhydrous lithium hydroxide product is prepared. At the same time, hydrogen and chlorine are by-produced, and hydrogen and chlorine are further reacted to produce hydrochloric acid.
  • the magnet in the Erlenmeyer flask insert the matching air condenser at the mouth of the flask to prevent the liquid from splashing out, put it in the DF-101S type heat-collecting thermostatic heating magnetic stirrer, mix, stir, and extract at 20°C for 30 minutes. Then the mixed liquid was transferred to a 100mL plastic test tube, centrifuged at 4000r/min for 10min in an LD5-10 benchtop centrifuge, the two-phase interface was clear, and the extracted organic phase and the remaining brine phase were obtained after phase separation.
  • the single-stage extraction rate of Li + is 40.85%
  • the single-stage extraction rate of Ca 2+ is 7.11%
  • the separation coefficient of lithium and calcium is 9.01.
  • the Li + single-stage back extraction rate is 91.99%
  • the Ca 2+ single-stage back extraction rate is 87.91%
  • the lithium-calcium separation coefficient after the back-extraction is 1.58,
  • the Li + concentration in the back-extracted water phase is 1.24g/L
  • the quality of calcium and lithium The ratio dropped to 9.51.
  • the water phase solution obtained after the back extraction is degreasing, and after two-effect evaporation is concentrated to a Li + concentration of 20g/L
  • sodium sulfate and sodium carbonate solutions are respectively added to completely precipitate and remove Ca 2+
  • chlorination is added separately
  • the barium and sodium hydroxide solutions are completely precipitated to remove sulfate radicals and Mg 2+ in them , and a refined solution of lithium chloride is obtained.
  • a sodium carbonate solution with a concentration of 250 g/L was added to it at 1.1 times the theoretical amount to produce a lithium carbonate precipitate, which was filtered and dried to obtain a lithium carbonate product.
  • the two-phase interface is clear.
  • the extracted brine sample and the loaded Li + , Ca 2+ The organic phase.
  • Transfer the loaded organic phase to another 100 mL conical flask, add deionized water according to the volume ratio of 1:5 to the organic phase, and place it in the DF-101S type heat-collecting thermostatic heating magnetic stirrer.
  • Table 21 The two-phase separation of Li + and Ca 2+ in a calcium-containing brine by 300# mixed n-alkane solvent
  • Table 23 Common names, corresponding specification names and CAS numbers of B-alkanes and cycloalkanes involved in the examples *

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Metallurgy (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Extraction Or Liquid Replacement (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

一种用仲酰胺/烷烃复合溶剂从含钙卤水中分离钙提取锂的萃取体系、萃取方法和其应用。萃取体系中含有仲酰胺和烷烃分别由其单一化合物或两种以上的混合物组成,分子中碳原子总数分别为12~18和9~18,萃取体系的凝固点小于0℃。在有机相与卤水相体积比1~10∶1、卤水密度为1.30~1.56g/cm3卤水pH值1~7和温度0~50℃下进行单级或多级逆流萃取,反萃取得到低钙锂比水相,经过浓缩、除杂与制备,分别得到氯化锂、碳酸锂和氢氧化锂。本发明的优异效果:仲酰胺萃取剂分子结构简单,容易生产,烷烃改进复合溶剂的粘度等性质;Li+多级萃取率高,锂钙分离系数大,用水反萃取酸碱消耗大大减少;萃取分离工艺流程短,萃取体系溶损小,适合于油田卤水开发。

