WO2021085284A1 - 光学フィルム及びフレキシブル表示装置 - Google Patents

光学フィルム及びフレキシブル表示装置 Download PDF

Info

Publication number
WO2021085284A1
WO2021085284A1 PCT/JP2020/039651 JP2020039651W WO2021085284A1 WO 2021085284 A1 WO2021085284 A1 WO 2021085284A1 JP 2020039651 W JP2020039651 W JP 2020039651W WO 2021085284 A1 WO2021085284 A1 WO 2021085284A1
Authority
WO
WIPO (PCT)
Prior art keywords
formula
group
optical film
resin
mol
Prior art date
Application number
PCT/JP2020/039651
Other languages
English (en)
French (fr)
Inventor
皓史 宮本
貴将 江川
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2020171459A external-priority patent/JP2021075701A/ja
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Priority to CN202080074893.8A priority Critical patent/CN114599739A/zh
Priority to KR1020227018174A priority patent/KR20220095209A/ko
Publication of WO2021085284A1 publication Critical patent/WO2021085284A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1003Preparatory processes
    • C08G73/1007Preparatory processes from tetracarboxylic acids or derivatives and diamines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1039Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors comprising halogen-containing substituents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1067Wholly aromatic polyimides, i.e. having both tetracarboxylic and diamino moieties aromatically bound
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/14Polyamide-imides
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3083Birefringent or phase retarding elements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • G09F9/301Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements flexible foldable or roll-able electronic displays, e.g. thin LCD, OLED
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/40OLEDs integrated with touch screens
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2379/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2361/00 - C08J2377/00
    • C08J2379/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08J2379/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors

