WO2021085146A1 - 石炭のイナート組織の表面張力推定方法、石炭の表面張力推定方法およびコークスの製造方法 - Google Patents

石炭のイナート組織の表面張力推定方法、石炭の表面張力推定方法およびコークスの製造方法 Download PDF

Info

Publication number
WO2021085146A1
WO2021085146A1 PCT/JP2020/038830 JP2020038830W WO2021085146A1 WO 2021085146 A1 WO2021085146 A1 WO 2021085146A1 JP 2020038830 W JP2020038830 W JP 2020038830W WO 2021085146 A1 WO2021085146 A1 WO 2021085146A1
Authority
WO
WIPO (PCT)
Prior art keywords
coal
surface tension
estimating
coke
estimated
Prior art date
Application number
PCT/JP2020/038830
Other languages
English (en)
French (fr)
Inventor
井川 大輔
勇介 土肥
山本 哲也
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to CN202080072507.1A priority Critical patent/CN114556079B/zh
Priority to AU2020373691A priority patent/AU2020373691B2/en
Priority to JP2021549615A priority patent/JP7010419B2/ja
Priority to BR112022007327A priority patent/BR112022007327A2/pt
Priority to EP20882743.6A priority patent/EP4053246A4/en
Priority to KR1020227012969A priority patent/KR20220065830A/ko
Priority to CA3152872A priority patent/CA3152872A1/en
Priority to US17/770,573 priority patent/US20220290054A1/en
Publication of WO2021085146A1 publication Critical patent/WO2021085146A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N13/00Investigating surface or boundary effects, e.g. wetting power; Investigating diffusion effects; Analysing materials by determining surface, boundary, or diffusion effects
    • G01N13/02Investigating surface tension of liquids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B57/00Other carbonising or coking processes; Features of destructive distillation processes in general
    • C10B57/04Other carbonising or coking processes; Features of destructive distillation processes in general using charges of special composition
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B45/00Other details
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L5/00Solid fuels
    • C10L5/02Solid fuels such as briquettes consisting mainly of carbonaceous materials of mineral or non-mineral origin
    • C10L5/04Raw material of mineral origin to be used; Pretreatment thereof
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N13/00Investigating surface or boundary effects, e.g. wetting power; Investigating diffusion effects; Analysing materials by determining surface, boundary, or diffusion effects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/22Fuels; Explosives
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/22Fuels; Explosives
    • G01N33/222Solid fuels, e.g. coal
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N13/00Investigating surface or boundary effects, e.g. wetting power; Investigating diffusion effects; Analysing materials by determining surface, boundary, or diffusion effects
    • G01N13/02Investigating surface tension of liquids
    • G01N2013/0283Investigating surface tension of liquids methods of calculating surface tension
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/022Environment of the test
    • G01N2203/0222Temperature
    • G01N2203/0226High temperature; Heating means

Definitions

  • the present invention relates to a method for estimating the surface tension of an inert structure of coal, a method for estimating the surface tension of coal, and a method for producing coke.
  • the coke used as a raw material for the blast furnace for producing hot metal in the blast furnace has high strength. This is because if the strength of coke is low, it will be pulverized in the blast furnace, the air permeability of the blast furnace will be hindered, and stable hot metal production will not be possible.
  • Coke is obtained by carbonizing coal.
  • Carbonization refers to the operation of heating coal to a thermal decomposition temperature or higher (generally 300 ° C or higher) in a non-oxidizing atmosphere.
  • a thermal decomposition temperature or higher generally 300 ° C or higher
  • the coal used as a raw material for coke coal that softens and melts at 350 to 600 ° C. in the carbonization process is preferably used. By softening and melting, powdery or particulate coal adheres to each other and is fused to obtain massive coke.
  • coal adheres well to each other.
  • the surface tension of heat-treated coal is used as a physical property value for evaluating the adhesiveness of this coal.
  • the capillary ascending method As a method for measuring the surface tension of a material such as coal, the capillary ascending method, the maximum foam pressure method, the liquid weight method, the suspension method, the ring ring method, the Wilhelmy method, the expansion / contraction method, the sliding method, and the film flotation (Film).
  • the Flotation) method and the like are known. Since coal is composed of various molecular structures and its surface tension is expected to be non-uniform, the films described in Non-Patent Document 1 and Patent Document 1 can be expected to evaluate the surface tension distribution. It can be said that the rotation method is the most reasonable measurement method.
  • the film flotation method is a method that applies the idea that the surface tension of the sample particles and the liquid are equal when the sample particles start to settle from the floating state when the crushed sample particles are put into the liquid.