Description

用仲酰胺/烷烃复合溶剂从含钙卤水中分离钙提取锂的萃取体系、萃取方法和其应用 技术领域
本发明涉及一种从含钙卤水中提取锂的方法,尤其涉及到用复合溶剂从含钙卤水中分离钙提取锂的萃取体系、萃取方法和其应用。
背景技术
在我国青海柴达木盆地西部南翼山地区拥有丰富的油田地下卤水,其资源储量可与柴达木盆地盐湖储量媲美,为世界罕见的多元素共存特大型矿床,具有极大的工业开发价值。其中钾硼锂碘等有用组分多、含量高,资源赋存状态与已开发盐湖资源种类有较大差别,属于苏林分类中的氯化钙型卤水,呈现高矿化度、高钙、低镁和低硫酸根特征,经盐田日晒浓缩后其中氯化钙含量高达30.8~43.0%。
近年来从高钙锂比卤水中提取有价元素锂受到重视,钙与锂的分离是其技术关键,现行的钙锂分离方法主要有两种:(1)允卤法,通过使用芒硝或含硫酸根的卤水与含钙卤水混合,除去硫酸钙沉淀达到钙锂分离目的。高文远等利用盐湖自身或其附近的硫酸钠资源与高钙老卤中的钙源发生反应,进行老卤脱钙(CN104817096B),这种方法会产生大量硫酸钙沉淀,锂离子夹带损失严重。(2)冷冻结晶法,利用氯化钙溶解度随温度的变化、使卤水中的钙盐在低温下析出。李冰等将油田水蒸发至比重1.40~1.54,于0~–30℃下进行冷冻3~15天,得到富锂卤水(CN103508472A),这种方法所需时间长,钙锂质量比下降程度受到限制。
而在其他分离卤水中钙的方法中秦晓明等采用螯合阳离子交换树脂柱于pH值10–12下脱除含锂溶液中二价以上的金属阳离子(CN108840354A)、郭定江等采用纳滤器除去高盐氯化锂混合溶液中的钙镁杂质(CN106048218A)和曹乃珍等利用萃取法以P204为萃取剂、磺化煤油为缓释剂除去富锂溶液中的钙镁离子(CN105712383A),这些方法只适合于低浓度含钙镁卤水的深度净化处理。目前涉及到高钙锂比油田卤水研究的文献不多,特别是溶剂萃取法应用于高钙锂比卤水进行钙锂分离的文献还未见报道,这归结于Ca 2+价层有空的3d轨道、配位能力强,离子软硬性又与Mg 2+有明显不同,事实上高钙锂比卤水的分离比高镁锂比卤水的分离变得更为困难,导致油田卤水中锂资源的开发迄今未能实现。
然而溶剂萃取法是利用有机溶剂对锂离子的特定萃取性能达到锂钙或锂镁分离目的,被认为是针对高镁锂比盐湖卤水最有前途的提锂方法,这同样也可能应用于高钙锂比油田卤水,萃取剂的优劣和新萃取剂的发现是其技术过程的关键。烷烃作为一类密度低、粘度小、环境友好的中性溶剂,有助于两相分离,与其他有效成分组合可能构成新的萃取体系。将高钙锂比卤水实现锂钙分离转变为低钙锂比卤水后,能制得市场上特别需要的氯化锂、碳酸锂和氢氧化锂等基础化工产品。
发明内容
本发明的目的是针对现有技术方法中存在的不足,提供一种经济有效的用仲酰胺/烷烃复合溶剂从含钙卤水中分离钙提取锂的萃取体系、萃取方法和其应用。
本发明提供的技术方案和工艺过程如下:
1.用仲酰胺/烷烃复合溶剂从含钙卤水中分离钙提取锂的萃取体系,该萃取体系中含有A和B两类物质;其中A类物质为仲酰胺由单一化合物或两种以上的混合物组成;其中,单一化合物 具有如式(I)所示的结构:
Figure PCTCN2020079080-appb-000001
其中,R 1选自C2~C12的烷基或含有单环结构的C3~C12的环烷基,R 2选自C1~C11的烷基或含有单环结构的C3~C11的环烷基,并且R 1和R 2两基团中所含碳原子数目之和为11~17,其中烷基或环烷基包括各种同分异构体(因R 1、R 2是能够变化的,当R 1、R 2唯一确定时,A类物质为单一化合物,混合物是指随着R 1、R 2的变化而产生的两种以上的化合物混合而成的物质);
其中B类物质为烷烃由单一化合物或两种以上的混合物组成;其中,单一化合物具有如式(Ⅱ)所示的结构:
H-R 3                          (Ⅱ);
其中,R 3选自C9~C18的烷基,其中烷基包含直链的或带有支链的各种同分异构体(因R 3是能够变化的,当R 3唯一确定时,B类物质为单一化合物,混合物是指随着R 3的变化而产生的两种以上的化合物混合而成的物质);
含有A和B两类物质的萃取体系的凝固点小于0℃(构成萃取体系的单一组分的凝固点可能小于、等于或者大于0℃,当单一组分的凝固点小于0℃时即能够满足作为本发明萃取体系的条件;当单一组分的凝固点大于等于0℃时有可能与凝固点小于0℃的其他组分混合、发生溶解而最终形成凝固点小于0℃的混合物)。
在所述萃取体系中,A类物质起萃取作用在整个有机相中所占的体积百分数为50~100%,不包括端点值100%;B类物质起稀释作用在整个有机相中所占的体积百分数为0~50%,不包括端点值0%。
在所述的含有A和B两类物质组成的萃取体系中,还包含有同样起稀释作用分子中含有单环结构的C9~C18的环烷烃,该环烷烃包括同分异构体由单一化合物或两种以上的混合物组成。
在所述的B类物质中,烷烃混合物为200#溶剂油(由烷烃组成)、260#溶剂油、300#溶剂油或磺化煤油;在所述的环烷烃中,环烷烃混合物为用重整装置抽余油生产的200#溶剂油(由环烷烃组成)。
2.用仲酰胺/烷烃复合溶剂从含钙卤水中分离钙提取锂的萃取方法,包括下列步骤:
S1、以含钙卤水作为萃取前卤水相;其中,在所述含钙卤水中,锂离子的浓度为0.09~24g/L,钙离子的浓度为145~277g/L,氯离子的浓度为271~511g/L,钙锂质量比为7.5~1900:1,卤水密度20℃时为1.30~1.56g/cm 3,用盐酸或硫酸调节卤水pH值在1~7之间;
S2、以上述1中所述的萃取体系作为萃取前有机相;
S3、将所述萃取前有机相和所述萃取前卤水相按照体积比为1~10:1混合,进行单级萃取或多级逆流萃取,两相分离后得到负载有机相和萃取后卤水相。
在所述含钙卤水中,还含有钠离子、钾离子、镁离子、铁离子、亚铁离子、硼酸或硼氧酸根离子中的一种或两种以上。
所述的含钙卤水包括含锂油田卤水或含锂地下卤水,但不仅限于该种卤水。
进一步地,在所述步骤S3中,萃取温度为0~50℃;两相混合通过搅拌方式进行,萃取后两相分离采取离心分离方式或澄清沉降方式进行。
进一步地,在所述步骤S3后,还包括步骤:
S4、以水作为反萃取剂,对所述负载有机相进行单级反萃取或多级逆流反萃取,反萃相比即反萃取剂与负载有机相体积之比为1:1~20,两相分离后得到反萃取后有机相和反萃取后水相;
S5、使所述反萃取后有机相返回步骤S2,实现萃取体系的循环使用。
进一步地,在所述步骤S4中,反萃取温度为0~50℃;两相混合通过搅拌方式进行,反萃取后两相分离采取离心分离方式或澄清沉降方式进行。
3.用仲酰胺/烷烃复合溶剂从含钙卤水中分离钙提取锂的萃取方法在获得锂产品氯化锂中的应用,在所述步骤S4后,还包括步骤:
S6、对所述反萃取后水相进一步除油净化,浓缩,然后加入除杂剂对其中剩余钙离子和少量镁离子进行去除,得到水相精制后的氯化锂溶液;所用除杂剂为硫酸钠、碳酸钠、草酸钠、氯化钡或氢氧化钠中的一种或两种以上的化合物;
S7、对所述精制后的氯化锂溶液进行浓缩、结晶、分离和干燥过程,制得氯化锂产品。
4.用仲酰胺/烷烃复合溶剂从含钙卤水中分离钙提取锂的萃取方法在获得锂产品碳酸锂中的应用,在所述步骤S4后,还包括步骤:
S6、对所述反萃取后水相进一步除油净化,浓缩,然后加入除杂剂对其中剩余钙离子和少量镁离子进行去除,得到水相精制后的氯化锂溶液;所用除杂剂为硫酸钠、碳酸钠、草酸钠、氯化钡或氢氧化钠中的一种或两种以上的化合物;
S8、在精制后的氯化锂溶液中加入碳酸钠得到碳酸锂沉淀,对碳酸锂沉淀进行分离、干燥过程,制得碳酸锂产品。
5.用仲酰胺/烷烃复合溶剂从含钙卤水中分离钙提取锂的萃取方法在获得锂产品氢氧化锂中的应用,在所述步骤S4后,还包括步骤:
S6、对所述反萃取后水相进一步除油净化,浓缩,然后加入除杂剂对其中剩余钙离子和少量镁离子进行去除,得到水相精制后的氯化锂溶液;所用除杂剂为硫酸钠、碳酸钠、草酸钠、氯化钡或氢氧化钠中的一种或两种以上的化合物;
S9、对所述精制后的氯化锂溶液进行电解,制得氢氧化锂产品,同时副产氢气和氯气、可用于生产盐酸;
或在所述步骤S6后,还包括步骤:
S8、在精制后的氯化锂溶液中加入碳酸钠得到碳酸锂沉淀,对碳酸锂沉淀进行分离、干燥过程,制得碳酸锂产品;
S10、在制得的碳酸锂中加入氢氧化钙乳液,进行固-液反应,分离后得到氢氧化锂溶液,对其进行浓缩、结晶和干燥过程,制得氢氧化锂产品。
在本发明中仲酰胺型化合物的来源是由有机酰氯或酸酐与伯胺按化学计量比反应合成,再用水洗涤和减压蒸馏方式纯化,用美国安捷伦7890A/5975C型气质联用仪检测评价获得。在本发明中烷烃型化合物的来源是从市场上化工产品公司购买获得。
本发明与现有技术相比,我们已发现以式(I)和式(Ⅱ)所示的化合物组成的仲酰胺/烷烃复合溶剂作为新的萃取体系,从而获得新的用于从含钙卤水中分离钙提取锂的萃取方法和其应用,取得了意想不到的效果,未见用仲酰胺与烷烃混合组成的溶剂作为卤水提锂萃取体系的文献报道,为当前高钙锂比油田卤水锂资源开发提供了新技术。本发明具有以下优点:
1)仲酰胺作为萃取体系中的A物质分子结构简单,来源易得,容易生产,起萃取作用,是一类从含钙卤水中分离钙提取锂的新型特效成分,其中仲酰胺官能团是锂钙分离萃取锂的关键部位,N–H上的氢原子在萃取前后 1H NMR谱向低场发生位移,对Li +的萃取起着关键作用。烷烃作为萃取体系中的B物质用作稀释剂易从石油炼制和有机合成中获得,价格便宜,能有效改进复 合溶剂的粘度、密度和凝固点等物理性质,增大体系的混合熵、产生协同作用效果。
2)在保证Li +一定大小的单级萃取能力的前提下,负载有机相容易用水直接反萃取,不需要使用酸强化Li +的反萃取,同时也不需要使用碱中和前面的酸恢复有机相的萃取能力和水相酸碱性,酸碱消耗量小,实现了萃取和反萃取过程的双向平衡,在萃取Li +的同时也容易进行Li +的反萃取。含钙卤水经过多级逆流萃取后锂钙分离系数大,反萃取后水相中的钙锂质量比显著降低。
3)整个萃取分离过程简单,有机相直接循环使用,设备腐蚀程度小,生产过程易于控制。有机相密度小适合于用水反萃取负载有机相时的两相分离。通过调整萃取体系的分子结构和组成,优选的萃取体系在水中的溶解度与TBP的溶解度比较显著减少。
附图表说明
图1是本发明用仲酰胺/烷烃复合溶剂从含钙卤水中分离钙提取锂的萃取体系、萃取方法和其应用的工艺流程框图。
表22是本发明实施例中涉及到的A物质仲酰胺的常用名称、对应规范名称和代号。
表23是本发明实施例中涉及到的B物质烷烃和环烷烃的常用名称、对应规范名称和CAS号。
具体实施方式
下面结合实施例对本发明做进一步说明:
实施例1