Definitions

  • the present invention relates to an optical film containing a polyimide resin and a flexible display device including the optical film.
  • Display devices such as liquid crystal display devices and organic EL display devices are widely used in various applications such as mobile phones and smart watches.
  • Glass has been used as the front plate of such a display device, but it is difficult to use it as a front plate material of a flexible display device because the glass is very rigid and easily broken. Therefore, as one of the alternative materials to glass, an optical film using a polymer such as a polyimide resin or a polyamide-imide resin has been studied (Patent Documents 1 and 2).
  • optical film containing a polyimide resin When an optical film containing a polyimide resin is used, for example, in a flexible display device, the optical film is required to have high folding resistance so that the optical characteristics and mechanical strength of the optical film do not change due to repeated bending. Ru.
  • optical films containing various polyimide resins have been known, but further improvement in folding resistance of optical films is required.
  • an optical film containing a polyimide resin used as a front plate is required to have not only high folding resistance but also low yellowness.
  • an object of the present invention is to provide an optical film having a low yellowness and excellent folding resistance.
  • the present inventor has found that the fold resistance can be improved when the proof stress of the optical film is within a predetermined range, and has completed the present invention.
  • the present invention includes the following preferred embodiments.
  • the polyimide-based resin has the formula (1):
  • R 1 represents an alkyl group, an alkoxy group, an aryl group, or an aryloxy group, which may have a halogen atom or a halogen atom independently of each other.
  • n an integer from 1 to 4 and represents * Represents a bonding hand, provided that at least one benzene ring having R 2 ⁇ R 5, at least one 1 may have a halogen atom monovalent hydrocarbon group R 2 ⁇ R 5]
  • [6] The optical film according to any one of [1] to [5] above, wherein the polyimide-based resin is a polyamide-imide resin.
  • the polyimide-based resin has the formula (3):
  • W is each independently a single bond, -O-, diphenylmethylene group, a divalent hydrocarbon group which may have a halogen atom, -SO 2 -, - S - , - It represents CO-, -PO-, -PO 2- , -N ( RW1 )-or -Si ( RW2 ) 2- , and RW1 and RW2 have hydrogen atoms or halogen atoms independently of each other.
  • R 8 represents an alkyl group, an alkoxy group, an aryl group, or an aryloxy group which may have a halogen atom and a halogen atom independently of each other.
  • p represents an integer of 0 to 4 independently of each other.
  • q represents an integer from 0 to 4 * Represents a bond]
  • a flexible display device including the optical film according to any one of the above [1] to [9].
  • the flexible display device according to the above [10] further comprising a touch sensor.
  • the optical film of the present invention is an optical film containing a polyimide resin, and has a proof stress of 81 MPa or more in a tensile test and a yellowness of less than 3.
  • the proof stress in the tensile test of the optical film of the present invention is 81 MPa or more. If the proof stress is less than 81 MPa, the fold resistance of the optical film cannot be sufficiently increased.
  • the proof stress is preferably 83 MPa or more, more preferably 85 MPa or more, further preferably 88 MPa or more, even more preferably 90 MPa or more, particularly preferably 93 MPa or more, and particularly more preferably 95 MPa or more, from the viewpoint of stress required for bending. From, it is preferably 300 MPa or less, more preferably 250 MPa or less, still more preferably 200 MPa or less.
  • the proof stress in the tensile test represents the proof stress (yield strength by offset method) measured by ASTM D638-14, and specifically, 0.2% in the stress-strain curve.
  • a parallel line is drawn from the point on the strain axis corresponding to the permanent strain to the straight portion at the initial stage of the test, and it can be obtained from the stress indicated by the point where this intersects the curve.
  • Yield strength can be measured according to ASTM D638-14 Section A2.6, for example using a tensile tester. As the measuring method, for example, the method described in Examples may be used.
  • the method of adjusting the proof stress within the above range is not particularly limited, and examples thereof include a method of using a polyimide resin as described later.
  • the yellowness of the optical film of the present invention (hereinafter, may be referred to as YI value) is less than 3.0.
  • YI value is 3.0 or more, the YI value of the optical film is too high, so that the visibility when visually recognizing an image or the like through the optical film is lowered.
  • the YI value of the optical film of the present invention is preferably 2.8 or less, more preferably 2.6 or less, still more preferably 2.5 or less, from the viewpoint of easily improving the visibility of images and the like through the optical film. Yes, preferably -5 or more, more preferably -2 or more.
  • the YI value of the optical film is not more than the above upper limit, the transparency becomes good, and when it is used for the front plate of the display device, it can contribute to high visibility.
  • the method for adjusting the YI value of the optical film within the above range is not particularly limited, but is limited to a method using a polyimide resin as described later, a method of adding a blue dye, a thin film, and an aromatic of the monomer main chain. Examples include a method of introducing a side chain into the ring.
  • the elastic modulus of the optical film of the present invention is preferably 4.8 GPa or more, more preferably 5.2 GPa or more, from the viewpoint of easily improving the folding resistance of the optical film and easily preventing wrinkles and scratches. More preferably, it is 6.0 GPa or more, and usually 100 GPa or less.
  • the elastic modulus can be measured using a tensile tester (distance between chucks 50 mm, tensile speed 10 mm / min), for example, by the method described in Examples.
  • a method for increasing the elastic modulus a method of adding a rigid inorganic filler and a method of introducing a crosslinked structure are known. However, when such a method is used, the elastic modulus is improved, but the proof stress is often not improved. However, in the optical film of the present invention, both of these can be enhanced, and further improvement in folding resistance is achieved.
  • the optical film of the present invention has excellent folding resistance.
  • the number of times of folding of the optical film of the present invention in the MIT folding fatigue test conforming to ASTM standard D2176-16 is preferably 80,000 times or more, more preferably 100,000 times or more, still more preferably 250,000 times or more. Is.
  • the MIT fold resistance fatigue test can be measured using a MIT fold resistance fatigue tester, for example, by the method described in Examples.
  • the total light transmittance of the optical film of the present invention is preferably 85% or more, more preferably 88% or more, further preferably 89% or more, and particularly preferably 90% or more.
  • the total light transmittance is equal to or higher than the above lower limit, it is easy to improve the visibility when the optical film is incorporated into the display device as the front plate. Since the optical film of the present invention usually exhibits a high total light transmittance, the emission intensity of a display element or the like required to obtain a constant brightness is suppressed as compared with the case where a film having a low transmittance is used, for example. It becomes possible. Therefore, power consumption can be reduced.
  • the optical film of the present invention when the optical film of the present invention is incorporated into a display device, a bright display tends to be obtained even if the amount of light from the backlight is reduced, which can contribute to energy saving.
  • the upper limit of the total light transmittance is usually 100% or less.
  • the total light transmittance can be measured using a haze computer in accordance with JIS K 7361-1: 1997, for example.
  • the total light transmittance may be the total light transmittance in the range of the thickness of the optical film described later.
  • the optical film when the optical film is excellent in optical characteristics, it means that the total light transmittance is high and / or the haze is low and / or the YI value is low, and the transparency is high. May be used interchangeably as it increases or improves.
  • the haze of the optical film of the present invention is preferably 5% or less, more preferably 4% or less, still more preferably 3% or less, even more preferably 2% or less, particularly preferably 1% or less, and particularly more preferably 0. It is 8% or less, more preferably 0.5% or less, and usually 0.01% or more.
  • the haze can be measured using a haze computer in accordance with JIS K 7136: 2000, and can be measured by, for example, the method described in Examples.
  • the thickness of the optical film of the present invention is preferably 10 ⁇ m or more, more preferably 20 ⁇ m or more, still more preferably 25 ⁇ m or more, particularly preferably 30 ⁇ m or more, preferably 200 ⁇ m or less, more preferably 100 ⁇ m or less, still more preferably. It is 80 ⁇ m or less, particularly preferably 60 ⁇ m or less, and may be a combination of the upper limit and the lower limit thereof.
  • the thickness of the optical film can be measured using a micrometer, for example, by the method described in Examples.
  • the optical film of the invention has a high level of transparency and is therefore capable of exhibiting high total light transmittance and low haze even at relatively large thicknesses.
  • the thickness of the optical film of the present invention is preferably 10 ⁇ m or more, more preferably 15 ⁇ m or more, still more preferably 20 ⁇ m or more, even more preferably 25 ⁇ m or more, particularly preferably 30 ⁇ m or more, particularly more preferably 35 ⁇ m or more, especially. It is more preferably 40 ⁇ m or more, preferably 100 ⁇ m or less, more preferably 80 ⁇ m or less, still more preferably 60 ⁇ m or less.
  • the thickness of the optical film can be measured with a film thickness meter or the like, for example, by the method described in Examples.
  • the optical film of the present invention contains a polyimide-based resin.
  • the optical film of the present invention may contain one kind of polyimide-based resin, or may contain two or more kinds of polyimide-based resins.
  • the content of the polyimide resin in the optical film of the present invention is preferably 10 parts by mass or more, more preferably 30 parts by mass or more, still more preferably 50 parts by mass or more, and preferably 50 parts by mass or more, based on 100 parts by mass of the optical film. Is 99.5 parts by mass or less, more preferably 95 parts by mass or less.
  • the polyimide resin contained in the optical film of the present invention may be at least one resin selected from the group consisting of a polyimide resin, a polyamide-imide resin and a polyamic acid resin.
  • the polyimide-based resin may be one kind of polyimide-based resin or two or more kinds of polyimide-based resin.
  • the polyimide-based resin is preferably a polyamide-imide resin from the viewpoint of film-forming property and easy to increase proof stress.
  • the polyimide-based resin is preferably an aromatic-based polyimide-based resin.
  • the structural unit constituting the polyimide resin is preferably 60 mol% or more, more preferably 80 mol% or more, still more preferably 85 mol% or more, and has an aromatic structure. Indicates that it is a structural unit including.
  • the polyimide resin is based on the formula (1):
  • Y represents a tetravalent organic group
  • X represents a divalent organic group
  • * represents a bond
  • It is a polyimide resin having a structural unit represented by, or a structural unit represented by the formula (1) and the formula (3):
  • the polyamide-imide resin has a structural unit represented by.
  • the formulas (1) and (3) will be described below, but the description of the formula (1) relates to both the polyimide resin and the polyamide-imide resin, and the description of the formula (3) relates to the polyamide-imide resin.
  • the structural unit represented by the formula (1) is a structural unit formed by reacting a tetracarboxylic acid compound and a diamine compound
  • the structural unit represented by the formula (3) is a dicarboxylic acid compound and a diamine compound.
  • the polyimide-based resin is an aromatic polyimide-based resin
  • the tetracarboxylic acid constituting the structural unit represented by the formula (1) and the structural unit represented by the formula (3).
  • at least one of the compound, the diamine compound and the dicarboxylic acid compound is an aromatic compound (aromatic tetracarboxylic acid compound, aromatic diamine compound and / or aromatic dicarboxylic acid compound).
  • Y in the formula (1) represents a tetravalent organic group, preferably a tetravalent organic group having 4 to 80 carbon atoms, and more preferably a tetravalent organic group having a cyclic structure and having 4 to 60 carbon atoms.
  • Examples of the cyclic structure include an alicyclic ring, an aromatic ring, and a heterocyclic structure.
  • the organic group is an organic group in which a hydrogen atom in the organic group may be substituted with a substituent, and the substituent may preferably have a halogen atom or a halogen atom, and is a monovalent carbide.
  • the structural unit represented by the formula (1) is a repeating unit, and the polyimide resin contained in the optical film of the present invention has a plurality of structural units represented by the formula (1).
  • Y may be the same as or different from each other.
  • the polyimide resin contained in the optical film of the present invention may have one kind of structure or two or more kinds of structures as Y in the formula (1). ..
  • the polyimide resin has a structural unit represented by the formula (1), and the polyimide resin is Y in the formula (1).
  • equation (2) the polyimide resin is Y in the formula (1).
  • R 1 represents an alkyl group, an alkoxy group, an aryl group, or an aryloxy group which may have a halogen atom or a halogen atom independently of each other
  • R 2 to R 5 are Independently of each other, they represent a monovalent hydrocarbon group which may have a hydrogen atom or a halogen atom
  • m represents an integer of 0 to 3 independently of each other
  • n represents an integer of 1 to 4.
  • the polyimide resin has a structural unit represented by the formula (1) and a structural unit represented by the formula (3).
  • the polyimide resin is Z in the formula (3), and the formula (4 "):
  • W independently of one another, a single bond, -O-, diphenylmethylene group, a divalent or a halogen atom hydrocarbon radical, -SO 2 -, - S-, -CO -, - PO -, - PO 2 -, - N (R C1) - or -Si (R C2) 2 - represents, R C1 and R C2 are independently a hydrogen atom, or a halogen atom represents an alkyl group which may have, R 8 'are each independently an alkyl group which may have a halogen atom, an alkoxy group, p' independently of one another represent an integer of 1-4 , Q represents an integer from 0 to 4, and * represents a bond] It contains at least the structure represented by (divalent organic group).
  • the polyimide resin contains the structure represented by the formula (2) as Y in the formula (1), and the polyimide resin contains the structural unit represented by the formula (1).
  • the polyimide resin contains the structural unit represented by the formula (1).
  • the optical film obtained by using the polyimide resin is used. It has been found that the YI can be easily lowered and the proof stress can be easily increased.
  • the polyimide resin has a structure represented by the formula (2) and / or is represented by the formula (4 "). The structure will be included. Although it is not clear why the proof stress is likely to be increased when these structures are included, the structure represented by the formula (2) and the structure represented by the formula (4 ") both have an aromatic main chain.
  • such a structure is a structure that inhibits intermolecular packing due to having a substituent in the side chain while being rigid in the polyimide resin skeleton. It is considered that by including such a structure, the polyamide resin becomes highly tough while having a high elastic coefficient, and the stress leading to yielding becomes higher. Further, by including such a structure, a polyimide having high yield strength is considered. The based resin tends to increase the transparency of the obtained optical film and easily reduce the YI value. As a result, both high yield strength and excellent optical characteristics can be achieved at the same time.
  • R 1 in the formula (2) represents an alkyl group, an alkoxy group, an aryl group, or an aryloxy group, which may have a halogen atom or a halogen atom independently of each other.
  • the alkyl group, alkoxy group, aryl group, or aryloxy group which may have a halogen atom is an alkyl group which may have a halogen atom, an alkoxy group which may have a halogen atom, or a halogen atom.
  • halogen atom examples include a fluorine atom, a chlorine atom, a bromine atom and an iodine atom.
  • alkyl group examples include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, sec-butyl group, tert-butyl group, n-pentyl group, 2-methyl-butyl group and 3-methylbutyl group.
  • Groups, 2-ethyl-propyl groups, n-hexyl groups and the like can be mentioned.
  • alkoxy group examples include a methoxy group, an ethoxy group, a propyloxy group, an isopropyloxy group, a butoxy group, an isobutoxy group, a tert-butoxy group, a pentyloxy group, a hexyloxy group, a cyclohexyloxy group and the like.
  • aryl group examples include a phenyl group, a tolyl group, a xsilyl group, a naphthyl group, a biphenyl group and the like.
  • the aryloxy group examples include a phenoxy group, a naphthyloxy group, a biphenyloxy group and the like.
  • R 1 may have a halogen atom or a halogen atom independently of each other, preferably an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, an aryl group having 6 to 12 carbon atoms, or an aryl group having 6 to 12 carbon atoms. Represents an aryloxy group having 6 to 12 carbon atoms.
  • M in the formula (2) represents an integer of 0 to 3 independently of each other, and m is preferably 0 to 0 from the viewpoint of easily increasing the strength, elastic modulus and transparency of the optical film containing the polyimide resin. It represents an integer of 2, more preferably 0 or 1, and even more preferably 0.
  • R 2 , R 3 , R 4 and R 5 represent monovalent hydrocarbon groups that may have hydrogen or halogen atoms independently of each other.
  • the monovalent hydrocarbon group include an aromatic hydrocarbon group, an alicyclic hydrocarbon group, and an aliphatic hydrocarbon group.
  • the aromatic hydrocarbon group include an aryl group such as a phenyl group, a tolyl group, a xsilyl group, a naphthyl group and a biphenyl group.
  • the alicyclic hydrocarbon group include a cycloalkyl group such as a cyclopentyl group and a cyclohexyl group.
  • Examples of the aliphatic hydrocarbon group include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, a sec-butyl group, a tert-butyl group, an n-pentyl group and a 2-methyl-butyl group.
  • Examples thereof include alkyl groups such as 3-methylbutyl group, 2-ethyl-propyl group, n-hexyl, n-heptyl group, n-octyl group, tert-octyl group, n-nonyl group and n-decyl group.
  • Examples of the halogen atom include those described above.
  • R 2 - R 5 are, independently of one another, preferably a hydrogen atom, or a halogen atom may have an aryl group having 6 to 12 carbon atoms, a cycloalkyl group having 4 to 8 carbon atoms, or C 1 -C Represents an alkyl group of 6.
  • R 2 to R 5 have hydrogen atoms or halogen atoms independently of each other, preferably from the viewpoint of easily increasing the solubility of the resin in the solvent and easily improving the strength, elasticity and transparency of the optical film.
  • alkyl group which may have a hydrogen atom, more preferably 1 to 6 alkyl groups which may have a hydrogen atom or a halogen atom, and more preferably 1 to 3 which may have a hydrogen atom or a halogen atom.
  • alkyl group of may have a hydrogen atom, more preferably 1 to 6 alkyl groups which may have a hydrogen atom or a halogen atom, and more preferably 1 to 3 which may have a hydrogen atom or a halogen atom.
  • At least one benzene ring having R 2 ⁇ R 5 may represent at least one monovalent that may have a halogen atom hydrocarbon group R 2 ⁇ R 5, the optical film It is preferable from the viewpoint that both the proof stress and the optical characteristics of the above can be easily improved.
  • n is 2 or more, at least two benzene with R 2 ⁇ R 5
  • at least one of R 2 to R 5 represents a monovalent hydrocarbon group which may have a halogen atom
  • at least one of 5 represents a monovalent hydrocarbon group which may have a halogen atom
  • N in the formula (2) represents an integer of 1 to 4, and n is preferably 1 to 3 from the viewpoint of easily improving the elastic modulus and transparency of the optical film and easily improving the strength of the optical film. Is an integer of, more preferably 2 or 3, and even more preferably 2.
  • the structural unit represented by the formula (1) may include one or a plurality of types of structures represented by the formula (2) as Y.
  • the formula (2) is the formula (2'):
  • the polyimide resin contains a structure represented by the formula (2') as Y in the formula (1).
  • the polyimide resin contains a structure represented by the formula (2') as Y in the formula (1), it is easy to improve the proof stress, elastic modulus, and transparency of the optical film.
  • the polyimide resin contains a structure represented by the formula (2) as Y in the formula (1)
  • the formula (1) The proportion of the structural unit whose Y is the structure represented by the formula (2) (preferably the formula (2')) is the total molar amount (100 mol%) of the structural unit represented by the formula (1).
  • it is preferably 30 mol% or more, more preferably 35 mol% or more, further preferably 40 mol% or more, and usually 100 mol% or less, preferably 90 mol% or less, more preferably 80 mol% or less, further. It is preferably 70 mol% or less.
  • the ratio of the structural unit in which Y is represented by the formula (2) is at least the above lower limit, the proof stress and elastic modulus of the optical film can be easily increased. Further, when it is not more than the above upper limit, it is easy to increase the breaking strain and transparency of the optical film.
  • the ratio of the structural unit in which Y is represented by the formula (2) can be measured using, for example, 1 1 H-NMR, or can be calculated from the charging ratio of raw materials.
  • Y in the above formula (1) is added to or in place of the structural unit represented by the formula (2), and Y in the formula (1) is another. It may have a structural unit representing the tetravalent organic group of.
  • * represents a bond
  • W 1 is a single bond, —O—, a diphenylmethylene group, and a divalent hydrocarbon group (eg, ⁇ ” which may have a halogen atom.
  • Ar represents an arylene group having 6 to 20 carbon atoms which may have a fluorine atom, and specific examples thereof include a phenylene group.
  • RW1 and RW2 represent alkyl groups which may have a hydrogen atom or a halogen atom independently of each other.
  • the hydrogen atom on the ring in the formulas (20) to (29) is substituted with an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, or an aryl group having 6 to 12 carbon atoms. May be good.
  • An alkyl group having 1 to 6 carbon atoms, the aryl group an alkoxy group and 6 to 12 carbon atoms having 1 to 6 carbon atoms, respectively, include those exemplified above as R 1 of formula (2).
  • W 1 is yield strength of the optical film, fracture strain, from the viewpoint of easily improving the elastic modulus and transparency, preferably a single bond, -O -, - CH 2 - , - CH 2 -CH 2 -, - CH (CH 3 )-, -C (CH 3 ) 2 -or-C (CF 3 ) 2- , more preferably single bond, -O-, -CH 2- , -CH (CH 3 )-, -C ( CH 3 ) 2- or -C (CF 3 ) 2- , more preferably single bond, -C (CH 3 ) 2- or -C (CF 3 ) 2- , even more preferably single bond or -C (CF) 3) 2 -, particularly preferably -C (CF 3) 2 - represents a.
  • the polyimide resin contains a structure represented by the formula (2) as Y in the formula (1)
  • the polyimide resin has the Y in the formula (1) as the formula (2).
  • Y in the formula (1) further has a structural unit represented by the formula (26) from the viewpoint of easily improving the proof stress of the optical film.
  • the formula (26) is preferably the formula (5) :.
  • B is a single bond, -O-, a diphenylmethylene group, a divalent hydrocarbon group which may have a halogen atom, -SO 2- , -S-, -CO-,-. It represents COO-, -PO-, -PO 2- , -N ( RB1 )-or-Si ( RB2 ) 2- , and RB1 and RB2 have hydrogen atoms or halogen atoms independently of each other.
  • R 7 represents an alkyl group, an alkoxy group, an aryl group, or an aryloxy group which may have a halogen atom and a halogen atom independently of each other
  • t represents an alkyl group which may have a halogen atom and a halogen atom.
  • R 7 in the formula (5) represents an alkyl group, an alkoxy group, an aryl group, or an aryloxy group, which may have a halogen atom or a halogen atom independently of each other.
  • Halogen atom may have a halogen atom, an alkyl group, an alkoxy group, the aryl group and aryloxy group, exemplified above are mentioned as R 1 in each formula (2).
  • R 7 is an alkyl group having 1 to 6 carbon atoms which may have a halogen atom independently of each other, more preferably a halogen. Represents an alkyl group having 1 to 3 carbon atoms which may have an atom.
  • T in the formula (5) represents an integer of 0 to 3 independently of each other, and is preferably an integer of 0 to 2 from the viewpoint of easily improving the proof stress, breaking strain, elastic modulus and transparency of the optical film. It is preferably 0 or 1, and more preferably 0.
  • B in the formula (5) is a single bond, -O-, a diphenylmethylene group, a divalent hydrocarbon group which may have a halogen atom, -SO 2- , -S-, -CO-, -COO. -, -PO-, -PO 2- , -N ( RB1 )-or-Si ( RB2 ) 2- represents, and RB1 and RB2 have hydrogen atoms or halogen atoms independently of each other. Represents a optionally alkyl group.
  • Examples of the divalent hydrocarbon group which may have a halogen atom, the formula (3) in the R 2 ⁇ of monovalent hydrocarbon group which may have a halogen atom in R 5, further hydrogen atom A divalent group excluding one can be mentioned.
  • a divalent hydrocarbon group, which may have a halogen atom forms a ring in place of two hydrogen atoms among the hydrogen atoms contained in the group, that is, the two hydrogen atoms are replaced by a bonder.
  • the two bonds may be connected to form a ring, and examples of the ring include a cycloalcan ring having 3 to 12 carbon atoms.
  • R B1 and R B2 medium As the alkyl group which may be substituted by a halogen atom in R B1 and R B2 medium, - and -Si (R B2) 2
  • Examples of the alkyl group which may have a halogen atom in R 1 in the formula (3) include those exemplified above.
  • B in the formula (5) is preferably a single bond or a divalent hydrocarbon group which may have a halogen atom from the viewpoint of easily improving the proof stress, breaking strain, elasticity and transparency of the optical film.
  • a single bond -CH 2 -, - CH 2 -CH 2 -, - CH (CH 3) -, - C (CH 3) 2 - or -C (CF 3) 2 -
  • more preferably a single represents a bond, -C (CH 3 ) 2 -or-C (CF 3 ) 2- , even more preferably a single bond or -C (CF 3 ) 2- , and particularly preferably -C (CF 3 ) 2-.
  • the formula (5) is the formula (5'):
  • the polyimide resin has at least a structural unit represented by the formula (1) in which Y is represented by the formula (5'). In this case, it is easy to improve the proof stress, transparency, elastic modulus and bending resistance of the optical film.
  • the Y in the formula (1) is the structural unit represented by the formula (1).
  • the ratio of the structural units having the structure represented by the formula (5') is preferably 30 mol with respect to the total molar amount (100 mol%) of the structural units represented by the formula (1). % Or more, more preferably 35 mol% or more, still more preferably 40 mol% or more, preferably 90 mol% or less, more preferably 80 mol% or less, still more preferably 70 mol% or less.
  • the proportion of the structural unit in which Y is represented by the formula (5) is at least the above lower limit, the solubility of the resin in the solvent and the transparency of the optical film can be easily improved. Further, when it is not more than the above upper limit, it is easy to increase the proof stress and elastic modulus of the optical film.
  • the ratio of the structural units in which Y in the formula (1) is represented by the formula (5) can be measured using, for example, 1 1 H-NMR, or can be calculated from the raw material charging ratio.
  • the polyimide resin has a structural unit in which Y in the formula (1) is represented by the formula (2) and a structural unit in which Y in the formula (1) is represented by the formula (5).
  • the total ratio of Y to the structural unit represented by the formula (2) and Y to the structural unit represented by the formula (5) is the total molar amount of the structural unit represented by the formula (1). It is preferably 50 mol% or more, more preferably 70 mol% or more, still more preferably 90 mol% or more, and usually 100 mol% or less.
  • the total ratio can be measured using, for example, 1 H-NMR, or can be calculated from the raw material charging ratio.
  • X in the formula (1) represents a divalent organic group, preferably a divalent organic group having 4 to 40 carbon atoms.
  • the polyimide-based resin of the present invention has a divalent aromatic group or a divalent alicyclic group as X in the formula (1) from the viewpoint of easily improving the strength, breaking strain, elasticity and transparency of the optical film. It preferably contains at least one group and a divalent aliphatic group, and more preferably contains a divalent aromatic group.
  • Examples of the divalent aromatic group for example, of the hydrogen atoms in the monovalent aromatic hydrocarbon group exemplified above as R 2 ⁇ R 5 in formula (2), replacing one of the hydrogen atoms have bond divalent aromatic hydrocarbon groups; one of the divalent aromatic hydrocarbon group, at least one or more linking groups include, for example, groups obtained by binding the linking group such as V 1 of the later.
  • divalent alicyclic group for example of the hydrogen atoms in the monovalent alicyclic hydrocarbon group exemplified above as R 2 ⁇ R 5 in formula (2)
  • one hydrogen atom bonds include one of the divalent alicyclic hydrocarbon group, at least one or more linking groups, for example bound by a linking group such as V 1 of the later group; divalent alicyclic hydrocarbon group replaced with Be done.
  • Examples of the divalent aliphatic group for example, of the hydrogen atoms in the monovalent aliphatic hydrocarbon group exemplified above as R 2 ⁇ R 5 in formula (2), replacing one of the hydrogen atoms have bond divalent aliphatic hydrocarbon groups; among the divalent aliphatic hydrocarbon group, at least one or more linking groups include, for example, groups obtained by binding the linking group such as V 1 of the later.
  • X in the formula (1) is preferably a divalent organic group having 4 to 40 carbon atoms having a cyclic structure (ali ring, aromatic ring, heterocyclic structure, etc.), and more preferably divalent group having 4 to 40 carbon atoms.
  • the hydrogen atom in the organic group may be substituted with a hydrocarbon group or a hydrocarbon group substituted with fluorine, in which case the number of carbon atoms of the hydrocarbon group and the hydrocarbon group substituted with fluorine is preferable. Is 1-8.
  • the polyamide-imide resin of the present invention may contain a plurality of types of X, and the plurality of types of X may be the same as or different from each other.
  • X is represented by the formula (10), the formula (11), the formula (12), the formula (13), the formula (14), the formula (15), the formula (16), the formula (17) and the formula (18).
  • the hydrogen atom on the ring in the formulas (10) to (18) is substituted with an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, or an aryl group having 6 to 12 carbon atoms. May be good.
  • An alkyl group having 1 to 6 carbon atoms, the aryl group an alkoxy group and 6 to 12 carbon atoms having 1 to 6 carbon atoms, respectively, include those exemplified above as R 1 of formula (2).
  • V 1 , V 2 and V 3 are independent of each other, single bond, -O-, -S-, -CH 2- , -CH.
  • Q represents a monovalent hydrocarbon group having 1 to 12 carbon atoms which may have a halogen atom.
  • V 1 and V 3 are single bonds, -O- or -S-, and V 2 is -CH 2- , -C (CH 3 ) 2- , -C (CF 3). ) 2 -or-SO 2- .
  • the bonding positions of V 1 and V 2 with respect to each ring and the bonding positions of V 2 and V 3 with respect to each ring are independent of each other, preferably in the meta position or para position, and more preferably in the meta position or para position with respect to each ring. It is a para position.
  • the polyimide resin of the present invention is represented by X in the formula (1), and the formula (6):
  • A is a single bond, -O-, a diphenylmethylene group, a divalent hydrocarbon group which may have a halogen atom, -SO 2- , -S-, -CO-,-.
  • R A1 and R A2 are, independently of one another, may have a hydrogen atom, or a halogen atom
  • R 6 represents an alkyl group, an alkoxy group, an aryl group, or an aryloxy group independently of each other, which may have a halogen atom or a halogen atom
  • s represents 0 to 4 independently of each other. Represents an integer of, * represents a bond] It may include a structure represented by.
  • the polyimide resin has a structural unit in which X in the formula (1) is represented by the formula (6), it is easy to improve the proof stress, breaking strain, elastic modulus and transparency of the optical film.
  • the polyimide-based resin may contain one or more groups represented by the formula (6) as X in the structural unit represented by the formula (1).
  • R 6 in the formula (6) represents an alkyl group, an alkoxy group, an aryl group, or an aryloxy group, which may have a halogen atom or a halogen atom independently of each other.
  • Halogen atom may have a halogen atom, an alkyl group, an alkoxy group, the aryl group, and aryloxy group, respectively, include those exemplified above as R 1 of formula (2).
  • R 6 is preferably an alkyl group having 1 to 6 carbon atoms or a halogen having 1 to 6 carbon atoms from the viewpoint of easily improving the strength, breaking strain, elasticity and transparency of the optical film independently of each other. It represents an alkylated group, more preferably an alkyl group having 1 to 6 carbon atoms or a fluoroalkyl group having 1 to 6 carbon atoms (preferably a perfluoroalkyl group). In a preferred form, R 6 represents a methyl, chloro or trifluoromethyl group independently of each other.
  • s represents an integer of 0 to 4 independently of each other, and is preferably an integer of 1 to 3, more preferably 1 or 2, from the viewpoint of easily improving the proof stress, breaking strain, elastic modulus and transparency of the optical film. More preferably, it is 1.
  • R 6 is substituted at the ortho position relative to —A—, and R 6 is a methyl group, a fluoro group, a chloro group or trifluoro. It is preferably a methyl group.
  • the positions of the binders are preferably in the meta position or the para position with respect to ⁇ A— from the viewpoint of easily improving the proof stress, breaking strain, elastic modulus and transparency of the optical film independently of each other. , More preferably the para position.
  • a in the formula (6) is a single bond, -O-, a diphenylmethylene group, a divalent hydrocarbon group which may have a halogen atom, -SO 2- , -S-, -CO-, -PO. -, -PO 2- , -N ( RA1 )-or-Si ( RA2 ) 2- represents, RA1 and RA2 may have hydrogen atoms or halogen atoms independently of each other. Represents a group.
  • divalent hydrocarbon group which may have a halogen atom
  • R 2 ⁇ R monovalent that may have a halogen atom in the 5 hydrocarbon radical of the formula (3)
  • a hydrogen atom 1 Excluded divalent groups can be mentioned.
  • a divalent hydrocarbon group, which may have a halogen atom forms a ring in place of two hydrogen atoms among the hydrogen atoms contained in the group, that is, the two hydrogen atoms are replaced by a bonder.
  • the two bonds may be connected to form a ring, and examples of the ring include a cycloalcan ring having 3 to 12 carbon atoms.
  • equation (4) -N contained A in (R A1) - and -Si (R A2) 2 - Examples of the alkyl group which may have a halogen atom in R A1 and R A2 of the formula ( Examples of the alkyl group which may have a halogen atom in R 1 in 3) are mentioned above.
  • the A in the formula (6), strength of the optical film, fracture strain, from the viewpoint of easily improving the elastic modulus and transparency preferably a single bond, -CH 2 -, - CH 2 -CH 2 -, - CH ( CH 3 )-, -C (CH 3 ) 2 -or-C (CF 3 ) 2- , more preferably single bond, -C (CH 3 ) 2- or -C (CF 3 ) 2- , even more preferably.
  • R 6 are independent of each other in the formula (6) from the viewpoint of easily improving the breaking strain, elastic modulus and transparency of the optical film and easily improving the proof stress of the optical film.
  • the formula (6) is the formula (6'):
  • the ratio of the structural units in which X in the formula (1) is the structure represented by the formula (6) is the total of the structural units represented by the formula (1). With respect to the molar amount (100 mol%), it is preferably 50 mol% or more, more preferably 70 mol% or more, still more preferably 80 mol% or more, and usually 100 mol% or less.
  • the proportion of the structural unit in which X is represented by the formula (4) is equal to or greater than the above lower limit, the transparency of the optical film can be easily increased. Further, when it is not more than the above upper limit, it is easy to increase the proof stress of the optical film.
  • the ratio of the structural units in which X in the formula (1) is represented by the formula (6) can be measured using, for example, 1 1 H-NMR, or can be calculated from the raw material charging ratio.
  • the polyimide resin contained in the optical film of the present invention has the formula (3): in addition to the structural unit represented by the formula (1).
  • the resin may have a structural unit represented by.
  • the resin is also referred to as a polyamide-imide-based resin.
  • Z in the formula (3) represents a divalent organic group, preferably having a hydrocarbon group having 1 to 8 carbon atoms or a fluorine-substituted hydrocarbon group having 1 to 8 carbon atoms. It has a cyclic structure and may have a divalent organic group having a number of 4 to 40, more preferably a hydrocarbon group having 1 to 8 carbon atoms or a fluorine-substituted hydrocarbon group having 1 to 8 carbon atoms. Represents a divalent organic group of 4-40.
  • Examples of the cyclic structure include an alicyclic ring, an aromatic ring, and a heterocyclic structure.
  • divalent organic group having an alicyclic ring and an aromatic ring examples include the formula (20), the formula (21), the formula (22), the formula (23), the formula (24), the formula (25), and the formula (26). Equation (27), Equation (28) and Equation (29):
  • W 1 is a single bond, -O-, a diphenylmethylene group, a divalent hydrocarbon group which may have a halogen atom (for example, -CH 2- , -CH 2- CH 2-, -CH (CH 3 )).
  • Ar represents an arylene group having 6 to 20 carbon atoms, for example, a phenylene group, which may have a fluorine atom independently of each other, and represents R W1 and R.
  • W2 is an alkyl group that may have a hydrogen atom or a halogen atom independently of each other, and * represents a bond.
  • group bonds represented by examples thereof include a group in which two non-adjacent groups are replaced with hydrogen atoms and a divalent chain hydrocarbon group having 6 or less carbon atoms.
  • divalent organic group having a heterocyclic structure examples include a group having a thiophene ring skeleton.
  • two non-adjacent groups have a group in which a hydrogen atom is replaced, and a thiophene ring skeleton. Groups are preferred.
  • the Z in the formula (3) includes the formula (20'), the formula (21'), the formula (22'), the formula (23'), the formula (24'), the formula (25'), and the formula (26'). ), Equation (27'), Equation (28') and Equation (29'):
  • W 1 and * are as defined in formula (20) to (29)]
  • the divalent organic group represented by is more preferable.
  • the hydrogen atom on the ring in the formulas (20) to (29) and the formulas (20') to (29') is an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, or an alkoxy group having 1 to 6 carbon atoms. It may be substituted with an aryl group having 6 to 12 carbon atoms.
  • An alkyl group having 1 to 6 carbon atoms, the aryl group an alkoxy group and 6 to 12 carbon atoms having 1 to 6 carbon atoms, respectively, exemplified above are mentioned as R 1 of formula (3).
  • the polyimide resin contained in the optical film of the present invention has Z in the formula (3) as the formula (4):
  • W is each independently a single bond, -O-, diphenylmethylene group, a divalent hydrocarbon group which may have a halogen atom, -SO 2 -, - S - , - It represents CO-, -PO-, -PO 2- , -N ( RC1 )-or-Si ( RC2 ) 2- , and RC1 and RC2 have hydrogen atom or halogen atom independently of each other.
  • R 8 represents an alkyl group which may have a halogen atom, a halogen atom, an alkyl group, an alkoxy group, an aryl group, or an aryloxy group, and p is independent of each other.
  • 0 to 4 represents an integer
  • q represents an integer from 0 to 4
  • * represents a bond.
  • It may include a structure represented by.
  • the structural unit represented by the formula (3) may contain one or more groups represented by the formula (4) as Z.
  • the bonding position of W is preferably the meta position or the para position with reference to the bonding hand from the viewpoint of easily improving the proof stress, breaking strain, elastic modulus and transparency of the optical film independently of each other. More preferably, it is in the para position.
  • the formula (4) is the formula (4') :.
  • Equation (4') W, R 8 , p and q are as defined in equation (4)] It is represented by.
  • Z in the formula (3) is represented by the formula (4') in at least a part of the structural units represented by the formula (3) included in the polyimide resin. In this case, it is easy to improve the proof stress, breaking strain, elastic modulus and transparency of the optical film.
  • R 8 represents an alkyl group, an alkoxy group, an aryl group, or an aryloxy group, which may have a halogen atom or a halogen atom independently of each other.
  • Halogen atom may have a halogen atom, an alkyl group, an alkoxy group, the aryl group, and aryloxy group, respectively, include those exemplified above as R 1 of formula (2).
  • R 8 is an alkyl having 1 to 6 carbon atoms, which may preferably have a halogen atom from the viewpoint of easily improving the proof stress, breaking strain, elastic modulus and transparency of the optical film independently of each other. It represents a group or an alkoxy group having 1 to 6 carbon atoms, more preferably an alkyl group having 1 to 3 carbon atoms or an alkoxy group having 1 to 3 carbon atoms.
  • p represents an integer of 0 to 4 independently of each other, and is preferably an integer of 0 to 2 from the viewpoint of easily improving the proof stress, breaking strain, elastic modulus and transparency of the optical film.
  • W in the formula (4) and Formula (4 ') is independently a single bond to one another, -O-, diphenylmethylene group, a divalent hydrocarbon group which may have a halogen atom, -SO 2 -, Represents -S-, -CO-, -PO-, -PO 2- , -N ( RC1 )-or -Si ( RC2 ) 2-, and indicates the yield strength, breaking strain, elastic modulus and transparency of the optical film. From the viewpoint of easy improvement, it preferably represents —O— or —S—, and more preferably —O—.
  • RC1 and RC2 represent monovalent hydrocarbon groups having 1 to 12 carbon atoms which may have hydrogen atoms or halogen atoms independently of each other.
  • Q in the formulas (4) and (4') is an integer in the range of 0 to 4, and when q is in this range, the yield strength, breaking strain, elastic modulus and transparency of the optical film are improved.
  • Q in the formula (4) and the formula (4') is preferably an integer in the range of 0 to 3, and more preferably an integer in the range of 0 to 2.
  • the structural unit represented by the formula (4) or the formula (4') in which q is 0 is, for example, a structural unit derived from terephthalic acid or isophthalic acid, and the structural unit is the formula (4) or the formula (4).
  • P and q in') are 0, or q is 0 and p is 1 or 2 (preferably R 8 is an alkyl group having 1 to 3 carbon atoms or a fluorinated alkyl group or an alkoxy group having 1 to 3 carbon atoms. ) Is preferable.
  • the polyamide-imide resin preferably contains a structural unit derived from terephthalic acid.
  • the polyamide-imide resin may contain one or more structural units represented by the formula (4) or the formula (4') in Z.
  • X is the structural unit represented by the formula (3) in the formula (4).
  • the ratio of the constituent units represented is preferably 30 mol% or more, more preferably 50 mol% or more, still more preferably 70 mol% or more, based on the total molar amount of the constituent units represented by the formula (3). Yes, usually less than 100 mol%.
  • the ratio of the structural unit in which Z in the formula (3) is represented by the formula (4) is equal to or more than the above lower limit, the breaking strain, elastic modulus and transparency of the optical film can be easily improved, and the optical film can be easily improved. It is easy to improve the bearing capacity.
  • the ratio of the structural units in which Z in the formula (3) is represented by the formula (4) can be measured using, for example, 1 1 H-NMR, or can be calculated from the raw material charging ratio.
  • the above description regarding the preferable ratio also applies to the structure represented by the formula (4') and the structure represented by the formula (4 ").
  • X is the formula among the structural units represented by the formula (3).
  • the ratio of the structural unit represented by (4) is preferably 5 mol% or more with respect to the total molar amount of the structural unit represented by the formula (1) and the structural unit represented by the formula (3). It is more preferably 15 mol% or more, further preferably 30 mol% or more, particularly preferably 50 mol% or more, and usually 100 mol% or less.
  • the ratio of the structural unit in which Z in the formula (3) is represented by the formula (4) is not more than the above lower limit, the proof stress, breaking strain, elastic modulus and transparency of the optical film can be easily improved.
  • the ratio of the structural units in which Z in the formula (3) is represented by the formula (4) can be measured using, for example, 1 1 H-NMR, or can be calculated from the raw material charging ratio.
  • the above description regarding the preferable ratio also applies to the structure represented by the formula (4') and the structure represented by the formula (4 ").
  • the polyamide-imide resin has a structural unit in which Z in the formula (3) is represented by any of the above formulas (20') to (29'), and Z in the formula (3) is a formula.
  • the polyamide-imide resin has the following structural unit (d1): in addition to the structural unit represented by the formulas (1) and (3).
  • R 24 the alkyl group having 1 to 6 carbon atoms, the alkoxy group having 1 to 6 carbon atoms, and the aryl group having 6 to 12 carbon atoms are exemplified above as R 1 of the formula (2), respectively. Be done.
  • the ratio of the structural unit represented by the formula (d1) is represented by the structural unit represented by the formula (1) and the structural unit represented by the formula (3). It is preferably 0.01 mol% or more, more preferably 0.1 mol% or more, still more preferably 1 mol% or more, and preferably 30 mol% or less, based on the total molar amount of the constituent units. It is preferably 20 mol% or less, more preferably 10 mol% or less.
  • the ratio can be measured using, for example, 1 H-NMR, or can be calculated from the raw material charging ratio.
  • the polyimide resin contained in the optical film of the present invention has a structural unit represented by the formula (1) and a structural unit represented by the formula (3), and has a structural unit represented by the formula (3).
  • W is a divalent hydrocarbon group which may have a single bond, —O—, a diphenylmethylene group, a halogen atom, —SO 2- , —S—, independently of each other.
  • -CO -, - PO -, - PO 2 -, - N (R C1) - or -Si (R C2) 2 - represents, R C1 and R C2 are independently a hydrogen atom, or a halogen atom a represents an alkyl group which may, R 8 ', independently of one another, denote alkoxy group which may have a halogen atom, p' independently of one another represent an integer of 1 ⁇ 4, q is Represents an integer from 0 to 4, * represents a bond] Including at least the structure represented by.
  • the polyimide resin contains the structure represented by the above formula (4 "), it is easy to improve the proof stress of the polyimide resin, and it is easy to improve the optical characteristics of the obtained optical film
  • Equation (4 Equation (4)) R 8 in ', independently of one another, have a halogen atom It represents an alkoxy group which may be used, and preferably represents an alkoxy group having 1 to 6 carbon atoms.
  • P'in equation (4 ") represents an integer of 1 to 4, preferably an integer of 1 to 2, independently of each other.
  • Examples of the X in the formula (3) include those exemplified above as the X in the formula (1), and the preferred form is also the same. Further, X in the formula (1) and X in the formula (3) may be the same or different.
  • the structural unit represented by the formula (1) and / or the structural unit represented by the formula (3) has a structure (or group) represented by the formula (5) as X. It may contain a species or a plurality of species.
  • the ratio of the structural units in which X is represented by the formula (5) is , Preferably 30 mol% or more, more preferably 50 mol% or more, still more preferably 70 mol, based on the total molar amount of the structural unit represented by the formula (1) and the structural unit represented by the formula (3). % Or more, usually 100 mol% or less.
  • the ratio of the structural unit in which X is represented by the formula (5) can be measured using, for example, 1 1 H-NMR, or can be calculated from the raw material charging ratio.
  • the structural unit represented by the formula (1) and the structural unit represented by the formula (3) included in some cases the structural unit represented by the formula (30) and / Alternatively, it may include a structural unit represented by the formula (31).
  • Y 1 is a tetravalent organic group, preferably an organic group in which the hydrogen atom in the organic group may be substituted with a hydrocarbon group or a hydrocarbon group substituted with fluorine.
  • Y 1 include formula (20), formula (21), formula (22), formula (23), formula (24), formula (25), formula (26), formula (27), formula (28) and A group represented by the formula (29), a group in which the hydrogen atom in the groups represented by the formulas (20) to (29) is substituted with a methyl group, a fluoro group, a chloro group or a trifluoromethyl group, and a group.
  • a chain hydrocarbon group having 4 or less tetravalent carbon atoms is exemplified.
  • the structural unit represented by the formula (30) may include a structure represented by a plurality of kinds of Y 1, Y 1 of the plurality of kinds may be the same with each other, or different You may.
  • Y 2 is a trivalent organic group, preferably an organic group in which the hydrogen atom in the organic group may be substituted with a hydrocarbon group or a hydrocarbon group substituted with fluorine.
  • Examples of Y 2 include the above equations (20), (21), (22), (23), (24), (25), (26), (27), and (28). ) And a group in which any one of the bonds of the group represented by the formula (29) is replaced with a hydrogen atom, and a chain hydrocarbon group having a trivalent carbon number of 6 or less are exemplified.
  • the structural unit represented by the formula (31) may include a structure represented by a plurality of kinds of Y 2, Y 2 a plurality of species may be identical to each other, or different You may.
  • X 1 and X 2 are divalent organic groups independently of each other, and preferably a hydrocarbon group in which a hydrogen atom in the organic group is substituted with a hydrocarbon group or fluorine. It is an organic group that may be substituted with.
  • Examples of X 1 and X 2 include the above equations (10), (11), (12), (13), (14), (15), (16), (17) and A group represented by the formula (18); a group in which the hydrogen atom in the groups represented by the formulas (10) to (18) is substituted with a methyl group, a fluoro group, a chloro group or a trifluoromethyl group; A chain hydrocarbon group having 6 or less carbon atoms is exemplified.
  • the polyimide-based resin contains a structural unit represented by the formula (30) and / or a structural unit represented by the formula (31), the structural unit represented by the formula (30) and the structural unit represented by the formula (31) are represented.
  • the total ratio of the structural units to be formed is preferably 0.01 mol% or more, more preferably 0.01 mol% or more, based on the total molar amount of the structural units represented by the formula (1) and the structural units represented by the formula (3). Is 0.1 mol% or more, more preferably 1 mol% or more, preferably 30 mol% or less, more preferably 20 mol% or less, still more preferably 10 mol% or less.
  • the ratio can be measured using, for example, 1 1 H-NMR, or can be calculated from the raw material charging ratio.
  • the ratio of the structural units represented by the formula (1) is represented by the formula (1). 10 mol% or more, more preferably 15 mol% or more, still more preferably 20 mol% or more with respect to the total molar amount (100 mol%) of the constituent unit to be expressed and the constituent unit represented by the formula (3). It is particularly preferably 25 mol% or more, preferably 90 mol% or less, more preferably 70 mol% or less, still more preferably 60 mol% or less, and particularly preferably 50 mol% or less.
  • the ratio of the structural unit represented by the formula (1) when the ratio of the structural unit represented by the formula (1) is equal to or higher than the above lower limit, the thickening due to the hydrogen bond between the amide bonds in the formula (2) is suppressed, and the viscosity of the polyamide-imide varnish is suppressed. Can be reduced, and the manufacture of optical members is easy.
  • the ratio of the structural unit represented by the formula (1) when the ratio of the structural unit represented by the formula (1) is not more than the above upper limit, the optical film containing the polyamide-imide resin exhibits high surface hardness.
  • the above ratio can be measured using, for example, 1 1 H-NMR, or can be calculated from the raw material charging ratio.
  • the weight average molecular weight of the polyimide resin contained in the optical film of the present invention (hereinafter, may be referred to as Mw) is preferably 100,000 or more, more preferably 150,000 or more, still more preferably 200,000 or more. Even more preferably 300,000 or more, especially even more preferably 400,000 or more, particularly more preferably 500,000 or more, particularly more preferably 600,000 or more, preferably 1,500,000 or less, more. It is preferably 1,200,000 or less, more preferably 1,000,000 or less, and particularly preferably 800,000 or less.
  • Mw of the polyimide resin is at least the above lower limit, it is easy to improve the proof stress, breaking strain and elastic modulus of the obtained optical film.
  • Mw is not more than the above upper limit
  • gelation of the resin varnish is easily suppressed, and the optical characteristics of the obtained optical film are easily improved.
  • the polyimide resin of the present invention contains a structure represented by the formula (2) as Y in the formula (1)
  • the viscosity of the solution of the polyimide resin having the structure tends to be high. I understood. Since the viscosity of the resin solution tends to increase as the Mw of the polyimide resin increases, it is very difficult to increase the molecular weight of the polyimide resin containing such a structure.
  • Mw can be increased by producing a polyimide-based resin under the production conditions described later. Mw can be determined, for example, by performing gel permeation chromatography (hereinafter, may be referred to as GPC) measurement and converting to standard polystyrene, and can be determined, for example, by the method described in Examples.
  • GPC gel permeation chromatography
  • the polyimide resin in the present invention may contain a halogen atom such as a fluorine atom which can be introduced by, for example, the above-mentioned fluorine-containing substituent or the like.
  • a halogen atom such as a fluorine atom which can be introduced by, for example, the above-mentioned fluorine-containing substituent or the like.
  • the halogen atom is preferably a fluorine atom.
  • Preferred fluorine-containing substituents for containing a fluorine atom in the polyimide resin include, for example, a fluoro group and a trifluoromethyl group.
  • the content thereof is preferably 1 to 40% by mass, more preferably 5 to 40% by mass, and further preferably 5 to 30 based on the mass of the polyimide resin. It is mass%.
  • the halogen atom content is at least the above lower limit, the YI value of the optical film can be easily reduced, and the breaking strain and elastic modulus can be easily increased.
  • the halogen atom content is less than or equal to the above upper limit, synthesis becomes easier.
  • the imidization ratio of the polyimide resin is preferably 90% or more, more preferably 93% or more, and further preferably 96% or more. From the viewpoint of easily increasing the proof stress and optical characteristics of the optical film, the imidization ratio is preferably at least the above lower limit. The upper limit of the imidization rate is 100% or less.
  • the imidization ratio indicates the ratio of the molar amount of the imide bond in the polyimide resin to twice the molar amount of the structural unit derived from the tetracarboxylic acid compound in the polyimide resin.
  • the value is twice the molar amount of the structural unit derived from the tetracarboxylic acid compound in the polyimide resin, and the molar amount of the structural unit derived from the tricarboxylic acid compound.
  • the ratio of the molar amount of the imide bond in the polyimide resin to the total of the above is shown.
  • the imidization rate can be determined by an IR method, an NMR method, or the like.
  • the method for producing the polyimide resin of the present invention is not particularly limited. In one embodiment of the present invention, it can be produced by using a tetracarboxylic acid compound and a diamine compound described later as main raw materials and, in some cases, a dicarboxylic acid compound together. More specifically, a step of reacting a diamine compound with a tetracarboxylic acid compound to obtain a polyamic acid, and when the polyimide resin is a polyamide-imide resin, the polyamic acid is reacted with a dicarboxylic acid to obtain a polyamide-imide.
  • It can be produced by a method including a step of obtaining a resin precursor and a step of imimifying the polyamic acid or the polyamide-imide resin precursor.
  • a tricarboxylic acid compound may be reacted.
  • the structural units represented by the formulas (1) and (30) are usually derived from a diamine compound and a tetracarboxylic acid compound.
  • the structural unit represented by the formula (3) is usually derived from a diamine compound and a dicarboxylic acid compound.
  • the structural unit represented by the formula (31) is usually derived from a diamine compound and a tricarboxylic acid compound.
  • the tetracarboxylic acid compound used in the production of the polyimide resin is at least the formula (X):
  • R 1 to R 5 , m and n are the same as R 1 to R 5 , m and n in formula (3), respectively]. It is preferable to contain the compound represented by.
  • the compound represented by the formula (X) may be obtained by a conventional method, for example, by reacting trimellitic anhydride or a derivative thereof with an aromatic diol, or a commercially available product may be used.
  • the tetracarboxylic acid compound used in the production of the polyimide-based resin is, in addition to the compound represented by the formula (X), further represented by the formula (Y) :.
  • Examples of the tetracarboxylic acid compound used in the production of the polyimide resin include aromatic tetracarboxylic acid compounds such as aromatic tetracarboxylic dianhydride; and aliphatic tetracarboxylic acid compounds such as aliphatic tetracarboxylic dianhydride. Can be mentioned.
  • the tetracarboxylic acid compound may be used alone or in combination of two or more.
  • the tetracarboxylic dian compound may be a tetracarboxylic dian compound analog such as an acid chloride compound in addition to the dianhydride.
  • aromatic tetracarboxylic dianhydride examples include a non-condensed polycyclic aromatic tetracarboxylic dianhydride, a monocyclic aromatic tetracarboxylic dianhydride, and a condensed polycyclic aromatic tetra.
  • examples include carboxylic dianhydride.
  • examples of the non-condensed polycyclic aromatic tetracarboxylic dianhydride include an ester of trimellitic anhydride and 2,2', 3,3', 5,5'-hexamethyl-4,4'-biphenol.
  • TAHMBP trimellitic anhydride
  • TA23X-BP 2,2', 3,3'-tetramethyl-4,4'-biphenol
  • the monocyclic aromatic tetracarboxylic dianhydride for example, 1,2,4,5-benzenetetracarboxylic dianhydride [also referred to as pyromellitic dianhydride (hereinafter, referred to as PMDA). There is)]
  • examples of the fused polycyclic aromatic tetracarboxylic dianhydride include 2,3,6,7-naphthalenetetracarboxylic dianhydride.
  • TAHMBP TA23X-BP
  • an esterified product of trimellitic anhydride and 3,3', 5,5'-tetramethyl-4,4'-biphenol, PMDA, 4,4'-oxydiphthalic acid preferably TAHMBP, TA23X-BP, an esterified product of trimellitic anhydride and 3,3', 5,5'-tetramethyl-4,4'-biphenol, PMDA, 4,4'-oxydiphthalic acid.
  • TAHMBP Trimellitic anhydride
  • TA23X-BP esterified products of trimellitic anhydride and 3,3', 5,5'-tetramethyl-4,4'-biphenol, 4,4'-oxydiphthalic anhydride, BPDA, 2 , 2', 3,3'-biphenyltetracarboxylic hydride, 6FDA, bis (3,4-dicarboxyphenyl) methane hydride, and 4,4'-(p-phenylenedioxy) diphthalate
  • Anhydrides can be mentioned. These can be used alone or in combination of two or more.
  • Examples of the aliphatic tetracarboxylic dianhydride include cyclic or acyclic aliphatic tetracarboxylic dianhydride.
  • the cyclic aliphatic tetracarboxylic dianhydride is a tetracarboxylic dianhydride having an alicyclic hydrocarbon structure, and specific examples thereof include 1,2,4,5-cyclohexanetetracarboxylic dianhydride.
  • Cycloalkanetetracarboxylic dianhydride such as 1,2,3,4-cyclobutanetetracarboxylic dianhydride, 1,2,3,4-cyclopentanetetracarboxylic dianhydride, bicyclo [2.2] .2] Oct-7-ene-2,3,5,6-tetracarboxylic dianhydride, dicyclohexyl-3,3', 4,4'-tetracarboxylic dianhydride and their positional isomers are listed. Be done. These can be used alone or in combination of two or more.
  • acyclic aliphatic tetracarboxylic dianhydride examples include 1,2,3,4-butanetetracarboxylic dianhydride, 1,2,3,4-pentanetetracarboxylic dianhydride and the like. These can be used alone or in combination of two or more. Further, a cyclic aliphatic tetracarboxylic dianhydride and an acyclic aliphatic tetracarboxylic dianhydride may be used in combination.
  • TAHMBP TA23X-BP
  • trimellitic anhydride 3,3', 5,5'-tetramethyl-4
  • examples of the dicarboxylic acid compound used for its synthesis include aromatic dicarboxylic acids, aliphatic dicarboxylic acids, acid chloride compounds related thereto, acid anhydrides, and the like. The above may be used together. Specific examples include terephthalic acid; 2,5-bis (trifluoromethyl) terephthalic acid; isophthalic acid; 2,5-dimethylterephthalic acid; 2,5-dimethoxyterephthalic acid; naphthalenedicarboxylic acid; 4,4'-biphenyl.
  • dicarboxylic acid compounds 4,4'-oxybis benzoic acid, terephthalic acid, isophthalic acid, 2-methoxyterephthalic acid, 2,5-dimethylterephthalic acid, from the viewpoint of easily improving the strength and transparency of the optical film.
  • 2,5-Dimethoxyterephthalic acid, 2,5-bis (trifluoromethyl) terephthalic acid, 2,2'-bis (trifluoromethyl) -4,4'-biphenyldicarboxylic acid and their acid chlorides are preferred.
  • the polyimide resin contains other tetracarboxylic acids, tricarboxylic acids, their anhydrides, and the anhydrides thereof, as long as the various physical properties of the optical film are not impaired.
  • the derivative may be further reacted.
  • Examples of other tetracarboxylic acids include water adducts of the anhydrides of the above tetracarboxylic acid compounds.
  • tricarboxylic acid compound examples include aromatic tricarboxylic acids, aliphatic tricarboxylic acids, acid chloride compounds related thereto, acid anhydrides, and the like, and two or more of them may be used in combination.
  • Specific examples include an anhydride of 1,2,4-benzenetricarboxylic acid; 2,3,6-naphthalenetricarboxylic acid-2,3-anhydride; a single bond of phthalic anhydride and benzoic acid, -O- , -CH 2- , -C (CH 3 ) 2- , -C (CF 3 ) 2- , -SO 2- or compounds linked by a phenylene group.
  • diamine compound used for the synthesis of the polyimide resin examples include aliphatic diamines, aromatic diamines and mixtures thereof.
  • aromatic diamine represents a diamine in which an amino group is directly bonded to an aromatic ring, and an aliphatic group or other substituent may be contained in a part of the structure.
  • the aromatic ring may be a monocyclic ring or a condensed ring, and examples thereof include, but are not limited to, a benzene ring, a naphthalene ring, an anthracene ring, and a fluorene ring. Among these, a benzene ring is preferable.
  • the "aliphatic diamine” represents a diamine in which an amino group is directly bonded to an aliphatic group, and an aromatic ring or other substituent may be contained as a part of the structure thereof.
  • aliphatic diamine examples include acyclic aliphatic diamines such as hexamethylenediamine, 1,3-bis (aminomethyl) cyclohexane, 1,4-bis (aminomethyl) cyclohexane, norbornanediamine and 4,4'.
  • -Cyral aliphatic diamines such as diaminodicyclohexylmethane can be mentioned. These can be used alone or in combination of two or more.
  • aromatic diamine examples include p-phenylenediamine, m-phenylenediamine, 2,4-toluenediamine, m-xylylene diamine, p-xylylene diamine, 1,5-diaminonaphthalene, 2,6-diaminonaphthalene and the like.