  • the sample particles are dropped onto liquids having various surface tensions, the mass ratio of the suspended sample particles to each liquid is obtained, and the surface tension distribution is obtained from the results.
  • the surface tension of any coal can be measured regardless of the type of coal, such as strong caking coal, non-slightly caking coal, anthracite coal and heat-treated coal (semi-coke) obtained by heat-treating them.
  • an object of the present invention is to solve these problems in the measurement of the surface tension of coal and to provide a method for easily estimating the surface tension of coal.
  • the means for solving the above problems are as follows.
  • (1) The first relational expression showing the relationship between the surface tension of the inert structure in coal and the physical property value representing the degree of coalification is grasped in advance, and the degree of coalification of coal for which the surface tension of the inert structure is estimated is expressed.
  • a method for estimating the surface tension of an inertial structure of coal which measures the physical property value and calculates the surface tension of the inertial structure of coal by using the measured physical property value representing the degree of coalification and the first relational expression.
  • a method for estimating the surface tension of coal which calculates the surface tension of coal using and.
  • the surface tension of the inertia structure can be easily estimated, and the surface tension of the coal can be easily estimated using the surface tension of the inertia structure.
  • the estimated value of the surface tension can be used for studying the blending of coal, and thus high-quality coke can be produced.
  • FIG. 1 is a graph showing a plot (3 points) of surface tensions of samples having different amounts of inertia in 6 brands (A to F) of coal and a regression line of the plot.
  • FIG. 2 is a graph showing the relationship between the average maximum reflectance of coal vitrinite and ⁇ 100.
  • FIG. 3 is a graph showing the relationship between the measured surface tension and the estimated surface tension.
  • FIG. 4 is a graph showing a plot (3 points) of surface tensions of samples having different amounts of inertia in coal of three brands (H, I, J) having a heat treatment temperature of 400 ° C. and a regression line of the plot.
  • H, I, J heat treatment temperature
  • FIG. 5 is a graph showing a plot (3 points) of surface tensions of samples having different amounts of inertia in coal of three brands (H, I, J) having a heat treatment temperature of 600 ° C. and a regression line of the plot.
  • FIG. 6 is a graph showing the relationship between Ro of coal and ⁇ 100 at a heat treatment temperature of 400 ° C.
  • FIG. 7 is a graph showing the relationship between Ro of coal and ⁇ 100 at a heat treatment temperature of 600 ° C.
  • the present inventors focused on a component that softens and melts by heating (hereinafter referred to as a softened and melted structure) and a component that does not soften and melt even when heated (hereinafter referred to as an inert structure) as a component of coal.
  • a softened and melted structure a component that softens and melts by heating
  • an inert structure a component that does not soften and melt even when heated
  • TI The total amount of inertia (hereinafter, may be referred to as TI) was measured for the samples having different amounts of inertia prepared in this manner, and the samples were heat-treated at a predetermined temperature to obtain semi-coke.
  • TI is the total amount of inertia specified in JIS M 8816, and indicates the proportion (volume%) of the inert structure contained in coal.
  • the coal for which the surface tension is estimated includes heat-treated coal, that is, semi-coke.
  • the method for estimating the surface tension of coal according to the present embodiment is applicable to both unheat-treated coal and semi-coke. Since the surface tension of semi-coke is particularly useful for predicting coke strength and producing high-strength coke, the present embodiment describes a method for measuring the surface tension of semi-coke, which is heat-treated coal.
  • the semi-coke is produced by the following (a) to (c). (A) Crush coal.
  • the pulverized particle size of coal is 250 ⁇ m or less, which is the pulverized particle size in the industrial analysis of coal described in JIS M8812, from the viewpoint of preparing a homogeneous sample from coal having non-uniform structure and properties. It is preferably pulverized, and more preferably pulverized to 200 ⁇ m or less.
  • B) The crushed coal is heated from 350 ° C. or higher to 800 ° C. or lower at an appropriate heating rate in an inert gas or in a shut off air. The heating rate is preferably determined according to the heating rate when coke is produced in the coke oven.
  • C The heated coal is cooled in an inert gas to produce semi-coke.
  • the heating temperature for heating coal is one of the temperatures from 350 ° C or higher at which coal begins to soften and melt to 800 ° C at which coking is completed, considering that surface tension affects the adhesion between coal particles. It is considered appropriate to heat up to. However, at the heating temperature of 350 to 800 ° C., the temperature that particularly contributes to adhesion is 350 to 550 ° C., which is the temperature at the time of softening and melting, and it is considered that the adhesive structure is determined in the vicinity of 500 ° C. Therefore, the heating temperature is particularly preferably 480 to 520 ° C., which is in the vicinity of 500 ° C., and in the present embodiment, the heating temperature is set to 500 ° C. The heating is preferably carried out in an atmosphere of an inert gas (for example, nitrogen, argon, helium, etc.) that does not react with coal.