某含钙卤水中Li +和Ca 2+含量分别为3.29g/L和187.85g/L,钙锂质量比为57.10:1,其中Na +、K +、Mg 2+、Cl -和B 2O 3含量分别为2.90、19.69、2.14、377.80和1.56g/L,卤水密度为1.41g/cm 3,卤水pH值为2.5,卤水中离子浓度按照青海柴达木盆地南翼山某油田卤水组成配制,油田卤水预先用油水分离器除油。取6mL该种卤水于100mL磨口锥形瓶中,然后在其中加入24mL N-异辛基异戊酰胺作为萃取剂和6mL十四烷作为稀释剂,稀释剂占有机相体积的20%,有机相与含钙卤水体积比为5:1。在锥形瓶中放入磁子,其瓶口插入配套的空气冷凝管防止液体溅出,置于DF-101S型集热式恒温加热磁力搅拌器中,于20℃下混合搅拌、萃取30min。接着将混合液体转移至100mL塑料试筒中,在LD5-10型台式离心机中以4000r/min转速离心10min,两相界面清晰,分相后得到萃取后负载有机相和剩余卤水相。把负载有机相转移至另一个100mL的磨口锥形瓶中,按与有机相1:5的体积比加入去离子水,置于DF-101S型集热式恒温加热磁力搅拌器中,在20℃下进行反萃取、两相混合30min。然后把混合液体转移至100mL塑料试筒中,在LD5-10型台式离心机中以4000r/min转速离心10min,得到反萃取后的有机相和水相。
分别采用日本岛津AA-7000型原子吸收分光光度计标准加入法和EDTA滴定法对萃取和反萃取过程中的卤水相和水相进行定容、配成分析溶液,取样分析Li +和Ca 2+浓度,计算出萃取率E、反萃取率S、分配比D和锂钙分离系数β,结果如表1所示。
表1 N-异辛基异戊酰胺和十四烷复合溶剂对某含钙卤水中Li +与Ca 2+的两相分离情况 *
Figure PCTCN2020079080-appb-000002
*其中符号含义分别指定为 a:萃取温度, b:有机相对水相体积比, c:Li +萃取率, d:Ca 2+萃取率, e: Li +分配比, f:Ca 2+分配比, g:锂钙分离系数, h:萃取后有机相中钙锂质量比, i:萃取后卤水中钙锂质量比; j:反萃取温度, k:水相对有机相体积比, l:Li +反萃率, m:Ca 2+反萃率, n:Li +反萃分配比, o:Ca 2+反萃分配比, p:锂钙反萃分离系数, q:反萃取后有机相中钙锂质量比, r:反萃取后水相中钙锂质量比;在下列表2至表21中符号含义亦与此相同。
从表1可以看出,Li +单级萃取率为37.36%,Ca 2+单级萃取率为3.22%,锂钙分离系数为17.91。Li +单级反萃取率为65.02%,Ca 2+单级反萃取率为82.05%,反萃取后锂钙分离系数为0.41,反萃水相中Li +浓度为0.80g/L、钙锂质量比下降至6.22。
实施例2
取24mL N-戊基异壬酰胺作为萃取剂和6mL 260#溶剂油作为稀释剂于100mL磨口锥形瓶中,稀释剂占有机相体积的20%,然后在其中加入6mL实施例1中的含钙卤水,有机相与含钙卤水体积比为5:1。在锥形瓶中放入磁子,其瓶口插入配套的空气冷凝管防止液体溅出,置于DF-101S型集热式恒温加热磁力搅拌器中,于20℃下混合搅拌、萃取30min。接着将混合液体转移至100mL塑料试筒中,在LD5-10型台式离心机中以4000r/min转速离心10min,两相界面清晰,分相后得到萃取后负载有机相和剩余卤水相。把负载有机相转移至另一个100mL的磨口锥形瓶中,按与有机相1:5的体积比加入去离子水,置于DF-101S型集热式恒温加热磁力搅拌器中,在20℃下进行反萃取、两相混合30min。然后把混合液体转移至100mL塑料试筒中,在LD5-10型台式离心机中以4000r/min转速离心10min,得到反萃取后的有机相和水相。
分别采用日本岛津AA-7000型原子吸收分光光度计标准加入法和EDTA滴定法对萃取和反萃取过程中的卤水相和水相进行定容、配成分析溶液,取样分析Li +和Ca 2+浓度,计算出实验结果如表2所示。
表2 N-戊基异壬酰胺和260#溶剂油复合体系对某含钙卤水中Li +与Ca 2+的两相分离情况
Figure PCTCN2020079080-appb-000003
从表2可以看出,Li +单级萃取率为41.54%,Ca 2+单级萃取率为6.25%,锂钙分离系数为10.64。Li +单级反萃取率为80.12%,Ca 2+单级反萃取率为91.76%,反萃取后锂钙分离系数为0.36,反萃水相中Li +浓度为1.10g/L、钙锂质量比下降至9.86。
实施例3
取30mL N-戊基异壬酰胺作为萃取剂和30mL十二烷(同分异构体混合物)作为稀释剂于100mL磨口锥形瓶中,稀释剂占有机相体积的50%,然后在其中加入6mL实施例1中的含钙卤水,卤水pH值为6.6,有机相与含钙卤水体积比为10:1。在锥形瓶中放入磁子,其瓶口插入配套的空气冷凝管防止液体溅出,置于DF-101S型集热式恒温加热磁力搅拌器中,于20℃下混合搅拌、萃取30min。接着将混合液体转移至100mL塑料试筒中,在LD5-10型台式离心机中以4000r/min转速离心10min,两相界面清晰,分相后得到萃取后负载有机相和剩余卤水相。把负载有机相转移至另一个100mL的磨口锥形瓶中,按与有机相1:10的体积比加入去离子水,置于DF-101S型集热式恒温加热磁力搅拌器中,在20℃下进行反萃取、两相混合30min。然后把混合液体转移至100mL塑料试筒中,在LD5-10型台式离心机中以4000r/min转速离心10min,得到反萃取后的 有机相和水相。
分别采用日本岛津AA-7000型原子吸收分光光度计标准加入法和EDTA滴定法对萃取和反萃取过程中的卤水相和水相进行定容、配成分析溶液,取样分析Li +和Ca 2+浓度,计算出实验结果如表3所示。
表3 N-戊基异壬酰胺和十二烷(同分异构体混合物)复合溶剂对某含钙卤水中Li +与Ca 2+的两相分离情况
Figure PCTCN2020079080-appb-000004
从表3可以看出,Li +单级萃取率为34.20%,Ca 2+单级萃取率为1.38%,锂钙分离系数为37.06。Li +单级反萃取率为89.87%,Ca 2+单级反萃取率为80.31%,反萃取后锂钙分离系数为2.17,反萃水相中Li +浓度为1.01g/L、钙锂质量比下降至2.06。
实施例4
取24mL N-戊基异壬酰胺作为萃取剂和6mL十三烷作为稀释剂于100mL磨口锥形瓶中,稀释剂占有机相体积的20%,然后在其中加入6mL实施例1中的含钙卤水,卤水pH值为6.6,有机相与含钙卤水体积比为5:1。在锥形瓶中放入磁子,其瓶口插入配套的空气冷凝管防止液体溅出,置于DF-101S型集热式恒温加热磁力搅拌器中,于0℃下混合搅拌、萃取30min。接着将混合液体转移至100mL塑料试筒中,在LD5-10型台式离心机中以4000r/min转速离心10min,两相界面清晰,分相后得到萃取后负载有机相和剩余卤水相。把负载有机相转移至另一个100mL的磨口锥形瓶中,按与有机相1:5的体积比加入去离子水,置于DF-101S型集热式恒温加热磁力搅拌器中,在0℃下进行反萃取、两相混合30min。然后把混合液体转移至100mL塑料试筒中,在LD5-10型台式离心机中以4000r/min转速离心10min,得到反萃取后的有机相和水相。
分别采用日本岛津AA-7000型原子吸收分光光度计标准加入法和EDTA滴定法对萃取和反萃取过程中的卤水相和水相进行定容、配成分析溶液,取样分析Li +和Ca 2+浓度,计算出实验结果如表4所示。
表4 N-戊基异壬酰胺和十三烷复合溶剂对某含钙卤水中Li +与Ca 2+的两相分离情况
Figure PCTCN2020079080-appb-000005
从表4可以看出,Li +单级萃取率为40.71%,Ca 2+单级萃取率为8.02%,锂钙分离系数为7.88。Li +单级反萃取率为82.86%,Ca 2+单级反萃取率为74.71%,反萃取后锂钙分离系数为1.64,反萃水相中Li +浓度为1.11g/L、钙锂质量比下降至10.15。
实施例5
取12mL N-异丁基异壬酰胺(受热后液体)和12mL N-异辛基戊酰胺作为萃取剂和6mL 260# 溶剂油作为稀释剂于100mL磨口锥形瓶中,稀释剂占有机相体积的20%,然后在其中加入6mL实施例1中的含钙卤水,有机相与含钙卤水体积比为5:1。在锥形瓶中放入磁子,其瓶口插入配套的空气冷凝管防止液体溅出,置于DF-101S型集热式恒温加热磁力搅拌器中,于20℃下混合搅拌、萃取30min。接着将混合液体转移至100mL塑料试筒中,在LD5-10型台式离心机中以4000r/min转速离心10min,两相界面清晰,分相后得到萃取后负载有机相和剩余卤水相。把负载有机相转移至另一个100mL的磨口锥形瓶中,按与有机相1:5的体积比加入水,置于DF-101S型集热式恒温加热磁力搅拌器中,在20℃下进行反萃取、两相混合30min。然后把混合液体转移至100mL塑料试筒中,在LD5-10型台式离心机中以4000r/min转速离心10min,得到反萃取后的有机相和水相。
分别采用日本岛津AA-7000型原子吸收分光光度计标准加入法和EDTA滴定法对萃取和反萃取过程中的卤水相和水相进行定容、配成分析溶液,取样分析Li +和Ca 2+浓度,计算出实验结果如表5所示。
表5 N-异丁基异壬酰胺、N-异辛基戊酰胺和260#溶剂油复合体系对某含钙卤水中Li +与Ca 2+的两相分离情况
Figure PCTCN2020079080-appb-000006
从表5可以看出,Li +单级萃取率为42.24%,Ca 2+单级萃取率为9.97%,锂钙分离系数为6.60。Li +单级反萃取率为69.33%,Ca 2+单级反萃取率为75.39%,反萃取后锂钙分离系数为0.74,反萃水相中Li +浓度为0.96g/L、钙锂质量比下降至14.66。
实施例6
取12mL N-戊基异壬酰胺、12mL N-异辛基异己酰胺作为萃取剂和6mL十四烷作为稀释剂于100mL磨口锥形瓶中,稀释剂占有机相体积的20%,然后在其中加入6mL实施例1中的含钙卤水,有机相与含钙卤水体积比为5:1。在锥形瓶中放入磁子,其瓶口插入配套的空气冷凝管防止液体溅出,置于DF-101S型集热式恒温加热磁力搅拌器中,于20℃下混合搅拌、萃取30min。接着将混合液体转移至100mL塑料试筒中,在LD5-10型台式离心机中以4000r/min转速离心10min,两相界面清晰,分相后得到萃取后负载有机相和剩余卤水相。把负载有机相转移至另一个100mL的磨口锥形瓶中,按与有机相1:5的体积比加入水,置于DF-101S型集热式恒温加热磁力搅拌器中,在20℃下进行反萃取、两相混合30min。然后把混合液体转移至100mL塑料试筒中,在LD5-10型台式离心机中以4000r/min转速离心10min,得到反萃取后的有机相和水相。
分别采用日本岛津AA-7000型原子吸收分光光度计标准加入法和EDTA滴定法对萃取和反萃取过程中的卤水相和水相进行定容、配成分析溶液,取样分析Li +和Ca 2+浓度,计算出实验结果如表6所示。
表6 N-戊基异壬酰胺、N-异辛基异己酰胺和十四烷复合溶剂对某含钙卤水中Li +与Ca 2+的两相分离情况
Figure PCTCN2020079080-appb-000007
Figure PCTCN2020079080-appb-000008
从表6可以看出,Li +单级萃取率为41.47%,Ca 2+单级萃取率为6.33%,锂钙分离系数为10.49。Li +单级反萃取率为90.23%,Ca 2+单级反萃取率为80.01%,反萃取后锂钙分离系数为2.31,反萃水相中Li +浓度为1.23g/L、钙锂质量比下降至7.72。
实施例7