  • Aromatic diamine having one aromatic ring 4,4'-diaminodiphenylmethane, 4,4'-diaminodiphenylpropane, 4,4'-diaminodiphenyl ether, 3,4'-diaminodiphenyl ether, 3,3'- Diaminodiphenyl ether, 4,4'-diaminodiphenylsulfone, 3,4′-diaminodiphenylsulfone, 3,3′-diaminodiphenylsulfone, 1,4-bis (4-aminophenoxy) benzene, 1,3-bis (4) -Aminophenoxy) benzene, bis [4- (4-aminophenoxy) phenyl] sulfone, bis [4- (3-aminophenoxy) phenyl] sulfone, 2,2-bis [4- (4-aminophenoxy) phenyl] Propane, 2,2-bis [4-
  • aromatic diamine preferably 4,4'-diaminodiphenylmethane, 4,4'-diaminodiphenylpropane, 4,4'-diaminodiphenyl ether, 3,3'-diaminodiphenyl ether, 4,4'-diaminodiphenylsulfone, 3,3'-Diaminodiphenyl sulfone, 1,4-bis (4-aminophenoxy) benzene, bis [4- (4-aminophenoxy) phenyl] sulfone, bis [4- (3-aminophenoxy) phenyl] sulfone, 2,2-bis [4- (4-aminophenoxy) phenyl] propane, 2,2-bis [4- (3-aminophenoxy) phenyl] propane, 2,2'-dimethylbenzidine, TFMB, 6FDAM, 4, Examples thereof include 4'-bis (4-aminophenoxy) biphenyl, more
  • diamine compounds 2,2'-dimethylbenzidine, TFMB, 4,4'-bis (4-aminophenoxy) biphenyl, 6FDAM and 4,4'from the viewpoint of easily improving the proof stress and transparency of the optical film. It is more preferable to use one or more selected from the group consisting of -diaminodiphenyl ether, and it is further preferable to use TFMB and / or 6FDAM.
  • the amount of the diamine compound, the tetracarboxylic acid compound and the dicarboxylic acid compound used can be appropriately selected according to the ratio of each structural unit of the desired resin.
  • the amount of the diamine compound used is preferably 0.94 mol or more, more preferably 0. Mol, with the total molar amount of the tetracarboxylic acid compound and the dicarboxylic acid compound contained in some cases being 1 mol. 96 mol or more, more preferably 0.98 mol or more, particularly preferably 0.99 mol or more, preferably 1.20 mol or less, more preferably 1.10 mol or less, still more preferably 1.05 mol or less. Particularly preferably, it is 1.02 mol or less.
  • the polyimide resin has a high molecular weight even when it has a structure represented by the formula (2). It is easy to obtain the polyimide resin of the above, and as a result, it is easy to improve the strength and transparency of the obtained optical film.
  • the reaction temperature of the diamine compound and the tetracarboxylic acid compound is not particularly limited and may be, for example, 5 to 200 ° C.
  • the reaction time is also not particularly limited and may be, for example, about 30 minutes to 72 hours.
  • the reaction temperature is preferably 5 from the viewpoint of easily increasing the Mw of the polyimide resin.
  • the temperature is about 50 ° C., more preferably 5 to 40 ° C., still more preferably 5 to 25 ° C., and the reaction time is preferably 3 to 24 hours, more preferably 5 to 20 hours.
  • the reaction between the diamine compound and the tetracarboxylic acid compound is preferably carried out in a solvent.
  • the solvent is not particularly limited as long as it does not affect the reaction, and is, for example, water, methanol, ethanol, ethylene glycol, isopropyl alcohol, propylene glycol, ethylene glycol methyl ether, ethylene glycol butyl ether, 1-methoxy-2-propanol, and the like.
  • Alcohol-based solvents such as 2-butoxyethanol and propylene glycol monomethyl ether; ester-based solvents such as ethyl acetate, butyl acetate, ethylene glycol methyl ether acetate, ⁇ -butyrolactone, ⁇ -valerolactone, propylene glycol methyl ether acetate and ethyl lactate; Ketone solvents such as acetone, methyl ethyl ketone, cyclopentanone, cyclohexanone, 2-heptanone, methyl isobutyl ketone; aliphatic hydrocarbon solvents such as pentane, hexane and heptane; alicyclic hydrocarbon solvents such as ethyl cyclohexane; toluene and xylene Aromatic hydrocarbon solvents such as; nitrile solvents such as acetonitrile; ether solvents such as tetrahydrofuran and dimethoxye
  • N, N-dimethylformamide (hereinafter, may be referred to as DMF) and other amide solvents; sulfur-containing solvents such as dimethyl sulfone, dimethyl sulfoxide and sulfolane; carbonate solvents such as ethylene carbonate and propylene carbonate; And combinations thereof.
  • an amide-based solvent can be preferably used from the viewpoint of solubility.
  • the solvent used in the reaction is preferably a solvent that has been strictly dehydrated to a water content of 700 ppm or less.
  • the reaction between the diamine compound and the tetracarboxylic acid compound may be carried out under conditions of an inert atmosphere such as a nitrogen atmosphere or an argon atmosphere or a reduced pressure, if necessary, and from the viewpoint of easily obtaining a high molecular weight polyimide resin, the reaction may be carried out. It is preferably carried out with stirring in a strictly controlled dehydration solvent under the same inert atmosphere as described above.
  • an inert atmosphere such as a nitrogen atmosphere or an argon atmosphere or a reduced pressure
  • the production conditions of the polyamic acid and the dicarboxylic acid may be appropriately selected from the production conditions in the reaction of the diamine compound and the tetracarboxylic acid compound.
  • imidization catalyst used in the imidization step examples include aliphatic amines such as tripropylamine, dibutylpropylamine and ethyldibutylamine; N-ethylpiperidin, N-propylpiperidin, N-butylpyrrolidin, N-butylpiperidine, etc.
  • alicyclic amines such as N-propylhexahydroazepine (monocyclic); azabicyclo [2.2.1] heptane, azabicyclo [3.2.1] octane, azabicyclo [2.2.2] octane, and Alicyclic amines (polycyclic) such as azabicyclo [3.2.2] nonane; and pyridine, 2-methylpyridine (2-picolin), 3-methylpyridine (3-picolin), 4-methylpyridine (4).
  • an acid anhydride together with the imidization catalyst.
  • the acid anhydride include conventional acid anhydrides used in the imidization reaction, and specific examples thereof include acetic anhydride, propionic anhydride, butyric anhydride and other aliphatic acid anhydrides, and phthalic acid and other aromatics. Acid anhydride and the like can be mentioned.
  • the imidization step it is preferable to carry out the imidization step stepwise and raise the temperature to the optimum reaction temperature.
  • stepwise imidizing decomposition of the resin is suppressed, and a high molecular weight polyimide resin can be easily obtained.
  • the reaction temperature for raising the temperature in the stepwise imidization step is preferably 40 to 85 ° C, more preferably 45 to 80 ° C. When the reaction temperature is in the above range, the imidization reaction tends to proceed sufficiently, and Mw tends to rise sufficiently.
  • the reaction time is preferably 30 minutes to 10 hours, more preferably 30 minutes to 5 hours.
  • reaction time When the reaction time is within the above range, it is easy to suppress the decomposition of the resin and the decrease in Mw, and it is easy to suppress the decrease in the imidization rate and the reduction in the molecular weight in the subsequent steps.
  • the imidization step By controlling the imidization step in addition to the above-mentioned synthesis conditions in this way, a high molecular weight resin can be obtained.
  • the polyimide resin may be separated and purified by a conventional method, for example, a separation means such as filtration, concentration, extraction, crystallization, recrystallization, or column chromatography, or a separation means combining these, which is preferable.
  • a separation means such as filtration, concentration, extraction, crystallization, recrystallization, or column chromatography, or a separation means combining these, which is preferable.
  • it can be isolated by adding a large amount of alcohol such as methanol to the reaction solution containing the resin, precipitating the resin, and performing concentration, filtration, drying and the like.
  • the optical film of the present invention may contain at least one filler in addition to the polyimide resin.
  • the filler include organic particles and inorganic particles, and preferably inorganic particles.
  • the inorganic particles include metal oxide particles such as silica, zirconia, alumina, titania, zinc oxide, germanium oxide, indium oxide, tin oxide, indium tin oxide, antimony oxide, and cerium oxide, magnesium fluoride, sodium fluoride, and the like.
  • silica particles, zirconia particles, and alumina particles are preferable, and silica particles are more preferable, from the viewpoint of easily improving the strength, elasticity, and transparency of the optical film. Can be mentioned.
  • These fillers can be used alone or in combination of two or more.
  • the average primary particle size of the filler is usually 1 nm or more, preferably 5 nm or more, more preferably 10 nm or more, still more preferably 15 nm or more, particularly preferably 20 nm or more, preferably 100 nm or less, more preferably. It is 90 nm or less, more preferably 80 nm or less, even more preferably 70 nm or less, particularly preferably 60 nm or less, particularly more preferably 50 nm or less, and particularly preferably 40 nm or less.
  • the average primary particle size of the filler, preferably silica particles is within the above range, the strength, elastic modulus and transparency of the optical film can be easily improved.
  • the average primary particle size of the filler can be measured by the BET method.
  • the average primary particle size may be measured by image analysis of a transmission electron microscope or a scanning electron microscope.
  • the content of the filler is usually 0.1% by mass or more, preferably 1% by mass or more, more preferably 5 with respect to the mass of the optical film. It is mass% or more, more preferably 10% by mass or more, even more preferably 20% by mass or more, particularly preferably 30% by mass or more, and preferably 60% by mass or less.
  • the content of the filler is at least the above lower limit, it is easy to improve the proof stress, elastic modulus and transparency of the optical film. Further, when the content of the filler is not more than the above upper limit, the optical characteristics of the optical film can be easily improved.
  • the optical film of the present invention may further contain an ultraviolet absorber.
  • the ultraviolet absorber can be appropriately selected from those usually used as an ultraviolet absorber in the field of resin materials.
  • the ultraviolet absorber may contain a compound that absorbs light having a wavelength of 400 nm or less.
  • Examples of the ultraviolet absorber include at least one compound selected from the group consisting of benzophenone compounds, salicylate compounds, benzotriazole compounds, and triazine compounds.
  • the UV absorber can be used alone or in combination of two or more. Since the optical film contains an ultraviolet absorber, deterioration of the resin is suppressed, so that visibility can be improved when the optical film is applied to an image display device or the like.
  • system compound refers to a derivative of a compound to which the "system compound” is attached.
  • the "benzophenone-based compound” refers to a compound having benzophenone as a maternal skeleton and a substituent attached to benzophenone.
  • the content of the ultraviolet absorber is preferably 1% by mass or more, more preferably 2% by mass or more, still more preferably 3% by mass or more, based on the mass of the optical film. Yes, preferably 10% by mass or less, more preferably 8% by mass or less, still more preferably 6% by mass or less.
  • the suitable content varies depending on the UV absorber used, but if the content of the UV absorber is adjusted so that the light transmittance at 400 nm is about 20 to 60%, the light resistance of the optical film is enhanced and the transparency is improved. Easy to increase.
  • the optical film of the present invention may further contain additives other than the filler and the ultraviolet absorber.
  • additives include, for example, antioxidants, mold release agents, stabilizers, bluing agents, flame retardants, pH regulators, silica dispersants, lubricants, thickeners, leveling agents and the like.
  • the content thereof is preferably 0.001 to 20% by mass, more preferably 0.01 to 15% by mass, still more preferably 0.1 to 100% by mass, based on the mass of the optical film. It may be 10% by mass.
  • the use of the optical film of the present invention is not particularly limited, and it may be used for various purposes.
  • the optical film of the present invention may be a single layer or a laminated body, the optical film of the present invention may be used as it is, or may be used as a laminated body with another film. ..
  • the optical film is a laminated body, it is referred to as an optical film including all the layers laminated on one side or both sides of the optical film.
  • the optical film of the present invention is a laminated body, it is preferable to have one or more functional layers on at least one surface of the optical film.
  • the functional layer include a hard coat layer, a primer layer, a gas barrier layer, an ultraviolet absorbing layer, an adhesive layer, a hue adjusting layer, and a refractive index adjusting layer.
  • the functional layer can be used alone or in combination of two or more.
  • the thickness of the hard coat layer is not particularly limited, and may be, for example, 2 to 100 ⁇ m. When the thickness of the hard coat layer is within the above range, the impact resistance can be enhanced, the bending resistance is less likely to decrease, and the problem of curl generation due to curing shrinkage tends to be less likely to occur.
  • the hard coat layer can be formed by curing a hard coat composition containing a reactive material capable of forming a crosslinked structure by irradiation with active energy rays or by applying thermal energy, and is preferably formed by irradiation with active energy rays.
  • Active energy rays are defined as energy rays that can generate active species by decomposing compounds that generate active species, and are visible light, ultraviolet rays, infrared rays, X-rays, ⁇ rays, ⁇ rays, ⁇ rays, and electron beams. And the like, preferably ultraviolet rays.
  • the hard coat composition contains at least one polymer of a radically polymerizable compound and a cationically polymerizable compound.
  • the radically polymerizable compound is a compound having a radically polymerizable group.
  • the radically polymerizable group contained in the radically polymerizable compound may be a functional group capable of causing a radical polymerization reaction, and examples thereof include a group containing a carbon-carbon unsaturated double bond, and specifically, a vinyl group. , (Meta) acryloyl group and the like.
  • the radically polymerizable compound has two or more radically polymerizable groups, these radically polymerizable groups may be the same or different from each other.
  • the number of radically polymerizable groups contained in one molecule of the radically polymerizable compound is preferably 2 or more from the viewpoint of improving the hardness of the hard coat layer.
  • Examples of the radically polymerizable compound include compounds having a (meth) acryloyl group from the viewpoint of high reactivity, and specifically, 2 to 6 (meth) acryloyl groups in one molecule.
  • Compounds called polyfunctional acrylate monomers and epoxy (meth) acrylates, urethane (meth) acrylates, and polyester (meth) acrylates have a molecular weight of several hundreds of (meth) acryloyl groups in the molecule.
  • Thousands of oligomers are mentioned, preferably one or more selected from epoxy (meth) acrylates, urethane (meth) acrylates and polyester (meth) acrylates.
  • the cationically polymerizable compound is a compound having a cationically polymerizable group such as an epoxy group, an oxetanyl group, and a vinyl ether group.
  • the number of cationically polymerizable groups contained in one molecule of the cationically polymerizable compound is preferably 2 or more, and more preferably 3 or more, from the viewpoint of improving the hardness of the hard coat layer.
  • a compound having at least one epoxy group and an oxetanyl group as the cationically polymerizable group is preferable.
  • a cyclic ether group such as an epoxy group or an oxetanyl group is preferable because the shrinkage associated with the polymerization reaction is small. Further, among the cyclic ether groups, compounds having an epoxy group are easily available, compounds having various structures are easily available, the durability of the obtained hard coat layer is not adversely affected, and compatibility with radically polymerizable compounds is easily controlled. There is an advantage. Further, among the cyclic ether groups, the oxetanyl group tends to have a higher degree of polymerization than the epoxy group, accelerates the network formation rate obtained from the cationically polymerizable compound of the obtained hard coat layer, and is mixed with the radically polymerizable compound.
  • the cationically polymerizable compound having an epoxy group examples include polyglycidyl ether of a polyhydric alcohol having an alicyclic ring, or a cyclohexene ring or cyclopentene ring-containing compound with an appropriate oxidizing agent such as hydrogen peroxide or peracid.
  • Alicyclic epoxy resin obtained by epoxidation polyglycidyl ether of aliphatic polyhydric alcohol or its alkylene oxide adduct, polyglycidyl ester of aliphatic long chain polybasic acid, homopolymer of glycidyl (meth) acrylate, An aliphatic epoxy resin such as a copolymer; a glycidyl ether produced by reacting bisphenols such as bisphenol A, bisphenol F and hydrogenated bisphenol A, or derivatives such as their alkylene oxide adducts and caprolactone adducts with epichlorohydrin. And glycidyl ether type epoxy resin which is a novolak epoxy resin and is derived from bisphenols and the like.
  • the hard coat composition may further contain a polymerization initiator.
  • the polymerization initiator include a radical polymerization initiator, a cationic polymerization initiator, a radical and a cationic polymerization initiator, and the like, which are appropriately selected and used. These polymerization initiators are decomposed by at least one of active energy ray irradiation and heating to generate radicals or cations to promote radical polymerization and cation polymerization.
  • the radical polymerization initiator may be any as long as it can release a substance that initiates radical polymerization by at least one of irradiation with active energy rays and heating.
  • thermal radical polymerization initiator examples include organic peroxides such as hydrogen peroxide and perbenzoic acid, and azo compounds such as azobisbutyronitrile.
  • Active energy ray radical polymerization initiators include Type 1 radical polymerization initiators, which generate radicals by decomposition of molecules, and Type 2 radical polymerization initiators, which coexist with tertiary amines and generate radicals by hydrogen abstraction type reaction. Yes, they are used alone or in combination.
  • the cationic polymerization initiator may be any one as long as it can release a substance that initiates cationic polymerization by at least one of activation energy ray irradiation and heating.
  • an aromatic iodonium salt an aromatic sulfonium salt, a cyclopentadienyl iron (II) complex and the like can be used. These can initiate cationic polymerization by either irradiation with active energy rays or heating, depending on the structure.
  • the polymerization initiator can preferably contain 0.1 to 10% by mass with respect to 100% by mass of the entire hard coat composition.
  • the content of the polymerization initiator is in the above range, curing can proceed sufficiently, and the mechanical properties and adhesive strength of the finally obtained coating film can be in a good range. Poor adhesive strength due to curing shrinkage, cracking phenomenon, and curling phenomenon tend to be less likely to occur.
  • the hard coat composition may further comprise one or more selected from the group consisting of solvents and additives.
  • the solvent can dissolve or disperse the polymerizable compound and the polymerization initiator, and any solvent known as a solvent for hard coat compositions in the present art does not impair the effects of the present invention. In the range, it can be used.
  • the additive may further contain inorganic particles, a leveling agent, a stabilizer, a surfactant, an antistatic agent, a lubricant, an antifouling agent and the like.
  • the ultraviolet absorbing layer is a layer having an ultraviolet absorbing function.
  • a main material selected from an ultraviolet curable transparent resin, an electron beam curable transparent resin, and a thermosetting transparent resin, and the main material thereof. It is composed of a dispersed ultraviolet absorber.
  • the adhesive layer is a layer having an adhesive function, and has a function of adhering an optical film to another member.
  • a material for forming the adhesive layer a commonly known material can be used.
  • a thermosetting resin composition or a photocurable resin composition can be used.
  • the thermosetting resin composition or the photocurable resin composition can be polymerized and cured by supplying energy after the fact.
  • the adhesive layer may be a layer called a pressure-sensitive adhesive (Pressure Sensitive Adhesive, PSA), which is attached to an object by pressing.
  • PSA Pressure Sensitive Adhesive
  • the pressure-sensitive adhesive may be an adhesive that is "a substance that has adhesiveness at room temperature and adheres to an adherend with a light pressure" (JIS K 6800), and “protects a specific component (microcapsules). ), And an adhesive that can maintain stability until the film is destroyed by an appropriate means (pressure, heat, etc.) ”(JIS K 6800).
  • the hue adjustment layer is a layer having a hue adjustment function, and is a layer capable of adjusting the optical film to a desired hue.
  • the hue adjusting layer is, for example, a layer containing a resin and a colorant.
  • this colorant include inorganic pigments such as titanium oxide, zinc oxide, petals, titanium oxide-based calcined pigments, ultramarine, cobalt aluminate, and carbon black; azo compounds, quinacridone compounds, anthracinone compounds, and the like.
  • Organic pigments such as perylene compounds, isoindolinone compounds, phthalocyanine compounds, quinophthalone compounds, slene compounds, and diketopyrrolopyrrole compounds; extender pigments such as barium sulfate and calcium carbonate; and basic dyes, Examples thereof include dyes such as acidic dyes and medium dyes.
  • the refractive index adjusting layer is a layer having a function of adjusting the refractive index, for example, a layer having a refractive index different from that of a single-layer optical film and capable of imparting a predetermined refractive index to the optical film.
  • the refractive index adjusting layer may be, for example, a resin layer appropriately selected and, in some cases, a resin layer further containing a pigment, or a thin film of metal.
  • the pigment for adjusting the refractive index include silicon oxide, aluminum oxide, antimony oxide, tin oxide, titanium oxide, zirconium oxide and tantalum oxide.
  • the average primary particle size of the pigment may be 0.1 ⁇ m or less.
  • the metal used for the refractive index adjusting layer include metals such as titanium oxide, tantalum oxide, zirconium oxide, zinc oxide, tin oxide, silicon oxide, indium oxide, titanium oxynitride, titanium nitride, silicon oxynitride, and silicon nitride. Oxides or metal nitrides can be mentioned.
  • the optical film may have a protective film on at least one side (one side or both sides).
  • the protective film may be laminated on the surface on the optical film side or the surface on the functional layer side, and is laminated on both the optical film side and the functional layer side. You may.
  • the protective film may be laminated on the surface on one functional layer side or on the surfaces on both functional layer sides.
  • the protective film is a film for temporarily protecting the surface of the optical film or the functional layer, and is not particularly limited as long as it is a peelable film capable of protecting the surface of the optical film or the functional layer.
  • the protective film examples include polyester resin films such as polyethylene terephthalate, polybutylene terephthalate, and polyethylene naphthalate; polyolefin resin films such as polyethylene and polypropylene films, acrylic resin films, and the like, and polyolefin resin films and polyethylene. It is preferable to select from the group consisting of a terephthalate resin film and an acrylic resin film. When the optical film has two protective films, each protective film may be the same or different.
  • the thickness of the protective film is not particularly limited, but is usually 10 to 120 ⁇ m, preferably 15 to 110 ⁇ m, and more preferably 20 to 100 ⁇ m. When the optical film has two protective films, the thickness of each protective film may be the same or different.
  • the optical film of the present invention is not particularly limited, but for example, the following steps: (A) A step of preparing a liquid containing the polyimide resin (sometimes referred to as a resin varnish) (varnish preparation step), (B) A step of applying a resin varnish to a base material to form a coating film (coating step), and (c) a step of drying the applied liquid (coating film) to form an optical film (optical film formation).
  • a step of preparing a liquid containing the polyimide resin sometimes referred to as a resin varnish
  • varnish preparation step A step of applying a resin varnish to a base material to form a coating film
  • coating step a coating film
  • It can be manufactured by a method including.
  • the polyimide resin is dissolved in a solvent, and if necessary, the additive is added and stirred and mixed to prepare a resin varnish.
  • the solvent used for preparing the resin varnish is not particularly limited as long as the resin can be dissolved.
  • a solvent include amide solvents such as DMAc and DMF; lactone solvents such as ⁇ -butyrolactone and ⁇ -valerolactone; sulfur-containing solvents such as dimethyl sulfoxide, dimethyl sulfoxide and sulfolane; ethylene carbonate, propylene carbonate and the like. Carbonated solvents; and combinations thereof.
  • an amide solvent or a lactone solvent is preferable.
  • These solvents can be used alone or in combination of two or more.
  • the resin varnish may contain water, an alcohol solvent, a ketone solvent, an acyclic ester solvent, an ether solvent and the like.
  • the solid content concentration of the varnish is preferably 1 to 25% by mass, more preferably 5 to 15% by mass. In the present specification, the solid content of the varnish indicates the total amount of the components of the varnish excluding the solvent.
  • a varnish is applied onto the substrate by a known coating method to form a coating film.
  • Known coating methods include, for example, wire bar coating method, reverse coating, roll coating method such as gravure coating, die coating method, comma coating method, lip coating method, spin coating method, screen coating method, fountain coating method, dipping method, and the like. Examples include a spray method and a salivation molding method.
  • the optical film can be formed by drying the coating film and peeling it from the base material. After the peeling, a drying step of further drying the optical film may be performed.
  • the coating film can be dried at a temperature of usually 50 to 350 ° C., preferably 50 to 230 ° C. In a preferred embodiment of the present invention, it is preferable to carry out drying step by step.
  • a varnish containing a high molecular weight resin tends to have a high viscosity, and it is generally difficult to obtain a uniform film, and it is difficult to obtain a film having excellent transparency. Therefore, the varnish containing the high molecular weight resin can be uniformly dried by performing the drying step by step.
  • the coating film may be dried under an inert atmosphere or under reduced pressure conditions. Further, when the optical film is dried under vacuum conditions, minute bubbles may be generated and remain in the film, which causes a decrease in transparency. Therefore, it is preferable to perform the optical film under atmospheric pressure.
  • Examples of the base material include PET film, PEN film, other polyimide-based resin, polyamide-based resin film, and the like.
  • PET film, PEN film and the like are preferable from the viewpoint of excellent heat resistance, and PET film is more preferable from the viewpoint of adhesion to the optical film and cost.
  • the optical film of the present invention can be suitably used as a front plate of a display device, particularly a flexible display device (sometimes referred to as a window film), particularly a front plate of a rollable display or a foldable display. That is, the optical film of the present invention is preferably a film for the front plate of a flexible display device.
  • the front plate has a function of protecting the display element of the flexible display device.
  • the flexible display device is a display device that is used with operations such as repeatedly bending and repeatedly winding the image display device.
  • the front plate of a flexible display device used with such repeated bending operations is required to have high bending resistance, particularly high folding resistance.
  • the front plate is also required to have high visibility.
  • the front plate of the image display device is required to have high visibility and high visibility.
  • High bending resistance is required.
  • the film of the present invention preferably has the total light transmittance, haze and / or YI value as described above from the viewpoint of easily enhancing visibility when used for the front plate of a flexible display device. Further, from the viewpoint of easily improving the bending resistance, particularly the folding resistance when used as the front plate of the flexible display device, it is preferable to satisfy the number of folding resistances in the MIT folding resistance test as described above.
  • Examples of display devices include wearable devices such as televisions, smartphones, mobile phones, car navigation systems, tablet PCs, portable game machines, electronic papers, indicators, bulletin boards, watches, and smart watches.
  • Examples of the flexible display include display devices having flexible characteristics, such as televisions, smartphones, mobile phones, and smart watches.
  • Examples of the flexible display device include all image display devices having flexible characteristics, and examples thereof include the rollable display and the foldable display as described above.
  • the rollable display is an image display device in which an image display portion including a front plate is wound in a roll shape, and the image display portion is pulled out to form a flat surface or a curved surface, and is wound in a roll shape. It is an image display device in which operations such as taking are performed each time it is used.
  • a foldable display is an image display device in which an image display portion including a front plate is bent and is used in a state where the image display portion is opened to form a flat surface or a curved surface, and an operation such as folding is used. It is an image display device that is performed every time. An image display device in which such operations such as winding and bending are repeatedly performed is referred to as a flexible image display device.
  • the present invention also provides a flexible display device comprising the optical film of the present invention.
  • the optical film of the present invention is preferably used as a front plate in a flexible display device, and the front plate may be referred to as a window film.
  • the flexible display device includes a laminate for a flexible display device and an organic EL display panel, and the laminate for the flexible display device is arranged on the visual side with respect to the organic EL display panel and is configured to be bendable.
  • the laminated body for the flexible display device may further contain a polarizing plate and a touch sensor, and the stacking order thereof is arbitrary, but from the visual side, a window film, a polarizing plate, a touch sensor or a window film, and a touch sensor.
  • the polarizing plates are laminated in this order. If a polarizing plate is present on the visual side of the touch sensor, the pattern of the touch sensor is less likely to be visually recognized and the visibility of the displayed image is improved, which is preferable.
  • Each member can be laminated using an adhesive, an adhesive, or the like. Further, a light-shielding pattern formed on at least one surface of any layer of the window film, the polarizing plate, and the touch sensor can be provided.
  • the flexible display device of the present invention preferably further includes a polarizing plate, particularly a circular polarizing plate.
  • the circular polarizing plate is a functional layer having a function of transmitting only a right circularly polarized light component or a left circularly polarized light component by laminating a ⁇ / 4 retardation plate on a linear polarizing plate.
  • the external light is converted to right-handed circularly polarized light, reflected by the organic EL panel to block the left-handed circularly polarized light, and only the light emitting component of the organic EL is transmitted to suppress the influence of the reflected light. It is used to make it easier to see.
  • the absorption axis of the linear polarizing plate and the slow axis of the ⁇ / 4 retardation plate must theoretically be 45 °, but practically, they are 45 ⁇ 10 °.
  • the linear polarizing plate and the ⁇ / 4 retardation plate do not necessarily have to be laminated adjacent to each other, and the relationship between the absorption axis and the slow phase axis may satisfy the above range. It is preferable to achieve perfect circularly polarized light at all wavelengths, but it is not always necessary in practical use. Therefore, the circularly polarizing plate in the present invention also includes an elliptical polarizing plate. It is also preferable to further laminate a ⁇ / 4 retardation film on the visible side of the linear polarizing plate to convert the emitted light into circularly polarized light to improve the visibility when wearing polarized sunglasses.
  • the linear polarizing plate is a functional layer that allows light vibrating in the transmission axis direction to pass through, but has the function of blocking the polarization of vibration components perpendicular to it.
  • the linear polarizing plate may be configured to include a linear polarizing element alone or a linear polarizing element and a protective film attached to at least one surface thereof.
  • the thickness of the linear polarizing plate may be 200 ⁇ m or less, preferably 0.5 to 100 ⁇ m. When the thickness of the linear polarizing plate is within the above range, the flexibility of the linear polarizing plate tends to be difficult to decrease.
  • the linear polarizer may be a film-type polarizer produced by dyeing and stretching a polyvinyl alcohol (hereinafter, may be abbreviated as PVA) -based film.
  • a dichroic dye such as iodine is adsorbed on the PVA-based film oriented by stretching, or the dichroic dye is oriented in a state of being adsorbed on the PVA to exhibit polarization performance.
  • other steps such as swelling, cross-linking with boric acid, washing with an aqueous solution, and drying may be included.
  • the stretching and dyeing steps may be performed on the PVA-based film alone, or may be performed in a state of being laminated with another film such as polyethylene terephthalate.
  • the thickness of the PVA-based film used is preferably 10 to 100 ⁇ m, and the draw ratio is preferably 2 to 10 times.
  • a liquid crystal coating type polarizer formed by coating a liquid crystal polarizing composition.
  • the liquid crystal polarizing composition may contain a liquid crystal compound and a dichroic dye compound.
  • the liquid crystal compound may have a property of exhibiting a liquid crystal state, and it is particularly preferable that the liquid crystal compound has a high-order orientation state such as a smectic phase because it can exhibit high polarization performance.
  • the liquid crystal compound preferably has a polymerizable functional group.
  • the dichroic dye compound is a dye that is oriented together with the liquid crystal compound to exhibit dichroism, and may have a polymerizable functional group, and the dichroic dye itself has a liquid crystal property. May be. Any of the compounds contained in the liquid crystal polarizing composition has a polymerizable functional group.
  • the liquid crystal polarizing composition can further contain an initiator, a solvent, a dispersant, a leveling agent, a stabilizer, a surfactant, a cross-linking agent, a silane coupling agent and the like.
  • the liquid crystal polarizing layer is manufactured by applying a liquid crystal polarizing composition on an alignment film to form a liquid crystal polarizing layer.
  • the liquid crystal polarizing layer can be formed to be thinner than the film-type polarizing element, and the thickness is preferably 0.5 to 10 ⁇ m, more preferably 1 to 5 ⁇ m.
  • the alignment film is produced, for example, by applying an alignment film forming composition on a base material and imparting orientation by rubbing, polarized light irradiation, or the like.
  • the alignment film forming composition contains an alignment agent, and may further contain a solvent, a cross-linking agent, an initiator, a dispersant, a leveling agent, a silane coupling agent, and the like.
  • the alignment agent include polyvinyl alcohols, polyacrylates, polyamic acids, and polyimides.
  • an orientation agent that imparts orientation by polarization irradiation it is preferable to use an orientation agent containing a synnamate group.
  • the Mw of the polymer used as the alignment agent is, for example, about 10,000 to 1,000,000.
  • the thickness of the alignment film is preferably 5 to 10,000 nm, and more preferably 10 to 500 nm in that the alignment regulating force is sufficiently exhibited.
  • the liquid crystal polarizing layer can be peeled off from the base material, transferred and laminated, or the base material can be laminated as it is. It is also preferable that the base material serves as a transparent base material for a protective film, a retardation plate, and a window film.
  • any transparent polymer film may be used, and the same materials and additives used for the transparent base material of the window film can be used. Further, it may be a coating type protective film obtained by applying a cationic curing composition such as an epoxy resin or a radical curing composition such as acrylate and curing the film.
  • the protective film may be a plasticizer, an ultraviolet absorber, an infrared absorber, a colorant such as a pigment or a dye, a fluorescent whitening agent, a dispersant, a heat stabilizer, a light stabilizer, an antioxidant, an antioxidant, if necessary. , Lubricants, solvents and the like may be contained.
  • the thickness of the protective film is preferably 200 ⁇ m or less, more preferably 1 to 100 ⁇ m. When the thickness of the protective film is in the above range, the flexibility of the film tends to be difficult to decrease.
  • the ⁇ / 4 retardation plate is a film that gives a retardation of ⁇ / 4 in a direction orthogonal to the traveling direction of incident light (in-plane direction of the film).
  • the ⁇ / 4 retardation plate may be a stretch-type retardation plate manufactured by stretching a polymer film such as a cellulose-based film, an olefin-based film, or a polycarbonate-based film.
  • the ⁇ / 4 retardation plate may be used as a retardation adjuster, a plastic agent, an ultraviolet absorber, an infrared absorber, a colorant such as a pigment or a dye, a fluorescent whitening agent, a dispersant, a heat stabilizer, and a light stabilizer.
  • the thickness of the stretched retardation plate is preferably 200 ⁇ m or less, more preferably 1 to 100 ⁇ m.
  • the thickness of the stretchable retardation plate is within the above range, the flexibility of the stretchable retardation plate tends to be difficult to decrease.
  • the ⁇ / 4 retardation plate there is a liquid crystal coating type retardation plate formed by coating a liquid crystal composition.
  • the liquid crystal composition contains a liquid crystal compound exhibiting a liquid crystal state such as nematic, cholesteric, and smectic.
  • the liquid crystal compound has a polymerizable functional group.
  • the liquid crystal composition can further contain an initiator, a solvent, a dispersant, a leveling agent, a stabilizer, a surfactant, a cross-linking agent, a silane coupling agent, and the like.
  • the liquid crystal coating type retardation plate can be manufactured by applying a liquid crystal composition on a substrate and curing the liquid crystal composition to form a liquid crystal retardation layer, similarly to the liquid crystal polarizing layer.
  • the liquid crystal coating type retardation plate can be formed to be thinner than the stretch type retardation plate.
  • the thickness of the liquid crystal polarizing layer is preferably 0.5 to 10 ⁇ m, more preferably 1 to 5 ⁇ m.
  • the liquid crystal coating type retardation plate can be peeled off from the base material, transferred and laminated, or the base material can be laminated as it is. It is also preferable that the base material serves as a transparent base material for a protective film, a retardation plate, and a window film.
  • the in-plane phase difference is preferably 100 to 4 so that it becomes ⁇ / 4 with respect to the vicinity of 560 nm, which has high visual sensitivity. It is designed to be 180 nm, more preferably 130-150 nm.
  • a reverse dispersion ⁇ / 4 retardation plate using a material having a birefringence wavelength dispersion characteristic opposite to the usual one is preferable in that visibility is improved.
  • a stretchable retardation plate can be used as described in JP-A-2007-232873, and a liquid crystal-coated retardation plate can be used as described in JP-A-2010-30979. ..
  • a technique for obtaining a wideband ⁇ / 4 retardation plate by combining with a ⁇ / 2 retardation plate is also known (for example, Japanese Patent Application Laid-Open No. 10-90521).
  • the ⁇ / 2 retardation plate is also manufactured by the same material method as the ⁇ / 4 retardation plate.
  • the combination of the stretchable retardation plate and the liquid crystal coating type retardation plate is arbitrary, but the thickness can be reduced by using the liquid crystal coating type retardation plate in both cases.
  • a method of laminating a positive C plate on the circularly polarizing plate in order to improve visibility in an oblique direction is known (for example, Japanese Patent Application Laid-Open No. 2014-224738).
  • the positive C plate may be a liquid crystal coating type retardation plate or a stretched retardation plate.
  • the phase difference in the thickness direction of the retardation plate is preferably ⁇ 200 to ⁇ 20 nm, more preferably ⁇ 140 to ⁇ 40 nm.
  • the flexible display device of the present invention preferably further includes a touch sensor.
  • the touch sensor is used as an input means.
  • Examples of the touch sensor include various types such as a resistive film method, a surface acoustic wave method, an infrared method, an electromagnetic induction method, and a capacitance method, and a capacitance method is preferable.
  • the capacitive touch sensor is divided into an active region and an inactive region located outside the active region.
  • the active area is an area corresponding to the area where the screen is displayed on the display panel (display unit), the area where the user's touch is sensed, and the inactive area is the area where the screen is not displayed on the display device (non-active area). This is the area corresponding to the display unit).
  • the touch sensor is formed in a substrate having flexible characteristics, a sensing pattern formed in an active region of the substrate, and an inactive region of the substrate, and is connected to an external drive circuit via the sensing pattern and a pad portion.
  • Each sensing line for can be included.
  • the substrate having flexible characteristics the same material as the transparent substrate of the window film can be used.
  • the sensing pattern can include a first pattern formed in the first direction and a second pattern formed in the second direction.
  • the first pattern and the second pattern are arranged in different directions from each other.
  • the first pattern and the second pattern are formed in the same layer, and each pattern must be electrically connected in order to sense the point to be touched.
  • the first pattern is a form in which a plurality of unit patterns are connected to each other via a joint, but the second pattern has a structure in which a plurality of unit patterns are separated from each other in an island form, so that the second pattern is electrically operated.
  • a separate bridge electrode is required for the connection.
  • a well-known transparent electrode can be applied to the electrode for connecting the second pattern.
  • Examples of the material of the transparent electrode include indium tin oxide (ITO), indium zinc oxide (IZO), zinc oxide (ZnO), indium zinc oxide (IZTO), and indium gallium zinc oxide (IGZO). , Cadmium tin oxide (CTO), PEDOT (poly (3,4-ethylenedioxythiophene)), carbon nanotubes (CNT), graphene, metal wire and the like, preferably ITO. These can be used alone or in combination of two or more.
  • the metal used for the metal wire is not particularly limited, and examples thereof include silver, gold, aluminum, copper, iron, nickel, titanium, selenium, and chromium, and these may be used alone or in combination of two or more. Can be done.
  • the bridge electrode can be formed on the upper part of the insulating layer via the insulating layer on the upper part of the sensing pattern, the bridge electrode is formed on the substrate, and the insulating layer and the sensing pattern can be formed on the bridge electrode.
  • the bridge electrode can be formed of the same material as the sensing pattern, or can be formed of molybdenum, silver, aluminum, copper, palladium, gold, platinum, zinc, tin, titanium or two or more alloys thereof. it can. Since the first pattern and the second pattern must be electrically insulated, an insulating layer is formed between the sensing pattern and the bridge electrode.
  • the insulating layer may be formed only between the joint of the first pattern and the bridge electrode, or may be formed as a layer covering the entire sensing pattern. In the case of a layer covering the entire sensing pattern, the bridge electrode can connect the second pattern through a contact hole formed in the insulating layer.
  • the touch sensor is induced by a difference in transmittance between a pattern region in which a sensing pattern is formed and a non-pattern region in which a sensing pattern is not formed, specifically, a difference in refractive index in these regions.
  • An optical adjustment layer may be further included between the substrate and the electrode as a means for appropriately compensating for the difference in light transmittance.
  • the optical control layer may contain an inorganic insulating material or an organic insulating material.
  • the optical control layer can be formed by coating a photocurable composition containing a photocurable organic binder and a solvent on a substrate.
  • the photocurable composition may further contain inorganic particles.
  • the refractive index of the optical control layer can be increased by the inorganic particles.
  • the photocurable organic binder contains a copolymer of each monomer such as an acrylate-based monomer, a styrene-based monomer, and a carboxylic acid-based monomer, as long as the effects of the present invention are not impaired. be able to.
  • the photocurable organic binder may be, for example, a copolymer containing different repeating units such as an epoxy group-containing repeating unit, an acrylate repeating unit, and a carboxylic acid repeating unit. Examples of the inorganic particles include zirconia particles, titania particles, alumina particles and the like.
  • the photocuring composition may further contain additives such as a photopolymerization initiator, a polymerizable monomer, and a curing aid.
  • Each layer (window film, circularly polarizing plate, touch sensor) forming the laminated body for the flexible display device and the film member (straight polarizing plate, ⁇ / 4 retardation plate, etc.) constituting each layer can be joined by an adhesive.
  • the adhesive include water-based adhesives, organic solvent-based adhesives, solvent-free adhesives, solid adhesives, solvent volatilization adhesives, water-based solvent volatilization adhesives, moisture-curable adhesives, heat-curable adhesives, and anaerobic adhesives.
  • adhesives such as curable type, active energy ray curable type adhesive, hardener mixed type adhesive, heat melt type adhesive, pressure sensitive type adhesive (adhesive), rewet type adhesive, etc. are used.
  • a water-based solvent volatilization type adhesive, an active energy ray-curable adhesive, and an adhesive can be preferably used.
  • the thickness of the adhesive layer can be appropriately adjusted according to the required adhesive force and the like, and is preferably 0.01 to 500 ⁇ m, more preferably 0.1 to 300 ⁇ m.
  • the laminated body for a flexible display device has a plurality of adhesive layers, and the thickness and type of each may be the same or different.
  • a polyvinyl alcohol-based polymer a water-soluble polymer such as starch, an ethylene-vinyl acetate-based emulsion, a styrene-butadiene-based emulsion, or the like in an aqueous-dispersed state can be used as the main polymer.
  • a cross-linking agent a silane compound, an ionic compound, a cross-linking catalyst, an antioxidant, a dye, a pigment, an inorganic filler, an organic solvent and the like may be blended.
  • the water-based solvent volatilization type adhesive When adhering with the water-based solvent volatilization type adhesive, the water-based solvent volatilization type adhesive can be injected between the layers to be adhered, the adherend layers are bonded, and then dried to impart adhesiveness.
  • the thickness of the adhesive layer is preferably 0.01 to 10 ⁇ m, more preferably 0.1 to 1 ⁇ m.
  • the thickness and type of each layer may be the same or different.
  • the active energy ray-curable adhesive can be formed by curing an active energy ray-curable composition containing a reactive material that is irradiated with active energy rays to form an adhesive layer.
  • the active energy ray-curable composition can contain at least one polymer of a radical-polymerizable compound and a cationically polymerizable compound similar to those contained in the hard coat composition.
  • the radically polymerizable compound the same compound as the radically polymerizable compound in the hard coat composition can be used.
  • the cationically polymerizable compound the same compound as the cationically polymerizable compound in the hard coat composition can be used.
  • an epoxy compound is preferable. It is also preferable to include a monofunctional compound as a reactive diluent in order to reduce the viscosity of the adhesive composition.
  • the active energy ray composition can contain a monofunctional compound in order to reduce the viscosity.
  • the monofunctional compound include an acrylate-based monomer having one (meth) acryloyl group in one molecule, and a compound having one epoxy group or oxetanyl group in one molecule, for example, glycidyl (meth). ) Examples include acrylate.
  • the active energy ray composition can further contain a polymerization initiator. Examples of the polymerization initiator include radical polymerization initiators, cationic polymerization initiators, radicals and cationic polymerization initiators, and these are appropriately selected and used.
  • These polymerization initiators are decomposed by at least one of active energy ray irradiation and heating to generate radicals or cations to promote radical polymerization and cation polymerization.
  • an initiator that can initiate at least one of radical polymerization or cationic polymerization by irradiation with active energy rays can be used.
  • the active energy ray-curing composition further comprises an ion trapping agent, an antioxidant, a chain transfer agent, an adhesion imparting agent, a thermoplastic resin, a filler, a fluid viscosity modifier, a plasticizer, a defoaming agent solvent, an additive, and a solvent. Can be included.
  • the active energy ray-curable composition is applied to either or both of the layers to be adhered, and then bonded to each layer. Alternatively, both layers to be adhered can be adhered by irradiating them with active energy rays and curing them.
  • the thickness of the adhesive layer is preferably 0.01 to 20 ⁇ m, more preferably 0.1 to 10 ⁇ m.
  • the thickness and type of the respective layers may be the same or different.
  • the pressure-sensitive adhesive is classified into an acrylic pressure-sensitive adhesive, a urethane-based pressure-sensitive adhesive, a rubber-based pressure-sensitive adhesive, a silicone-based pressure-sensitive adhesive, and the like according to the main polymer, and any of them can be used.
  • the pressure-sensitive adhesive may contain a cross-linking agent, a silane compound, an ionic compound, a cross-linking catalyst, an antioxidant, a tackifier, a plasticizing agent, a dye, a pigment, an inorganic filler and the like.
  • a pressure-sensitive adhesive layer is formed by dissolving and dispersing each component constituting the pressure-sensitive adhesive in a solvent to obtain a pressure-sensitive adhesive composition, applying the pressure-sensitive adhesive composition onto a substrate, and then drying the mixture.
  • the adhesive layer may be directly formed, or a separately formed base material may be transferred. It is also preferable to use a release film to cover the adhesive surface before bonding.
  • the thickness of the adhesive layer is preferably 0.1 to 500 ⁇ m, more preferably 1 to 300 ⁇ m.
  • the thickness and type of the respective layers may be the same or different.
  • the shading pattern can be applied as at least part of the bezel or housing of the flexible display device.
  • the light-shielding pattern hides the wiring arranged at the edge of the flexible display device to make it difficult to see, thereby improving the visibility of the image.
  • the shading pattern may be in the form of a single layer or multiple layers.
  • the color of the light-shielding pattern is not particularly limited, and may be various colors such as black, white, and metallic.
  • the light-shielding pattern can be formed of a pigment for embodying color and a polymer such as an acrylic resin, an ester resin, an epoxy resin, polyurethane, or silicone. They can also be used alone or in mixtures of two or more.
  • the shading pattern can be formed by various methods such as printing, lithography, and inkjet.
  • the thickness of the shading pattern is preferably 1 to 100 ⁇ m, more preferably 2 to 50 ⁇ m. It is also preferable to give a shape such as an inclination in the thickness direction of the light-shielding pattern.
  • Total light transmittance In accordance with JIS K 7105: 1981, the total light transmittance (Tt) of the optical films obtained in Examples and Comparative Examples was measured by a fully automatic direct reading haze computer HGM-2DP manufactured by Suga Test Instruments Co., Ltd. ..
  • ⁇ Elastic modulus> The elastic modulus of the optical film obtained in Examples and Comparative Examples was measured using "Autograph AG-IS" manufactured by Shimadzu Corporation. A film having a width of 10 mm in length and width was produced, a stress-strain curve (SS curve) was measured under the conditions of a distance between chucks of 50 mm and a tensile speed of 10 mm / min, and the elastic modulus was calculated from the inclination.
  • SS curve stress-strain curve
  • TPC was added so as to be 27.27 mol% with respect to TFMB, and after stirring for 10 minutes, TPC was further added so as to be 27.27 mol% with respect to TFMB, and the mixture was stirred for 30 minutes. did. Then, the same amount of DMAc as the initially added DMAc was added, and after stirring for 10 minutes, TPC was added so as to be 6.06 mol% with respect to TFMB, and the mixture was stirred for 2 hours.
  • TPC was added to 27.14 mol% with respect to TFMB, and after stirring for 10 minutes, TPC was further added to 27.14 mol% with respect to TFMB, and the mixture was stirred for 30 minutes. did. Then, the same amount of DMAc as the initially added DMAc was added, and after stirring for 10 minutes, TPC was added so as to be 6.03 mol% with respect to TFMB, and the mixture was stirred for 2 hours.
  • diisopropylethylamine, 4-picoline, and acetic anhydride were added to the flask so as to be 60.30 mol%, 60.30 mol%, and 281.41 mol%, respectively, with respect to TFMB, and after stirring for 30 minutes, the internal temperature was adjusted to 70 ° C. The temperature was raised to 3 and the mixture was further stirred for 3 hours to obtain a reaction solution. The obtained reaction solution was cooled to room temperature, poured into a large amount of methanol in the form of filaments, the precipitated precipitate was taken out, immersed in methanol for 6 hours, and then washed with methanol. Next, the precipitate was dried under reduced pressure at 60 ° C. to obtain a polyamide-imide resin (2). The Mw of the obtained polyamide-imide resin (2) was 139,000.
  • TPC was added so as to be 27.84 mol% with respect to TFMB, and after stirring for 10 minutes, TPC was further added so as to be 27.84 mol% with respect to TFMB, and the mixture was stirred for 30 minutes. did. Then, the same amount of DMAc as the initially added DMAc was added, and after stirring for 10 minutes, TPC was added so as to be 6.19 mol% with respect to TFMB, and the mixture was stirred for 2 hours.
  • OMTPC was added so as to be 33.08 mol% with respect to TFMB, and after stirring for 10 minutes, OMTPC was further added so as to be 33.08 mol% with respect to TFMB, and the mixture was stirred for 30 minutes. did. Then, the same amount of DMAc as that added first was added, and the mixture was stirred for 10 minutes, then OMTPC was added so as to be 7.04 mol% with respect to TFMB, and the mixture was stirred for 2 hours.
  • DMTPC was added so as to be 36.36 mol% with respect to TFMB, and after stirring for 10 minutes, DMTPC was further added so as to be 36.36 mol% with respect to TFMB, and the mixture was stirred for 30 minutes. did. Then, the same amount of DMAc as the initially added DMAc was added, and after stirring for 10 minutes, DMTPC was added so as to be 8.08 mol% with respect to TFMB, and the mixture was stirred for 2 hours.
  • diisopropylethylamine, 4-picoline, and acetic anhydride were added to the flask so as to be 80.81 mol%, 80.81 mol%, and 141.41 mol% with respect to TFMB, respectively, and the mixture was stirred for 30 minutes, and then the internal temperature was adjusted to 70 ° C. The temperature was raised to 3 and the mixture was further stirred for 3 hours to obtain a reaction solution.
  • the obtained reaction solution was cooled to room temperature, poured into a large amount of methanol in the form of filaments, the precipitated precipitate was taken out, immersed in methanol for 6 hours, and then washed with methanol. Next, the precipitate was dried under reduced pressure at 60 ° C. to obtain a polyamide-imide resin (7).
  • the Mw of the obtained polyamide-imide resin (7) was 482,000.
  • diisopropylethylamine, 4-picoline, and acetic anhydride were added to the flask so as to be 80.40 mol%, 80.40 mol%, and 140.70 mol% with respect to TFMB, respectively, and the mixture was stirred for 30 minutes, and then the internal temperature was adjusted to 70 ° C. The temperature was raised to 3 and the mixture was further stirred for 3 hours to obtain a reaction solution.
  • the obtained reaction solution was cooled to room temperature, poured into a large amount of methanol in the form of filaments, the precipitated precipitate was taken out, immersed in methanol for 6 hours, and then washed with methanol. Next, the precipitate was dried under reduced pressure at 60 ° C. to obtain a polyamide-imide resin (8).
  • the Mw of the obtained polyamide-imide resin (8) was 483,000.
  • diisopropylethylamine, 4-picoline, and acetic anhydride were added to the flask so as to be 60.30 mol%, 60.30 mol%, and 281.41 mol%, respectively, with respect to TFMB, and after stirring for 30 minutes, the internal temperature was adjusted to 70 ° C. The temperature was raised to 3 and the mixture was further stirred for 3 hours to obtain a reaction solution. The obtained reaction solution was cooled to room temperature, poured into a large amount of methanol in the form of filaments, the precipitated precipitate was taken out, immersed in methanol for 6 hours, and then washed with methanol. Next, the precipitate was dried under reduced pressure at 60 ° C. to obtain a polyamide-imide resin (9). The Mw of the obtained polyamide resin (9) was 594,000.
  • TPC was added so as to be 27.84 mol% with respect to TFMB, and after stirring for 10 minutes, TPC was further added so as to be 27.84 mol% with respect to TFMB, and the mixture was stirred for 30 minutes. did. Then, the same amount of DMAc as the initially added DMAc was added, and after stirring for 10 minutes, TPC was added so as to be 6.19 mol% with respect to TFMB, and the mixture was stirred for 2 hours.
  • TPC was added so as to be 27.84 mol% with respect to TFMB, and after stirring for 10 minutes, TPC was further added so as to be 27.84 mol% with respect to TFMB, and the mixture was stirred for 30 minutes. did. Then, the same amount of DMAc as the initially added DMAc was added, and after stirring for 10 minutes, TPC was added so as to be 6.19 mol% with respect to TFMB, and the mixture was stirred for 2 hours.
  • TPC was added so as to be 32.14 mol% with respect to TFMB, and after stirring for 10 minutes, TPC was further added so as to be 32.14 mol% with respect to TFMB, and the mixture was stirred for 30 minutes. did. Then, the same amount of DMAc as the initially added DMAc was added, and after stirring for 10 minutes, TPC was added so as to be 7.14 mol% with respect to TFMB, and the mixture was stirred for 2 hours.
  • TPC was added so as to be 27.55 mol% with respect to TFMB, and after stirring for 10 minutes, TPC was further added so as to be 27.55 mol% with respect to TFMB, and the mixture was stirred for 30 minutes. did. Then, the same amount of DMAc as the initially added DMAc was added, and after stirring for 10 minutes, TPC was added so as to be 6.12 mol% with respect to TFMB, and the mixture was stirred for 2 hours.
  • TPC was added so as to be 32.14 mol% with respect to TFMB, and after stirring for 10 minutes, TPC was further added so as to be 32.14 mol% with respect to TFMB, and the mixture was stirred for 30 minutes. did. Then, the same amount of DMAc as the initially added DMAc was added, and after stirring for 10 minutes, TPC was added so as to be 7.14 mol% with respect to TFMB, and the mixture was stirred for 2 hours.
  • Example 1 The polyamide-imide resin (1) and DMAc obtained in Synthesis Example 1 were mixed in an amount such that the content ratio of the polyamide-imide resin in the resin composition was 10% by mass.
  • the obtained resin composition was applied onto a smooth surface of a polyester base material (manufactured by Toyobo Co., Ltd., trade name "A4100") using an applicator so that the thickness of the free-standing film was 55 ⁇ m, and at 50 ° C. After drying for 30 minutes and then at 140 ° C. for 15 minutes, the obtained coating film was peeled off from the polyester substrate to obtain a self-supporting film.
  • the free-standing film was fixed to a gold frame and further dried in the air at 200 ° C. for 40 minutes to obtain a polyamide-imide resin film (1) having a thickness of 50 ⁇ m.
  • Example 2 The polyamide-imide resin (6) and DMAc obtained in Synthesis Example 6 were mixed in an amount such that the content ratio of the polyamide-imide resin in the resin composition was 10% by mass. Using the obtained resin composition, the same operation as in Example 1 was carried out to obtain a polyamide-imide resin film (6) having a thickness of 38 ⁇ m.
  • Example 3 The polyamide-imide resin (7) and DMAc obtained in Synthesis Example 7 were mixed in an amount such that the content ratio of the polyamide-imide resin in the resin composition was 10% by mass. Using the obtained resin composition, the same operation as in Example 1 was carried out to obtain a polyamide-imide resin film (7) having a thickness of 42 ⁇ m.
  • Example 4 The polyamide-imide resin (8) and DMAc obtained in Synthesis Example 8 were mixed in an amount such that the content ratio of the polyamide-imide resin in the resin composition was 10% by mass. Using the obtained resin composition, the same operation as in Example 1 was carried out to obtain a polyamide-imide resin film (8) having a thickness of 40 ⁇ m.
  • Example 5 The polyamide-imide resin (9) and DMAc obtained in Synthesis Example 9 were mixed in an amount such that the content ratio of the polyamide-imide resin in the resin composition was 10% by mass. Using the obtained resin composition, the same operation as in Example 1 was carried out to obtain a polyamide-imide resin film (9) having a thickness of 40 ⁇ m.
  • Example 6 The polyamide-imide resin (10) and DMAc obtained in Synthesis Example 10 were mixed in an amount such that the content ratio of the polyamide-imide resin in the resin composition was 10% by mass. Using the obtained resin composition, the same operation as in Example 1 was carried out to obtain a polyamide-imide resin film (10) having a thickness of 40 ⁇ m.
  • Example 7 The polyamide-imide resin (11) and DMAc obtained in Synthesis Example 11 were mixed in an amount such that the content ratio of the polyamide-imide resin in the resin composition was 10% by mass. Using the obtained resin composition, the same operation as in Example 1 was carried out to obtain a polyamide-imide resin film (11) having a thickness of 40 ⁇ m.
  • Example 8> The polyamide-imide resin (12) and DMAc obtained in Synthesis Example 12 were mixed in an amount such that the content ratio of the polyamide-imide resin in the resin composition was 10% by mass. Using the obtained resin composition, the same operation as in Example 1 was carried out to obtain a polyamide-imide resin film (12) having a thickness of 40 ⁇ m.
  • Example 9 The polyamide-imide resin (13) and DMAc obtained in Synthesis Example 13 were mixed in an amount such that the content ratio of the polyamide-imide resin in the resin composition was 10% by mass. Using the obtained resin composition, the same operation as in Example 1 was carried out to obtain a polyamide-imide resin film (13) having a thickness of 40 ⁇ m.
  • Example 10 The polyamide-imide resin (14) and DMAc obtained in Synthesis Example 14 were mixed in an amount such that the content ratio of the polyamide-imide resin in the resin composition was 10% by mass. Using the obtained resin composition, the same operation as in Example 1 was carried out to obtain a polyamide-imide resin film (14) having a thickness of 40 ⁇ m.
  • ⁇ Comparative example 1> The polyamide-imide resin (2) and DMAc obtained in Synthesis Example 2 were mixed in an amount such that the content ratio of the polyamide-imide resin in the resin composition was 10% by mass. Using the obtained resin composition, the same operation as in Example 1 was carried out to obtain a polyamide-imide resin film (2) having a thickness of 50 ⁇ m.
  • ⁇ Comparative example 2> The polyamide-imide resin (3) and DMAc obtained in Synthesis Example 3 were mixed in an amount such that the content ratio of the polyamide-imide resin in the resin composition was 10% by mass. Using the obtained resin composition, the same operation as in Example 1 was carried out to obtain a polyamide-imide resin film (3) having a thickness of 50 ⁇ m.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Theoretical Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Materials Engineering (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