  • an inert gas for example, nitrogen, argon, helium, etc.
  • Cooling is preferably performed in an inert gas atmosphere that does not react with coal. It is preferable to quench the coal after the heat treatment at a cooling rate of 10 ° C./sec or more. The reason for quenching is to maintain the molecular structure in the softened and melted state, and it is preferable to cool at a cooling rate of 10 ° C./sec or more, which is considered that the molecular structure does not change.
  • quenching may be performed using liquid nitrogen, ice water, an inert gas such as water or nitrogen gas, it is preferable to quench using liquid nitrogen.
  • the surface tension of coal can be measured by using the film flotation method described in Non-Patent Document 1. This method can be applied similarly to coal or semi-coke obtained from the coal, and the distribution of surface tension can be determined using a finely pulverized sample, and the obtained surface can be obtained. The average value of the tension distribution was taken as the surface tension of the sample (hereinafter, may be referred to as ⁇ ). Details of the measurement of the surface tension of semi-coke using the film flotation method are described in Patent Document 1.
  • FIG. 1 shows a plot (3 points) of surface tension (average value of surface tension distribution) of samples having different amounts of inertia in 6 brands (A to F) of coal (semi-coke) heat-treated at 500 ° C. and regression of the plot. It is a graph which shows a straight line. The horizontal axis of FIG. 1 is TI (%), and the vertical axis is ⁇ (mN / m). Table 1 shows the properties of coals A to F.
  • the regression line of FIG. 1 is a simple regression equation of ⁇ with respect to TI, and was calculated by using the least squares method so that the error between the simple regression equation and each plot in each coal is minimized.
  • the corresponding value was the surface tension when the softened and melted structure was 100% (hereinafter, may be described as ⁇ 0). When the softened and melted structure of coal is 100%, the inert structure is 0%.
  • L plinth (l 75 / ddpm)
  • MF / ddpm maximum fluidity (Maximum Fluidity: MF / ddpm) of coal measured by the Geeseler plastometer method of JIS M8801.
  • Rescu (%) in Table 1 is a physical characteristic value used in the present embodiment as an example of an index indicating the degree of coalification, and is the average maximum reflectance of the Vitrinit of JIS M 8816.
  • TI (%)” in Table 1 is the total amount of inertia (volume%), and is based on the following (1) based on the Parr's formula described in the method for measuring the microstructure component of JIS M 8816 coal or compound coal and its explanation. ) Formula.
  • Inert amount (volume%) Fujinit (volume%) + Mikurinit (volume%) + (2/3) x Semi-Fujinit (volume%) + Minerals (volume%) ...
  • gamma 0 since tended to converge to a constant value, for gamma 0, can be predetermined representative value gamma 0 from gamma 0 calculated in the coal of the plurality of issues.
  • a representative value of gamma 0 in the present embodiment has an arithmetic mean value of the gamma 0 in coal multiple stocks.
  • the average maximum reflectance of vitrinite coal (hereinafter, is sometimes described as R O) is a graph showing the relationship between the gamma 100.
  • the horizontal axis of FIG. 2 is RO (%), and the vertical axis is ⁇ 100 (mN / m).
  • This simple regression equation is the first relational expression showing the relationship between ⁇ 100 and Ro, and when the first relational expression was constructed using the coals A to F shown in Table 1, the following equation (2) and became.
  • Table 2 shows the properties of coal G not used in the construction of the first relational expression.
  • Table 3 shows ⁇ 100 calculated by using Ro shown in Table 1 and the above equation (2).
  • the ⁇ 100 of coal G not used in the construction of the above equation (2) was calculated using Ro shown in Table 2 and the equation (2) to be 41.1 mN / m. It was.
  • the ⁇ of semi-coke obtained by heat-treating three samples with different amounts of inertia at 500 ° C. was measured, and the ⁇ 100 calculated from the simple regression equation of the ⁇ was 41.2 mN / m. It can be seen that ⁇ 100 can be estimated from Ro with high accuracy by using the equation (2).
  • the coefficient of determination R 2 of the simple regression equation shown in FIG. 2 was 0.86, and the coefficient of determination was close to 1.