取6mL实施例1中的含钙卤水于100mL磨口锥形瓶中,然后在其中加入纯度为99%的六水合三氯化铁0.77g,使其溶解后再加入12mL N-异辛基异戊酰胺、12mL N-戊基异壬酰胺作为萃取剂和6mL 260#溶剂油作为稀释剂,稀释剂占有机相体积的20%,有机相与含钙卤水体积比为5:1。在锥形瓶中放入磁子,其瓶口插入配套的空气冷凝管防止液体溅出,置于DF-101S型集热式恒温加热磁力搅拌器中,于20℃下混合搅拌、萃取30min。接着将混合液体转移至100mL塑料试筒中,在LD5-10型台式离心机中以4000r/min转速离心10min,两相界面清晰,分相后得到萃取后负载有机相和剩余卤水相。把负载有机相转移至另一个100mL的磨口锥形瓶中,按与有机相1:5的体积比加入去离子水,置于DF-101S型集热式恒温加热磁力搅拌器中,在20℃下进行反萃取、两相混合30min。然后把混合液体转移至100mL塑料试筒中,在LD5-10型台式离心机中以4000r/min转速离心10min,得到反萃取后的有机相和水相。
分别采用日本岛津AA-7000型原子吸收分光光度计标准加入法和EDTA滴定法对萃取和反萃取过程中的卤水相和水相进行定容、配成分析溶液,取样分析Li +和Ca 2+浓度,计算出实验结果如表7所示。
表7 N-异辛基异戊酰胺、N-戊基异壬酰胺和260#溶剂油复合体系对某含Fe 3+卤水中Li +与Ca 2+的两相分离情况
Figure PCTCN2020079080-appb-000009
从表7可以看出,Li +单级萃取率为47.02%,Ca 2+单级萃取率为6.88%,锂钙分离系数为12.02。Li +单级反萃取率为76.88%,Ca 2+单级反萃取率为81.75%,反萃取后锂钙分离系数为0.74,反萃水相中Li +浓度为1.19g/L、钙锂质量比下降至8.88。
实施例8
取14mL N-异辛基异戊酰胺、0.2mL N-异辛基-1-环丙基甲酰胺、0.2mL N-环十二基乙酰胺作为萃取剂和3.6mL十三烷作为稀释剂于100mL磨口锥形瓶中,其中萃取剂占有机相体积的80%,稀释剂占有机相体积的20%,然后在其中加入6mL某含钙卤水,有机相与卤水体积比为3:1。该含钙卤水中Li +、Ca 2+和Cl -含量分别为0.29、210.92和374.60g/L,钙锂质量比等于735.44:1,卤水密度为1.41g/cm 3,卤水pH值为6.0。在锥形瓶中放入磁子,其瓶口插入配套的空气冷凝管防止液体溅出,置于DF-101S型集热式恒温加热磁力搅拌器中,于20℃下混合搅拌、萃取30min。接着将混合液体转移至100mL塑料试筒中,在LD5-10型台式离心机中以4200r/min转速离心8 min,两相界面清晰,分相后得到萃取后卤水样品和负载Li +、Ca 2+的有机相。把负载有机相转移至另一个100mL的磨口锥形瓶中,按与有机相1:3的体积比加入去离子水,置于DF-101S型集热式恒温加热磁力搅拌器中,在20℃下进行反萃取、两相混合30min。然后把混合液体转移至100mL塑料试筒中,在LD5-10型台式离心机中以4200r/min转速离心8min,得到反萃取后的有机相和水相。
分别采用日本岛津AA-7000型原子吸收分光光度计标准加入法和EDTA容量滴定法对萃取和反萃取过程中的卤水相和水相进行定容、配成分析溶液,取样分析Li +和Ca 2+浓度,计算出实验结果如表8所示。
表8 N-异辛基异戊酰胺、N-异辛基-1-环丙基甲酰胺、N-环十二基乙酰胺和十三烷复合溶剂对某含钙卤水中Li +与Ca 2+的两相分离情况
Figure PCTCN2020079080-appb-000010
从表8可以看出,Li +单级萃取率为40.09%,Ca 2+单级萃取率为4.07%,锂钙分离系数为15.77。Li +单级反萃取率为63.05%,Ca 2+单级反萃取率为65.38%,反萃取后锂钙分离系数为0.90,反萃水相中Li +浓度为0.072g/L、水相中钙锂质量比下降至77.42。
实施例9
取13mL N-戊基异壬酰胺、1mL N-乙基月桂酰胺、1mL N-己基-3-环戊基丙酰胺作为萃取剂和14.85mL 260#溶剂油、0.15mL异丙基环己烷作为稀释剂于100mL磨口锥形瓶中,其中萃取剂占有机相体积的50%,烷烃占有机相体积的49.5%,环烷烃占有机相体积的0.5%,然后在其中加入3mL实施例8中的含钙卤水,有机相与含钙卤水体积比为10:1。在锥形瓶中放入磁子,其瓶口插入配套的空气冷凝管防止液体溅出,置于DF-101S型集热式恒温加热磁力搅拌器中,于0℃下混合搅拌、萃取30min。接着将混合液体转移至100mL塑料试筒中,在LD5-10型台式离心机中以4200r/min转速离心8min,两相界面清晰,分相后得到萃取后卤水样品和负载Li +、Ca 2+的有机相。把负载有机相转移至另一个100mL的磨口锥形瓶中,按与有机相1:20的体积比加入去离子水,置于DF-101S型集热式恒温加热磁力搅拌器中,在50℃下进行反萃取、两相混合30min。然后把混合液体转移至100mL塑料试筒中,在LD5-10型台式离心机中以4200r/min转速离心8min,得到反萃取后的有机相和水相。
分别采用日本岛津AA-7000型原子吸收分光光度计标准加入法和EDTA容量滴定法对萃取和反萃取过程中的卤水相和水相进行定容、配成分析溶液,取样分析Li +和Ca 2+浓度,计算出实验结果如表9所示。
表9 N-戊基异壬酰胺、N-乙基月桂酰胺、N-己基-3-环戊基丙酰胺、260#溶剂油和异丙基环己烷复合体系对某含钙卤水中Li +与Ca 2+的两相分离情况
Figure PCTCN2020079080-appb-000011
Figure PCTCN2020079080-appb-000012
从表9可以看出,Li +单级萃取率为77.82%,Ca 2+单级萃取率为1.80%,锂钙分离系数为191.41。Li +单级反萃取率为70.76%,Ca 2+单级反萃取率为69.89%,反萃取后锂钙分离系数为1.04,反萃水相中Li +浓度为0.16g/L、水相中钙锂质量比下降至16.80。
实施例10
取14.1mL N-戊基异壬酰胺、0.75mL N-异辛基丁酰胺作为萃取剂和0.15mL壬烷作为稀释剂于100mL磨口锥形瓶中,其中萃取剂占有机相体积的99%,稀释剂占有机相体积的1%,然后在其中加入3mL实施例8中的含钙卤水,有机相与含钙卤水体积比为5:1。在锥形瓶中放入磁子,其瓶口插入配套的空气冷凝管防止液体溅出,置于DF-101S型集热式恒温加热磁力搅拌器中,于50℃下混合搅拌、萃取30min。接着将混合液体转移至100mL塑料试筒中,在LD5-10型台式离心机中以4200r/min转速离心8min,两相界面清晰,分相后得到萃取后卤水样品和负载Li +、Ca 2+的有机相。把负载有机相转移至另一个100mL的磨口锥形瓶中,按与有机相1:5的体积比加入去离子水,置于DF-101S型集热式恒温加热磁力搅拌器中,在50℃下进行反萃取、两相混合30min。然后把混合液体转移至100mL塑料试筒中,在LD5-10型台式离心机中以4200r/min转速离心8min,得到反萃取后的有机相和水相。
分别采用日本岛津AA-7000型原子吸收分光光度计标准加入法和EDTA容量滴定法对萃取和反萃取过程中的卤水相和水相进行定容、配成分析溶液,取样分析Li +和Ca 2+浓度,计算出实验结果如表10所示。
表10 N-戊基异壬酰胺、N-异辛基丁酰胺和壬烷复合溶剂对某含钙卤水中Li +与Ca 2+的两相分离情况
Figure PCTCN2020079080-appb-000013
从表10可以看出,Li +单级萃取率为59.21%,Ca 2+单级萃取率为6.92%,锂钙分离系数为19.53。Li +单级反萃取率为68.44%,Ca 2+单级反萃取率为76.05%,反萃取后锂钙分离系数为0.68,反萃水相中Li +浓度为0.12g/L、水相中钙锂质量比下降至95.51。
实施例11
取14.75mL N-戊基异壬酰胺、0.12mL N-异辛基新癸酰胺、0.13mL N-环丙基癸酰胺作为萃取剂和7.42mL异丙基环己烷、7.43mL十二烷基环己烷、0.15mL 260#溶剂油作为稀释剂于100mL磨口锥形瓶中,其中萃取剂占有机相体积的50%、环烷烃占有机相体积的49.5%、烷烃占有机相体积的0.5%,然后在其中加入3mL实施例8中的含钙卤水,有机相与含钙卤水体积比为10:1。在锥形瓶中插入聚四氟乙烯搅拌杆,用DW-1-60型直流恒速搅拌器于50℃下混合搅拌、萃取30min。接着使混合液体自然澄清沉降60min,两相分离后得到萃取后卤水样品和负载Li +、Ca 2+的有机相。把负载有机相转移至另一个100mL的磨口锥形瓶中,按与有机相1:10的体积比加入去离子水,插入聚四氟乙烯搅拌杆,用DW-1-60型直流恒速搅拌器在50℃下进行反萃取、两相混合30min。然后让混合液体自然澄清沉降60min,两相分离后得到反萃取后的有机相和水相。
分别采用日本岛津AA-7000型原子吸收分光光度计标准加入法和EDTA容量滴定法对萃取和 反萃取过程中的卤水相和水相进行定容、配成分析溶液,取样分析Li +和Ca 2+浓度,计算出实验结果如表11所示。
表11 N-戊基异壬酰胺、N-异辛基新癸酰胺、N-环丙基癸酰胺、异丙基环己烷、十二基环己烷和260#溶剂油复合体系对某含钙卤水中Li +与Ca 2+的两相分离情况
Figure PCTCN2020079080-appb-000014
从表11可以看出,Li +单级萃取率为40.41%,Ca 2+单级萃取率为2.48%,锂钙分离系数为26.67。Li +单级反萃取率为84.62%,Ca 2+单级反萃取率为97.26%,反萃取后锂钙分离系数为0.16,反萃水相中Li +浓度为0.098g/L、水相中钙锂质量比下降至51.88。
实施例12
取25mL N-戊基异壬酰胺、0.5mL N-乙基月桂酰胺作为萃取剂和4mL壬烷、0.5mL辛基环己烷为稀释剂于100mL磨口锥形瓶中,其中萃取剂占有机相体积的85%,稀释剂占有机相体积的15%,然后在其中加入3mL某含钙卤水,有机相与含钙卤水体积比为10:1。该含钙卤水中Li +、Ca 2+和Cl -含量分别为23.87、179.61和439.65g/L,钙锂质量比等于7.52:1,卤水密度为1.40g/cm 3,卤水pH值为6.5。在锥形瓶中放入磁子,其瓶口插入配套的空气冷凝管防止液体溅出,置于DF-101S型集热式恒温加热磁力搅拌器中,于20℃下混合搅拌、萃取30min。接着将混合液体转移至100mL塑料试筒中,在LD5-10型台式离心机中以4200r/min转速离心8min,两相界面清晰,分相后得到萃取后卤水样品和负载Li +、Ca 2+的有机相。把负载有机相转移至另一个100mL的磨口锥形瓶中,按与有机相1:10的体积比加入去离子水,置于DF-101S型集热式恒温加热磁力搅拌器中,在50℃下进行反萃取、两相混合30min。然后把混合液体转移至100mL塑料试筒中,在LD5-10型台式离心机中以4200r/min转速离心8min,得到反萃取后的有机相和水相。