黄色度が低く、かつ耐折性に優れた光学フィルムを提供する。 引張試験における耐力が81MPa以上であり、かつ、黄色度が3.0未満である、ポリイミド系樹脂を含む光学フィルム。

Description

光学フィルム及びフレキシブル表示装置
 本発明は、ポリイミド系樹脂を含む光学フィルム、及び該光学フィルムを備えるフレキシブル表示装置に関する。
 液晶表示装置や有機EL表示装置等の表示装置は、携帯電話やスマートウォッチといった種々の用途に広く活用されている。このような表示装置の前面板としてガラスが用いられてきたが、ガラスは非常に剛直であり、割れやすいため、フレキシブル表示装置の前面板材料としての利用は難しい。そのため、ガラスに代わる材料の一つとして、ポリイミド系樹脂、ポリアミドイミド系樹脂等のポリマーを用いた光学フィルムが検討されている(特許文献1及び2)。
国際公開第2014/046180号 国際公開第2016/152459号
 ポリイミド系樹脂を含む光学フィルムを例えばフレキシブル表示装置において使用する場合、当該光学フィルムには繰り返しの折り曲げによって、光学フィルムの光学特性や機械的強度等に変化が生じない、高い耐折性が要求される。従来種々のポリイミド系樹脂を含む光学フィルムが知られてはいるが、光学フィルムにおける耐折性のさらなる向上が要求されている。
 また、フレキシブル表示装置において、中でも前面板として使用されるポリイミド系樹脂を含む光学フィルムには、高い耐折性を有するだけでなく、低い黄色度を有することも求められる。
 したがって本発明は、黄色度が低く、かつ耐折性に優れた光学フィルムを提供することを課題とする。
 本発明者は、上記課題を解決すべく鋭意検討を行った結果、光学フィルムの耐力が所定の範囲内である場合、耐折性を向上できることを見出し、本発明を完成させるに至った。
 すなわち、本発明は、以下の好適な態様を包含する。
〔1〕引張試験における耐力が81MPa以上であり、かつ、黄色度が3.0未満である、ポリイミド系樹脂を含む光学フィルム。
〔2〕弾性率が4.8GPa以上である、前記〔1〕に記載の光学フィルム。
〔3〕全光線透過率が85%以上である、前記〔1〕又は〔2〕に記載の光学フィルム。
〔4〕ポリイミド系樹脂の重量平均分子量は100,000以上である、前記〔1〕~〔3〕のいずれかに記載の光学フィルム。
〔5〕ポリイミド系樹脂は、式(1):
Figure JPOXMLDOC01-appb-C000005
[式(1)中、Yは4価の有機基を表し、
 Xは2価の有機基を表し、
 *は結合手を表す]
で表される構成単位を含み、式(1)中のYとして、式(2):
Figure JPOXMLDOC01-appb-C000006
[式(2)中、Rは、互いに独立に、ハロゲン原子、ハロゲン原子を有してもよい、アルキル基、アルコキシ基、アリール基、又はアリールオキシ基を表し、
 R~Rは、互いに独立に、水素原子、又はハロゲン原子を有してもよい1価の炭化水素基を表し、
 mは、互いに独立に0~3の整数を表し、
 nは1~4の整数を表し、
 *は結合手を表し、但し、R~Rを有する少なくとも1つのベンゼン環において、R~Rの少なくとも1つがハロゲン原子を有してもよい1価の炭化水素基である]
で表される構造を含む、前記〔1〕~〔4〕のいずれかに記載の光学フィルム。
〔6〕ポリイミド系樹脂はポリアミドイミド樹脂である、前記〔1〕~〔5〕のいずれかに記載の光学フィルム。
〔7〕ポリイミド系樹脂は、式(3):
Figure JPOXMLDOC01-appb-C000007
[式(3)中、Z及びXは、互いに独立に、2価の有機基を表し、
 *は結合手を表す]
で表される構成単位を含む、前記〔1〕~〔6〕のいずれかに記載の光学フィルム。
〔8〕ポリイミド系樹脂は、式(3)中のZとして、式(4):
Figure JPOXMLDOC01-appb-C000008
[式(4)中、Wは、互いに独立に、単結合、-O-、ジフェニルメチレン基、ハロゲン原子を有してもよい2価の炭化水素基、-SO-、-S-、-CO-、-PO-、-PO-、-N(RW1)-又は-Si(RW2-を表し、RW1及びRW2は、互いに独立に、水素原子、又はハロゲン原子を有してもよいアルキル基を表し、Rは、互いに独立に、ハロゲン原子、ハロゲン原子を有してもよい、アルキル基、アルコキシ基、アリール基、又はアリールオキシ基を表し、
 pは、互いに独立に0~4の整数を表し、
 qは0~4の整数を表し、
 *は結合手を表す]
で表される構造を含む、前記〔7〕に記載の光学フィルム。
〔9〕フレキシブル表示装置の前面板用のフィルムである、前記〔1〕~〔8〕のいずれかに記載の光学フィルム。
〔10〕前記〔1〕~〔9〕のいずれかに記載の光学フィルムを備えるフレキシブル表示装置。
〔11〕タッチセンサをさらに備える、前記〔10〕に記載のフレキシブル表示装置。
〔12〕偏光板をさらに備える、前記〔10〕又は前記〔11〕に記載のフレキシブル表示装置。
 本発明によれば、黄色度が低く、かつ耐折性に優れた光学フィルムを提供することができる。
 以下、本発明の実施の形態について詳細に説明する。なお、本発明の範囲はここで説明する実施の形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で種々の変更をすることができる。
〔光学フィルム〕
 本発明の光学フィルムは、ポリイミド系樹脂を含む光学フィルムであって、引張試験における耐力が81MPa以上であり、かつ、黄色度が3未満である。
 本発明の光学フィルムの引張試験における耐力は、81MPa以上である。耐力が81MPa未満である場合、光学フィルムの耐折性を十分に高めることができない。耐力は、好ましくは83MPa以上、より好ましくは85MPa以上、さらに好ましくは88MPa以上、さらにより好ましくは90MPa以上、とりわけ好ましくは93MPa以上、とりわけより好ましくは95MPa以上であり、折り曲げに必要となる応力の観点からは、好ましくは300MPa以下、より好ましくは250MPa以下、さらに好ましくは200MPa以下である。
 本明細書において、引張試験における耐力とは、ASTM D638-14により測定されるオフセット法による耐力(yield strength by offset method)を表し、具体的には、応力-ひずみ曲線において、0.2%の永久ひずみに相当するひずみ軸上の点から、試験初期の直線部分に平行線を引き、これが上記曲線と交わる点の示す応力から求めることができる。耐力は、例えば引張試験機を用い、ASTM D638-14セクションA2.6に従い測定することができる。測定方法として、例えば実施例に記載の方法を用いてよい。
 光学フィルムの屈曲に対する耐性に影響し得る物性値として、弾性率等の種々の物性値が検討されてはいるが、単に弾性率を向上させるのみでは十分な耐折性が達成されない場合があることがわかった。そこで、耐折性のさらなる向上を目指し、本発明者が種々の物性値について検討した結果、引張試験における耐力が81MPa以上である場合に、耐折性を十分に高めることができることがわかった。耐力を上記の範囲に調整する方法としては、特に限定されないが、後述するようなポリイミド系樹脂を使用する方法が挙げられる。
 また、本発明の光学フィルムの黄色度(以下、YI値と記載することがある)は3.0未満である。YI値が3.0以上である場合、光学フィルムのYI値が高すぎるために、光学フィルムを介して例えば画像等を視認する際の視認性が低下する。本発明の光学フィルムのYI値は、光学フィルムを介した画像等の視認性を向上させやすい観点から、好ましくは2.8以下、より好ましくは2.6以下、さらに好ましくは2.5以下であり、好ましくは-5以上、より好ましくは-2以上である。光学フィルムのYI値が上記の上限以下であると、透明性が良好となり、表示装置の前面板に使用した場合に、高い視認性に寄与することができる。なお、YI値は紫外可視近赤外分光光度計を用いて300~800nmの光に対する透過率測定を行い、3刺激値(X、Y、Z)を求め、YI=100×(1.2769X-1.0592Z)/Yの式に基づいて算出できる。光学フィルムのYI値を上記の範囲に調整する方法としては、特に限定されないが、後述するようなポリイミド系樹脂を使用する方法、青色色素を添加する方法、薄膜化する、モノマー主鎖の芳香族環に側鎖を導入する方法等が挙げられる。
 本発明の光学フィルムの弾性率は、光学フィルムの耐折性を向上させやすい観点、及び、シワや傷付き等を防止しやすい観点から、好ましくは4.8GPa以上、より好ましくは5.2GPa以上、さらに好ましくは6.0GPa以上であり、通常100GPa以下である。なお、弾性率は、引張試験機(チャック間距離50mm、引張速度10mm/分)を用いて測定でき、例えば実施例に記載の方法により測定できる。なお、弾性率を高める方法として、剛直な無機フィラーを添加する方法や架橋構造を導入する手法が知られている。しかし、このような手法を用いる場合、弾性率が向上する一方、耐力の向上が見られない場合が多い。しかし、本発明の光学フィルムにおいては、これらを共に高めることが可能であり、耐折性のさらなる向上が達成される。
 本発明の光学フィルムは、優れた耐折性を有する。本発明の光学フィルムのASTM規格D2176-16に準拠したMIT耐折疲労試験における耐折回数は、好ましくは80,000回以上、より好ましくは100,000回以上、さらに好ましくは250,000回以上である。耐折回数が上記の下限以上であると、繰り返し折り曲げてもクラック、割れ、折り皺等の発生を有効に抑制できる。なお、MIT耐折疲労試験は、MIT耐折疲労試験機を用いて測定でき、例えば実施例に記載の方法により測定できる
 本発明の光学フィルムの全光線透過率は、好ましくは85%以上、より好ましくは88%以上、さらに好ましくは89%以上、とりわけ好ましくは90%以上である。全光線透過率が上記の下限以上であると、光学フィルムを、前面板として、表示装置に組み込んだ際に視認性を高めやすい。本発明の光学フィルムは通常、高い全光線透過率を示すので、例えば、透過率の低いフィルムを用いた場合と比べて、一定の明るさを得るために必要な表示素子等の発光強度を抑えることが可能となる。このため、消費電力を削減することができる。例えば、本発明の光学フィルムを表示装置に組みこむ場合、バックライトの光量を減らしても明るい表示を得られる傾向があり、エネルギーの節約に貢献できる。全光線透過率の上限は、通常100%以下である。なお、全光線透過率は、例えばJIS K 7361-1:1997に準拠してヘーズコンピュータを用いて測定できる。全光線透過率は、後述する光学フィルムの厚さの範囲における全光線透過率であってよい。なお、本明細書において、光学フィルムが光学特性に優れるとは、全光線透過率が高いこと、及び/又は、へーズが低いこと、及び/又は、YI値が低いことを意味し、透明性が高まる又は向上すると同じ意味で使用することがある。
 本発明の光学フィルムのヘーズは、好ましくは5%以下、より好ましくは4%以下、さらに好ましくは3%以下、さらにより好ましくは2%以下、とりわけ好ましくは1%以下、とりわけより好ましくは0.8%以下、とりわけさらに好ましくは0.5%以下であり、通常0.01%以上である。光学フィルムのヘーズが上記の範囲にあると、光学フィルムを、特に前面板として、表示装置に組み込んだ際に、視認性を高めやすい。なお、ヘーズは、JIS K 7136:2000に準拠してヘーズコンピュータを用いて測定でき、例えば実施例に記載の方法により測定できる。
 本発明の光学フィルムの厚さは、好ましくは10μm以上、より好ましくは20μm以上、さらに好ましくは25μm以上、とりわけ好ましくは30μm以上であり、好ましくは200μm以下、より好ましくは100μm以下、さらにより好ましくは80μm以下、とりわけ好ましくは60μm以下であり、これらの上限と下限の組合せであってよい。光学フィルムの厚さが上記の範囲内であると、光学フィルムの耐力及び弾性率をより高めやすい。なお、光学フィルムの厚さは、マイクロメーターを用いて測定でき、例えば実施例に記載の方法により測定できる。
 全光線透過率及びヘーズは、光学フィルムの厚さに応じて変化し、厚さが大きくなるほど、全光線透過率は低下し、ヘーズは高くなる。すなわち、厚さが大きいフィルムにおいて、全光線透過率が高く、かつヘーズが低い光学フィルムを作製することは困難である。本発明の好適な実施形態において、本発明の光学フィルムは、高水準の透明性を有するため、厚さが比較的大きくても、高い全光線透過率及び低いヘーズを示すことができる。そのため、本発明の光学フィルムの厚さは、好ましくは10μm以上、より好ましくは15μm以上、さらに好ましくは20μm以上、さらにより好ましくは25μm以上、とりわけ好ましくは30μm以上、とりわけより好ましくは35μm以上、とりわけさらに好ましくは40μm以上であり、好ましくは100μm以下、より好ましくは80μm以下、さらに好ましくは60μm以下である。光学フィルムの厚さは、膜厚計などで測定でき、例えば実施例に記載の方法により測定できる。
〔ポリイミド系樹脂〕
 本発明の光学フィルムは、ポリイミド系樹脂を含む。本発明の光学フィルムは、1種類のポリイミド系樹脂を含んでいてもよいし、2種以上のポリイミド系樹脂を含んでいてもよい。本発明の光学フィルム中におけるポリイミド系樹脂の含有量は、光学フィルム100質量部に対して、好ましくは10質量部以上、より好ましくは30質量部以上、さらに好ましくは50質量部以上であり、好ましくは99.5質量部以下、より好ましくは95質量部以下である。ポリイミド系樹脂の含有量が上記範囲内であると、光学フィルムの耐力、光学特性、耐衝撃性及び弾性率を向上させやすい。
 本発明の光学フィルムに含まれるポリイミド系樹脂は、ポリイミド樹脂、ポリアミドイミド樹脂及びポリアミック酸樹脂からなる群から選択される少なくとも1種の樹脂であってよい。ポリイミド系樹脂は、1種類のポリイミド系樹脂であってもよいし、2種以上のポリイミド系樹脂であってもよい。ポリイミド系樹脂は、製膜性の観点及び耐力を高めやすい観点から、好ましくはポリアミドイミド樹脂である。ポリイミド系樹脂は、芳香族系のポリイミド系樹脂であることが好ましい。ポリイミド系樹脂が芳香族系であるとは、ポリイミド系樹脂を構成する構成単位の好ましくは60モル%以上、より好ましくは80モル%以上、さらに好ましくは85モル%以上が、芳香族系の構造を含む構成単位であることを表す。
 本発明の好ましい一実施形態において、ポリイミド系樹脂は、式(1):
Figure JPOXMLDOC01-appb-C000009
[式(1)中、Yは4価の有機基を表し、Xは2価の有機基を表し、*は結合手を表す]
で表される構成単位を有するポリイミド樹脂であるか、又は、式(1)で表される構成単位及び式(3):
Figure JPOXMLDOC01-appb-C000010
[式(3)中、Z及びXは、互いに独立に2価の有機基を表し、
*は結合手を表す]
で表される構成単位を有するポリアミドイミド樹脂であることが好ましい。以下において式(1)及び式(3)について説明するが、式(1)についての説明は、ポリイミド樹脂及びポリアミドイミド樹脂の両方に関し、式(3)についての説明は、ポリアミドイミド樹脂に関する。
 式(1)で表される構成単位は、テトラカルボン酸化合物とジアミン化合物とが反応して形成される構成単位であり、式(3)で表される構成単位は、ジカルボン酸化合物とジアミン化合物とが反応して形成される構成単位である。ポリイミド系樹脂が、芳香族系のポリイミド系樹脂である本発明の好ましい一態様において、式(1)で表される構成単位及び式(3)で表される構成単位を構成する、テトラカルボン酸化合物、ジアミン化合物及びジカルボン酸化合物の少なくとも1つが、芳香族化合物(芳香族テトラカルボン酸化合物、芳香族ジアミン化合物及び/又は芳香族ジカルボン酸化合物)であることが好ましい。
 式(1)中のYは、4価の有機基を表し、好ましくは炭素数4~80の4価の有機基を表し、より好ましくは環状構造を有する炭素数4~60の4価の有機基を表す。環状構造としては、脂環、芳香環、ヘテロ環構造が挙げられる。前記有機基は、有機基中の水素原子が置換基で置換されていてもよい有機基であり、該置換基としては、好ましくはハロゲン原子、ハロゲン原子を有してもよい、1価の炭化水素基(例えばアルキル基、アリール基等)、アルコキシ基又はアリールオキシ基が挙げられる。該置換基としての、ハロゲン原子を有してもよい、1価の炭化水素基、アルコキシ基又はアリールオキシ基の炭素数は、好ましくは1~8である。式(1)で表される構成単位は繰り返し単位であり、本発明の光学フィルムに含まれるポリイミド系樹脂は、式(1)で表される構成単位を複数有する。複数の式(1)で表される構成単位において、Yは、互いに同一であってもよいし、異なっていてもよい。言い換えると、本発明の光学フィルムに含まれるポリイミド系樹脂は、式(1)中のYとして、1種類の構造を有していてもよいし、2種以上の構造を有していてもよい。
 本発明の好ましい一態様において、得られる光学フィルムの耐力を高めやすい観点からは、ポリイミド系樹脂が式(1)で表される構成単位を有し、ポリイミド系樹脂が式(1)中のYとして、式(2):
Figure JPOXMLDOC01-appb-C000011
[式(2)中、Rは、互いに独立に、ハロゲン原子、ハロゲン原子を有してもよい、アルキル基、アルコキシ基、アリール基、又はアリールオキシ基を表し、R~Rは、互いに独立に、水素原子、又はハロゲン原子を有してもよい1価の炭化水素基を表し、mは、互いに独立に、0~3の整数を表し、nは1~4の整数を表し、*は結合手を表し、ただし、R~Rを有する少なくとも1つのベンゼン環において、R~Rの少なくとも1つがハロゲン原子を有してもよい1価の炭化水素基を表す]
で表される構造(4価の有機基)を少なくとも含むか、又は、ポリイミド系樹脂が式(1)で表される構成単位と、式(3)で表される構成単位とを有し、ポリイミド系樹脂が式(3)中のZとして、式(4”):
Figure JPOXMLDOC01-appb-C000012
[式(4”)中、Wは、互いに独立に、単結合、-O-、ジフェニルメチレン基、ハロゲン原子を有してもよい2価の炭化水素基、-SO-、-S-、-CO-、-PO-、-PO-、-N(RC1)-又は-Si(RC2-を表し、RC1及びRC2は、互いに独立に、水素原子、又はハロゲン原子を有してもよいアルキル基を表し、R8’は、互いに独立に、ハロゲン原子を有してもよいアルキル基、アルコキシ基を表し、p’は、互いに独立に、1~4の整数を表し、qは0~4の整数を表し、*は結合手を表す]
で表される構造(2価の有機基)を少なくとも含む。
 本発明者らは、ポリイミド系樹脂が式(1)中のYとして、式(2)で表される構造を含む場合、及び、ポリイミド系樹脂が式(1)で表される構成単位と、式(3)で表される構成単位とを有し、式(3)中のZとして、式(4”)で表される構造を含む場合、該ポリイミド系樹脂を用いて得られる光学フィルムのYIを低下させやすく、かつ、耐力を高めやすいことを見出した。上記の場合、ポリイミド系樹脂には、式(2)で表される構造、及び/又は、式(4”)で表される構造が含まれることとなる。これらの構造を含む場合に耐力を高めやすい理由は明らかではないが、式(2)で表される構造及び式(4”)で表される構造は、いずれも、芳香族系の主鎖を有すると共に、置換基を有している。このような構造は、ポリイミド系樹脂骨格において剛直でありながら、側鎖に置換基を有するために分子間パッキンを阻害する構造である。ポリイミド系樹脂がこのような構造を含むことにより、ポリアミド系樹脂が高弾性率となりながら高靭性となり、降伏に至るまでの応力がより高くなると考えられる。また、このような構造を含むことにより高耐力を有するポリイミド系樹脂は、得られる光学フィルムの透明性を高めやすいとともに、YI値を低減させやすい。その結果、高耐力と優れた光学特性とを両立することができる。
 式(2)中のRは、互いに独立に、ハロゲン原子、ハロゲン原子を有してもよい、アルキル基、アルコキシ基、アリール基、又はアリールオキシ基を表す。なお、ハロゲン原子を有してもよい、アルキル基、アルコキシ基、アリール基、又はアリールオキシ基は、ハロゲン原子を有してもよいアルキル基、ハロゲン原子を有してもよいアルコキシ基、ハロゲン原子を有してもよいアリール基、又はハロゲン原子を有してもよいアリールオキシ基を表す。これは、同様の他の記載にも当てはまる。ハロゲン原子としては、例えばフッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられる。アルキル基としては、例えばメチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、2-メチル-ブチル基、3-メチルブチル基、2-エチル-プロピル基、n-ヘキシル基などが挙げられる。アルコキシ基としては、例えばメトキシ基、エトキシ基、プロピルオキシ基、イソプロピルオキシ基、ブトキシ基、イソブトキシ基、tert-ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、シクロヘキシルオキシ基などが挙げられる。アリール基としては、例えばフェニル基、トリル基、キシリル基、ナフチル基、ビフェニル基などが挙げられる。アリールオキシ基としては、例えばフェノキシ基、ナフチルオキシ基、ビフェニルオキシ基などが挙げられる。Rは、互いに独立に、好ましくはハロゲン原子、ハロゲン原子を有してもよい、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、炭素数6~12のアリール基、又は炭素数6~12のアリールオキシ基を表す。
 式(2)中のmは、互いに独立に、0~3の整数を表し、ポリイミド系樹脂を含む光学フィルムの耐力、弾性率及び透明性を高めやすい観点からは、mは、好ましくは0~2の整数、より好ましくは0又は1、さらに好ましくは0を表す。
 式(2)中、R、R、R及びRは、互いに独立に、水素原子、又はハロゲン原子を有してもよい1価の炭化水素基を表す。1価の炭化水素基としては、芳香族炭化水素基、脂環族炭化水素基、脂肪族炭化水素基が挙げられる。芳香族炭化水素基としては、例えばフェニル基、トリル基、キシリル基、ナフチル基、ビフェニル基などのアリール基などが挙げられる。脂環族炭化水素基としては、シクロペンチル基、シクロヘキシル基等のシクロアルキル基などが挙げられる。脂肪族炭化水素基としては、例えばメチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、2-メチル-ブチル基、3-メチルブチル基、2-エチル-プロピル基、n-ヘキシル、n-ヘプチル基、n-オクチル基、tert-オクチル基、n-ノニル基、n-デシル基等のアルキル基などが挙げられる。ハロゲン原子としては、上記に記載のものが挙げられる。R~Rは、互いに独立に、好ましくは水素原子、又はハロゲン原子を有してもよい、炭素数6~12のアリール基、炭素数4~8のシクロアルキル基、又は炭素数1~6のアルキル基を表す。R~Rは、樹脂の溶媒への溶解性を高めやすく、光学フィルムの耐力、弾性率及び透明性を向上させやすい観点から、互いに独立に、好ましくは水素原子、又はハロゲン原子を有してもよいアルキル基を表し、より好ましくは水素原子、又はハロゲン原子を有してもよい1~6のアルキル基を表し、さらに好ましくは水素原子、又はハロゲン原子を有してもよい1~3のアルキル基を表す。
 式(2)中、R~Rを有する少なくとも1つのベンゼン環において、R~Rの少なくとも1つがハロゲン原子を有してもよい1価の炭化水素基を表すことが、光学フィルムの耐力及び光学特性を共に向上させやすい観点で好ましい。式(2)中、光学フィルムの耐力及び光学特性を共により向上させやすい観点からは、R~Rを有する少なくとも1つのベンゼン環において、R~Rの好ましくは2~4つ、より好ましくは3又は4つ、さらに好ましくは3つが、ハロゲン原子を有してもよい1価の炭化水素基である。
 樹脂の溶媒への溶解性を高めやすく、光学フィルムの耐力、破断歪、弾性率及び透明性をより向上させやすい観点から、nが2以上の場合、R~Rを有する少なくとも2つのベンゼン環において、R~Rの少なくとも1つがハロゲン原子を有してもよい1価の炭化水素基を表すことがより好ましく、R~Rを有する全てのベンゼン環において、R~Rの少なくとも1つがハロゲン原子を有してもよい1価の炭化水素基を表すことがさらに好ましい。
 式(2)中のnは1~4の整数を表し、光学フィルムの弾性率及び透明性を向上しやすく、かつ、光学フィルムの耐力を向上しやすい観点から、nは、好ましくは1~3の整数、より好ましくは2又は3、さらに好ましくは2である。なお、式(1)で表される構成単位は、Yとして、式(2)で表される構造を1種又は複数種含んでいてよい。
 本発明の好適な実施形態においては、式(2)は、式(2’):
Figure JPOXMLDOC01-appb-C000013
[式(2’)中、*は結合手を表す]
で表される。すなわち、ポリイミド系樹脂は、式(1)中のYとして、式(2’)で表される構造を含む。ポリイミド系樹脂が式(1)中のYとして、式(2’)で表される構造を含む場合、光学フィルムの耐力、弾性率、及び透明性を向上させやすい。
 ポリイミド系樹脂が式(1)中のYとして式(2)で表される構造を含む、本発明の好ましい一実施形態において、式(1)で表される構成単位のうち、式(1)中のYが式(2)(好ましくは式(2’))で表される構造である構成単位の割合は、式(1)で表される構成単位の総モル量(100モル%)に対して、好ましくは30モル%以上、より好ましくは35モル%以上、さらに好ましくは40モル%以上であり、通常100モル%以下、好ましくは90モル%以下、より好ましくは80モル%以下、さらに好ましくは70モル%以下である。Yが式(2)で表される構成単位の割合が上記の下限以上であると、光学フィルムの耐力及び弾性率を高めやすい。また、上記の上限以下であると、光学フィルムの破断歪及び透明性を高めやすい。Yが式(2)で表される構成単位の割合は、例えばH-NMRを用いて測定することができ、又は原料の仕込み比から算出することもできる。
 本発明のポリイミド系樹脂は、上記の式(1)中のYが式(2)で表される構成単位に加えて、又は、かかる構成単位に代えて、式(1)中のYが他の4価の有機基を表す構成単位を有していてよい。例えば、上記の式(1)中のYにおける4価の有機基としては、式(20)、式(21)、式(22)、式(23)、式(24)、式(25)、式(26)、式(27)、式(28)及び式(29):
Figure JPOXMLDOC01-appb-C000014
で表される構造が挙げられる。
 式(20)~式(29)中、*は結合手を表し、Wは、単結合、-O-、ジフェニルメチレン基、ハロゲン原子を有してもよい2価の炭化水素基(例えば-CH-、-CH-CH-、-CH(CH)-、-C(CH-、-C(CF-)、-Ar-、-SO-、-S-、-CO-、-PO-、-PO-、-N(RW1)-又は-Si(RW2-、-O-Ar-O-、-Ar-O-Ar-、-Ar-CH-Ar-、-Ar-C(CH-Ar-又は-Ar-SO-Ar-を表す。Arは、フッ素原子を有してもよい炭素数6~20のアリーレン基を表し、具体例としてはフェニレン基が挙げられる。RW1及びRW2は、互いに独立に、水素原子、又はハロゲン原子を有してもよいアルキル基を表す。なお、式(20)~式(29)における環上の水素原子は、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基又は炭素数6~12のアリール基で置換されていてもよい。炭素数1~6のアルキル基、炭素数1~6のアルコキシ基及び炭素数6~12のアリール基としては、それぞれ、式(2)のRとして上記に例示のものが挙げられる。
 式(20)~式(29)で表される基の中でも、光学フィルムの耐力、破断歪、弾性率及び透明性を向上させやすい観点から、式(26)、式(28)又は式(29)で表される基が好ましく、式(26)で表される基がより好ましい。また、Wは、光学フィルムの耐力、破断歪、弾性率及び透明性を向上させやすい観点から、好ましくは単結合、-O-、-CH-、-CH-CH-、-CH(CH)-、-C(CH-又は-C(CF-、より好ましくは単結合、-O-、-CH-、-CH(CH)-、-C(CH-又は-C(CF-、さらに好ましくは単結合、-C(CH-又は-C(CF-、さらにより好ましくは単結合又は-C(CF-、とりわけ好ましくは-C(CF-を表す。ポリイミド系樹脂が式(1)中のYとして式(2)で表される構造を含む上記の好ましい一実施形態においては、ポリイミド系樹脂は、式(1)中のYが式(2)で表される構成単位に加えて、式(1)中のYが式(26)で表される構成単位をさらに有することが、光学フィルムの耐力をより向上させやすい観点から好ましい。
 本発明の好適な実施形態において、式(26)は、好ましくは式(5):
Figure JPOXMLDOC01-appb-C000015
[式(5)中、Bは、単結合、-O-、ジフェニルメチレン基、ハロゲン原子を有してもよい2価の炭化水素基、-SO-、-S-、-CO-、-COO-,-PO-、-PO-、-N(RB1)-又は-Si(RB2-を表し、RB1及びRB2は、互いに独立に、水素原子、又はハロゲン原子を有してもよいアルキル基を表し、Rは、互いに独立に、ハロゲン原子、ハロゲン原子を有してもよい、アルキル基、アルコキシ基、アリール基、又はアリールオキシ基を表し、tは、互いに独立に、0~3の整数を表し、*は結合手を表す]
で表される。ポリイミド系樹脂が、式(1)中のYが式(2)で表される構成単位に加えて、式(1)中のYが式(5)で表される構成単位をさらに有する場合、樹脂の溶媒への溶解性ならびに光学フィルムの耐力及び透明性を向上させやすい。
 式(5)中のRは、互いに独立に、ハロゲン原子、ハロゲン原子を有してもよい、アルキル基、アルコキシ基、アリール基、又はアリールオキシ基を表す。ハロゲン原子、ハロゲン原子を有してもよい、アルキル基、アルコキシ基、アリール基及びアリールオキシ基としては、それぞれ式(2)のRとして上記に例示のものが挙げられる。光学フィルムの耐力、破断歪、弾性率及び透明性の向上の観点から、Rは、互いに独立に、好ましくはハロゲン原子を有してもよい炭素数1~6のアルキル基、より好ましくはハロゲン原子を有してもよい炭素数1~3のアルキル基を表す。
 式(5)中のtは、互いに独立に、0~3の整数を表し、光学フィルムの耐力、破断歪、弾性率及び透明性を向上させやすい観点から、好ましくは0~2の整数、より好ましくは0又は1、さらに好ましくは0である。
 式(5)中のBは、単結合、-O-、ジフェニルメチレン基、ハロゲン原子を有してもよい2価の炭化水素基、-SO-、-S-、-CO-、-COO-、-PO-、-PO-、-N(RB1)-又は-Si(RB2-を表し、RB1及びRB2は、互いに独立に、水素原子、又はハロゲン原子を有してもよいアルキル基を表す。
 ハロゲン原子を有してもよい2価の炭化水素基としては、式(3)中のR~Rにおけるハロゲン原子を有してもよい1価の炭化水素基のうち、水素原子をさらに1つ除いた2価の基が挙げられる。ハロゲン原子を有してもよい2価の炭化水素基は、その基に含まれる水素原子のうち、2つの水素原子に代わって環を形成、すなわち、該2つの水素原子を結合手に代え、その2つの結合手を連結させて環を形成してもよく、該環としては、例えば炭素数3~12のシクロアルカン環等が挙げられる。また、式(5)中のBに含まれる-N(RB1)-及び-Si(RB2-中のRB1及びRB2におけるハロゲン原子で置換されていてもよいアルキル基としては、式(3)中のRにおけるハロゲン原子を有してもよいアルキル基として上記に例示のものが挙げられる。
 式(5)中のBは、光学フィルムの耐力、破断歪、弾性率及び透明性を向上させやすい観点から、好ましくは単結合、又は、ハロゲン原子を有してもよい2価の炭化水素基、より好ましくは単結合、-CH-、-CH-CH-、-CH(CH)-、-C(CH-又は-C(CF-、さらに好ましくは単結合、-C(CH-又は-C(CF-、さらにより好ましくは単結合又は-C(CF-、とりわけ好ましくは-C(CF-を表す。
 本発明の好適な実施形態においては、式(5)は、式(5’):
Figure JPOXMLDOC01-appb-C000016
[式(5’)中、*は結合手を表す]
で表される。すなわち、ポリイミド系樹脂は、少なくとも一部の式(1)で表される構成単位として、Yが式(5’)で表される構成単位を有することが好ましい。この場合、光学フィルムの耐力、透明性、弾性率及び耐屈曲性を向上させやすい。
ポリイミド系樹脂が、式(1)中のYが式(5)で表される構成単位を含む場合、式(1)で表される構成単位のうち、式(1)中のYが式(5)、好ましくは式(5’)で表される構造である構成単位の割合は、式(1)で表される構成単位の総モル量(100モル%)に対して、好ましくは30モル%以上、より好ましくは35モル%以上、さらに好ましくは40モル%以上であり、好ましくは90モル%以下、より好ましくは80モル%以下、さらに好ましくは70モル%以下である。Yが式(5)で表される構成単位の割合が上記の下限以上であると、樹脂の溶媒への溶解性、及び光学フィルムの透明性を向上しやすい。また、上記の上限以下であると、光学フィルムの耐力及び弾性率を高めやすい。なお、式(1)中のYが式(5)で表される構成単位の割合は、例えばH-NMRを用いて測定することができ、又は原料の仕込み比から算出することもできる。
 本発明の一実施形態において、ポリイミド系樹脂が式(1)中のYが式(2)で表される構成単位及び式(1)中のYが式(5)で表される構成単位を含む場合、Yが式(2)で表される構成単位及びYが式(5)で表される構成単位との合計割合は、式(1)で表される構成単位の総モル量に対して、好ましくは50モル%以上、より好ましくは70モル%以上、さらに好ましくは90モル%以上であり、通常100モル%以下である。該合計割合が上記範囲であると、光学フィルムの耐力、破断歪、弾性率及び透明性を向上させやすい。なお、該合計割合は、例えばH-NMRを用いて測定することができ、又は原料の仕込み比から算出することもできる。
 式(1)中のXは、2価の有機基を表し、好ましくは炭素数4~40の2価の有機基を表す。本発明のポリイミド系樹脂は、光学フィルムの耐力、破断歪、弾性率及び透明性を向上させやすい観点から、式(1)中のXとして、2価の芳香族基、2価の脂環族基、及び2価の脂肪族基の少なくとも1種を含むことが好ましく、2価の芳香族基を含むことがより好ましい。2価の芳香族基としては、例えば式(2)中のR~Rとして上記に例示の1価の芳香族炭化水素基中の水素原子のうち、1つの水素原子が結合手に置き換わった2価の芳香族炭化水素基;該2価の芳香族炭化水素基のうち、少なくとも1つ以上を連結基、例えば後述のVなどの連結基により結合させた基が挙げられる。2価の脂環族基としては、例えば式(2)中のR~Rとして上記に例示の1価の脂環族炭化水素基中の水素原子のうち、1つの水素原子が結合手に置き換わった2価の脂環族炭化水素基;該2価の脂環族炭化水素基のうち、少なくとも1つ以上を連結基、例えば後述のV等の連結基により結合させた基が挙げられる。2価の脂肪族基としては、例えば式(2)中のR~Rとして上記に例示の1価の脂肪族炭化水素基中の水素原子のうち、1つの水素原子が結合手に置き換わった2価の脂肪族炭化水素基;該2価の脂肪族炭化水素基のうち、少なくとも1つ以上を連結基、例えば後述のV等の連結基により結合させた基が挙げられる。
 式(1)中のXは、好ましくは環状構造(脂環、芳香環、ヘテロ環構造など)を有する炭素数4~40の2価の有機基、より好ましくは炭素数4~40の2価の芳香族基及び炭素数4~40の2価の脂環族基を表し、さらに好ましくは炭素数4~40の2価の芳香族基を表す。該有機基は、有機基中の水素原子が炭化水素基又はフッ素置換された炭化水素基で置換されていてもよく、その場合、炭化水素基及びフッ素置換された炭化水素基の炭素数は好ましくは1~8である。本発明の一実施形態において、本発明のポリアミドイミド樹脂は、複数種のXを含み得、複数種のXは、互いに同一であっても、異なっていてもよい。Xとしては、式(10)、式(11)、式(12)、式(13)、式(14)、式(15)、式(16)、式(17)及び式(18)で表される基;それらの式(10)~式(18)で表される基中の水素原子がメチル基、フルオロ基、クロロ基又はトリフルオロメチル基で置換された基が挙げられる。なお、式(10)~式(18)における環上の水素原子は、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基又は炭素数6~12のアリール基で置換されていてもよい。炭素数1~6のアルキル基、炭素数1~6のアルコキシ基及び炭素数6~12のアリール基としては、それぞれ、式(2)のRとして上記に例示のものが挙げられる。
Figure JPOXMLDOC01-appb-C000017
 式(10)~式(18)中、*は結合手を表し、V、V及びVは、互いに独立に、単結合、-O-、-S-、-CH-、-CH-CH-、-CH(CH)-、-C(CH-、-C(CF-、-SO-、-CO-又は-N(Q)-を表す。ここで、Qはハロゲン原子を有してもよい炭素数1~12の1価の炭化水素基を表す。
 ハロゲン原子を有してもよい炭素数1~12の1価の炭化水素基としては、式(2)のR~Rにおけるハロゲン原子を有してもよい1価の炭化水素基として上記に例示のものが挙げられる。
 1つの例としては、V及びVが、単結合、-O-又は-S-であり、かつ、Vが-CH-、-C(CH-、-C(CF-又は-SO-である。VとVとの各環に対する結合位置、及び、VとVとの各環に対する結合位置は、互いに独立に、各環に対して、好ましくはメタ位又はパラ位、より好ましくはパラ位である。
 本発明の好適な実施形態において、本発明のポリイミド系樹脂は、式(1)中のXとして、式(6):
Figure JPOXMLDOC01-appb-C000018
[式(6)中、Aは、単結合、-O-、ジフェニルメチレン基、ハロゲン原子を有してもよい2価の炭化水素基、-SO-、-S-、-CO-、-PO-、-PO-、-N(RA1)-又は-Si(RA2-を表し、RA1及びRA2は、互いに独立に、水素原子、又はハロゲン原子を有してもよいアルキル基を表し、Rは互いに独立に、ハロゲン原子、ハロゲン原子を有してもよい、アルキル基、アルコキシ基、アリール基、又はアリールオキシ基を表し、sは、互いに独立に、0~4の整数を表し、*は結合手を表す]
で表される構造を含み得る。ポリイミド系樹脂が、式(1)中のXが式(6)で表される構成単位を有する場合、光学フィルムの耐力、破断歪、弾性率及び透明性を向上させやすい。本発明において、ポリイミド系樹脂は、式(1)で表される構成単位中のXとして、式(6)で表される基を1種又は複数種含んでよい。
 式(6)中のRは、互いに独立に、ハロゲン原子、ハロゲン原子を有してもよい、アルキル基、アルコキシ基、アリール基、又はアリールオキシ基を表す。ハロゲン原子、ハロゲン原子を有してもよい、アルキル基、アルコキシ基、アリール基、及びアリールオキシ基としては、それぞれ、式(2)のRとして上記に例示のものが挙げられる。