分别采用日本岛津AA-7000型原子吸收分光光度计标准加入法和EDTA容量滴定法对萃取和反萃取过程中的卤水相和水相进行定容、配成分析溶液,取样分析Li +和Ca 2+浓度,计算出实验结果如表12所示。
表12 N-戊基异壬酰胺、N-乙基月桂酰胺、壬烷和辛基环己烷复合溶剂对某含钙卤水中Li +与Ca 2+的两相分离情况
Figure PCTCN2020079080-appb-000015
从表12可以看出,Li +单级萃取率为41.01%,Ca 2+单级萃取率为7.66%,锂钙分离系数为8.66。Li +单级反萃取率为79.12%,Ca 2+单级反萃取率为86.56%,反萃取后锂钙分离系数为0.59,反萃水相中Li +浓度为7.74g/L、水相中钙锂质量比下降至1.54。
实施例13
取19.5mL N-戊基异壬酰胺、0.3mL N-(4-叔丁基环己基)辛酰胺作为萃取剂和0.2mL十八烷作为稀释剂于100mL磨口锥形瓶中,其中萃取剂占有机相体积的99%,稀释剂占有机相体积的1%,然后在其中加入10mL含钙卤水,有机相与含钙卤水体积比为2:1。该含钙卤水中Li +、Ca 2+和Cl -含量分别为0.21、210.79和373.96g/L,钙锂质量比等于1002.31:1,卤水密度为1.41g/cm 3,卤水pH值为6.5。在锥形瓶中放入磁子,其瓶口插入配套的空气冷凝管防止液体溅出,置于DF-101S型集热式恒温加热磁力搅拌器中,于20℃下混合搅拌、萃取30min。接着将混合液体转移至100mL塑料试筒中,在LD5-10型台式离心机中以4200r/min转速离心8min,两相界面清晰,分相后得到萃取后卤水样品和负载Li +、Ca 2+的有机相。把负载有机相转移至另一个100mL的磨口锥形瓶中,按与有机相1:2的体积比加入去离子水,置于DF-101S型集热式恒温加热磁力搅拌器中,在50℃下进行反萃取、两相混合30min。然后把混合液体转移至100mL塑料试筒中,在LD5-10型台式离心机中以4200r/min转速离心8min,得到反萃取后的有机相和水相。
分别采用日本岛津AA-7000型原子吸收分光光度计标准加入法和EDTA容量滴定法对萃取和反萃取过程中的卤水相和水相进行定容、配成分析溶液,取样分析Li +和Ca 2+浓度,计算出实验结果如表13示。
表13 N-戊基异壬酰胺、N-(4-叔丁基环己基)辛酰胺和十八烷复合溶剂对某含钙卤水中Li +与Ca 2+的两相分离情况
Figure PCTCN2020079080-appb-000016
从表13可以看出,Li +单级萃取率为32.72%,Ca 2+单级萃取率为9.67%,锂钙分离系数为4.54。Li +单级反萃取率为79.46%,Ca 2+单级反萃取率为92.28%,反萃取后锂钙分离系数为0.32,反萃水相中Li +浓度为0.055g/L、水相中钙锂质量比下降至344.01。
实施例14
取14.5mL N-戊基异壬酰胺、0.5mL N-乙基-1-(4-戊基环己基)甲酰胺作为萃取剂和7.5mL壬烷、7.5mL十八烷作为稀释剂于100mL磨口锥形瓶中,其中萃取剂占有机相体积的50%,稀释剂占有机相体积的50%,然后在其中加入3mL含钙卤水,有机相与卤水体积比为10:1。该含钙卤水中Li +、Ca 2+和Cl -含量分别为3.99、274.10和508.82g/L,钙锂质量比等于68.65:1,卤水密度为1.54g/cm 3,卤水pH值为1.0。在锥形瓶中放入磁子,其瓶口插入配套的空气冷凝管防止液体溅出,置于DF-101S型集热式恒温加热磁力搅拌器中于20℃下混合搅拌、萃取30min。接着将混合液体转移至100mL塑料试筒中,在LD5-10型台式离心机中以4200r/min转速离心8min,两相界面清晰,分相后得到萃取后卤水样品和负载Li +、Ca 2+的有机相。把负载有机相转移至另一个100mL的磨口锥形瓶中,按与有机相1:10的体积比加入去离子水,置于DF-101S型集热式恒温加热磁力搅拌器中,在50℃下进行反萃取、两相混合30min。然后把混合液体转移至100mL塑料试筒中,在LD5-10型台式离心机中以4200r/min转速离心8min,得到反萃取后的有机相和水相。
分别采用日本岛津AA-7000型原子吸收分光光度计标准加入法和EDTA容量滴定法对萃取和反萃取过程中的卤水相和水相进行定容、配成分析溶液,取样分析Li +和Ca 2+浓度,计算出实验结果如表14示。
表14 N-戊基异壬酰胺、N-乙基-1-(4-戊基环己基)甲酰胺、壬烷和十八烷复合溶剂对某含钙卤水中Li +与Ca 2+的两相分离情况
Figure PCTCN2020079080-appb-000017
从表14可以看出,Li +单级萃取率为33.68%,Ca 2+单级萃取率为4.14%,锂钙分离系数为11.81。Li +单级反萃取率为73.99%,Ca 2+单级反萃取率为85.91%,反萃取后锂钙分离系数为0.47,反萃水相中Li +浓度为0.99g/L、水相中钙锂质量比下降至9.80。
实施例15
取15.5mL N-戊基异壬酰胺、0.5mL N-十二基乙酰胺作为萃取剂和2mL十二烷基环己烷、2mL 200#溶剂油(由烷烃组成)作为稀释剂于100mL磨口锥形瓶中,其中萃取剂占有机相体积的80%,稀释剂占有机相体积的20%,然后在其中加入2mL含钙卤水,有机相与卤水体积比为10:1。该含钙卤水中Li +、Ca 2+和Cl -含量分别为2.51、147.61和273.95g/L,钙锂质量比等于58.80:1,卤水密度为1.30g/cm 3,卤水pH值为5.3。在锥形瓶中放入磁子,其瓶口插入配套的空气冷凝管防止液体溅出,置于DF-101S型集热式恒温加热磁力搅拌器中,于20℃下混合搅拌、萃取30min。接着将混合液体转移至100mL塑料试筒中,在LD5-10型台式离心机中以4200r/min转速离心8min,两相界面清晰,分相后得到萃取后卤水样品和负载Li +、Ca 2+的有机相。把负载有机相转移至另一个100mL的磨口锥形瓶中,按与有机相1:10的体积比加入去离子水,置于DF-101S型集热式恒温加热磁力搅拌器中,在50℃下进行反萃取、两相混合30min。然后把混合液体转移至100mL塑料试筒中,在LD5-10型台式离心机中以4200r/min转速离心8min,得到反萃取后的有机相和水相。
分别采用日本岛津AA-7000型原子吸收分光光度计标准加入法和EDTA容量滴定法对萃取和反萃取过程中的卤水相和水相进行定容、配成分析溶液,取样分析Li +和Ca 2+浓度,计算出实验结果如表15示。
表15 N-戊基异壬酰胺、N-十二基乙酰胺、十二烷基环己烷和200#溶剂油(由烷烃组成)复合体系对某含钙卤水中Li +与Ca 2+的两相分离情况
Figure PCTCN2020079080-appb-000018
从表15可以看出,Li +单级萃取率为35.31%,Ca 2+单级萃取率为1.01%,锂钙分离系数为54.55。Li +单级反萃取率为75.81%,Ca 2+单级反萃取率为84.05%,反萃取后锂钙分离系数为0.59,反萃水相中Li +浓度为0.67g/L、水相中钙锂质量比下降至1.86。
实施例16
取12mL N-异辛基异戊酰胺、0.6mL N-异辛基丁酰胺作为萃取剂和5.4mL十三烷作为稀释 剂于100mL磨口锥形瓶中,其中萃取剂占有机相体积的70%,稀释剂占有机相体积的30%,然后在其中加入6mL含钙卤水,有机相与卤水体积比为3:1。该含钙卤水中Li +、Ca 2+和Cl -含量分别为0.41、212.60和378.21g/L,钙锂质量比等于515.53:1,卤水密度为1.41g/cm 3,卤水pH值为7.0。在锥形瓶中放入磁子,其瓶口插入配套的空气冷凝管防止液体溅出,置于DF-101S型集热式恒温加热磁力搅拌器中,于20℃下混合搅拌、萃取30min。接着将混合液体转移至100mL塑料试筒中,在LD5-10型台式离心机中以4200r/min转速离心8min,两相界面清晰,分相后得到萃取后卤水样品和负载Li +、Ca 2+的有机相。把负载有机相转移至另一个100mL的磨口锥形瓶中,按与有机相1:3的体积比加入去离子水,置于DF-101S型集热式恒温加热磁力搅拌器中,在20℃下进行反萃取、两相混合30min。然后把混合液体转移至100mL塑料试筒中,在LD5-10型台式离心机中以4200r/min转速离心8min,得到反萃取后的有机相和水相。
分别采用日本岛津AA-7000型原子吸收分光光度计标准加入法和EDTA容量滴定法对萃取和反萃取过程中的卤水相和水相进行定容、配成分析溶液,取样分析Li +和Ca 2+浓度,计算出实验结果如表16所示。
表16 N-异辛基异戊酰胺、N-异辛基丁酰胺和十三烷复合溶剂对某含钙卤水中Li +与Ca 2+的两相分离情况
Figure PCTCN2020079080-appb-000019
从表16可以看出,Li +单级萃取率为30.72%,Ca 2+单级萃取率为7.84%,锂钙分离系数为5.19。Li +单级反萃取率为78.26%,Ca 2+单级反萃取率为75.62%,反萃取后锂钙分离系数为1.16,反萃水相中Li +浓度为0.099g/L、水相中钙锂质量比下降至127.13。
实施例17
取23mL N-戊基异壬酰胺、1mL N-十二基乙酰胺作为萃取剂和6mL壬烷作为稀释剂于100mL磨口锥形瓶中,其中萃取剂占有机相体积的80%,稀释剂占有机相体积的20%,然后在其中加入3mL含钙卤水,有机相与卤水体积比为10:1。该含钙卤水中Li +、Ca 2+和Cl -含量分别为0.094、178.60和316.43g/L,钙锂质量比等于1900.00:1,卤水密度为1.36g/cm 3,卤水pH值为7.0。在锥形瓶中放入磁子,其瓶口插入配套的空气冷凝管防止液体溅出,置于DF-101S型集热式恒温加热磁力搅拌器中,于20℃下混合搅拌、萃取30min。接着将混合液体转移至100mL塑料试筒中,在LD5-10型台式离心机中以4200r/min转速离心8min,两相界面清晰,分相后得到萃取后卤水样品和负载Li +、Ca 2+的有机相。把负载有机相转移至另一个100mL的磨口锥形瓶中,按与有机相1:10的体积比加入去离子水,置于DF-101S型集热式恒温加热磁力搅拌器中,在20℃下进行反萃取、两相混合30min。然后把混合液体转移至100mL塑料试筒中,在LD5-10型台式离心机中以4200r/min转速离心8min,得到反萃取后的有机相和水相。
分别采用日本岛津AA-7000型原子吸收分光光度计标准加入法和EDTA容量滴定法对萃取和反萃取过程中的卤水相和水相进行定容、配成分析溶液,取样分析Li +和Ca 2+浓度,计算出实验结果如表17所示。
表17 N-戊基异壬酰胺、N-十二基乙酰胺和壬烷复合溶剂对某含钙卤水中 Li +与Ca 2+的两相分离情况
Figure PCTCN2020079080-appb-000020
从表17可以看出,Li +单级萃取率为42.68%,Ca 2+单级萃取率为7.05%,锂钙分离系数为9.82。Li +单级反萃取率为71.45%,Ca 2+单级反萃取率为73.65%,反萃取后锂钙分离系数为0.90,反萃水相中Li +浓度为0.029g/L、水相中钙锂质量比下降至323.51。
实施例18