 これらの中でも、Rは、互いに独立に、光学フィルムの耐力、破断歪、弾性率及び透明性を向上させやすい観点から、好ましくは炭素数1~6のアルキル基又は炭素数1~6のハロゲン化アルキル基を表し、より好ましくは炭素数1~6のアルキル基又は炭素数1~6のフルオロアルキル基(好ましくはパーフルオロアルキル基)を表す。好適な形態では、Rは、互いに独立に、メチル基、クロロ基又はトリフルオロメチル基を表す。sは、互いに独立に、0~4の整数を表し、光学フィルムの耐力、破断歪、弾性率及び透明性を向上させやすい観点から、好ましくは1~3の整数、より好ましくは1又は2、さらに好ましくは1である。本発明の好ましい実施形態では、各ベンゼン環において、sが1であり、-A-を基準とするオルト位にRが置換し、かつRがメチル基、フルオロ基、クロロ基又はトリフルオロメチル基であることが好ましい。
 式(6)において、結合手の位置は、互いに独立に、光学フィルムの耐力、破断歪、弾性率及び透明性を向上させやすい観点から、-A-を基準に、好ましくはメタ位又はパラ位、より好ましくはパラ位である。
 式(6)中のAは、単結合、-O-、ジフェニルメチレン基、ハロゲン原子を有してもよい2価の炭化水素基、-SO-、-S-、-CO-、-PO-、-PO-、-N(RA1)-又は-Si(RA2-を表し、RA1及びRA2は、互いに独立に、水素原子、又はハロゲン原子を有してもよいアルキル基を表す。
 ハロゲン原子を有してもよい2価の炭化水素基としては、式(3)のR~Rにおけるハロゲン原子を有してもよい1価の炭化水素基のうち、水素原子をさらに1つ除いた2価の基が挙げられる。ハロゲン原子を有してもよい2価の炭化水素基は、その基に含まれる水素原子のうち、2つの水素原子に代わって環を形成、すなわち、該2つの水素原子を結合手に代え、その2つの結合手を連結させて環を形成してもよく、該環としては、例えば炭素数3~12のシクロアルカン環等が挙げられる。また、式(4)中のAに含まれる-N(RA1)-及び-Si(RA2-のRA1及びRA2におけるハロゲン原子を有してもよいアルキル基としては、式(3)中のRにおけるハロゲン原子を有してもよいアルキル基として上記に例示のものが挙げられる。
 式(6)中のAは、光学フィルムの耐力、破断歪、弾性率及び透明性を向上させやすい観点から、好ましくは単結合、-CH-、-CH-CH-、-CH(CH)-、-C(CH-又は-C(CF-、より好ましくは単結合、-C(CH-又は-C(CF-、さらに好ましくは単結合又は-C(CF-、とりわけ好ましくは単結合を表す。
 本発明の好適な実施形態では、光学フィルムの破断歪、弾性率及び透明性を向上しやすく、かつ、光学フィルムの耐力を向上しやすい観点から、式(6)中、Rは、互いに独立に、炭素数1~6のハロゲン化アルキル基を表し、sは1又は2、Aは単結合、-C(CH-又は-C(CF-を表す。
 本発明の好適な形態においては、式(6)は、式(6’):
Figure JPOXMLDOC01-appb-C000019
で表される。すなわち、式(1)中の複数のXの少なくとも一部は、式(6’)で表されることが好ましい。このような形態であると、光学フィルムの耐力、破断歪、弾性率及び透明性を向上させやすい。
 式(1)で表される構成単位のうち、式(1)中のXが式(6)で表される構造である構成単位の割合は、式(1)で表される構成単位の総モル量(100モル%)に対して、好ましくは50モル%以上、より好ましくは70モル%以上、さらに好ましくは80モル%以上であり、通常100モル%以下である。Xが式(4)で表される構成単位の割合が上記の下限以上であると、光学フィルムの透明性をより高めやすい。また、上記の上限以下であると、光学フィルムの耐力をより高めやすい。なお、式(1)中のXが式(6)で表される構成単位の割合は、例えばH-NMRを用いて測定することができ、又は原料の仕込み比から算出することもできる。
 本発明の光学フィルムに含まれるポリイミド系樹脂は、上記の通り、式(1)で表される構成単位に加えて、式(3):
Figure JPOXMLDOC01-appb-C000020
で表される構成単位を有していてもよい。ポリイミド系樹脂が式(3)で表される構成単位を有する場合、該樹脂をポリアミドイミド系樹脂とも称する。
 式(3)中のZは、2価の有機基を表し、好ましくは炭素数1~8の炭化水素基又はフッ素置換された炭素数1~8の炭化水素基を有してもよい、炭素数4~40の2価の有機基、より好ましくは炭素数1~8の炭化水素基又はフッ素置換された炭素数1~8の炭化水素基を有してもよい、環状構造を有する炭素数4~40の2価の有機基を表す。環状構造としては、脂環、芳香環、ヘテロ環構造が挙げられる。脂環及び芳香環を有する2価の有機基としては、式(20)、式(21)、式(22)、式(23)、式(24)、式(25)、式(26)、式(27)、式(28)及び式(29):
Figure JPOXMLDOC01-appb-C000021
[式(20)~式(29)中、
 Wは、単結合、-O-、ジフェニルメチレン基、ハロゲン原子を有してもよい2価の炭化水素基(例えば-CH-、-CH-CH-、-CH(CH)-、-C(CH-、-C(CF-)、-Ar-、-SO-、-S-、-CO-、-PO-、-PO-、-N(RW1)-又は-Si(RW2-、-O-Ar-O-、-Ar-O-Ar-、-Ar-CH-Ar-、-Ar-C(CH-Ar-又は-Ar-SO-Ar-を表し、ここで、Arは、互いに独立に、フッ素原子を有してもよい炭素数6~20のアリーレン基、例えばフェニレン基を表し、RW1及びRW2は、互いに独立に、水素原子、又はハロゲン原子を有してもよいアルキル基をし、*は結合手を表す]
で表される基の結合手のうち、隣接しない2つが水素原子に置き換わった基及び炭素数6以下の2価の鎖式炭化水素基が挙げられる。ヘテロ環構造を有する2価の有機基としてはチオフェン環骨格を有する基が挙げられる。光学フィルムのYI値を低減しやすい観点から、式(20)~式(29)で表される基の結合手のうち、隣接しない2つが水素原子に置き換わった基、及び、チオフェン環骨格を有する基が好ましい。
 式(3)中のZとしては、式(20’)、式(21’)、式(22’)、式(23’)、式(24’)、式(25’)、式(26’)、式(27’)、式(28’)及び式(29’):
Figure JPOXMLDOC01-appb-C000022
[式(20’)~式(29’)中、W及び*は、式(20)~式(29)において定義した通りである]
で表される2価の有機基がより好ましい。なお、式(20)~式(29)及び式(20’)~式(29’)における環上の水素原子は、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、又は炭素数6~12のアリール基で置換されていてもよい。炭素数1~6のアルキル基、炭素数1~6のアルコキシ基及び炭素数6~12のアリール基としては、それぞれ、式(3)のRとして上記に例示のものが挙げられる。
 本発明の好適な実施形態において、本発明の光学フィルムに含まれるポリイミド系樹脂は、式(3)中のZとして、式(4):
Figure JPOXMLDOC01-appb-C000023
[式(4)中、Wは、互いに独立に、単結合、-O-、ジフェニルメチレン基、ハロゲン原子を有してもよい2価の炭化水素基、-SO-、-S-、-CO-、-PO-、-PO-、-N(RC1)-又は-Si(RC2-を表し、RC1及びRC2は、互いに独立に、水素原子、又はハロゲン原子を有してもよいアルキル基を表し、Rは、互いに独立に、ハロゲン原子、ハロゲン原子を有してもよい、アルキル基、アルコキシ基、アリール基、又はアリールオキシ基を表し、pは、互いに独立に、0~4の整数を表し、qは0~4の整数を表し、*は結合手を表す]
で表される構造を含み得る。ポリイミド系樹脂が、Zが式(4)で表される式(3)で表される構成単位を有する場合、光学フィルムの耐力、破断歪、弾性率及び透明性を向上させやすい。なお、式(3)で表される構成単位は、Zとして式(4)で表される基を1種又は複数種含んでいてもよい。
 式(3)において、Wの結合位置は、互いに独立に、光学フィルムの耐力、破断歪、弾性率及び透明性を向上させやすい観点から、結合手を基準に、好ましくはメタ位又はパラ位、より好ましくはパラ位である。
 本発明の好適な形態においては、式(4)は、式(4’):
Figure JPOXMLDOC01-appb-C000024
[式(4’)中、W、R、p及びqは式(4)において定義した通りである]
で表される。言い換えると、ポリイミド系樹脂に場合により含まれる式(3)で表される構成単位の少なくとも一部において、式(3)中のZが式(4’)で表されることが好ましい。この場合、光学フィルムの耐力、破断歪、弾性率及び透明性を向上させやすい。
 式(4)及び式(4’)において、Rは、互いに独立に、ハロゲン原子、ハロゲン原子を有してもよい、アルキル基、アルコキシ基、アリール基、又はアリールオキシ基を表す。ハロゲン原子、ハロゲン原子を有してもよい、アルキル基、アルコキシ基、アリール基、及びアリールオキシ基としては、それぞれ、式(2)のRとして上記に例示のものが挙げられる。
 これらの中でも、Rは、互いに独立に、光学フィルムの耐力、破断歪、弾性率及び透明性を向上させやすい観点から、好ましくはハロゲン原子を有してもよい、炭素数1~6のアルキル基又は炭素数1~6のアルコキシ基、より好ましくは炭素数1~3のアルキル基又は炭素数1~3のアルコキシ基を表す。pは、互いに独立に、0~4の整数を表し、光学フィルムの耐力、破断歪、弾性率及び透明性を向上させやすい観点から、好ましくは0~2の整数である。
 式(4)及び式(4’)中のWは、互いに独立に、単結合、-O-、ジフェニルメチレン基、ハロゲン原子を有してもよい2価の炭化水素基、-SO-、-S-、-CO-、-PO-、-PO-、-N(RC1)-又は-Si(RC2-を表し、光学フィルムの耐力、破断歪、弾性率及び透明性を向上させやすい観点から、好ましくは-O-又は-S-を表し、より好ましくは-O-を表す。RC1及びRC2は、互いに独立に、水素原子又はハロゲン原子を有してもよい炭素数1~12の1価の炭化水素基を表す。ハロゲン原子を有してもよい炭素数1~12の1価の炭化水素基としては、式(2)のR~Rにおけるハロゲン原子を有してもよい1価の炭化水素基として上記に例示のものが挙げられる。
 式(4)及び式(4’)中のqは、0~4の範囲の整数であり、qがこの範囲内であると、光学フィルムの耐力、破断歪、弾性率及び透明性を向上させやすい。式(4)及び式(4’)中のqは、好ましくは0~3の範囲の整数、より好ましくは0~2の範囲の整数である。
 qが0である式(4)又は式(4’)で表される構成単位は、例えばテレフタル酸又はイソフタル酸に由来する構成単位であり、該構成単位は、式(4)又は式(4’)中のp及びqがそれぞれ0、又は、qが0及びpが1若しくは2(好ましくはRが炭素数1~3のアルキル基又はフッ素化アルキル基又は炭素数1~3のアルコキシ基)である構成単位であることが好ましい。光学フィルムの耐力、破断歪、弾性率及び透明性を向上させやすい観点から、ポリアミドイミド樹脂はテレフタル酸に由来する構成単位を含むことが好ましい。ポリアミドイミド樹脂はZにおいて、式(4)又は式(4’)で表される構成単位を1種又は2種類以上含んでいてもよい。
 本発明の一実施形態において、式(3)中のZとして、式(4)で表される構造を含む場合、式(3)で表される構成単位のうち、Xが式(4)で表される構成単位の割合は、式(3)で表される構成単位の総モル量に対して、好ましくは30モル%以上、より好ましくは50モル%以上、さらに好ましくは70モル%以上であり、通常100モル%以下である。式(3)中のZが式(4)で表される構成単位の割合が上記の下限以上であると、光学フィルムの破断歪、弾性率及び透明性を向上しやすく、かつ、光学フィルムの耐力を向上しやすい。該割合が上記の上限以下であると、式(4)由来のアミド結合間水素結合による樹脂ワニスの粘度上昇を抑制し、フィルムの加工性を向上しやすい。なお、式(3)中のZが式(4)で表される構成単位の割合は、例えばH-NMRを用いて測定することができ、又は原料の仕込み比から算出することもできる。上記の好ましい割合に関する記載は、式(4’)で表される構造、及び、式(4”)で表される構造にも同様に当てはまる。
 本発明の一実施形態において、ポリイミド系樹脂が、式(3)中のZとして式(4)で表される構造を含む場合、式(3)で表される構成単位のうち、Xが式(4)で表される構成単位の割合は、式(1)で表される構成単位と式(3)で表される構成単位との総モル量に対して、好ましくは5モル%以上、より好ましくは15モル%以上、さらに好ましくは30モル%以上、とりわけ好ましくは50モル%以上であり、通常100モル%以下である。式(3)中のZが式(4)で表される構成単位の割合が上記の下限以上であると、光学フィルムの耐力、破断歪、弾性率及び透明性を向上させやすい。該割合が上記の上限以下であると、式(4)由来のアミド結合間水素結合による樹脂ワニスの粘度上昇を抑制し、フィルムの加工性を向上させやすい。なお、式(3)中のZが式(4)で表される構成単位の割合は、例えばH-NMRを用いて測定することができ、又は原料の仕込み比から算出することもできる。上記の好ましい割合に関する記載は、式(4’)で表される構造、及び、式(4”)で表される構造にも同様に当てはまる。
 ポリアミドイミド樹脂が、式(3)中のZが上記の式(20’)~式(29’)のいずれかで表される構成単位を有する場合、及び、式(3)中のZが式(4’)で表される構成単位を有する場合、ポリアミドイミド樹脂は、式(1)及び式(3)で表される構成単位に加えて、次の式(d1):
Figure JPOXMLDOC01-appb-C000025
[式(d1)中、R24は、互いに独立に、水素原子、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基又は炭素数6~12のアリール基を表し、R25は、R24又は-C(=O)-*を表し、*は結合手を表す]
で表されるカルボン酸由来の構成単位をさらに有することが、アミド結合間水素結合による樹脂ワニスの粘度上昇を抑制し、フィルム加工性の観点から好ましい。
 R24において、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基及び炭素数6~12のアリール基としては、それぞれ、式(2)のRとして上記に例示のものが挙げられる。構成単位(d1)としては、具体的には、R24及びR25がいずれも水素原子である構成単位(ジカルボン酸化合物に由来する構成単位)、R24がいずれも水素原子であり、R25が-C(=O)-*を表す構成単位(トリカルボン酸化合物に由来する構成単位)などが挙げられる。
 ポリアミドイミド樹脂が、式(d1)で表される構成単位を含む場合、式(d1)で表される構成単位の割合は、式(1)で表される構成単位と式(3)で表される構成単位との総モル量に対して、好ましくは0.01モル%以上、より好ましくは0.1モル%以上、さらに好ましくは1モル%以上であり、好ましくは30モル%以下、より好ましくは20モル%以下、さらに好ましくは10モル%以下である。該割合が上記範囲内であると、アミド結合間水素結合による樹脂ワニスの粘度上昇を抑制し、フィルムの加工性を向上させやすい。なお、該割合は、例えばH-NMRを用いて測定することができ、又は原料の仕込み比から算出することもできる。
 本発明の好ましい一実施形態において、本発明の光学フィルムに含まれるポリイミド系樹脂は、式(1)で表される構成単位及び式(3)で表される構成単位を有し、式(3)中のZとして、式(4”):
Figure JPOXMLDOC01-appb-C000026
[式(4”)中、Wは、互いに独立に、単結合、-O-、ジフェニルメチレン基、ハロゲン原子を有してもよい2価の炭化水素基、-SO-、-S-、-CO-、-PO-、-PO-、-N(RC1)-又は-Si(RC2-を表し、RC1及びRC2は、互いに独立に、水素原子、又はハロゲン原子を有してもよいアルキル基を表し、R8’は、互いに独立に、ハロゲン原子を有してもよいアルコキシ基を表し、p’は、互いに独立に、1~4の整数を表し、qは0~4の整数を表し、*は結合手を表す]
で表される構造を少なくとも含む。ポリイミド系樹脂が上記の式(4”)で表される構造を含む場合、ポリイミド系樹脂の耐力を向上させやすい。また、得られる光学フィルムの光学特性を向上させやすい。
 式(4”)中のW及びqについては、上記式(4)中のW及びqに関する記載が同様に当てはまる。式(4”)中のR8’は、互いに独立に、ハロゲン原子を有してもよいアルコキシ基を表し、好ましくは炭素数1~6のアルコキシ基を表す。式(4”)中のp’は、互いに独立に、1~4の整数を表し、好ましくは1~2の整数を表す。
 式(3)中のXとしては、式(1)中のXとして上記に例示したものが挙げられ、好ましい形態も同じである。また、式(1)中のXと式(3)中のXは、同一であっても、異なっていてもよい。本発明の一実施形態では、式(1)で表される構成単位及び/又は式(3)で表される構成単位は、Xとして式(5)で表される構造(又は基)を1種又は複数種含んでいてもよい。
 本発明の一実施形態において、式(1)及び式(3)中のXとして、式(5)で表される構造を含む場合、Xが式(5)で表される構成単位の割合は、式(1)で表される構成単位及び式(3)で表される構成単位の総モル量に対して、好ましくは30モル%以上、より好ましくは50モル%以上、さらに好ましくは70モル%以上であり、通常100モル%以下である。Xが式(5)で表される構成単位の割合が上記の範囲内であると、光学フィルムの耐力、破断歪、弾性率及び透明性を向上させやすい。なお、Xが式(5)で表される構成単位の割合は、例えばH-NMRを用いて測定することができ、又は原料の仕込み比から算出することもできる。
 本発明のポリイミド樹脂は、式(1)で表される構成単位、場合により含まれる式(3)で表される構成単位に加えて、さらに、式(30)で表される構成単位及び/又は式(31)で表される構成単位を含んでいてもよい。
Figure JPOXMLDOC01-appb-C000027
 式(30)において、Yは4価の有機基であり、好ましくは有機基中の水素原子が炭化水素基又はフッ素置換された炭化水素基で置換されていてもよい有機基である。Yとしては、式(20)、式(21)、式(22)、式(23)、式(24)、式(25)、式(26)、式(27)、式(28)及び式(29)で表される基、該式(20)~式(29)で表される基中の水素原子がメチル基、フルオロ基、クロロ基又はトリフルオロメチル基で置換された基、並びに4価の炭素数6以下の鎖式炭化水素基が例示される。本発明の一実施形態において、式(30)で表される構成単位は、複数種のYで表される構造を含み得、複数種のYは、互いに同一であっても、異なっていてもよい。
 式(31)において、Yは3価の有機基であり、好ましくは有機基中の水素原子が炭化水素基又はフッ素置換された炭化水素基で置換されていてもよい有機基である。Yとしては、上記の式(20)、式(21)、式(22)、式(23)、式(24)、式(25)、式(26)、式(27)、式(28)及び式(29)で表される基の結合手のいずれか1つが水素原子に置き換わった基、及び3価の炭素数6以下の鎖式炭化水素基が例示される。本発明の一実施形態において、式(31)で表される構成単位は、複数種のYで表される構造を含み得、複数種のYは、互いに同一であっても、異なっていてもよい。
 式(30)及び式(31)において、X及びXは、互いに独立に、2価の有機基であり、好ましくは有機基中の水素原子が炭化水素基又はフッ素置換された炭化水素基で置換されていてもよい有機基である。X及びXとしては、上記の式(10)、式(11)、式(12)、式(13)、式(14)、式(15)、式(16)、式(17)及び式(18)で表される基;該式(10)~式(18)で表される基中の水素原子がメチル基、フルオロ基、クロロ基又はトリフルオロメチル基で置換された基;並びに炭素数6以下の鎖式炭化水素基が例示される。
 ポリイミド系樹脂が、式(30)で表される構成単位、及び/又は式(31)で表される構成単位を含む場合、式(30)で表される構成単位及び式(31)で表される構成単位の合計割合は、式(1)で表される構成単位と式(3)で表される構成単位との総モル量に対して、好ましくは0.01モル%以上、より好ましくは0.1モル%以上、さらに好ましくは1モル%以上であり、好ましくは30モル%以下、より好ましくは20モル%以下、さらに好ましくは10モル%以下である。該合計割合が上記範囲内であると、高弾性率の光学フィルムを得やすい。なお、該割合は、例えば、H-NMRを用いて測定することができ、又は原料の仕込み比から算出することもできる。
 ポリイミド系樹脂が、式(1)で表される構成単位及び式(3)で表される構成単位を有する場合、式(1)で表される構成単位の割合は、式(1)で表される構成単位及び式(3)で表される構成単位の総モル量(100モル%)に対して、好ましくは10モル%以上、より好ましくは15モル%以上、さらに好ましくは20モル%以上、とりわけ好ましくは25モル%以上であり、好ましくは90モル%以下、より好ましくは70モル%以下、さらに好ましくは60モル%以下、とりわけ好ましくは50モル%以下である。ポリアミドイミド樹脂において、式(1)で表される構成単位の割合が上記の下限以上であると、式(2)中のアミド結合間の水素結合による増粘を抑制し、ポリアミドイミドワニスの粘度を低減することができ、光学部材の製造が容易である。ポリアミドイミド樹脂において、式(1)で表される構成単位の割合が上記の上限以下であると、該ポリアミドイミド樹脂を含んでなる光学フィルムは、高い表面硬度を発揮する。なお、上記割合は、例えば、H-NMRを用いて測定することができ、又は原料の仕込み比から算出することもできる。
 本発明の光学フィルムに含まれるポリイミド系樹脂の重量平均分子量(以下、Mwと称する場合がある)は、好ましくは100,000以上、より好ましくは150,000以上、さらに好ましくは200,000以上、さらにより好ましくは300,000以上、とりわけさらにより好ましくは400,000以上、とりわけより好ましくは500,000以上、ことさらとりわけより好ましくは600,000以上であり、好ましくは1,500,000以下、より好ましくは1,200,000以下、さらに好ましくは1,000,000以下、とりわけ好ましくは800,000以下である。ポリイミド系樹脂のMwが上記の下限以上であると、得られる光学フィルムの耐力、破断歪及び弾性率を向上させやすい。また、Mwが上記の上限以下であると、樹脂ワニスのゲル化を抑制しやすく、得られる光学フィルムの光学特性を向上しやすい。ここで、本発明のポリイミド系樹脂が、式(1)中のYとして式(2)で表される構造を含む場合、該構造を有するポリイミド系樹脂の溶液の粘度は高くなる傾向があることがわかった。ポリイミド系樹脂のMwが大きくなることによっても樹脂溶液の粘度が高くなる傾向があるため、このような構造を含むポリイミド系樹脂を高分子量化することは非常に困難であった。本発明者は種々の検討を行った結果、後述する製造条件でポリイミド系樹脂を製造することにより、Mwを高めることができることを見出した。Mwは、例えばゲル浸透クロマトグラフィー(以下、GPCと記載することがある)測定を行い、標準ポリスチレン換算によって求めることができ、例えば実施例に記載の方法により求めることができる。
 本発明の好適な一実施形態において、本発明におけるポリイミド系樹脂は、例えば上記の含フッ素置換基等によって導入することができる、フッ素原子等のハロゲン原子を含んでよい。ポリイミド系樹脂がハロゲン原子を含む場合、光学フィルムのYI値を低減しやすく、かつ破断歪及び弾性率を高めやすい。光学フィルムの弾性率が高いと、傷及びシワ等の発生を抑制しやすい。また、光学フィルムのYI値が低いと、該フィルムの透明性及び視認性を向上させやすくなる。ハロゲン原子は、好ましくはフッ素原子である。ポリイミド系樹脂にフッ素原子を含有させるために好ましい含フッ素置換基としては、例えばフルオロ基及びトリフルオロメチル基が挙げられる。
 ポリイミド系樹脂がハロゲン原子を含有する場合、その含有量は、それぞれ、ポリイミド系樹脂の質量を基準として、好ましくは1~40質量%、より好ましくは5~40質量%、さらに好ましくは5~30質量%である。ハロゲン原子の含有量が上記の下限以上であると、光学フィルムのYI値を低減しやすく、かつ破断歪及び弾性率を高めやすい。ハロゲン原子の含有量が上記の上限以下であると、合成がしやすくなる
 ポリイミド系樹脂のイミド化率は、好ましくは90%以上、より好ましくは93%以上、さらに好ましくは96%以上である。光学フィルムの耐力及び光学特性を高めやすい観点から、イミド化率が上記の下限以上であることが好ましい。また、イミド化率の上限は100%以下である。イミド化率は、ポリイミド系樹脂中のテトラカルボン酸化合物に由来する構成単位のモル量の2倍の値に対する、ポリイミド系樹脂中のイミド結合のモル量の割合を示す。なお、ポリイミド系樹脂がトリカルボン酸化合物を含む場合には、ポリイミド系樹脂中のテトラカルボン酸化合物に由来する構成単位のモル量の2倍の値と、トリカルボン酸化合物に由来する構成単位のモル量との合計に対する、ポリイミド系樹脂中のイミド結合のモル量の割合を示す。また、イミド化率は、IR法、NMR法などにより求めることができる。
 <ポリイミド系樹脂の製造方法>
 本発明のポリイミド系樹脂の製造方法は特に限定されない。本発明の一実施形態においては、後述するテトラカルボン酸化合物及びジアミン化合物を主な原料として、場合によりジカルボン酸化合物を共に用いて、製造することができる。より具体的には、ジアミン化合物とテトラカルボン酸化合物とを反応させてポリアミック酸を得る工程、ポリイミド系樹脂がポリアミドイミド樹脂である場合には、該ポリアミック酸とジカルボン酸とを反応させてポリアミドイミド樹脂前駆体を得る工程、及び該ポリアミック酸又は該ポリアミドイミド樹脂前駆体をイミド化する工程を含む方法により製造できる。なお、テトラカルボン酸化合物やジカルボン酸化合物の他に、トリカルボン酸化合物を反応させてもよい。
 式(1)及び式(30)で表される構成単位は、通常、ジアミン化合物とテトラカルボン酸化合物とから誘導される。式(3)で表される構成単位は、通常、ジアミン化合物とジカルボン酸化合物とから誘導される。式(31)で表される構成単位は、通常、ジアミン化合物とトリカルボン酸化合物とから誘導される。
 ポリイミド系樹脂の製造に用いられるテトラカルボン酸化合物は、少なくとも式(X):
Figure JPOXMLDOC01-appb-C000028
[式(X)中、R~R、m及びnは、それぞれ、式(3)中のR~R、m及びnと同じである]
で表される化合物を含むことが好ましい。
 式(X)で表される化合物は、慣用の方法、例えば無水トリメリット酸又はその誘導体と芳香族ジオールとを反応させることにより得てもよいし、市販品を使用してもよい。
 本発明の一実施形態では、ポリイミド系樹脂の製造に用いられるテトラカルボン酸化合物は、式(X)で表される化合物に加えて、さらに式(Y):
Figure JPOXMLDOC01-appb-C000029
[式(Y)中、B、R及びtは、それぞれ、式(5)中のB、R及びtと同じである]
で表される化合物を含むことが好ましい。
 ポリイミド系樹脂の製造に用いられるテトラカルボン酸化合物としては、芳香族テトラカルボン酸二無水物等の芳香族テトラカルボン酸化合物;及び脂肪族テトラカルボン酸二無水物等の脂肪族テトラカルボン酸化合物等が挙げられる。テトラカルボン酸化合物は、単独で用いてもよいし、2種以上を組合せて用いてもよい。テトラカルボン酸化合物は、二無水物の他、酸クロリド化合物等のテトラカルボン酸化合物類縁体であってもよい。
 芳香族テトラカルボン酸二無水物の具体例としては、非縮合多環式の芳香族テトラカルボン酸二無水物、単環式の芳香族テトラカルボン酸二無水物及び縮合多環式の芳香族テトラカルボン酸二無水物が挙げられる。非縮合多環式の芳香族テトラカルボン酸二無水物としては、例えば、無水トリメリット酸と2,2’,3,3’,5,5’-ヘキサメチル-4,4’-ビフェノールとのエステル化物(以下、TAHMBPと記載することがある)、無水トリメリット酸と2,2’,3,3’-テトラメチル-4,4’-ビフェノールとのエステル化物(以下、TA23X-BPと記載することがある)、無水トリメリット酸と3,3’,5,5’-テトラメチル-4,4’-ビフェノールとのエステル化物、4,4’-オキシジフタル酸二無水物、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物、2,2’,3,3’-ベンゾフェノンテトラカルボン酸二無水物、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物(以下、BPDAと記載することがある)、2,2’,3,3’-ビフェニルテトラカルボン酸二無水物、3,3’,4,4’-ジフェニルスルホンテトラカルボン酸二無水物、2,2-ビス(3,4-ジカルボキシフェニル)プロパン二無水物、2,2-ビス(2,3-ジカルボキシフェニル)プロパン二無水物、2,2-ビス(3,4-ジカルボキシフェノキシフェニル)プロパン二無水物、4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸二無水物(以下、6FDAと記載することがある)、1,2-ビス(2,3-ジカルボキシフェニル)エタン二無水物、1,1-ビス(2,3-ジカルボキシフェニル)エタン二無水物、1,2-ビス(3,4-ジカルボキシフェニル)エタン二無水物、1,1-ビス(3,4-ジカルボキシフェニル)エタン二無水物、ビス(3,4-ジカルボキシフェニル)メタン二無水物、ビス(2,3-ジカルボキシフェニル)メタン二無水物、4,4’-(p-フェニレンジオキシ)ジフタル酸二無水物、4,4’-(m-フェニレンジオキシ)ジフタル酸二無水物が挙げられる。また、単環式の芳香族テトラカルボン酸二無水物としては、例えば1,2,4,5-ベンゼンテトラカルボン酸二無水物[ピロメリット酸二無水物ともいう(以下、PMDAと記載することがある)]が挙げられ、縮合多環式の芳香族テトラカルボン酸二無水物としては、例えば2,3,6,7-ナフタレンテトラカルボン酸二無水物が挙げられる。
 これらの中でも、好ましくはTAHMBP、TA23X-BP、無水トリメリット酸と3,3’,5,5’-テトラメチル-4,4’-ビフェノールとのエステル化物、PMDA、4,4’-オキシジフタル酸二無水物、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物、2,2’,3,3’-ベンゾフェノンテトラカルボン酸二無水物、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、2,2’,3,3’-ビフェニルテトラカルボン酸二無水物、3,3’,4,4’-ジフェニルスルホンテトラカルボン酸二無水物、2,2-ビス(3,4-ジカルボキシフェニル)プロパン二無水物、2,2-ビス(2,3-ジカルボキシフェニル)プロパン二無水物、2,2-ビス(3,4-ジカルボキシフェノキシフェニル)プロパン二無水物、6FDA、1,2-ビス(2,3-ジカルボキシフェニル)エタン二無水物、1,1-ビス(2,3-ジカルボキシフェニル)エタン二無水物、1,2-ビス(3,4-ジカルボキシフェニル)エタン二無水物、1,1-ビス(3,4-ジカルボキシフェニル)エタン二無水物、ビス(3,4-ジカルボキシフェニル)メタン二無水物、ビス(2,3-ジカルボキシフェニル)メタン二無水物、4,4’-(p-フェニレンジオキシ)ジフタル酸二無水物、及び4,4’-(m-フェニレンジオキシ)ジフタル酸二無水物、より好ましくはTAHMBP、TA23X-BP、無水トリメリット酸と3,3’,5,5’-テトラメチル-4,4’-ビフェノールとのエステル化物、4,4’-オキシジフタル酸二無水物、BPDA、2,2’,3,3’-ビフェニルテトラカルボン酸二無水物、6FDA、ビス(3,4-ジカルボキシフェニル)メタン二無水物、及び4,4’-(p-フェニレンジオキシ)ジフタル酸二無水物が挙げられる。これらは単独又は2種以上を組合せて使用できる。
 脂肪族テトラカルボン酸二無水物としては、環式又は非環式の脂肪族テトラカルボン酸二無水物が挙げられる。環式脂肪族テトラカルボン酸二無水物とは、脂環式炭化水素構造を有するテトラカルボン酸二無水物であり、その具体例としては、1,2,4,5-シクロヘキサンテトラカルボン酸二無水物、1,2,3,4-シクロブタンテトラカルボン酸二無水物、1,2,3,4-シクロペンタンテトラカルボン酸二無水物等のシクロアルカンテトラカルボン酸二無水物、ビシクロ[2.2.2]オクト-7-エン-2,3,5,6-テトラカルボン酸二無水物、ジシクロヘキシル-3,3’,4,4’-テトラカルボン酸二無水物及びこれらの位置異性体が挙げられる。これらは単独で又は2種以上を組合せて用いることができる。非環式脂肪族テトラカルボン酸二無水物の具体例としては、1,2,3,4-ブタンテトラカルボン酸二無水物、及び1,2,3,4-ペンタンテトラカルボン酸二無水物等が挙げられ、これらは単独で又は2種以上を組合せて用いることができる。また、環式脂肪族テトラカルボン酸二無水物及び非環式脂肪族テトラカルボン酸二無水物を組合せて用いてもよい。
 上記テトラカルボン酸二無水物の中でも、光学フィルムの耐力及び透明性を向上しやすい観点から、TAHMBP、TA23X-BP、無水トリメリット酸と3,3’,5,5’-テトラメチル-4,4’-ビフェノールとのエステル化物、PMDA、4,4’-オキシジフタル酸二無水物、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、2,2’,3,3’-ビフェニルテトラカルボン酸二無水物、3,3’,4,4’-ジフェニルスルホンテトラカルボン酸二無水物、2,2-ビス(3,4-ジカルボキシフェニル)プロパン二無水物、6FDA、並びにこれらの混合物が好ましく、TAHMBP、TA23X-BP、無水トリメリット酸と3,3’,5,5’-テトラメチル-4,4’-ビフェノールとのエステル化物、6FDA並びにこれらの混合物がより好ましい。
 ポリイミド系樹脂がポリアミドイミド樹脂である場合、その合成に用いられるジカルボン酸化合物としては、芳香族ジカルボン酸、脂肪族ジカルボン酸及びそれらの類縁の酸クロライド化合物、酸無水物等が挙げられ、2種以上を併用してもよい。具体例としては、テレフタル酸;2,5-ビス(トリフルオロメチル)テレフタル酸;イソフタル酸;2,5-ジメチルテレフタル酸;2,5-ジメトキシテレフタル酸;ナフタレンジカルボン酸;4,4’-ビフェニルジカルボン酸;3,3’-ビフェニルジカルボン酸;2,2’-ビス(トリフルオロメチル)-4,4’-ビフェニルジカルボン酸;炭素数8以下である鎖式炭化水素、のジカルボン酸化合物及び2つの安息香酸が単結合、-CH-、-C(CH-、-C(CF-、-SO-又はフェニレン基で連結された化合物並びに、それらの酸クロライド化合物が挙げられる。これらのジカルボン酸化合物の中でも、光学フィルムの耐力及び透明性を向上しやすい観点から、4,4’-オキシビス安息香酸、テレフタル酸、イソフタル酸、2-メトキシテレフタル酸、2,5-ジメチルテレフタル酸、2,5-ジメトキシテレフタル酸、2,5-ビス(トリフルオロメチル)テレフタル酸、2,2’-ビス(トリフルオロメチル)-4,4’-ビフェニルジカルボン酸及びそれらの酸クロリドが好ましく、4,4’-オキシビス(ベンゾイルクロリド)、2,5-ジメチルテレフタル酸クロライド(以下、DMTPCと記載することがある)、2,5-ジメトキシテレフタル酸クロライド、2,5-ビス(トリフルオロメチル)テレフタル酸クロライド、2-メトキシテレフタル酸クロライド(以下、OMTPCと記載することがある)、テレフタロイルクロリド(以下、TPCと記載することがある)、イソフタロイルクロリドがより好ましく、TPC、2,5-ジメトキシテレフタル酸クロリド、DMTPC、OMTPCがさらに好ましい。
 なお、上記ポリイミド系樹脂は、光学フィルムの各種物性を損なわない範囲で、上記のポリイミド系樹脂合成に用いられるテトラカルボン酸化合物に加えて、他のテトラカルボン酸及びトリカルボン酸並びにそれらの無水物及び誘導体をさらに反応させたものであってもよい。
 他のテトラカルボン酸としては、上記テトラカルボン酸化合物の無水物の水付加体が挙げられる。
 トリカルボン酸化合物としては、芳香族トリカルボン酸、脂肪族トリカルボン酸及びそれらの類縁の酸クロリド化合物、酸無水物等が挙げられ、2種以上を組合せて用いてもよい。具体例としては、1,2,4-ベンゼントリカルボン酸の無水物;2,3,6-ナフタレントリカルボン酸-2,3-無水物;フタル酸無水物と安息香酸とが単結合、-O-、-CH-、-C(CH-、-C(CF-、-SO-又はフェニレン基で連結された化合物が挙げられる。
 ポリイミド系樹脂の合成に用いられるジアミン化合物としては、例えば、脂肪族ジアミン、芳香族ジアミン及びこれらの混合物が挙げられる。なお、本実施形態において「芳香族ジアミン」とは、アミノ基が芳香環に直接結合しているジアミンを表し、その構造の一部に脂肪族基又はその他の置換基を含んでいてもよい。この芳香環は単環でも縮合環でもよく、ベンゼン環、ナフタレン環、アントラセン環及びフルオレン環等が例示されるが、これらに限定されるわけではない。これらの中でも、好ましくはベンゼン環である。また「脂肪族ジアミン」とは、アミノ基が脂肪族基に直接結合しているジアミンを表し、その構造の一部に芳香環やその他の置換基を含んでいてもよい。
 脂肪族ジアミンとしては、例えば、ヘキサメチレンジアミン等の非環式脂肪族ジアミン、並びに1,3-ビス(アミノメチル)シクロヘキサン、1,4-ビス(アミノメチル)シクロヘキサン、ノルボルナンジアミン及び4,4’-ジアミノジシクロヘキシルメタン等の環式脂肪族ジアミン等が挙げられる。これらは単独で又は2種以上を組合せて用いることができる。
 芳香族ジアミンとしては、例えばp-フェニレンジアミン、m-フェニレンジアミン、2,4-トルエンジアミン、m-キシリレンジアミン、p-キシリレンジアミン、1,5-ジアミノナフタレン、2,6-ジアミノナフタレン等の、芳香環を1つ有する芳香族ジアミン、4,4’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルプロパン、4,4’-ジアミノジフェニルエーテル、3,4’-ジアミノジフェニルエーテル、3,3’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルスルホン、3,4’-ジアミノジフェニルスルホン、3,3’-ジアミノジフェニルスルホン、1,4-ビス(4-アミノフェノキシ)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、ビス〔4-(4-アミノフェノキシ)フェニル〕スルホン、ビス〔4-(3-アミノフェノキシ)フェニル〕スルホン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、2,2-ビス[4-(3-アミノフェノキシ)フェニル]プロパン、2,2’-ジメチルベンジジン、2,2’-ビス(トリフルオロメチル)-4,4’-ジアミノジフェニル(以下、TFMBと記載することがある)、4,4’-(ヘキサフルオロプロピリデン)ジアニリン(以下、6FDAMと記載することがある)、4,4’-ビス(4-アミノフェノキシ)ビフェニル、9,9-ビス(4-アミノフェニル)フルオレン、9,9-ビス(4-アミノ-3-メチルフェニル)フルオレン、9,9-ビス(4-アミノ-3-クロロフェニル)フルオレン、9,9-ビス(4-アミノ-3-フルオロフェニル)フルオレン等の、芳香環を2つ以上有する芳香族ジアミンが挙げられる。これらは単独又は2種以上を組合せて使用できる。
 芳香族ジアミンとしては、好ましくは4,4’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルプロパン、4,4’-ジアミノジフェニルエーテル、3,3’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルスルホン、3,3’-ジアミノジフェニルスルホン、1,4-ビス(4-アミノフェノキシ)ベンゼン、ビス〔4-(4-アミノフェノキシ)フェニル〕スルホン、ビス〔4-(3-アミノフェノキシ)フェニル〕スルホン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、2,2-ビス[4-(3-アミノフェノキシ)フェニル]プロパン、2,2’-ジメチルベンジジン、TFMB、6FDAM、4,4’-ビス(4-アミノフェノキシ)ビフェニルが挙げられ、より好ましくは4,4’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルプロパン、4,4’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルスルホン、1,4-ビス(4-アミノフェノキシ)ベンゼン、ビス〔4-(4-アミノフェノキシ)フェニル〕スルホン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、2,2’-ジメチルベンジジン、TFMB、6FDAM、4,4’-ビス(4-アミノフェノキシ)ビフェニルが挙げられる。これらは単独又は2種以上を組合せて使用できる。
 上記ジアミン化合物の中でも、光学フィルムの耐力及び透明性を向上しやすい観点から、2,2’-ジメチルベンジジン、TFMB、4,4’-ビス(4-アミノフェノキシ)ビフェニル、6FDAM及び4,4’-ジアミノジフェニルエーテルからなる群から選ばれる1種以上を用いることがより好ましく、TFMB及び/又は6FDAMを用いることがさらに好ましい。
 ポリイミド系樹脂の製造において、ジアミン化合物、テトラカルボン酸化合物及びジカルボン酸化合物の使用量は、所望とする樹脂の各構成単位の比率に応じて適宜選択できる。
 本発明の好適な実施形態において、ジアミン化合物の使用量は、テトラカルボン酸化合物及び場合により含まれるジカルボン酸化合物の総モル量を1モルとして、好ましくは0.94モル以上、より好ましくは0.96モル以上、さらに好ましくは0.98モル以上、とりわけ好ましくは0.99モル以上であり、好ましくは1.20モル以下、より好ましくは1.10モル以下、さらに好ましくは1.05モル以下、とりわけ好ましくは1.02モル以下である。テトラカルボン酸化合物及び場合により含まれるジカルボン酸化合物に対するジアミン化合物の使用量が上記の範囲内であると、ポリイミド系樹脂が式(2)で表される構造を有する場合であっても、高分子量のポリイミド系樹脂を得やすく、その結果、得られる光学フィルムの耐力及び透明性を向上しやすい。
 ジアミン化合物とテトラカルボン酸化合物との反応温度は、特に限定されず、例えば5~200℃であってもよく、反応時間も特に限定されず、例えば30分~72時間程度であってもよい。本発明の好適な実施形態においては、ポリイミド系樹脂が式(2)で表される構造を有する場合であっても、ポリイミド系樹脂のMwを高めやすい観点からは、反応温度は、好ましくは5~50℃、より好ましくは5~40℃、さらに好ましくは5~25℃であり、反応時間は、好ましくは3~24時間、より好ましくは5~20時間である。
 ジアミン化合物とテトラカルボン酸化合物との反応は、溶媒中で行うことが好ましい。溶媒としては、反応に影響を与えない限り特に限定されないが、例えば、水、メタノール、エタノール、エチレングリコール、イソプロピルアルコール、プロピレングリコール、エチレングリコールメチルエーテル、エチレングリコールブチルエーテル、1-メトキシ-2-プロパノール、2-ブトキシエタノール、プロピレングリコールモノメチルエーテル等のアルコール系溶媒;酢酸エチル、酢酸ブチル、エチレングリコールメチルエーテルアセテート、γ-ブチロラクトン、γ-バレロラクトン、プロピレングリコールメチルエーテルアセテート、乳酸エチル等のエステル系溶媒;アセトン、メチルエチルケトン、シクロペンタノン、シクロヘキサノン、2-ヘプタノン、メチルイソブチルケトン等のケトン系溶媒;ペンタン、ヘキサン、ヘプタン等の脂肪族炭化水素溶媒;エチルシクロヘキサン等の脂環式炭化水素溶媒;トルエン、キシレン等の芳香族炭化水素溶媒;アセトニトリル等のニトリル系溶媒;テトラヒドロフラン及びジメトキシエタン等のエーテル系溶媒;クロロホルム及びクロロベンゼン等の塩素含有溶媒;N,N-ジメチルアセトアミド(以下、DMAcと記載することがある)、N,N-ジメチルホルムアミド(以下、DMFと記載することがある)等のアミド系溶媒;ジメチルスルホン、ジメチルスルホキシド、スルホラン等の含硫黄系溶媒;エチレンカーボネート、プロピレンカーボネート等のカーボネート系溶媒;及びそれらの組合せなどが挙げられる。これらの中でも、溶解性の観点から、アミド系溶媒を好適に使用できる。
 本発明の好適な実施形態においては、反応に使用する溶媒は、水分量700ppm以下まで厳密に脱水した溶媒であることが好ましい。水分量を上記の範囲に調整することにより、ポリイミド系樹脂が式(2)で表される構造を有する場合であっても、ポリイミド系樹脂を高分子化させやすい、
 ジアミン化合物とテトラカルボン酸化合物との反応は、必要に応じて、窒素雰囲気、アルゴン雰囲気等の不活性雰囲気又は減圧の条件下において行ってもよく、高分子量のポリイミド樹脂を得やすい観点からは、前記と同じ不活性雰囲気下、厳密に制御された脱水溶媒中で撹拌しながら行うことが好ましい。
 ポリアミック酸とジカルボン酸との製造条件は、ジアミン化合物とテトラカルボン酸化合物との反応における製造条件から適宜選択すればよい。
 イミド化工程で使用するイミド化触媒としては、例えばトリプロピルアミン、ジブチルプロピルアミン、エチルジブチルアミン等の脂肪族アミン;N-エチルピペリジン、N-プロピルピペリジン、N-ブチルピロリジン、N-ブチルピペリジン、及びN-プロピルヘキサヒドロアゼピン等の脂環式アミン(単環式);アザビシクロ[2.2.1]ヘプタン、アザビシクロ[3.2.1]オクタン、アザビシクロ[2.2.2]オクタン、及びアザビシクロ[3.2.2]ノナン等の脂環式アミン(多環式);並びにピリジン、2-メチルピリジン(2-ピコリン)、3-メチルピリジン(3-ピコリン)、4-メチルピリジン(4-ピコリン)、2-エチルピリジン、3-エチルピリジン、4-エチルピリジン、2,4-ジメチルピリジン、2,4,6-トリメチルピリジン、3,4-シクロペンテノピリジン、5,6,7,8-テトラヒドロイソキノリン、及びイソキノリン等の芳香族アミンが挙げられる。また、イミド化反応を促進しやすい観点から、イミド化触媒とともに、酸無水物を用いることが好ましい。酸無水物は、イミド化反応に用いられる慣用の酸無水物等が挙げられ、その具体例としては、無水酢酸、無水プロピオン酸、無水酪酸等の脂肪族酸無水物、フタル酸等の芳香族酸無水物などが挙げられる。
 本発明の好適な実施形態では、イミド化工程を段階的に行い、最適な反応温度まで、昇温することが好ましい。段階的にイミド化することにより、樹脂の分解を抑制し、高分子量のポリイミド系樹脂を得やすい。段階的に行うイミド化工程の昇温させる反応温度は、好ましくは40~85℃であり、より好ましくは45~80℃である。反応温度が前記の範囲にあると、十分にイミド化反応が進行する傾向があり、またMwが十分に上がる傾向がある。その反応時間は、好ましくは30分~10時間、より好ましくは30分~5時間である。反応時間が前記の範囲内にあると、樹脂の分解が生じてMwが低下することを抑制しやすく、また、イミド化率が低下してその後の工程で低分子量化することを抑制しやすい。このように既述の合成条件に加えて、イミド化工程を制御することで、高分子量の樹脂を得ることができる。
 ポリイミド系樹脂は、慣用の方法、例えば、濾過、濃縮、抽出、晶析、再結晶、カラムクロマトグラフィーなどの分離手段や、これらを組合せた分離手段により分離精製して単離してもよく、好ましい形態では、樹脂を含む反応液に、多量のメタノール等のアルコールを加え、樹脂を析出させ、濃縮、濾過、乾燥等を行うことにより単離することができる。
 <添加剤>
 本発明の光学フィルムは、ポリイミド系樹脂に加えて、少なくとも1種のフィラーを含んでよい。フィラーとしては、例えば有機粒子、無機粒子などが挙げられ、好ましくは無機粒子が挙げられる。無機粒子としては、シリカ、ジルコニア、アルミナ、チタニア、酸化亜鉛、酸化ゲルマニウム、酸化インジウム、酸化スズ、インジウムスズ酸化物、酸化アンチモン、酸化セリウム等の金属酸化物粒子、フッ化マグネシウム、フッ化ナトリウム等の金属フッ化物粒子などが挙げられ、これらの中でも、光学フィルムの耐力、弾性率及び透明性を向上させやすい観点から、好ましくはシリカ粒子、ジルコニア粒子、アルミナ粒子が挙げられ、より好ましくはシリカ粒子が挙げられる。これらのフィラーは単独又は2種以上を組合せて使用できる。
 フィラー、好ましくはシリカ粒子の平均一次粒子径は、通常1nm以上、好ましくは5nm以上、より好ましくは10nm以上、さらに好ましくは15nm以上、とりわけ好ましくは20nm以上であり、好ましくは100nm以下、より好ましくは90nm以下、さらに好ましくは80nm以下、さらにより好ましくは70nm以下、とりわけ好ましくは60nm以下、とりわけより好ましくは50nm以下、とりわけさらに好ましくは40nm以下である。フィラー、好ましくはシリカ粒子の平均一次粒子径が上記範囲内であると、光学フィルムの耐力、弾性率及び透明性を向上させやすい。また、フィラー、好ましくはシリカ粒子の凝集を抑制し、得られる光学フィルムの透明性を向上しやすい。フィラーの平均一次粒子径は、BET法により測定できる。なお、透過型電子顕微鏡や走査型電子顕微鏡の画像解析により平均一次粒子径を測定してもよい。
 本発明の光学フィルムがフィラー、好ましくはシリカ粒子を含有する場合、フィラーの含有量は、光学フィルムの質量に対して、通常0.1質量%以上、好ましくは1質量%以上、より好ましくは5質量%以上、さらに好ましくは10質量%以上、さらによりに好ましくは20質量%以上、とりわけ好ましくは30質量%以上であり、好ましくは60質量%以下である。フィラーの含有量が上記の下限以上であると、光学フィルムの耐力、弾性率及び透明性を向上させやすい。また、フィラーの含有量が上記の上限以下であると、光学フィルムの光学特性を向上しやすい。
 本発明の光学フィルムは、紫外線吸収剤をさらに含有してもよい。紫外線吸収剤は、樹脂材料の分野で紫外線吸収剤として通常用いられているものから、適宜選択することができる。紫外線吸収剤は、400nm以下の波長の光を吸収する化合物を含んでいてもよい。紫外線吸収剤としては、例えば、ベンゾフェノン系化合物、サリシレート系化合物、ベンゾトリアゾール系化合物、及びトリアジン系化合物からなる群より選ばれる少なくとも1種の化合物が挙げられる。紫外線吸収剤は単独又は二種以上を組合せて使用できる。光学フィルムが紫外線吸収剤を含有することにより、樹脂の劣化が抑制されるため、光学フィルムを画像表示装置等に適用した場合に視認性を高めることができる。本明細書において、「系化合物」とは、当該「系化合物」が付される化合物の誘導体を指す。例えば、「ベンゾフェノン系化合物」とは、母体骨格としてのベンゾフェノンと、ベンゾフェノンに結合している置換基とを有する化合物を指す。
 光学フィルムが紫外線吸収剤を含有する場合、紫外線吸収剤の含有量は、光学フィルムの質量に対して、好ましくは1質量%以上、より好ましくは2質量%以上、さらに好ましくは3質量%以上であり、好ましくは10質量%以下、より好ましくは8質量%以下、さらに好ましくは6質量%以下である。好適な含有量は用いる紫外線吸収剤により異なるが、400nmの光線透過率が20~60%程度になるように紫外線吸収剤の含有量を調節すると、光学フィルムの耐光性が高められるとともに、透明性を高めやすい。
 本発明の光学フィルムは、フィラー及び紫外線吸収剤以外の他の添加剤をさらに含有していてもよい。他の添加剤としては、例えば、酸化防止剤、離型剤、安定剤、ブルーイング剤、難燃剤、pH調整剤、シリカ分散剤、滑剤、増粘剤、及びレベリング剤等が挙げられる。他の添加剤を含有する場合、その含有量は、光学フィルムの質量に対して、好ましくは0.001~20質量%、より好ましくは0.01~15質量%、さらに好ましくは0.1~10質量%であってよい。
 本発明の光学フィルムの用途は特に限定されず、種々の用途に使用してよい。本発明の光学フィルムは、単層であっても、積層体であってもよく、本発明の光学フィルムをそのまま使用してもよいし、さらに他のフィルムとの積層体として使用してもよい。なお、光学フィルムが積層体である場合、光学フィルムの片面又は両面に積層された全ての層を含めて光学フィルムと称する。
 本発明の光学フィルムが積層体である場合、光学フィルムの少なくとも一方の面に1以上の機能層を有することが好ましい。機能層としては、例えばハードコート層、プライマー層、ガスバリア層、紫外線吸収層、粘着層、色相調整層、屈折率調整層などが挙げられる。機能層は単独又は二種以上組合せて使用できる。
 ハードコート層の厚さは特に限定されず、例えば、2~100μmであってもよい。前記ハードコート層の厚さが前記の範囲にあると、耐衝撃性を高めることができると共に、耐屈曲性が低下しにくく、硬化収縮によるカール発生の問題が発生し難い傾向がある。ハードコート層は、活性エネルギー線照射、或いは熱エネルギー付与により架橋構造を形成し得る反応性材料を含むハードコート組成物を硬化させて形成することができ、活性エネルギー線照射によるものが好ましい。活性エネルギー線は、活性種を発生する化合物を分解して活性種を発生させることができるエネルギー線と定義され、可視光、紫外線、赤外線、X線、α線、β線、γ線及び電子線などが挙げられ、好ましくは紫外線が挙げられる。前記ハードコート組成物は、ラジカル重合性化合物及びカチオン重合性化合物の少なくとも1種の重合物を含有する。
 前記ラジカル重合性化合物は、ラジカル重合性基を有する化合物である。前記ラジカル重合性化合物が有するラジカル重合性基としては、ラジカル重合反応を生じ得る官能基であればよく、炭素‐炭素不飽和二重結合を含む基などが挙げられ、具体的には、ビニル基、(メタ)アクリロイル基などが挙げられる。なお、前記ラジカル重合性化合物が2個以上のラジカル重合性基を有する場合、これらのラジカル重合性基はそれぞれ同一であってもよいし、異なっていてもよい。前記ラジカル重合性化合物が1分子中に有するラジカル重合性基の数は、ハードコート層の硬度を向上する点から、好ましくは2以上である。前記ラジカル重合性化合物としては、反応性の高さの点から、好ましくは(メタ)アクリロイル基を有する化合物が挙げられ、具体的には1分子中に2~6個の(メタ)アクリロイル基を有する多官能アクリレートモノマーと称される化合物やエポキシ(メタ)アクリレート、ウレタン(メタ)アクリレート、ポリエステル(メタ)アクリレートと称される分子内に数個の(メタ)アクリロイル基を有する分子量が数百から数千のオリゴマーが挙げられ、好ましくはエポキシ(メタ)アクリレート、ウレタン(メタ)アクリレート及びポリエステル(メタ)アクリレートから選択された1種以上が挙げられる。
前記カチオン重合性化合物は、エポキシ基、オキセタニル基、ビニルエーテル基等のカチオン重合性基を有する化合物である。前記カチオン重合性化合物が1分子中に有するカチオン重合性基の数は、ハードコート層の硬度を向上する点から、好ましくは2以上であり、より好ましくは3以上である。
 また、前記カチオン重合性化合物としては、中でも、カチオン重合性基としてエポキシ基及びオキセタニル基の少なくとも1種を有する化合物が好ましい。エポキシ基、オキセタニル基等の環状エーテル基は、重合反応に伴う収縮が小さいという点から好ましい。また、環状エーテル基のうちエポキシ基を有する化合物は多様な構造の化合物が入手し易く、得られたハードコート層の耐久性に悪影響を与えず、ラジカル重合性化合物との相溶性もコントロールし易いという利点がある。また、環状エーテル基のうちオキセタニル基は、エポキシ基と比較して重合度が高くなりやすく、得られたハードコート層のカチオン重合性化合物から得られるネットワーク形成速度を早め、ラジカル重合性化合物と混在する領域でも未反応のモノマーを膜中に残さずに独立したネットワークを形成する等の利点がある。
 エポキシ基を有するカチオン重合性化合物としては、例えば、脂環族環を有する多価アルコールのポリグリシジルエーテル又は、シクロヘキセン環、シクロペンテン環含有化合物を、過酸化水素、過酸等の適当な酸化剤でエポキシ化する事によって得られる脂環族エポキシ樹脂;脂肪族多価アルコール、又はそのアルキレンオキサイド付加物のポリグリシジルエーテル、脂肪族長鎖多塩基酸のポリグリシジルエステル、グリシジル(メタ)アクリレートのホモポリマー、コポリマーなどの脂肪族エポキシ樹脂;ビスフェノールA、ビスフェノールFや水添ビスフェノールA等のビスフェノール類、又はそれらのアルキレンオキサイド付加体、カプロラクトン付加体等の誘導体と、エピクロルヒドリンとの反応によって製造されるグリシジルエーテル、及びノボラックエポキシ樹脂等でありビスフェノール類から誘導されるグリシジルエーテル型エポキシ樹脂等が挙げられる。
 前記ハードコート組成物は重合開始剤をさらに含むことができる。重合開始剤としては、ラジカル重合開始剤、カチオン重合開始剤、ラジカル及びカチオン重合開始剤等が挙げられ、適宜選択して用いられる。これらの重合開始剤は、活性エネルギー線照射及び加熱の少なくとも一種により分解されて、ラジカル又はカチオンを発生してラジカル重合とカチオン重合を進行させるものである。
 ラジカル重合開始剤は、活性エネルギー線照射及び加熱の少なくともいずれかによりラジカル重合を開始させる物質を放出することが可能であればよい。例えば、熱ラジカル重合開始剤としては、過酸化水素、過安息香酸等の有機過酸化物、アゾビスブチロニトリル等のアゾ化合物等があげられる。
 活性エネルギー線ラジカル重合開始剤としては、分子の分解でラジカルが生成されるType1型ラジカル重合開始剤と、3級アミンと共存して水素引き抜き型反応でラジカルを生成するType2型ラジカル重合開始剤があり、それらは単独で又は併用して使用される。
 カチオン重合開始剤は、活性エネルギー線照射及び加熱の少なくともいずれかによりカチオン重合を開始させる物質を放出することが可能であればよい。カチオン重合開始剤としては、芳香族ヨードニウム塩、芳香族スルホニウム塩、シクロペンタジエニル鉄(II)錯体等が使用できる。これらは、構造の違いによって活性エネルギー線照射又は加熱のいずれかあるいはいずれでもカチオン重合を開始することができる。
 前記重合開始剤は、前記ハードコート組成物全体100質量%に対して好ましくは0.1~10質量%を含むことができる。前記重合開始剤の含量が前記の範囲にあると、硬化を十分に進行させることができ、最終的に得られる塗膜の機械的物性や密着力を良好な範囲とすることができ、また、硬化収縮による接着力不良や割れ現象及びカール現象が発生し難くなる傾向がある。
 前記ハードコート組成物は、溶剤及び添加剤からなる群から選択される一つ以上をさらに含むことができる。
 前記溶剤は、前記重合性化合物及び重合開始剤を溶解又は分散させることができるもので、本技術分野のハードコート組成物の溶剤として知られている溶剤であれば、本発明の効果を阻害しない範囲で、使用することができる。
 前記添加剤は、無機粒子、レベリング剤、安定剤、界面活性剤、帯電防止剤、潤滑剤、防汚剤などをさらに含むことができる。
 紫外線吸収層は、紫外線吸収の機能を有する層であり、例えば、紫外線硬化型の透明樹脂、電子線硬化型の透明樹脂、及び熱硬化型の透明樹脂から選ばれる主材と、この主材に分散した紫外線吸収剤とから構成される。
 粘着層は、粘着性の機能を有する層であり、光学フィルムを他の部材に接着させる機能を有する。粘着層の形成材料としては、通常知られたものを用いることができる。例えば、熱硬化性樹脂組成物又は光硬化性樹脂組成物を用いることができる。この場合、事後的にエネルギーを供給することで熱硬化性樹脂組成物又は光硬化性樹脂組成物を高分子化し硬化させることができる。
 粘着層は、感圧型接着剤(Pressure Sensitive Adhesive、PSA)と呼ばれる、押圧により対象物に貼着される層であってもよい。感圧型接着剤は、「常温で粘着性を有し、軽い圧力で被着材に接着する物質」(JIS K 6800)である粘着剤であってもよく、「特定成分を保護被膜(マイクロカプセル)に内容し、適当な手段(圧力、熱等)によって被膜を破壊するまでは安定性を保持できる接着剤」(JIS K 6800)であるカプセル型接着剤であってもよい。
 色相調整層は、色相調整の機能を有する層であり、光学フィルムを目的の色相に調整することができる層である。色相調整層は、例えば、樹脂及び着色剤を含有する層である。この着色剤としては、例えば、酸化チタン、酸化亜鉛、弁柄、チタニウムオキサイド系焼成顔料、群青、アルミン酸コバルト、及びカーボンブラック等の無機顔料;アゾ系化合物、キナクリドン系化合物、アンスラキノン系化合物、ペリレン系化合物、イソインドリノン系化合物、フタロシアニン系化合物、キノフタロン系化合物、スレン系化合物、及びジケトピロロピロール系化合物等の有機顔料;硫酸バリウム、及び炭酸カルシウム等の体質顔料;並びに塩基性染料、酸性染料、及び媒染染料等の染料を挙げることができる。
 屈折率調整層は、屈折率調整の機能を有する層であり、例えば単層の光学フィルムとは異なる屈折率を有し、光学フィルムに所定の屈折率を付与することができる層である。屈折率調整層は、例えば、適宜選択された樹脂、及び場合によりさらに顔料を含有する樹脂層であってもよいし、金属の薄膜であってもよい。屈折率を調整する顔料としては、例えば、酸化珪素、酸化アルミニウム、酸化アンチモン、酸化錫、酸化チタン、酸化ジルコニウム及び酸化タンタルが挙げられる。該顔料の平均一次粒子径は、0.1μm以下であってもよい。顔料の平均一次粒子径を0.1μm以下とすることにより、屈折率調整層を透過する光の乱反射を防止し、透明度の低下を防止することができる。屈折率調整層に用いられる金属としては、例えば、酸化チタン、酸化タンタル、酸化ジルコニウム、酸化亜鉛、酸化錫、酸化ケイ素、酸化インジウム、酸窒化チタン、窒化チタン、酸窒化ケイ素、窒化ケイ素等の金属酸化物又は金属窒化物が挙げられる。
 本発明の一実施形態において、光学フィルムは、少なくとも一方の面(片面又は両面)に保護フィルムを有していてもよい。例えば光学フィルムの片面に機能層を有する場合には、保護フィルムは、光学フィルム側の表面又は機能層側の表面に積層されていてもよく、光学フィルム側と機能層側の両方に積層されていてもよい。光学フィルムの両面に機能層を有する場合には、保護フィルムは、片方の機能層側の表面に積層されていてもよく、両方の機能層側の表面に積層されていてもよい。保護フィルムは、光学フィルム又は機能層の表面を一時的に保護するためのフィルムであり、光学フィルム又は機能層の表面を保護できる剥離可能なフィルムである限り特に限定されない。保護フィルムとしては、例えば、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート等のポリエステル系樹脂フィルム;ポリエチレン、ポリプロピレンフィルムなどのポリオレフィン系樹脂フィルム、アクリル系樹脂フィルム等が挙げられ、ポリオレフィン系樹脂フィルム、ポリエチレンテレフタレート系樹脂フィルム及びアクリル系樹脂フィルムからなる群から選択されることが好ましい。光学フィルムが保護フィルムを2つ有する場合、各保護フィルムは同一又は異なっていてもよい。
 保護フィルムの厚さは、特に限定されるものではないが、通常、10~120μm、好ましくは15~110μm、より好ましくは20~100μmである。光学フィルムが保護フィルムを2つ有する場合、各保護フィルムの厚さは同じであってもよく、異なっていてもよい。
 〔光学フィルムの製造方法〕
 本発明の光学フィルムは、特に限定されないが、例えば以下の工程:
(a)前記ポリイミド系樹脂を含む液(樹脂ワニスと称する場合がある)を調製する工程(ワニス調製工程)、
(b)樹脂ワニスを基材に塗布して塗膜を形成する工程(塗布工程)、及び
(c)塗布された液(塗膜)を乾燥させて、光学フィルムを形成する工程(光学フィルム形成工程)
を含む方法によって製造することができる。
 ワニス調製工程において、前記ポリイミド系樹脂を溶媒に溶解し、必要に応じて前記添加剤を添加して撹拌混合することにより樹脂ワニスを調製する。
 樹脂ワニスの調製に用いられる溶媒は、前記樹脂を溶解可能であれば特に限定されない。かかる溶媒としては、例えばDMAc、DMF等のアミド系溶媒;γ-ブチロラクトン、γ-バレロラクトン等のラクトン系溶媒;ジメチルスルホン、ジメチルスルホキシド、スルホラン等の含硫黄系溶媒;エチレンカーボネート、プロピレンカーボネート等のカーボネート系溶媒;及びそれらの組合せが挙げられる。これらの中でも、アミド系溶媒又はラクトン系溶媒が好ましい。これらの溶媒は単独又は二種以上組合せて使用できる。また、樹脂ワニスには水、アルコール系溶媒、ケトン系溶媒、非環状エステル系溶媒、エーテル系溶媒などが含まれてもよい。ワニスの固形分濃度は、好ましくは1~25質量%、より好ましくは5~15質量%である。なお、本明細書において、ワニスの固形分とは、ワニスから溶媒を除いた成分の合計量を示す。
 塗布工程において、公知の塗布方法により、基材上にワニスを塗布して塗膜を形成する。公知の塗布方法としては、例えばワイヤーバーコーティング法、リバースコーティング、グラビアコーティング等のロールコーティング法、ダイコート法、カンマコート法、リップコート法、スピンコーティング法、スクリーンコーティング法、ファウンテンコーティング法、ディッピング法、スプレー法、流涎成形法等が挙げられる。
 光学フィルム形成工程において、塗膜を乾燥し、基材から剥離することによって、光学フィルムを形成することができる。剥離後にさらに光学フィルムを乾燥する乾燥工程を行ってもよい。塗膜の乾燥は、通常50~350℃、好ましくは50~230℃の温度にて行うことができる。本発明の好適な実施形態において、段階的に乾燥を行うことが好ましい。高分子量樹脂を含むワニスは高粘度になりやすく、一般的に均一なフィルムを得ることが困難となり、透明性に優れるフィルムを得にくくなる。そこで、段階的に乾燥を行うことにより、高分子量樹脂を含むワニスを均一に乾燥することができる。必要に応じて、不活性雰囲気又は減圧の条件下において塗膜の乾燥を行ってよい。また、光学フィルムの乾燥を真空条件下で行うと、フィルム中に微小な気泡が発生、残存することがあり、透明性が低下する要因となるため大気圧下で行うことが好ましい。
 基材の例としては、PETフィルム、PENフィルム、他のポリイミド系樹脂又はポリアミド系樹脂フィルム等が挙げられる。中でも、耐熱性に優れる観点から、PETフィルム、PENフィルム等が好ましく、さらに光学フィルムとの密着性及びコストの観点から、PETフィルムがより好ましい。
 本発明の光学フィルムは、表示装置、中でもフレキシブル表示装置の前面板(ウインドウフィルムということがある)、特にローラブルディスプレイやフォルダブルディスプレイの前面板として好適に使用できる。すなわち、本発明の光学フィルムは、フレキシブル表示装置の前面板用フィルムであることが好ましい。該前面板は、フレキシブル表示装置の表示素子を保護する機能を有する。なお、フレキシブル表示装置とは、画像表示装置を繰り返し折り曲げる、繰り返し巻く等の操作を伴い使用される表示装置である。このような繰り返しの折り曲げ操作等を伴い使用されるフレキシブル表示装置の前面板には高い耐屈曲性、特に高い耐折性が求められる。また、前面板には、高い視認性も求められる。画像表示装置の内部で使用される画像表示装置の基板用のフィルムと比較して、画像表示装置の前面板、特にフレキシブル表示装置の前面板用のフィルムには、高い視認性が求められると共に、高い耐屈曲性が求められる。例えば、本発明のフィルムは、フレキシブル表示装置の前面板用に用いる場合の視認性を高めやすい観点から、上記に記載したような全光線透過率、ヘーズ及び/又はYI値を有することが好ましく、また、フレキシブル表示装置の前面板として用いる場合の耐屈曲性、特に耐折性を高めやすい観点から、上記に記載したようなMIT耐折疲労試験における耐折回数を満たすことが好ましい。表示装置としては、テレビ、スマートフォン、携帯電話、カーナビゲーション、タブレットPC、携帯ゲーム機、電子ペーパー、インジケーター、掲示板、時計、及びスマートウォッチ等のウェアラブルデバイス等が挙げられる。フレキシブルディスプレイとしては、フレキシブル特性を有する表示装置、例えばテレビ、スマートフォン、携帯電話、スマートウォッチ等が挙げられる。フレキシブル表示装置としては、フレキシブル特性を有する全ての画像表示装置が挙げられ、例えば上記のようなローラブルディスプレイやフォルダブルディスプレイが挙げられる。ローラブルディスプレイとは、前面板を含む画像表示部分がロール状に巻き取られており、該画像表示部分を引き出して平面又は曲面にした状態で使用される画像表示装置であり、ロール状に巻き取る等の操作が使用の度に行われるような画像表示装置である。また、フォルダブルディスプレイとは、前面板を含む画像表示部分が折り曲げられており、該画像表示部分を開いて平面又は曲面にした状態で使用される画像表示装置であり、折り曲げ等の操作が使用の度に行われるような画像表示装置である。このような巻き取り、折り曲げ等の操作が繰り返し行われる画像表示装置をフレキシブル画像表示装置と称する。
 〔フレキシブル表示装置〕
 本発明は、本発明の光学フィルムを備える、フレキシブル表示装置も提供する。本発明の光学フィルムは、好ましくはフレキシブル表示装置において前面板として用いられ、該前面板はウインドウフィルムと称されることがある。該フレキシブル表示装置は、フレキシブル表示装置用積層体と、有機EL表示パネルとからなり、有機EL表示パネルに対して視認側にフレキシブル表示装置用積層体が配置され、折り曲げ可能に構成されている。フレキシブル表示装置用積層体としては、さらに偏光板、タッチセンサを含有していてもよく、それらの積層順は任意であるが、視認側からウインドウフィルム、偏光板、タッチセンサ又はウインドウフィルム、タッチセンサ、偏光板の順に積層されていることが好ましい。タッチセンサよりも視認側に偏光板が存在すると、タッチセンサのパターンが視認されにくくなり表示画像の視認性が良くなるので好ましい。それぞれの部材は接着剤、粘着剤等を用いて積層することができる。また、前記ウインドウフィルム、偏光板、タッチセンサのいずれかの層の少なくとも一面に形成された遮光パターンを具備することができる。
 <偏光板>
 本発明のフレキシブル表示装置は、上記の通り、偏光板、中でも円偏光板をさらに備えることが好ましい。円偏光板は、直線偏光板にλ/4位相差板を積層することにより右円偏光成分又は左円偏光成分のみを透過させる機能を有する機能層である。例えば外光を右円偏光に変換して有機ELパネルで反射されて左円偏光となった外光を遮断し、有機ELの発光成分のみを透過させることで反射光の影響を抑制して画像を見やすくするために用いられる。円偏光機能を達成するためには、直線偏光板の吸収軸とλ/4位相差板の遅相軸は理論上45°である必要があるが、実用的には45±10°である。直線偏光板とλ/4位相差板は必ずしも隣接して積層される必要はなく、吸収軸と遅相軸の関係が前述の範囲を満足していればよい。全波長において完全な円偏光を達成することが好ましいが実用上は必ずしもその必要はないので本発明における円偏光板は楕円偏光板をも包含する。直線偏光板の視認側にさらにλ/4位相差フィルムを積層して、出射光を円偏光とすることで偏光サングラスをかけた状態での視認性を向上させることも好ましい。
 直線偏光板は、透過軸方向に振動している光は通すが、それとは垂直な振動成分の偏光を遮断する機能を有する機能層である。前記直線偏光板は、直線偏光子単独又は直線偏光子及びその少なくとも一面に貼り付けられた保護フィルムを備えた構成であってもよい。前記直線偏光板の厚さは、200μm以下であってもよく、好ましくは0.5~100μmである。直線偏光板の厚さが前記の範囲にあると直線偏光板の柔軟性が低下し難い傾向にある。
 前記直線偏光子は、ポリビニルアルコール(以下、PVAと略すことがある)系フィルムを染色、延伸することで製造されるフィルム型偏光子であってもよい。延伸によって配向したPVA系フィルムに、ヨウ素等の二色性色素が吸着、又はPVAに吸着した状態で延伸されることで二色性色素が配向し、偏光性能を発揮する。前記フィルム型偏光子の製造においては、他に膨潤、ホウ酸による架橋、水溶液による洗浄、乾燥等の工程を有していてもよい。延伸や染色工程はPVA系フィルム単独で行ってもよいし、ポリエチレンテレフタレートのような他のフィルムと積層された状態で行うこともできる。用いられるPVA系フィルムの厚さは好ましくは10~100μmであり、前記延伸倍率は好ましくは2~10倍である。
 さらに前記偏光子の他の一例としては、液晶偏光組成物を塗布して形成する液晶塗布型偏光子が挙げられる。前記液晶偏光組成物は、液晶性化合物及び二色性色素化合物を含むことができる。前記液晶性化合物は、液晶状態を示す性質を有していればよく、中でもスメクチック相等の高次の配向状態を有していると高い偏光性能を発揮することができるため好ましい。また、液晶性化合物は、重合性官能基を有することが好ましい。
 前記二色性色素化合物は、前記液晶化合物とともに配向して二色性を示す色素であって、重合性官能基を有していてもよく、また、二色性色素自身が液晶性を有していてもよい。
 液晶偏光組成物に含まれる化合物のいずれかは重合性官能基を有する。前記液晶偏光組成物はさらに開始剤、溶剤、分散剤、レベリング剤、安定剤、界面活性剤、架橋剤、シランカップリング剤などを含むことができる。
 前記液晶偏光層は、配向膜上に液晶偏光組成物を塗布して液晶偏光層を形成することにより製造される。液晶偏光層は、フィルム型偏光子に比べて厚さを薄く形成することができ、その厚さは好ましくは0.5~10μm、より好ましくは1~5μmである。
 前記配向膜は、例えば基材上に配向膜形成組成物を塗布し、ラビング、偏光照射等により配向性を付与することにより製造される。前記配向膜形成組成物は、配向剤を含み、さらに溶剤、架橋剤、開始剤、分散剤、レベリング剤、シランカップリング剤等を含んでいてもよい。前記配向剤としては、例えば、ポリビニルアルコール類、ポリアクリレート類、ポリアミック酸類、ポリイミド類が挙げられる。偏光照射により配向性を付与する配向剤を用いる場合、シンナメート基を含む配向剤を使用することが好ましい。前記配向剤として使用される高分子のMwは、例えば、10,000~1,000,000程度である。前記配向膜の厚さは、好ましくは5~10,000nmであり、配向規制力が十分に発現される点で、より好ましくは10~500nmである。
 前記液晶偏光層は基材から剥離して転写して積層することもできるし、前記基材をそのまま積層することもできる。前記基材が、保護フィルムや位相差板、ウインドウフィルムの透明基材としての役割を担うことも好ましい。
 前記保護フィルムとしては、透明な高分子フィルムであればよく前記ウインドウフィルムの透明基材に使用される材料や添加剤と同じものが使用できる。また、エポキシ樹脂等のカチオン硬化組成物やアクリレート等のラジカル硬化組成物を塗布して硬化して得られるコーティング型の保護フィルムであってもよい。該保護フィルムは、必要により可塑剤、紫外線吸収剤、赤外線吸収剤、顔料や染料のような着色剤、蛍光増白剤、分散剤、熱安定剤、光安定剤、帯電防止剤、酸化防止剤、滑剤、溶剤等を含んでいてもよい。該保護フィルムの厚さは、好ましくは200μm以下、より好ましくは1~100μmである。保護フィルムの厚さが前記の範囲にあると、該フィルムの柔軟性が低下し難い傾向にある。
 前記λ/4位相差板は、入射光の進行方向に直行する方向(フィルムの面内方向)にλ/4の位相差を与えるフィルムである。前記λ/4位相差板は、セルロース系フィルム、オレフィン系フィルム、ポリカーボネート系フィルム等の高分子フィルムを延伸することで製造される延伸型位相差板であってもよい。前記λ/4位相差板は、必要により位相差調整剤、可塑剤、紫外線吸収剤、赤外線吸収剤、顔料や染料のような着色剤、蛍光増白剤、分散剤、熱安定剤、光安定剤、帯電防止剤、酸化防止剤、滑剤、溶剤等を含んでいてもよい。
 前記延伸型位相差板の厚さは、好ましくは200μm以下、より好ましくは1~100μmである。延伸型位相差板の厚さが前記の範囲にあると、該延伸型位相差板の柔軟性が低下し難い傾向にある。
 さらに前記λ/4位相差板の他の一例としては、液晶組成物を塗布して形成する液晶塗布型位相差板が挙げられる。
 前記液晶組成物は、ネマチック、コレステリック、スメクチック等の液晶状態を示す液晶性化合物を含む。前記液晶性化合物は、重合性官能基を有する。
 前記液晶組成物は、さらに開始剤、溶剤、分散剤、レベリング剤、安定剤、界面活性剤、架橋剤、シランカップリング剤などを含むことができる。
 前記液晶塗布型位相差板は、前記液晶偏光層と同様に、液晶組成物を下地上に塗布、硬化して液晶位相差層を形成することで製造することができる。液晶塗布型位相差板は、延伸型位相差板に比べて厚さを薄く形成することができる。前記液晶偏光層の厚さは、好ましくは0.5~10μm、より好ましくは1~5μmである。
 前記液晶塗布型位相差板は基材から剥離して転写して積層することもできるし、前記基材をそのまま積層することもできる。前記基材が、保護フィルムや位相差板、ウインドウフィルムの透明基材としての役割を担うことも好ましい。
 一般的には、短波長ほど複屈折が大きく長波長になるほど小さな複屈折を示す材料が多い。この場合には全可視光領域でλ/4の位相差を達成することはできないので、視感度の高い560nm付近に対してλ/4となるように、面内位相差は、好ましくは100~180nm、より好ましくは130~150nmとなるように設計される。通常とは逆の複屈折率波長分散特性を有する材料を用いた逆分散λ/4位相差板は、視認性が良好となる点で好ましい。このような材料としては、例えば延伸型位相差板は特開2007-232873号公報等に、液晶塗布型位相差板は特開2010-30979号公報等に記載されているものを用いることができる。