取14mL N-戊基异壬酰胺、0.25mL N-十二基乙酰胺作为萃取剂和0.75mL壬烷作为稀释剂于100mL磨口锥形瓶中,其中萃取剂占有机相体积的95%,稀释剂占有机相体积的5%,然后在其中加入15mL实施例8中的含钙卤水,有机相与含钙卤水体积比为1:1。在锥形瓶中放入磁子,其瓶口插入配套的空气冷凝管防止液体溅出,置于DF-101S型集热式恒温加热磁力搅拌器中,于20℃下混合搅拌、萃取30min。接着将混合液体转移至100mL塑料试筒中,在LD5-10型台式离心机中以4200r/min转速离心8min,两相界面清晰,分相后得到萃取后卤水样品和负载Li +、Ca 2+的有机相。把负载有机相转移至另一个100mL的磨口锥形瓶中,按与有机相1:1的体积比加入去离子水,置于DF-101S型集热式恒温加热磁力搅拌器中,在20℃下进行反萃取、两相混合30min。然后把混合液体转移至100mL塑料试筒中,在LD5-10型台式离心机中以4200r/min转速离心8min,得到反萃取后的有机相和水相。
分别采用日本岛津AA-7000型原子吸收分光光度计标准加入法和EDTA容量滴定法对萃取和反萃取过程中的卤水相和水相进行定容、配成分析溶液,取样分析Li +和Ca 2+浓度,计算出实验结果如表18所示。
表18 N-戊基异壬酰胺、N-十二基乙酰胺和壬烷复合溶剂对某含钙卤水中Li +与Ca 2+的两相分离情况
Figure PCTCN2020079080-appb-000021
从表18可以看出,Li +单级萃取率为35.58%,Ca 2+单级萃取率为7.72%,锂钙分离系数为6.60。Li +单级反萃取率为71.03%,Ca 2+单级反萃取率为83.64%,反萃取后锂钙分离系数为0.48,反萃水相中Li +浓度为0.072g/L、钙锂质量比下降至187.90。
实施例19
取24mL N-戊基异壬酰胺作为萃取剂和6mL 260#溶剂油作为稀释剂于100mL磨口锥形瓶中,稀释剂占有机相体积的20%,然后在其中加入6mL实施例1中的含钙卤水,有机相与含钙卤水体积比为5:1。在锥形瓶中放入磁子,其瓶口插入配套的空气冷凝管防止液体溅出,置于DF-101S型集热式恒温加热磁力搅拌器中,于20℃下混合搅拌、萃取30min。接着将混合液体转 移至100mL塑料试筒中,在LD5-10型台式离心机中以4000r/min转速离心10min,两相界面清晰,分相后得到萃取后负载有机相和剩余卤水相。接着按照萃取串级交叉操作步骤进行三级逆流萃取,得到三级逆流萃取后的负载有机相和剩余卤水相。
把三级逆流萃取后的负载有机相转移至另一个100mL磨口锥形瓶中,按与有机相1:5的体积比加入去离子水,置于DF-101S型集热式恒温加热磁力搅拌器中,在20℃下进行单级反萃取、两相混合30min。然后把混合液体转移至100mL塑料试筒中,在LD5-10型台式离心机中以4000r/min转速离心10min,得到反萃取后的有机相和水相。接着按照串级交叉操作步骤进行二级逆流反萃取,得到二级逆流反萃取后的有机相和水相。
分别采用日本岛津AA-7000型原子吸收分光光度计标准加入法和EDTA滴定法对萃取和反萃取过程中的卤水相和水相进行定容、配成分析溶液,取样分析Li +和Ca 2+浓度,计算出实验结果如表19所示。
表19 N-戊基异壬酰胺和260#溶剂油复合体系对某含钙卤水中Li +与Ca 2+的三级逆流萃取和二级逆流反萃取情况
Figure PCTCN2020079080-appb-000022
从表19可以看出,卤水经过三级逆流萃取后Li +萃取率为64.40%,Ca 2+萃取率为7.53%,锂钙分离系数达到22.22。负载有机相经过二级逆流反萃取后Li +反萃取率为84.60%,Ca 2+反萃取率为75.17%,反萃取后锂钙分离系数为1.81,反萃水相中Li +浓度为1.79g/L、钙锂质量比下降至5.93,卤水中的Li +与Ca 2+实现有效分离。多级逆流萃取级数越多卤水中的Li +萃取率越高、锂钙分离系数越大,在减少水相用量的情况下多级逆流反萃取级数越多越有利于反萃取后水相中Li +浓度的提高。进一步提高逆流萃取和逆流反萃取级数,Li +的萃取率和反萃取率进一步提高,而Ca 2+的萃取率基本不变、Mg 2+的萃取率很小。
把反萃取后有机相返回与萃取前卤水相重新混合,实现萃取剂的循环使用。
接着把反萃取后得到的水相溶液进行除油、经过二效蒸发浓缩至Li +浓度为30g/L后,分别加入硫酸钠、碳酸钠溶液彻底沉淀除去其中的Ca 2+,分别加入氯化钡、氢氧化钠溶液彻底沉淀除去其中的硫酸根、Mg 2+,然后对剩余溶液进行蒸发浓缩、冷却结晶、过滤干燥后制得无水氯化锂产品。
把经过除杂精制后得到的氯化锂浓缩液置于离子膜电解槽中进行电解,在阴极得到质量浓度为12%的氢氧化锂溶液,经浓缩、结晶后得到单水氢氧化锂,再经水洗、干燥后制得无水氢氧化锂产品。同时副产氢气和氯气,使氢气和氯气进一步反应制得盐酸。
实施例20
取12mL N-异丁基异壬酰胺(受热后液体)和12mL N-戊基异壬酰胺作为萃取剂和6mL 260#溶剂油作为稀释剂于100mL磨口锥形瓶中,稀释剂占有机相体积的20%,然后在其中加入6mL实施例1中的含钙卤水,卤水pH值调整至6.6,有机相与含钙卤水体积比为5:1。在锥形瓶中放入磁子,其瓶口插入配套的空气冷凝管防止液体溅出,置于DF-101S型集热式恒温加热磁力搅拌器中,于20℃下混合搅拌、萃取30min。接着将混合液体转移至100mL塑料试筒中,在LD5-10型台式离心机中以4000r/min转速离心10min,两相界面清晰,分相后得到萃取后负载有机相和 剩余卤水相。把负载有机相转移至另一个100mL的磨口锥形瓶中,按与有机相1:5的体积比加入去离子水,置于DF-101S型集热式恒温加热磁力搅拌器中,在20℃下进行反萃取、两相混合30min。然后把混合液体转移至100mL塑料试筒中,在LD5-10型台式离心机中以4000r/min转速离心10min,得到反萃取后的有机相和水相。
分别采用日本岛津AA-7000型原子吸收分光光度计标准加入法和EDTA滴定法对萃取和反萃取过程中的卤水相和水相进行定容、配成分析溶液,取样分析Li +和Ca 2+浓度,计算出实验结果如表20所示。
表20 N-异丁基异壬酰胺、N-戊基异壬酰胺和260#溶剂油复合体系对某含钙卤水中Li +与Ca 2+的两相分离情况
Figure PCTCN2020079080-appb-000023
从表20可以看出,Li +单级萃取率为40.85%,Ca 2+单级萃取率为7.11%,锂钙分离系数为9.01。Li +单级反萃取率为91.99%,Ca 2+单级反萃取率为87.91%,反萃取后锂钙分离系数为1.58,反萃水相中Li +浓度为1.24g/L、钙锂质量比下降至9.51。接着对该卤水进行3级逆流萃取和2级逆流反萃取后,Li +萃取率和反萃取率进一步提高,而Ca 2+的萃取率达到饱和基本不变,反萃水相中的钙锂质量比进一步降低。
接着把反萃取后得到的水相溶液进行除油、经过二效蒸发浓缩至Li +浓度为20g/L后,分别加入硫酸钠、碳酸钠溶液彻底沉淀除去其中的Ca 2+,分别加入氯化钡、氢氧化钠溶液彻底沉淀除去其中的硫酸根、Mg 2+,得到氯化锂精制溶液。然后在其中按其理论用量的1.1倍加入浓度为250g/L的碳酸钠溶液,产生碳酸锂沉淀,经过过滤、干燥后制得碳酸锂产品。
在获得的碳酸锂中加入氢氧化钙乳液,加热并强力搅拌进行固-液反应生成氢氧化锂溶液和碳酸钙沉淀,两相分离后得到氢氧化锂溶液,对其进行减压浓缩、结晶和在130~140℃下干燥后制得单水氢氧化锂,再在150~180℃下减压加热制得无水氢氧化锂产品。
对比例
取30mL 300#混合正构烷烃作为萃取剂于100mL磨口锥形瓶中,然后在其中加入6mL实施例1中的含钙卤水,萃取剂与含钙卤水体积比为5:1。在锥形瓶中放入磁子,其瓶口插入配套的空气冷凝管防止液体溅出,置于DF-101S型集热式恒温加热磁力搅拌器中,于20℃下混合搅拌、萃取30min。接着将混合液体转移至100mL塑料试筒中,在LD5-10型台式离心机中以4000r/min转速离心10min,两相界面清晰,分相后得到萃取后卤水样品和负载Li +、Ca 2+的有机相。把负载有机相转移至另一个100mL的磨口锥形瓶中,按与有机相1:5的体积比加入去离子水,置于DF-101S型集热式恒温加热磁力搅拌器中,在20℃下进行反萃取、两相混合30min。然后把混合液体转移至100mL塑料试筒中,在LD5-10型台式离心机中以4000r/min转速离心10min,得到反萃取后的有机相和水相。
分别采用日本岛津AA-7000型原子吸收分光光度计标准加入法和EDTA容量滴定法对萃取和反萃取过程中的卤水相和水相进行定容、配成分析溶液,取样分析Li +和Ca 2+浓度,计算出实验结果如表21所示。
表21 300#混合正构烷烃溶剂对某含钙卤水中Li +与Ca 2+的两相分离情况
Figure PCTCN2020079080-appb-000024
从表21可以看出,此时Li +单级萃取率很小只有1.20%,表明该种烷烃溶剂对该卤水中的Li +萃取能力不大,与仲酰胺和烷烃混合后的复合溶剂对该卤水中的锂钙分离效果形成显著对比。此对比例用以作为前面实施例的反例,对仲酰胺的萃取能力给予进一步说明。
以上仅为本发明选择提供的部分实施案例而已,本发明的实施方式不受上述实施例的限制。对于本领域技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、组合和改进等,都包含在本技术发明的保护范围之内。
表22 实施例中涉及到的A物质仲酰胺的常用名称、对应规范名称和代号
序号 部分A物质仲酰胺常用名称 部分A物质仲酰胺对应规范名称 代号
1 N-异辛基丁酰胺 N-(2-乙基己基)正丁酰胺 Z842
2 N-异丁基异壬酰胺 N-(2-甲基丙基)-3,5,5-三甲基己酰胺 Z494
3 N-异辛基戊酰胺 N-(2-乙基己基)正戊酰胺 Z852
4 N-异辛基异戊酰胺 N-(2-乙基己基)-3-甲基丁酰胺 Z854
5 N-乙基月桂酰胺 N-乙基正十二酰胺 Z2121
6 N-戊基异壬酰胺 N-正戊基-3,5,5-三甲基己酰胺 Z593
7 N-异辛基异己酰胺 N-(2-乙基己基)-4-甲基戊酰胺 Z864
8 N-十二基乙酰胺 N-正十二基乙酰胺 Z1221
9 N-异辛基新癸酰胺 N-(2-乙基己基)-7,7-二甲基辛酰胺 Z8104
10 N-异辛基-1-环丙基甲酰胺 N-(2-乙基己基)-1-环丙基甲酰胺 Z84h2
11 N-环丙基癸酰胺 N-环丙基正癸酰胺 Z3h101
12 N-乙基-1-(4-戊基环己基)甲酰胺 N-乙基-1-(4-正戊基环己基)甲酰胺 Z212h1
13 N-己基-3-环戊基丙酰胺 N-正己基-3-环戊基丙酰胺 Z68h1
14 N-环十二基乙酰胺 N-环十二基乙酰胺 Z12h21
15 N-(4-叔丁基环己基)辛酰胺 N-(4-叔丁基环己基)正辛酰胺 Z10h82
表23 实施例中涉及到的B物质烷烃和环烷烃的常用名称、对应规范名称和CAS号 *
Figure PCTCN2020079080-appb-000025
*CAS号为美国化学文摘社登记号。