 また、他の方法としてはλ/2位相差板と組合せることで広帯域λ/4位相差板を得る技術も知られている(例えば、特開平10-90521号公報など)。λ/2位相差板もλ/4位相差板と同様の材料方法で製造される。延伸型位相差板と液晶塗布型位相差板の組合せは任意であるが、どちらも液晶塗布型位相差板を用いることにより厚さを薄くすることができる。
 前記円偏光板には斜め方向の視認性を高めるために、正のCプレートを積層する方法が知られている(例えば、特開2014-224837号公報など)。正のCプレートは、液晶塗布型位相差板であっても延伸型位相差板であってもよい。該位相差板の厚み方向の位相差は、好ましくは-200~-20nm、より好ましくは-140~-40nmである。
 〔タッチセンサ〕
 本発明のフレキシブル表示装置は、上記の通り、タッチセンサをさらに備えることが好ましい。タッチセンサは入力手段として用いられる。タッチセンサとしては、抵抗膜方式、表面弾性波方式、赤外線方式、電磁誘導方式、静電容量方式等様々な様式が挙げられ、好ましくは静電容量方式が挙げられる。
 静電容量方式タッチセンサは活性領域及び前記活性領域の外郭部に位置する非活性領域に区分される。活性領域は表示パネルで画面が表示される領域(表示部)に対応する領域であって、使用者のタッチが感知される領域であり、非活性領域は表示装置で画面が表示されない領域(非表示部)に対応する領域である。タッチセンサはフレキシブルな特性を有する基板と、前記基板の活性領域に形成された感知パターンと、前記基板の非活性領域に形成され、前記感知パターンとパッド部を介して外部の駆動回路と接続するための各センシングラインを含むことができる。フレキシブルな特性を有する基板としては、前記ウインドウフィルムの透明基板と同様の材料が使用できる。
 前記感知パターンは、第1方向に形成された第1パターン及び第2方向に形成された第2パターンを備えることができる。第1パターンと第2パターンとは互いに異なる方向に配置される。第1パターン及び第2パターンは、同一層に形成され、タッチされる地点を感知するためには、それぞれのパターンが電気的に接続されなければならない。第1パターンは複数の単位パターンが継ぎ手を介して互いに接続された形態であるが、第2パターンは複数の単位パターンがアイランド形態に互いに分離された構造になっているので、第2パターンを電気的に接続するためには別途のブリッジ電極が必要である。第2パターンの接続のための電極には、周知の透明電極を適用することができる。該透明電極の素材としては、例えば、インジウムスズ酸化物(ITO)、インジウム亜鉛酸化物(IZO)、亜鉛酸化物(ZnO)、インジウム亜鉛スズ酸化物(IZTO)、インジウムガリウム亜鉛酸化物(IGZO)、カドミウムスズ酸化物(CTO)、PEDOT(poly(3,4-ethylenedioxythiophene))、炭素ナノチューブ(CNT)、グラフェン及び金属ワイヤなどが挙げられ、好ましくはITOが挙げられる。これらは単独又は2種以上混合して使用できる。金属ワイヤに使用される金属は特に限定されず、例えば、銀、金、アルミニウム、銅、鉄、ニッケル、チタン、セレニウム及びクロムなどが挙げられ、これらは単独又は2種以上混合して使用することができる。
 ブリッジ電極は感知パターン上部に絶縁層を介して前記絶縁層上部に形成されることができ、基板上にブリッジ電極が形成されており、その上に絶縁層及び感知パターンを形成することができる。前記ブリッジ電極は感知パターンと同じ素材で形成することもでき、モリブデン、銀、アルミニウム、銅、パラジウム、金、白金、亜鉛、スズ、チタン又はこれらのうちの2種以上の合金で形成することもできる。
 第1パターンと第2パターンは電気的に絶縁されなければならないので、感知パターンとブリッジ電極の間には絶縁層が形成される。該絶縁層は、第1パターンの継ぎ手とブリッジ電極との間にのみ形成することや、感知パターン全体を覆う層として形成することもできる。感知パターン全体を覆う層の場合、ブリッジ電極は絶縁層に形成されたコンタクトホールを介して第2パターンを接続することができる。
 前記タッチセンサは、感知パターンが形成されたパターン領域と、感知パターンが形成されていない非パターン領域との間の透過率の差、具体的には、これらの領域における屈折率の差によって誘発される光透過率の差を適切に補償するための手段として基板と電極の間に光学調節層をさらに含むことができる。該光学調節層は、無機絶縁物質又は有機絶縁物質を含むことができる。光学調節層は光硬化性有機バインダー及び溶剤を含む光硬化組成物を基板上にコーティングして形成することができる。前記光硬化組成物は無機粒子をさらに含むことができる。前記無機粒子によって光学調節層の屈折率を高くすることができる。
 前記光硬化性有機バインダーは、本発明の効果を損ねない範囲で、例えば、アクリレート系単量体、スチレン系単量体、カルボン酸系単量体などの各単量体の共重合体を含むことができる。前記光硬化性有機バインダーは、例えば、エポキシ基含有繰り返し単位、アクリレート繰り返し単位、カルボン酸繰り返し単位などの互いに異なる各繰り返し単位を含む共重合体であってもよい。
 前記無機粒子としては、例えば、ジルコニア粒子、チタニア粒子、アルミナ粒子などが挙げられる。
 前記光硬化組成物は、光重合開始剤、重合性モノマー、硬化補助剤などの各添加剤をさらに含むこともできる。
 〔接着層〕
 前記フレキシブル表示装置用積層体を形成する各層(ウインドウフィルム、円偏光板、タッチセンサ)並びに各層を構成するフィルム部材(直線偏光板、λ/4位相差板等)は接着剤によって接合することができる。該接着剤としては、水系接着剤、有機溶剤系、無溶剤系接着剤、固体接着剤、溶剤揮散型接着剤、水系溶剤揮散型接着剤、湿気硬化型接着剤、加熱硬化型接着剤、嫌気硬化型、活性エネルギー線硬化型接着剤、硬化剤混合型接着剤、熱溶融型接着剤、感圧型接着剤(粘着剤)、再湿型接着剤等、通常使用されている接着剤等が使用でき、好ましくは水系溶剤揮散型接着剤、活性エネルギー線硬化型接着剤、粘着剤を使用できる。接着剤層の厚さは、求められる接着力等に応じて適宜調節することができ、好ましくは0.01~500μm、より好ましくは0.1~300μmである。前記フレキシブル表示装置用積層体には、複数の接着層が存在するが、それぞれの厚さや種類は、同じであっても異なっていてもよい。
 前記水系溶剤揮散型接着剤としては、ポリビニルアルコール系ポリマー、でんぷん等の水溶性ポリマー、エチレン-酢酸ビニル系エマルジョン、スチレン-ブタジエン系エマルジョン等水分散状態のポリマーを主剤ポリマーとして使用することができる。前記主剤ポリマーと水とに加えて、架橋剤、シラン系化合物、イオン性化合物、架橋触媒、酸化防止剤、染料、顔料、無機フィラー、有機溶剤等を配合してもよい。前記水系溶剤揮散型接着剤によって接着する場合、前記水系溶剤揮散型接着剤を被接着層間に注入して被着層を貼合した後、乾燥させることで接着性を付与することができる。前記水系溶剤揮散型接着剤を用いる場合、その接着層の厚さは、好ましくは0.01~10μm、より好ましくは0.1~1μmである。前記水系溶剤揮散型接着剤を複数層に用いる場合、それぞれの層の厚さや種類は同じであっても異なっていてもよい。
 前記活性エネルギー線硬化型接着剤は、活性エネルギー線を照射して接着剤層を形成する反応性材料を含む活性エネルギー線硬化組成物の硬化により形成することができる。前記活性エネルギー線硬化組成物は、ハードコート組成物に含まれるものと同様のラジカル重合性化合物及びカチオン重合性化合物の少なくとも1種の重合物を含有することができる。前記ラジカル重合性化合物は、ハードコート組成物におけるラジカル重合性化合物と同じ化合物を用いることができる。
 前記カチオン重合性化合物は、ハードコート組成物におけるカチオン重合性化合物と同じ化合物を用いることができる。
 活性エネルギー線硬化組成物に用いられるカチオン重合性化合物としては、エポキシ化合物が好ましい。接着剤組成物としての粘度を下げるために単官能の化合物を反応性希釈剤として含むことも好ましい。
 活性エネルギー線組成物は、粘度を低下させるために、単官能の化合物を含むことができる。該単官能の化合物としては、1分子中に1個の(メタ)アクリロイル基を有するアクリレート系単量体や、1分子中に1個のエポキシ基又はオキセタニル基を有する化合物、例えば、グリシジル(メタ)アクリレートなどが挙げられる。
 活性エネルギー線組成物は、さらに重合開始剤を含むことができる。該重合開始剤としては、ラジカル重合開始剤、カチオン重合開始剤、ラジカル及びカチオン重合開始剤等が挙げられ、これらは適宜選択して用いられる。これらの重合開始剤は、活性エネルギー線照射及び加熱の少なくとも一種により分解されて、ラジカル又はカチオンを発生してラジカル重合とカチオン重合を進行させるものである。ハードコート組成物の記載の中で活性エネルギー線照射によりラジカル重合又はカチオン重合の内の少なくともいずれか開始することができる開始剤を使用することができる。
 前記活性エネルギー線硬化組成物はさらに、イオン捕捉剤、酸化防止剤、連鎖移動剤、密着付与剤、熱可塑性樹脂、充填剤、流動粘度調整剤、可塑剤、消泡剤溶剤、添加剤、溶剤を含むことができる。前記活性エネルギー線硬化型接着剤によって2つの被接着層を接着する場合、前記活性エネルギー線硬化組成物を被接着層のいずれか一方又は両方に塗布後、貼合し、いずれかの被着層又は両方の被接着層に活性エネルギー線を照射して硬化させることにより、で接着することができる。前記活性エネルギー線硬化型接着剤を用いる場合、その接着層の厚さは、好ましくは0.01~20μm、より好ましくは0.1~10μmである。前記活性エネルギー線硬化型接着剤を複数の接着層形成に用いる場合、それぞれの層の厚さや種類は同じであっても異なっていてもよい。
 前記粘着剤としては、主剤ポリマーに応じて、アクリル系粘着剤、ウレタン系粘着剤、ゴム系粘着剤、シリコーン系粘着剤等に分類され何れを使用することもできる。粘着剤には主剤ポリマーに加えて、架橋剤、シラン系化合物、イオン性化合物、架橋触媒、酸化防止剤、粘着付与剤、可塑剤、染料、顔料、無機フィラー等を配合してもよい。前記粘着剤を構成する各成分を溶剤に溶解・分散させて粘着剤組成物を得て、該粘着剤組成物を基材上に塗布した後に乾燥させることで、粘着剤層接着層が形成される。粘着層は直接形成されてもよいし、別途基材に形成したものを転写することもできる。接着前の粘着面をカバーするためには離型フィルムを使用することも好ましい。前記活性エネルギー線硬化型接着剤を用いる場合、その接着層の厚さは、好ましくは0.1~500μm、より好ましくは1~300μmである。前記粘着剤を複数層用いる場合には、それぞれの層の厚さや種類は同じであっても異なっていてもよい。
 〔遮光パターン〕
 前記遮光パターンは、前記フレキシブル表示装置のベゼル又はハウジングの少なくとも一部として適用することができる。遮光パターンによって前記フレキシブル表示装置の辺縁部に配置される配線が隠されて視認されにくくすることで、画像の視認性が向上する。前記遮光パターンは単層又は複層の形態であってもよい。遮光パターンのカラーは特に制限されることはなく、黒色、白色、金属色などの多様なカラーであってもよい。遮光パターンはカラーを具現するための顔料と、アクリル系樹脂、エステル系樹脂、エポキシ系樹脂、ポリウレタン、シリコーンなどの高分子で形成することができる。これらの単独又は2種類以上の混合物で使用することもできる。前記遮光パターンは、印刷、リソグラフィ、インクジェットなど各種の方法にて形成することができる。遮光パターンの厚さは、好ましくは1~100μm、より好ましくは2~50μmである。また、遮光パターンの厚み方向に傾斜等の形状を付与することも好ましい。
 以下、実施例により本発明をさらに詳細に説明する。例中の「%」及び「部」は、特記しない限り、質量%及び質量部を意味する。まず評価方法について説明する。
<耐力の測定>
 実施例及び比較例において得られた光学フィルムの耐力を(株)島津製作所製「オートグラフAG-IS」を用いて測定した。縦横10mm幅のフィルムを作製し、チャック間距離50mm、引張速度10mm/分の条件で応力-歪曲線(S-S曲線)を測定した。
1.S-S曲線のデータ整理
 S-S曲線における測定開始点から連続10点をサンプリングし、最小二乗法により二次関数にフィッティングする。その後、サンプリング範囲10点の二次関数フィッティングにより上に凸の形状になるまで、測定開始点の左側から1点を除外し右側の1点を追加する。フィッティング関数が上に凸になった時点でデータ整理を終了とする。
2.S-S曲線の接線方程式の計算
 1.のデータのn=i~j番目(j=2~50)のデータで最小二乗法により傾きと切片を求める。その後、j-1個の傾きについてk番目(k=1~48)から49番目のデータを最小二乗法で1次関数にフィッティングし、歪が0の時の傾きを外挿により求める。得られた48点の中央値をとり、歪0のときの直線の傾き(S-S曲線接線)と定義する。切片についても同様に計算し、歪0におけるS-S曲線の接線の方程式を得る。
3.耐力の計算
 2.で得られたS-S曲線の歪0における接線を歪方向に0.2%平行移動する。応力の測定データが、平行移動した直線の応力を上回ったデータの応力値を耐力とする。
<全光線透過率>
 JIS K 7105:1981に準拠して、スガ試験機(株)製の全自動直読ヘーズコンピュータHGM-2DPにより、実施例及び比較例で得られた光学フィルムの全光線透過率(Tt)を測定した。
<ヘーズ>
 JIS K 7105:1981に準拠して、実施例及び比較例で得られた光学フィルムを30mm×30mmの大きさにカットし、スガ試験機(株)製の全自動直読ヘーズコンピュータHGM-2DPにより測定した。
 <YI値>
 実施例及び比較例で得られた光学フィルムについて、紫外可視近赤外分光光度計(日本分光(株)製V-670)を用いて、三刺激値(X,Y,Z)を求め、下記計算式に代入することにより、YI値を算出した。
 YI=100×(1.2769X-1.0592Z)/Y
<弾性率>
 実施例及び比較例において得られた光学フィルムの弾性率を(株)島津製作所製「オートグラフAG-IS」を用いて測定した。縦横10mm幅のフィルムを作製し、チャック間距離50mm、引張速度10mm/分の条件で応力-歪曲線(S-S曲線)を測定し、その傾きから弾性率を算出した。
 <耐折性の評価>
 ASTM規格D2176-16に準拠して、実施例及び比較例における光学フィルムの折り曲げ回数を以下のように求めた。該光学フィルムを、ダンベルカッターを用いて15mm×100mmの短冊状にカットした。カットした光学フィルムをMIT耐折疲労試験機(「型式0530」、(株)東洋精機製作所製)本体にセットして、試験速度175cpm、折り曲げ角度135°、荷重0.75kgf、折り曲げクランプの半径R=1mmの条件で、光学フィルムが破断するまでの裏表方向への往復折曲げ回数を測定し、これを折り曲げ回数(耐折回数ともいう)とした。
<厚さの測定>
 ABSデジマチックインジケーター((株)ミツトヨ製、「ID-C112BS」)を用いて、実施例及び比較例で得られた光学フィルムの厚さを測定した。
<Mwの測定>
 GPC測定
(1)前処理方法
 実施例及び比較例で得られたポリアミドイミド樹脂にDMF溶離液(10mmol/L臭化リチウム添加溶液)を濃度2mg/mLとなるように加え、80℃にて30分間撹拌しながら加熱し、冷却後、0.45μmメンブランフィルターろ過したものを測定溶液とした。
(2)測定条件
カラム:東ソー(株)製TSKgel α-2500((7)7.8mm径×300mm)×1本、α-M((13)7.8mm径×300mm)×2本
溶離液:DMF(10mmol/Lの臭化リチウム添加)
流量:1.0mL/分
検出器:RI検出器
カラム温度:40℃
注入量:100μL
分子量標準:標準ポリスチレン
<合成例1:ポリアミドイミド樹脂(1)の製造>
 窒素雰囲気下、撹拌翼を備えたセパラブルフラスコに、TFMB及び水分量700ppm以下まで厳密に脱水したDMAcをTFMBの固形分が5.13質量%となるように加え、室温で撹拌しながらTFMBをDMAc中に溶解させた。次に、フラスコに6FDA、TAHMBPをTFMBに対してそれぞれ20.20mol%ずつになるように添加し、室温で16時間撹拌した。その後、10℃に冷却した後に、TPCをTFMBに対して27.27mol%になるように加え、10分撹拌後に、さらにTPCをTFMBに対して27.27mоl%になるように加え、30分間撹拌した。その後、はじめに加えたDMAcと同量のDMAcを加え、10分間撹拌した後に、TPCをTFMBに対して6.06mol%になるように加え、2時間撹拌した。次いで、フラスコにジイソプロピルエチルアミンと4-ピコリン、無水酢酸をそれぞれTFMBに対して60.61mol%、60.61mol%、282.83mol%となるように加え、30分間撹拌した後、内温を70℃に昇温し、さらに3時間撹拌し、反応液を得た。
 得られた反応液を室温まで冷却し、該反応液を大量のメタノール中に糸状に投入し、析出した沈殿物を取り出し、メタノール中に6時間浸漬後、メタノールで洗浄した。次に、60℃にて沈殿物の減圧乾燥を行い、ポリアミドイミド樹脂(1)を得た。得られたポリアミドイミド樹脂(1)のMwは、748,000であった。
<合成例2:ポリアミドイミド樹脂(2)の製造>
 窒素雰囲気下、撹拌翼を備えたセパラブルフラスコに、TFMB及び水分量700ppm以下まで厳密に脱水したDMAcをTFMBの固形分が5.27質量%となるように加え、室温で撹拌しながらTFMBをDMAc中に溶解させた。次に、フラスコに6FDA、及び無水トリメリット酸と4,4’-ビフェノールとのエステル化物をTFMBに対してそれぞれ20.10mol%ずつになるように添加し、室温で16時間撹拌した。その後、10℃に冷却した後に、TPCをTFMBに対して27.14mol%になるように加え、10分撹拌後に、さらにTPCをTFMBに対して27.14mоl%になるように加え、30分間撹拌した。その後、はじめに加えたDMAcと同量のDMAcを加え、10分間撹拌した後に、TPCをTFMBに対して6.03mol%になるように加え、2時間撹拌した。次いで、フラスコにジイソプロピルエチルアミンと4-ピコリン、無水酢酸をそれぞれTFMBに対して60.30mol%、60.30mol%、281.41mol%となるように加え、30分間撹拌した後、内温を70℃に昇温し、さらに3時間撹拌し、反応液を得た。
 得られた反応液を室温まで冷却し、大量のメタノール中に糸状に投入し、析出した沈殿物を取り出し、メタノール中に6時間浸漬後、メタノールで洗浄した。次に、60℃にて沈殿物の減圧乾燥を行い、ポリアミドイミド樹脂(2)を得た。得られたポリアミドイミド樹脂(2)のMwは、139,000であった。
<合成例3:ポリアミドイミド樹脂(3)の製造>
 窒素雰囲気下、撹拌翼を備えたセパラブルフラスコに、TFMB及び水分量700ppm以下まで厳密に脱水したDMAcをTFMBの固形分が5.35質量%となるように加え、室温で撹拌しながらTFMBをDMAc中に溶解させた。次に、フラスコに6FDAをTFMBに対して41.24mol%になるように添加し、室温で16時間撹拌した。その後、10℃に冷却した後に、TPCをTFMBに対して27.84mol%になるように加え、10分撹拌後に、さらにTPCをTFMBに対して27.84mоl%になるように加え、30分間撹拌した。その後、はじめに加えたDMAcと同量のDMAcを加え、10分間撹拌した後に、TPCをTFMBに対して6.19mol%になるように加え、2時間撹拌した。次いで、フラスコにジイソプロピルエチルアミンと4-ピコリン、無水酢酸をそれぞれTFMBに対して61.86mol%、61.86mol%、288.66mol%となるように加え、30分間撹拌した後、内温を70℃に昇温し、さらに3時間撹拌し、反応液を得た。
 得られた反応液を室温まで冷却し、大量のメタノール中に糸状に投入し、析出した沈殿物を取り出し、メタノール中に6時間浸漬後、メタノールで洗浄した。次に、60℃にて沈殿物の減圧乾燥を行い、ポリアミドイミド樹脂(3)を得た。得られたポリアミドイミド樹脂(3)のMwは、174,000であった。
<合成例5:ポリアミドイミド樹脂(5)の製造>
 窒素雰囲気下、撹拌翼を備えたセパラブルフラスコに、TFMB及び水分量700ppm以下まで厳密に脱水したDMAcをTFMBの固形分が5.81質量%となるように加え、室温で撹拌しながらTFMBをDMAc中に溶解させた。次に、フラスコに6FDAをTFMBに対して20.41mol%になるように添加し、室温で16時間撹拌した。その後、10℃に冷却した後に、TPCをTFMBに対して36.73mol%になるように加え、10分撹拌後に、さらにTPCをTFMBに対して36.73mоl%になるように加え、30分間撹拌した。その後、はじめに加えたDMAcと同量のDMAcを加え、10分間撹拌した後に、TPCをTFMBに対して8.16mol%になるように加え、2時間撹拌したが、途中で粘度上昇が顕著となり、溶液が寒天状となった。その後の合成操作が困難となったため、樹脂合成を断念した。
<合成例6:ポリアミドイミド樹脂(6)の製造>
 窒素雰囲気下、撹拌翼を備えたセパラブルフラスコに、TFMB及び水分量700ppm以下まで厳密に脱水したDMAcをTFMBの固形分が5.44質量%となるように加え、室温で撹拌しながらTFMBをDMAc中に溶解させた。次に、フラスコに6FDAをTFMBに対して30.15mol%になるように添加し、室温で16時間撹拌した。その後、10℃に冷却した後に、OMTPCをTFMBに対して33.08mol%になるように加え、10分撹拌後に、さらにOMTPCをTFMBに対して33.08mоl%になるように加え、30分間撹拌した。その後、はじめに加えたDMAcと同量のDMAcを加え、10分間撹拌した後に、OMTPCをTFMBに対して7.04mol%になるように加え、2時間撹拌した。次いで、フラスコにジイソプロピルエチルアミンと4-ピコリン、無水酢酸をそれぞれTFMBに対して70.35mol%、70.35mol%、211.06mol%となるように加え、30分間撹拌した後、内温を70℃に昇温し、さらに3時間撹拌し、反応液を得た。
 得られた反応液を室温まで冷却し、大量のメタノール中に糸状に投入し、析出した沈殿物を取り出し、メタノール中に6時間浸漬後、メタノールで洗浄した。次に、60℃にて沈殿物の減圧乾燥を行い、ポリアミドイミド樹脂(6)を得た。得られたポリアミドイミド樹脂(6)のMwは、612,000であった。
<合成例7:ポリアミドイミド樹脂(7)の製造>
 窒素雰囲気下、撹拌翼を備えたセパラブルフラスコに、TFMB及び水分量700ppm以下まで厳密に脱水したDMAcをTFMBの固形分が5.63質量%となるように加え、室温で撹拌しながらTFMBをDMAc中に溶解させた。次に、フラスコに6FDAをTFMBに対して20.20mol%になるように添加し、室温で16時間撹拌した。その後、10℃に冷却した後に、DMTPCをTFMBに対して36.36mol%になるように加え、10分撹拌後に、さらにDMTPCをTFMBに対して36.36mоl%になるように加え、30分間撹拌した。その後、はじめに加えたDMAcと同量のDMAcを加え、10分間撹拌した後に、DMTPCをTFMBに対して8.08mol%になるように加え、2時間撹拌した。次いで、フラスコにジイソプロピルエチルアミンと4-ピコリン、無水酢酸をそれぞれTFMBに対して80.81mol%、80.81mol%、141.41mol%となるように加え、30分間撹拌した後、内温を70℃に昇温し、さらに3時間撹拌し、反応液を得た。
 得られた反応液を室温まで冷却し、大量のメタノール中に糸状に投入し、析出した沈殿物を取り出し、メタノール中に6時間浸漬後、メタノールで洗浄した。次に、60℃にて沈殿物の減圧乾燥を行い、ポリアミドイミド樹脂(7)を得た。得られたポリアミドイミド樹脂(7)のMwは、482,000であった。
<合成例8:ポリアミドイミド樹脂(8)の製造>
 窒素雰囲気下、撹拌翼を備えたセパラブルフラスコに、TFMB及び水分量700ppm以下まで厳密に脱水したDMAcをTFMBの固形分が5.63質量%となるように加え、室温で撹拌しながらTFMBをDMAc中に溶解させた。次に、フラスコに6FDAをTFMBに対して20.10mol%になるように添加し、室温で16時間撹拌した。その後、10℃に冷却した後に、OMTPCをTFMBに対して36.18mol%になるように加え、10分撹拌後に、さらにOMTPCをTFMBに対して36.18mоl%になるように加え、30分間撹拌した。その後、はじめに加えたDMAcと同量のDMAcを加え、10分間撹拌した後に、OMTPCをTFMBに対して8.04mol%になるように加え、2時間撹拌した。次いで、フラスコにジイソプロピルエチルアミンと4-ピコリン、無水酢酸をそれぞれTFMBに対して80.40mol%、80.40mol%、140.70mol%となるように加え、30分間撹拌した後、内温を70℃に昇温し、さらに3時間撹拌し、反応液を得た。
 得られた反応液を室温まで冷却し、大量のメタノール中に糸状に投入し、析出した沈殿物を取り出し、メタノール中に6時間浸漬後、メタノールで洗浄した。次に、60℃にて沈殿物の減圧乾燥を行い、ポリアミドイミド樹脂(8)を得た。得られたポリアミドイミド樹脂(8)のMwは、483,000であった。
<合成例9:ポリアミドイミド樹脂(9)の製造>
 窒素雰囲気下、撹拌翼を備えたセパラブルフラスコに、TFMB及び水分量700ppm以下まで厳密に脱水したDMAcをTFMBの固形分が5.52質量%となるように加え、室温で撹拌しながらTFMBをDMAc中に溶解させた。次に、フラスコに6FDAとBPDAをTFMBに対してそれぞれ20.10mol%になるように添加し、室温で16時間撹拌した。その後、10℃に冷却した後に、OMTPCをTFMBに対して27.14mol%になるように加え、10分撹拌後に、さらにOMTPCをTFMBに対して27.14mоl%になるように加え、30分間撹拌した。その後、はじめに加えたDMAcと同量のDMAcを加え、10分間撹拌した後に、OMTPCをTFMBに対して6.03mol%になるように加え、2時間撹拌した。次いで、フラスコにジイソプロピルエチルアミンと4-ピコリン、無水酢酸をそれぞれTFMBに対して60.30mol%、60.30mol%、281.41mol%となるように加え、30分間撹拌した後、内温を70℃に昇温し、さらに3時間撹拌し、反応液を得た。
 得られた反応液を室温まで冷却し、大量のメタノール中に糸状に投入し、析出した沈殿物を取り出し、メタノール中に6時間浸漬後、メタノールで洗浄した。次に、60℃にて沈殿物の減圧乾燥を行い、ポリアミドイミド樹脂(9)を得た。得られたポリアミド系樹脂(9)のMwは、594,000であった。
<合成例10:ポリアミドイミド樹脂(10)の製造>
 窒素雰囲気下、撹拌翼を備えたセパラブルフラスコに、TFMB及び水分量700ppm以下まで厳密に脱水したDMAcをTFMBの固形分が5.08質量%となるように加え、室温で撹拌しながらTFMBをDMAc中に溶解させた。次に、フラスコに6FDA、TAHMBPをTFMBに対してそれぞれ20.62mol%ずつになるように添加し、室温で16時間撹拌した。その後、10℃に冷却した後に、TPCをTFMBに対して27.84mol%になるように加え、10分撹拌後に、さらにTPCをTFMBに対して27.84mоl%になるように加え、30分間撹拌した。その後、はじめに加えたDMAcと同量のDMAcを加え、10分間撹拌した後に、TPCをTFMBに対して6.19mol%になるように加え、2時間撹拌した。次いで、フラスコにジイソプロピルエチルアミンと4-ピコリン、無水酢酸をそれぞれTFMBに対して61.86mol%、61.86mol%、288.66mol%となるように加え、30分間撹拌した後、内温を70℃に昇温し、さらに3時間撹拌し、反応液を得た。
 得られた反応液を室温まで冷却し、該反応液を大量のメタノール中に糸状に投入し、析出した沈殿物を取り出し、メタノール中に6時間浸漬後、メタノールで洗浄した。次に、60℃にて沈殿物の減圧乾燥を行い、ポリアミドイミド樹脂(10)を得た。得られたポリアミドイミド樹脂(10)のMwは、486,000であった。
<合成例11:ポリアミドイミド樹脂(11)の製造>
 窒素雰囲気下、撹拌翼を備えたセパラブルフラスコに、TFMB及び水分量700ppm以下まで厳密に脱水したDMAcをTFMBの固形分が5.08質量%となるように加え、室温で撹拌しながらTFMBをDMAc中に溶解させた。次に、フラスコに6FDA、及びTAHMBPをTFMBに対してそれぞれ20.62mol%ずつになるように添加し、室温で16時間撹拌した。その後、10℃に冷却した後に、TPCをTFMBに対して27.84mol%になるように加え、10分撹拌後に、さらにTPCをTFMBに対して27.84mоl%になるように加え、30分間撹拌した。その後、はじめに加えたDMAcと同量のDMAcを加え、10分間撹拌した後に、TPCをTFMBに対して6.19mol%になるように加え、2時間撹拌した。次いで、フラスコにジイソプロピルエチルアミンと4-ピコリン、無水酢酸をそれぞれTFMBに対して61.86mol%、61.86mol%、288.66mol%となるように加え、30分間撹拌した後、内温を70℃に昇温し、さらに3時間撹拌し、反応液を得た。
 得られた反応液を室温まで冷却し、該反応液を大量のメタノール中に糸状に投入し、析出した沈殿物を取り出し、メタノール中に6時間浸漬後、メタノールで洗浄した。次に、60℃にて沈殿物の減圧乾燥を行い、ポリアミドイミド樹脂(11)を得た。得られたポリアミドイミド樹脂(11)のMwは、215,000であった。
<合成例12:ポリアミドイミド樹脂(12)の製造>
 窒素雰囲気下、撹拌翼を備えたセパラブルフラスコに、TFMB及び水分量700ppm以下まで厳密に脱水したDMAcをTFMBの固形分が5.16質量%となるように加え、室温で撹拌しながらTFMBをDMAc中に溶解させた。次に、フラスコにTAHMBPをTFMBに対して30.61mol%になるように添加し、室温で16時間撹拌した。その後、10℃に冷却した後に、TPCをTFMBに対して32.14mol%になるように加え、10分撹拌後に、さらにTPCをTFMBに対して32.14mоl%になるように加え、30分間撹拌した。その後、はじめに加えたDMAcと同量のDMAcを加え、10分間撹拌した後に、TPCをTFMBに対して7.14mol%になるように加え、2時間撹拌した。次いで、フラスコにジイソプロピルエチルアミンと4-ピコリン、無水酢酸をそれぞれTFMBに対して71.43mol%、71.43mol%、214.29mol%となるように加え、30分間撹拌した後、内温を70℃に昇温し、さらに3時間撹拌し、反応液を得た。
 得られた反応液を室温まで冷却し、該反応液を大量のメタノール中に糸状に投入し、析出した沈殿物を取り出し、メタノール中に6時間浸漬後、メタノールで洗浄した。次に、60℃にて沈殿物の減圧乾燥を行い、ポリアミドイミド樹脂(12)を得た。得られたポリアミドイミド樹脂(12)のMwは、764,000であった。
<合成例13:ポリアミドイミド樹脂(13)の製造>
 窒素雰囲気下、撹拌翼を備えたセパラブルフラスコに、TFMB及び水分量700ppm以下まで厳密に脱水したDMAcをTFMBの固形分が4.86質量%となるように加え、室温で撹拌しながらTFMBをDMAc中に溶解させた。次に、TAHMBPをTFMBに対して40.82mol%になるように添加し、室温で16時間撹拌した。その後、10℃に冷却した後に、TPCをTFMBに対して27.55mol%になるように加え、10分撹拌後に、さらにTPCをTFMBに対して27.55mоl%になるように加え、30分間撹拌した。その後、はじめに加えたDMAcと同量のDMAcを加え、10分間撹拌した後に、TPCをTFMBに対して6.12mol%になるように加え、2時間撹拌した。次いで、フラスコにジイソプロピルエチルアミンと4-ピコリン、無水酢酸をそれぞれTFMBに対して61.22mol%、61.22mol%、285.71mol%となるように加え、30分間撹拌した後、内温を70℃に昇温し、さらに3時間撹拌し、反応液を得た。
 得られた反応液を室温まで冷却し、該反応液を大量のメタノール中に糸状に投入し、析出した沈殿物を取り出し、メタノール中に6時間浸漬後、メタノールで洗浄した。次に、60℃にて沈殿物の減圧乾燥を行い、ポリアミドイミド樹脂(13)を得た。得られたポリアミドイミド樹脂(13)のMwは、613,000であった。
<合成例14:ポリアミドイミド樹脂(14)の製造>
 窒素雰囲気下、撹拌翼を備えたセパラブルフラスコに、TFMB及び水分量700ppm以下まで厳密に脱水したDMAcをTFMBの固形分が5.29質量%となるように加え、室温で撹拌しながらTFMBをDMAc中に溶解させた。次に、フラスコに6FDA、及びTAHMBPをTFMBに対してそれぞれ10.20mol%、20.41mol%になるように添加し、室温で16時間撹拌した。その後、10℃に冷却した後に、TPCをTFMBに対して32.14mol%になるように加え、10分撹拌後に、さらにTPCをTFMBに対して32.14mоl%になるように加え、30分間撹拌した。その後、はじめに加えたDMAcと同量のDMAcを加え、10分間撹拌した後に、TPCをTFMBに対して7.14mol%になるように加え、2時間撹拌した。次いで、フラスコにジイソプロピルエチルアミンと4-ピコリン、無水酢酸をそれぞれTFMBに対して71.43mol%、71.43mol%、214.29mol%となるように加え、30分間撹拌した後、内温を70℃に昇温し、さらに3時間撹拌し、反応液を得た。
 得られた反応液を室温まで冷却し、該反応液を大量のメタノール中に糸状に投入し、析出した沈殿物を取り出し、メタノール中に6時間浸漬後、メタノールで洗浄した。次に、60℃にて沈殿物の減圧乾燥を行い、ポリアミドイミド樹脂(14)を得た。得られたポリアミドイミド樹脂(14)のMwは、751,000であった。
<実施例1>
 合成例1で得たポリアミドイミド樹脂(1)及びDMAcを、樹脂組成物におけるポリアミドイミド樹脂の含有割合が10質量%となるような量で混合した。得られた樹脂組成物を、ポリエステル基材(東洋紡(株)製、商品名「A4100」)の平滑面上に自立膜の厚さが55μmとなるようにアプリケーターを用いて塗布し、50℃で30分間、次いで140℃で15分間乾燥後、得られた塗膜をポリエステル基材から剥離して、自立膜を得た。自立膜を金枠に固定し、さらに大気下、200℃で40分間乾燥し、厚さ50μmのポリアミドイミド樹脂フィルム(1)を得た。
<実施例2>
 合成例6で得たポリアミドイミド樹脂(6)及びDMAcを、樹脂組成物におけるポリアミドイミド樹脂の含有割合が10質量%となるような量で混合した。得られた樹脂組成物を用いて、実施例1と同様の操作を行い、厚さ38μmのポリアミドイミド樹脂フィルム(6)を得た。
<実施例3>
 合成例7で得たポリアミドイミド樹脂(7)及びDMAcを、樹脂組成物におけるポリアミドイミド樹脂の含有割合が10質量%となるような量で混合した。得られた樹脂組成物を用いて、実施例1と同様の操作を行い、厚さ42μmのポリアミドイミド樹脂フィルム(7)を得た。
<実施例4>
 合成例8で得たポリアミドイミド樹脂(8)及びDMAcを、樹脂組成物におけるポリアミドイミド樹脂の含有割合が10質量%となるような量で混合した。得られた樹脂組成物を用いて、実施例1と同様の操作を行い、厚さ40μmのポリアミドイミド樹脂フィルム(8)を得た。
<実施例5>
 合成例9で得たポリアミドイミド樹脂(9)及びDMAcを、樹脂組成物におけるポリアミドイミド樹脂の含有割合が10質量%となるような量で混合した。得られた樹脂組成物を用いて、実施例1と同様の操作を行い、厚さ40μmのポリアミドイミド樹脂フィルム(9)を得た。
<実施例6>
 合成例10で得たポリアミドイミド樹脂(10)及びDMAcを、樹脂組成物におけるポリアミドイミド樹脂の含有割合が10質量%となるような量で混合した。得られた樹脂組成物を用いて、実施例1と同様の操作を行い、厚さ40μmのポリアミドイミド樹脂フィルム(10)を得た。
<実施例7>
 合成例11で得たポリアミドイミド樹脂(11)及びDMAcを、樹脂組成物におけるポリアミドイミド樹脂の含有割合が10質量%となるような量で混合した。得られた樹脂組成物を用いて、実施例1と同様の操作を行い、厚さ40μmのポリアミドイミド樹脂フィルム(11)を得た。
<実施例8>
 合成例12で得たポリアミドイミド樹脂(12)及びDMAcを、樹脂組成物におけるポリアミドイミド樹脂の含有割合が10質量%となるような量で混合した。得られた樹脂組成物を用いて、実施例1と同様の操作を行い、厚さ40μmのポリアミドイミド樹脂フィルム(12)を得た。
<実施例9>
 合成例13で得たポリアミドイミド樹脂(13)及びDMAcを、樹脂組成物におけるポリアミドイミド樹脂の含有割合が10質量%となるような量で混合した。得られた樹脂組成物を用いて、実施例1と同様の操作を行い、厚さ40μmのポリアミドイミド樹脂フィルム(13)を得た。
<実施例10>
 合成例14で得たポリアミドイミド樹脂(14)及びDMAcを、樹脂組成物におけるポリアミドイミド樹脂の含有割合が10質量%となるような量で混合した。得られた樹脂組成物を用いて、実施例1と同様の操作を行い、厚さ40μmのポリアミドイミド樹脂フィルム(14)を得た。
<比較例1>
 合成例2で得たポリアミドイミド樹脂(2)及びDMAcを、樹脂組成物におけるポリアミドイミド樹脂の含有割合が10質量%となるような量で混合した。得られた樹脂組成物を用いて、実施例1と同様の操作を行い、厚さ50μmのポリアミドイミド樹脂フィルム(2)を得た。
<比較例2>
 合成例3で得たポリアミドイミド樹脂(3)及びDMAcを、樹脂組成物におけるポリアミドイミド樹脂の含有割合が10質量%となるような量で混合した。得られた樹脂組成物を用いて、実施例1と同様の操作を行い、厚さ50μmのポリアミドイミド樹脂フィルム(3)を得た。
 上記のようにして得た実施例及び比較例のポリアミドイミド樹脂フィルムについて、耐力、弾性率、全光線透過率、ヘーズ、YI値及び耐折回数の測定を行った。得られた結果を表1及び表2に示す。なお、合成例5の樹脂は合成中に不溶となり、ポリアミドイミド樹脂を合成できなかったため、測定及び評価を行えなかった。
Figure JPOXMLDOC01-appb-T000030
Figure JPOXMLDOC01-appb-T000031
 表1及び表2に示される通り、実施例1~10の光学フィルムは、YI値が低く、かつ、耐力が高く、耐折性に優れることが確認された。また、高い透明性を有することも確認された。これに対して、比較例1及び2の光学フィルムは、耐力が低く、耐折れ性が十分でないことが確認された。

Claims (12)

  1.  引張試験における耐力が81MPa以上であり、かつ、黄色度が3.0未満である、ポリイミド系樹脂を含む光学フィルム。
  2.  弾性率が4.8GPa以上である、請求項1に記載の光学フィルム。
  3.  全光線透過率が85%以上である、請求項1又は2に記載の光学フィルム。
  4.  ポリイミド系樹脂の重量平均分子量は100,000以上である、請求項1~3のいずれかに記載の光学フィルム。
  5.  ポリイミド系樹脂は、式(1):
    Figure JPOXMLDOC01-appb-C000001
    [式(1)中、Yは4価の有機基を表し、Xは2価の有機基を表し、*は結合手を表す]
    で表される構成単位を含み、式(1)中のYとして、式(2):
    Figure JPOXMLDOC01-appb-C000002
    [式(2)中、Rは、互いに独立に、ハロゲン原子、ハロゲン原子を有してもよい、アルキル基、アルコキシ基、アリール基、又はアリールオキシ基を表し、R~Rは、互いに独立に、水素原子、又はハロゲン原子を有してもよい1価の炭化水素基を表し、mは、互いに独立に0~3の整数を表し、nは1~4の整数を表し、*は結合手を表し、但し、R~Rを有する少なくとも1つのベンゼン環において、R~Rの少なくとも1つがハロゲン原子を有してもよい1価の炭化水素基である]
    で表される構造を含む、請求項1~4のいずれかに記載の光学フィルム。
  6.  ポリイミド系樹脂はポリアミドイミド樹脂である、請求項1~5のいずれかに記載の光学フィルム。
  7.  ポリイミド系樹脂は、式(3):
    Figure JPOXMLDOC01-appb-C000003
    [式(3)中、Z及びXは、互いに独立に、2価の有機基を表し、*は結合手を表す]
    で表される構成単位を含む、請求項1~6のいずれかに記載の光学フィルム。
  8.  ポリイミド系樹脂は、式(3)中のZとして、式(4):
    Figure JPOXMLDOC01-appb-C000004
    [式(4)中、Wは、互いに独立に、単結合、-O-、ジフェニルメチレン基、ハロゲン原子を有してもよい2価の炭化水素基、-SO-、-S-、-CO-、-PO-、-PO-、-N(RW1)-又は-Si(RW2-を表し、RW1及びRW2は、互いに独立に、水素原子、又はハロゲン原子を有してもよいアルキル基を表し、Rは、互いに独立に、ハロゲン原子、ハロゲン原子を有してもよい、アルキル基、アルコキシ基、アリール基、又はアリールオキシ基を表し、pは、互いに独立に0~4の整数を表し、qは0~4の整数を表し、*は結合手を表す]
    で表される構造を含む、請求項7に記載の光学フィルム。
  9.  フレキシブル表示装置の前面板用のフィルムである、請求項1~8のいずれかに記載の光学フィルム。
  10.  請求項1~9のいずれかに記載の光学フィルムを備えるフレキシブル表示装置。
  11.  タッチセンサをさらに備える、請求項10に記載のフレキシブル表示装置。
  12.  偏光板をさらに備える、請求項10又は11に記載のフレキシブル表示装置。
PCT/JP2020/039651 2019-10-31 2020-10-22 光学フィルム及びフレキシブル表示装置 WO2021085284A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202080074893.8A CN114599739A (zh) 2019-10-31 2020-10-22 光学膜和柔性显示装置
KR1020227018174A KR20220095209A (ko) 2019-10-31 2020-10-22 광학 필름 및 플렉시블 표시 장치

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2019-198536 2019-10-31
JP2019198536 2019-10-31
JP2020171459A JP2021075701A (ja) 2019-10-31 2020-10-09 光学フィルム及びフレキシブル表示装置
JP2020-171459 2020-10-09

Publications (1)

Publication Number Publication Date
WO2021085284A1 true WO2021085284A1 (ja) 2021-05-06

Family

ID=75715059

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/039651 WO2021085284A1 (ja) 2019-10-31 2020-10-22 光学フィルム及びフレキシブル表示装置

Country Status (3)

Country Link
KR (1) KR20220095209A (ja)
CN (1) CN114599739A (ja)
WO (1) WO2021085284A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005113647A1 (ja) * 2004-05-21 2005-12-01 Manac Inc 低線熱膨張係数を有するポリエステルイミドとその前駆体
JP2007284414A (ja) * 2005-06-01 2007-11-01 Mitsubishi Chemicals Corp テトラカルボン酸又はそのポリエステルイミド、及びその製造方法
JP2011222780A (ja) * 2010-04-09 2011-11-04 Dainippon Printing Co Ltd 薄膜トランジスタ基板および薄膜トランジスタの製造方法
JP2017503887A (ja) * 2013-12-26 2017-02-02 コーロン インダストリーズ インク 透明ポリアミド−イミド樹脂およびこれを用いたフィルム
WO2019065136A1 (ja) * 2017-09-26 2019-04-04 河村産業株式会社 ポリイミド粉体、ポリイミドワニス及びポリイミドフィルム
JP2019510847A (ja) * 2017-02-24 2019-04-18 エルジー・ケム・リミテッド ポリアミドイミド共重合体及びこれを含むポリアミドイミドフィルム
JP2019112632A (ja) * 2017-12-22 2019-07-11 ドゥーサン コーポレイション ポリアミック酸溶液及びこれを用いた透明ポリイミド樹脂フィルム

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003155342A (ja) * 2001-11-19 2003-05-27 Nippon Steel Chem Co Ltd 脂環構造を有するポリイミド共重合体
JP4116577B2 (ja) * 2004-02-05 2008-07-09 日東電工株式会社 複屈折フィルム、光学フィルム、偏光板、および、液晶表示装置
JP5939066B2 (ja) * 2011-11-15 2016-06-22 Jsr株式会社 液晶配向剤の製造方法
KR20190095556A (ko) 2012-09-19 2019-08-14 혼슈우 카가쿠고교 가부시키가이샤 폴리이미드 및 그의 성형체
KR102046699B1 (ko) 2015-03-24 2019-11-19 코니카 미놀타 가부시키가이샤 폴리이미드계 광학 필름, 그의 제조 방법 및 유기 일렉트로루미네센스 디스플레이
JP7084710B2 (ja) * 2017-01-20 2022-06-15 住友化学株式会社 ポリアミドイミド樹脂および該ポリアミドイミド樹脂を含んでなる光学部材
WO2018135433A1 (ja) * 2017-01-20 2018-07-26 住友化学株式会社 光学フィルム及び光学フィルムの製造方法
KR20200038329A (ko) * 2017-01-20 2020-04-10 스미또모 가가꾸 가부시키가이샤 필름, 수지 조성물 및 폴리아미드이미드 수지의 제조 방법
JP7196384B2 (ja) * 2017-09-06 2022-12-27 大日本印刷株式会社 ポリイミドフィルム、光学フィルムおよび画像表示装置
JP7363019B2 (ja) * 2017-09-27 2023-10-18 大日本印刷株式会社 ディスプレイ用部材、タッチパネル部材、液晶表示装置、及び有機エレクトロルミネッセンス表示装置
JP6771525B2 (ja) * 2017-11-09 2020-10-21 住友化学株式会社 光学積層体
KR20190053105A (ko) * 2017-11-09 2019-05-17 스미또모 가가꾸 가부시키가이샤 광학 필름
KR102023130B1 (ko) * 2017-11-09 2019-09-19 스미또모 가가꾸 가부시키가이샤 광학 필름
CN110092936A (zh) * 2018-01-29 2019-08-06 住友化学株式会社 光学层叠体
JP2019137864A (ja) * 2018-02-13 2019-08-22 大日本印刷株式会社 ポリイミドフィルム、積層体、ディスプレイ用部材、タッチパネル部材、液晶表示装置、及び有機エレクトロルミネッセンス表示装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005113647A1 (ja) * 2004-05-21 2005-12-01 Manac Inc 低線熱膨張係数を有するポリエステルイミドとその前駆体
JP2007284414A (ja) * 2005-06-01 2007-11-01 Mitsubishi Chemicals Corp テトラカルボン酸又はそのポリエステルイミド、及びその製造方法
JP2011222780A (ja) * 2010-04-09 2011-11-04 Dainippon Printing Co Ltd 薄膜トランジスタ基板および薄膜トランジスタの製造方法
JP2017503887A (ja) * 2013-12-26 2017-02-02 コーロン インダストリーズ インク 透明ポリアミド−イミド樹脂およびこれを用いたフィルム
JP2019510847A (ja) * 2017-02-24 2019-04-18 エルジー・ケム・リミテッド ポリアミドイミド共重合体及びこれを含むポリアミドイミドフィルム
WO2019065136A1 (ja) * 2017-09-26 2019-04-04 河村産業株式会社 ポリイミド粉体、ポリイミドワニス及びポリイミドフィルム
JP2019112632A (ja) * 2017-12-22 2019-07-11 ドゥーサン コーポレイション ポリアミック酸溶液及びこれを用いた透明ポリイミド樹脂フィルム

Also Published As

Publication number Publication date
CN114599739A (zh) 2022-06-07
KR20220095209A (ko) 2022-07-06

Similar Documents

Publication Publication Date Title
JP6952735B2 (ja) 光学フィルム、光学積層体及びフレキシブル画像表示装置
JP2021075700A (ja) ポリアミドイミド樹脂
WO2020230663A1 (ja) ワニス、光学フィルム及び光学フィルムの製造方法
JP2021006624A (ja) 光学フィルム、フレキシブル表示装置、及び光学フィルムの製造方法
JP6799182B2 (ja) 光学フィルム、フレキシブル表示装置、及び樹脂組成物
JP6595080B1 (ja) 光学フィルム、フレキシブル表示装置、及び樹脂組成物
JP2020109155A (ja) 光学フィルム、フレキシブル表示装置及びポリアミドイミド系樹脂
WO2020138046A1 (ja) 光学フィルム
WO2021085284A1 (ja) 光学フィルム及びフレキシブル表示装置
WO2021085283A1 (ja) ポリアミドイミド樹脂
JP2021075701A (ja) 光学フィルム及びフレキシブル表示装置
CN113227205B (zh) 聚酰亚胺系树脂及其制造方法
WO2021075395A1 (ja) 光学フィルム
WO2021075396A1 (ja) ポリイミド系樹脂
JP2022163714A (ja) 光学積層体及びフレキシブル表示装置
JP2022163711A (ja) 光学フィルム
JP2022163622A (ja) 光学積層体及びフレキシブル表示装置
JP2021088626A (ja) 光学フィルム
JP2021075702A (ja) ポリアミドイミド樹脂、光学フィルム及びフレキシブル表示装置
JP2020100805A (ja) 光学フィルム、フレキシブル表示装置、及び樹脂組成物
CN113227222A (zh) 光学膜、柔性显示装置及聚酰胺酰亚胺系树脂
JP2020109157A (ja) ポリアミド系樹脂、光学フィルム及びフレキシブル表示装置
WO2020138041A1 (ja) 光学フィルム、フレキシブル表示装置及びポリアミドイミド系樹脂
KR20210110646A (ko) 광학 필름, 플렉시블 표시 장치 및 폴리아미드이미드계 수지
JP2021084941A (ja) 光学フィルム及びフレキシブル表示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20881398

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20227018174

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20881398

Country of ref document: EP

Kind code of ref document: A1