Claims (13)

  1. 用仲酰胺/烷烃复合溶剂从含钙卤水中分离钙提取锂的萃取体系,其特征在于,萃取体系中含有A和B两类物质;其中A类物质为仲酰胺由单一化合物或两种以上的混合物组成;其中,单一化合物具有如式(I)所示的结构:
    Figure PCTCN2020079080-appb-100001
    其中,R 1选自C2~C12的烷基或含有单环结构的C3~C12的环烷基,R 2选自C1~C11的烷基或含有单环结构的C3~C11的环烷基,并且R 1和R 2两基团中所含碳原子数目之和为11~17,其中烷基或环烷基包括各种同分异构体;
    其中B类物质为烷烃由单一化合物或两种以上的混合物组成;其中,单一化合物具有如式(Ⅱ)所示的结构:
    H——R 3    (Ⅱ);
    其中,R 3选自C9~C18的烷基,其中烷基包含直链的或带有支链的各种同分异构体;
    含有A和B两类物质的萃取体系的凝固点小于0℃。
  2. 根据权利要求1所述的用仲酰胺/烷烃复合溶剂从含钙卤水中分离钙提取锂的萃取体系,其特征在于,所述A类物质起萃取作用在整个有机相中所占的体积百分数为50~100%,不包括端点值100%;所述B类物质起稀释作用在整个有机相中所占的体积百分数为0~50%,不包括端点值0%。
  3. 根据权利要求1所述的用仲酰胺/烷烃复合溶剂从含钙卤水中分离钙提取锂的萃取体系,其特征在于,还包含有同样起稀释作用分子中含有单环结构的C9~C18的环烷烃,该环烷烃包括同分异构体由单一化合物或两种以上的混合物组成。
  4. 根据权利要求3所述的用仲酰胺/烷烃复合溶剂从含钙卤水中分离钙提取锂的萃取体系,其特征在于,在所述的B类物质中,烷烃混合物为200#溶剂油、260#溶剂油、300#溶剂油或磺化煤油;在所述的环烷烃中,环烷烃混合物为用重整装置抽余油生产的200#溶剂油。
  5. 用仲酰胺/烷烃复合溶剂从含钙卤水中分离钙提取锂的萃取方法,其特征在于,包括下列步骤:
    S1、以含钙卤水作为萃取前卤水相;其中,在所述含钙卤水中,锂离子的浓度为0.09~24g/L,钙离子的浓度为145~277g/L,氯离子的浓度为271~511g/L,钙锂质量比为7.5~1900:1,卤水密度20℃时为1.30~1.56g/cm 3,用盐酸或硫酸调节卤水pH值在1~7之间;
    S2、以权利要求1至4中任一项所述的萃取体系作为萃取前有机相;
    S3、将所述萃取前有机相和所述萃取前卤水相按照体积比为1~10:1混合,进行单级萃取或多级逆流萃取,两相分离后得到负载有机相和萃取后卤水相。
  6. 根据权利要求5所述的用仲酰胺/烷烃复合溶剂从含钙卤水中分离钙提取锂的萃取方法,其特征在于,在所述含钙卤水中,还含有钠离子、钾离子、镁离子、铁离子、亚铁离子、硼酸或硼氧酸根离子中的一种或两种以上。
  7. 根据权利要求5所述的用仲酰胺/烷烃复合溶剂从含钙卤水中分离钙提取锂的萃取方法,其特征在于,所述的含钙卤水包括含锂油田卤水或含锂地下卤水,但不仅限于该种卤水。
  8. 根据权利要求5所述的用仲酰胺/烷烃复合溶剂从含钙卤水中分离钙提取锂的萃取方法, 其特征在于,在所述步骤S3中,萃取温度为0~50℃;两相混合通过搅拌方式进行,萃取后两相分离采取离心分离方式或澄清沉降方式进行。
  9. 根据权利要求5所述的用仲酰胺/烷烃复合溶剂从含钙卤水中分离钙提取锂的萃取方法,其特征在于,在所述步骤S3后,还包括步骤:
    S4、以水作为反萃取剂,对所述负载有机相进行单级反萃取或多级逆流反萃取,反萃相比即反萃取剂与负载有机相体积之比为1:1~20,两相分离后得到反萃取后有机相和反萃取后水相;
    S5、使所述反萃取后有机相返回步骤S2,实现萃取体系的循环使用。
  10. 根据权利要求9所述的用仲酰胺/烷烃复合溶剂从含钙卤水中分离钙提取锂的萃取方法,其特征在于,在所述步骤S4中,反萃取温度为0~50℃;两相混合通过搅拌方式进行,反萃取后两相分离采取离心分离方式或澄清沉降方式进行。
  11. 用仲酰胺/烷烃复合溶剂从含钙卤水中分离钙提取锂的萃取方法在获得锂产品氯化锂中的应用,其特征在于,在所述步骤S4后,还包括步骤:
    S6、对所述反萃取后水相进一步除油净化,浓缩,然后加入除杂剂对其中剩余钙离子和少量镁离子进行去除,得到水相精制后的氯化锂溶液;所用除杂剂为硫酸钠、碳酸钠、草酸钠、氯化钡或氢氧化钠中的一种或两种以上的化合物;
    S7、对所述精制后的氯化锂溶液进行浓缩、结晶、分离和干燥过程,制得氯化锂产品。
  12. 用仲酰胺/烷烃复合溶剂从含钙卤水中分离钙提取锂的萃取方法在获得锂产品碳酸锂中的应用,其特征在于,在所述步骤S4后,还包括步骤:
    S6、对所述反萃取后水相进一步除油净化,浓缩,然后加入除杂剂对其中剩余钙离子和少量镁离子进行去除,得到水相精制后的氯化锂溶液;所用除杂剂为硫酸钠、碳酸钠、草酸钠、氯化钡或氢氧化钠中的一种或两种以上的化合物;
    S8、在精制后的氯化锂溶液中加入碳酸钠得到碳酸锂沉淀,对碳酸锂沉淀进行分离、干燥过程,制得碳酸锂产品。
  13. 用仲酰胺/烷烃复合溶剂从含钙卤水中分离钙提取锂的萃取方法在获得锂产品氢氧化锂中的应用,其特征在于,在所述步骤S4后,还包括步骤:
    S6、对所述反萃取后水相进一步除油净化,浓缩,然后加入除杂剂对其中剩余钙离子和少量镁离子进行去除,得到水相精制后的氯化锂溶液;所用除杂剂为硫酸钠、碳酸钠、草酸钠、氯化钡或氢氧化钠中的一种或两种以上的化合物;
    S9、对所述精制后的氯化锂溶液进行电解,制得氢氧化锂产品,同时副产氢气和氯气、可用于生产盐酸;
    或在所述步骤S6后,还包括步骤:
    S8、在精制后的氯化锂溶液中加入碳酸钠得到碳酸锂沉淀,对碳酸锂沉淀进行分离、干燥过程,制得碳酸锂产品;
    S10、在制得的碳酸锂中加入氢氧化钙乳液,进行固-液反应,分离后得到氢氧化锂溶液,对其进行浓缩、结晶和干燥过程,制得氢氧化锂产品。
PCT/CN2020/079080 2019-11-08 2020-03-13 用仲酰胺/烷烃复合溶剂从含钙卤水中分离钙提取锂的萃取体系、萃取方法和其应用 WO2021088290A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911088271.6 2019-11-08
CN201911088271.6A CN110777266B (zh) 2019-11-08 2019-11-08 用仲酰胺/烷烃复合溶剂从含钙卤水中分离钙提取锂的萃取体系、萃取方法和其应用

Publications (1)

Publication Number Publication Date
WO2021088290A1 true WO2021088290A1 (zh) 2021-05-14

Family

ID=69389722

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/079080 WO2021088290A1 (zh) 2019-11-08 2020-03-13 用仲酰胺/烷烃复合溶剂从含钙卤水中分离钙提取锂的萃取体系、萃取方法和其应用

Country Status (2)

Country Link
CN (1) CN110777266B (zh)
WO (1) WO2021088290A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2807411C1 (ru) * 2023-10-11 2023-11-14 Федеральное государственное бюджетное учреждение науки Институт физической химии и электрохимии им. А.Н. Фрумкина Российской академии наук (ИФХЭ РАН) Экстракционный способ выделения лития из водных растворов, содержащих хлориды лития, магния и кальция

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110656249B (zh) * 2019-11-08 2021-03-23 湘潭大学 用仲酰胺/烷烃复合溶剂从含镁卤水中分离镁提取锂的萃取体系、萃取方法和其应用
CN110777266B (zh) * 2019-11-08 2021-05-25 湘潭大学 用仲酰胺/烷烃复合溶剂从含钙卤水中分离钙提取锂的萃取体系、萃取方法和其应用
CN113061722B (zh) * 2021-03-22 2022-08-09 湘潭大学 一种从低温含钙卤水中分离钙提取锂的萃取方法和其应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2384631A1 (en) * 1999-09-27 2001-04-05 Ibc Advanced Technologies, Inc. Polyamide-containing ligands covalently bonded to supports, polyamide-containing resins, and methods for removing metals from solutions
US20160207793A1 (en) * 2015-01-16 2016-07-21 Kabushiki Kaisha Toshiba Rare earth adsorbent and rare earth adsorption method using the same
CN106319244A (zh) * 2016-09-09 2017-01-11 山东省医学科学院药物研究所 功能性离子液体的应用以及从盐湖卤水中萃取锂的方法
US20170306439A1 (en) * 2015-04-23 2017-10-26 Ut-Battelle, Llc Methods for liquid extraction of rare earth metals using ionic liquids
CN107447108A (zh) * 2016-06-01 2017-12-08 中国科学院上海有机化学研究所 一种萃取组合物、萃取体系、萃取方法及反萃取方法
CN110656249A (zh) * 2019-11-08 2020-01-07 湘潭大学 用仲酰胺/烷烃复合溶剂从含镁卤水中分离镁提取锂的萃取体系、萃取方法和其应用
CN110777266A (zh) * 2019-11-08 2020-02-11 湘潭大学 用仲酰胺/烷烃复合溶剂从含钙卤水中分离钙提取锂的萃取体系、萃取方法和其应用

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101497484B (zh) * 2008-01-30 2010-11-03 深圳市东江环保股份有限公司 一种处理三氯化铁蚀刻废液的方法
CN102659563B (zh) * 2012-03-06 2014-09-17 河南金丹乳酸科技股份有限公司 从重相乳酸中提取乳酸的有机萃取相
CN103055539B (zh) * 2012-05-24 2015-04-01 中国科学院上海有机化学研究所 从含锂卤水中提取锂盐的方法
CN103468968B (zh) * 2013-09-04 2015-07-29 重庆材料研究院有限公司 一种铂铑混合料液中铂铑的提取方法
CN103468967B (zh) * 2013-09-04 2015-07-15 重庆材料研究院有限公司 一种高浓度铂溶液中铂的萃取方法
CN107619929B (zh) * 2016-07-15 2020-08-07 中国科学院上海有机化学研究所 酰胺类化合物的应用,含其的萃取组合物及萃取体系
JP6556685B2 (ja) * 2016-11-18 2019-08-07 田中貴金属工業株式会社 白金抽出剤、白金の抽出方法、及び白金の回収方法
CN106498184B (zh) * 2016-12-07 2019-04-26 青海柴达木兴华锂盐有限公司 一种锂的萃取体系
CN108017067A (zh) * 2017-12-08 2018-05-11 中国科学院青海盐湖研究所 从含镁盐湖卤水中萃取硼酸的萃取体系及其萃取方法
CN108342595B (zh) * 2018-01-26 2020-11-06 天津科技大学 一种卤水中硼锂共萃取方法
CN108384970B (zh) * 2018-03-02 2019-11-05 哈尔滨工业大学(威海) 从含钛铁多金属氯化物酸性溶液中萃取钛和铁的萃取剂溶液及萃取方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2384631A1 (en) * 1999-09-27 2001-04-05 Ibc Advanced Technologies, Inc. Polyamide-containing ligands covalently bonded to supports, polyamide-containing resins, and methods for removing metals from solutions
US20160207793A1 (en) * 2015-01-16 2016-07-21 Kabushiki Kaisha Toshiba Rare earth adsorbent and rare earth adsorption method using the same
US20170306439A1 (en) * 2015-04-23 2017-10-26 Ut-Battelle, Llc Methods for liquid extraction of rare earth metals using ionic liquids
CN107447108A (zh) * 2016-06-01 2017-12-08 中国科学院上海有机化学研究所 一种萃取组合物、萃取体系、萃取方法及反萃取方法
CN106319244A (zh) * 2016-09-09 2017-01-11 山东省医学科学院药物研究所 功能性离子液体的应用以及从盐湖卤水中萃取锂的方法
CN110656249A (zh) * 2019-11-08 2020-01-07 湘潭大学 用仲酰胺/烷烃复合溶剂从含镁卤水中分离镁提取锂的萃取体系、萃取方法和其应用
CN110777266A (zh) * 2019-11-08 2020-02-11 湘潭大学 用仲酰胺/烷烃复合溶剂从含钙卤水中分离钙提取锂的萃取体系、萃取方法和其应用

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2807411C1 (ru) * 2023-10-11 2023-11-14 Федеральное государственное бюджетное учреждение науки Институт физической химии и электрохимии им. А.Н. Фрумкина Российской академии наук (ИФХЭ РАН) Экстракционный способ выделения лития из водных растворов, содержащих хлориды лития, магния и кальция

Also Published As

Publication number Publication date
CN110777266B (zh) 2021-05-25
CN110777266A (zh) 2020-02-11

Similar Documents

Publication Publication Date Title
WO2021088290A1 (zh) 用仲酰胺/烷烃复合溶剂从含钙卤水中分离钙提取锂的萃取体系、萃取方法和其应用
WO2021088285A1 (zh) 用仲酰胺/烷基醇复合溶剂从含钙卤水中分离钙提取锂和硼的萃取体系、萃取方法和其应用
WO2021088288A1 (zh) 用仲酰胺/烷基醇复合溶剂从含镁卤水中分离镁提取锂和硼的萃取体系、萃取方法和其应用
WO2021088287A1 (zh) 用仲酰胺/叔酰胺复合溶剂从含镁卤水中分离镁提取锂的萃取体系、萃取方法和其应用
WO2021088286A1 (zh) 用仲酰胺型溶剂从含镁卤水中分离镁提取锂的萃取体系、萃取方法和其应用
CN105018728B (zh) 一种含铜镍的硫酸溶液中铜镍的分离方法
CN113073210A (zh) 一种从低温含镁卤水中分离镁提取锂的萃取方法和其应用
WO2021088289A1 (zh) 用仲酰胺/烷烃复合溶剂从含镁卤水中分离镁提取锂的萃取体系、萃取方法和其应用
CN112831662B (zh) 镍钴锰酸锂三元正极粉料的回收利用方法
CN105293584A (zh) 一种纯化硫酸锰溶液的方法
CN113736995A (zh) 一种羧酸类化合物作为萃取剂的应用和金属离子萃取方法
CN105439176B (zh) 一种从高镁含锂卤水中提取制备高纯锂盐的工艺方法
CN110669938B (zh) 用仲酰胺/烷基酮复合溶剂从含镁卤水中分离镁提取锂的萃取体系、萃取方法和其应用
CN110777267B (zh) 用仲酰胺/叔酰胺复合溶剂从含钙卤水中分离钙提取锂的萃取体系、萃取方法和其应用
CN103290239A (zh) 从氧化铝生产流程中提取钒的方法
CN110643836B (zh) 用仲酰胺/烷基酯复合溶剂从含镁卤水中分离镁提取锂的萃取体系、萃取方法和其应用
CN110643813B (zh) 用仲酰胺/烷基酮复合溶剂从含钙卤水中分离钙提取锂的萃取体系、萃取方法和其应用
Zhang et al. Extraction Separation of Ti (IV) and Fe (II) Using D2EHPA from the Raffinate Obtained After Extraction of Scandium from Titanium Dioxide Waste Acid
CN110643834B (zh) 用仲酰胺/烷基酯复合溶剂从含钙卤水中分离钙提取锂的萃取体系、萃取方法和其应用
CN113061722B (zh) 一种从低温含钙卤水中分离钙提取锂的萃取方法和其应用
CN110777268B (zh) 用仲酰胺/磷酸三烷酯复合溶剂从含镁卤水中分离镁提取锂的萃取体系、萃取方法和其应用
CN102676808A (zh) 一种从钒渣分解液中分离钒铬的方法
CN114561538A (zh) 一种带有共轭双键的临羟基芳烯酮肟萃取剂
Yu et al. An eco-friendly and high-yield extraction of rare earth from the leaching solution of ion adsorbed minerals
WO2019114817A1 (zh) 一种用于萃取分离锂元素的萃取溶剂及其萃取分离锂元素的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20885445

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20885445

Country of ref document: EP

Kind code of ref document: A1