  • the coefficient of determination R 2 is an index indicating the high correlation of the regression equation, and the closer this value is to 1, the higher the correlation between Ro and ⁇ 100. From these results, it was confirmed that ⁇ 100 can be estimated with high accuracy from the first relational expression and Ro. In this way, the first relational expression showing the relationship between ⁇ 100 and R restroom is grasped in advance, the R Cincinnati of coal for estimating ⁇ 100 is measured, and the measured R Cincinnati and the first relational expression are used.
  • the method of calculating the surface tension of the coal inert structure is the method of estimating the surface tension of the coal inertia structure.
  • ⁇ 100 in order to obtain ⁇ 100 , two or more samples having different amounts of inerts are prepared, these samples are made into semi-cokes, and the surface tension of the samples is measured by the film flotation method. It is necessary to obtain a simple regression equation for surface tension.
  • the first relational expression showing the relationship between ⁇ 100 and Ro shown in FIG. 2 is grasped in advance, the measured value and the second relation can be obtained only by measuring the target Ro for which ⁇ 100 is estimated. Since ⁇ 100 can be calculated from the relational expression of No. 1, it can be seen that ⁇ 100 can be easily estimated by using the method for estimating the surface tension of the inertial structure of coal.
  • ⁇ 100 can be estimated using the surface tension estimation method of the coal inert structure, ⁇ corresponding to the simple regression equation shown in FIG. 1 is used by using the predetermined representative value of ⁇ 0 and the estimated ⁇ 100.
  • a relational expression showing the relationship between and TI can be calculated.
  • This relational expression becomes the second relational expression showing the relationship between ⁇ and TI.
  • the second relational expression can be expressed by the following equation (3).
  • [( ⁇ 100 ⁇ 0 ) / 100] ⁇ TI + ⁇ 0 ... (3)
  • the second relational expression calculated from predetermined ⁇ 0 and ⁇ 100 is grasped in advance, and the TI of the target coal for which ⁇ is estimated is measured. Then, the surface tension of coal is calculated from the TI and the second relational expression.
  • the coal surface tension estimation method according to the present embodiment gamma predetermined using the representative values gamma 0, gamma 100 as coal inert tissue surface tension estimation method estimating a gamma 100 calculated using the as 0 Use the value.
  • the surface tension of coal can be calculated from the measured value and the second relational expression only by measuring the TI of the target coal for which the surface tension is estimated.
  • the surface tension of coal can be easily estimated by using the method for estimating the surface tension of coal according to the embodiment.
  • Table 4 shows ⁇ 0 (representative value) and ⁇ 100 (estimated value) and ⁇ (estimated value) of coals A to F used for calculating the second relational expression.
  • estimate value
  • a second relational expression is calculated for each of coals A to F from ⁇ 0 (representative value) and ⁇ 100 (estimated value), and the second relational expression and Table 1 or Table 2 are calculated. It was calculated using the TI of.
  • FIG. 3 is a graph showing the relationship between the measured surface tension and the estimated surface tension.
  • the horizontal axis is the actually measured ⁇ (mN / m), which is the ⁇ shown in Table 1 or Table 2.
  • the vertical axis is the estimated ⁇ (mN / m), which is the ⁇ (estimated value) shown in Table 4.
  • the round plot in FIG. 3 shows the plot of coals A to F, and the square plot shows the plot of coal G. From FIG. 3, it can be seen that the measured ⁇ and the estimated ⁇ have a very strong correlation. From these results, it was confirmed that ⁇ can be estimated with high accuracy by the method for estimating the surface tension of coal according to the present embodiment.
  • FIGS. 2 and 3 show an example of estimating the surface tension of coal heat-treated at 500 ° C.
  • the heat treatment temperature of coal in the present embodiment is not limited to the heat treatment at 500 ° C.
  • the method for estimating the surface tension of coal according to the present embodiment is not limited to the case of heat treatment at 500 ° C., does the relationship between TI and surface tension shown in FIG. 1 hold even at other heat treatment temperatures? I confirmed.
  • FIG. 4 is a graph showing a plot (3 points) of surface tensions of samples having different amounts of inertia in coal of three brands (H, I, J) having a heat treatment temperature of 400 ° C. and a regression line of the plot.
  • FIG. 5 is a graph showing a plot (3 points) of surface tensions of samples having different amounts of inertia in coal of three brands (H, I, J) having a heat treatment temperature of 600 ° C. and a regression line of the plot.
  • the horizontal axis of FIGS. 4 and 5 is TI (%), and the vertical axis is ⁇ (mN / m).
  • FIG. 6 is a graph showing the relationship between Ro of coal and ⁇ 100 at a heat treatment temperature of 400 ° C.
  • FIG. 7 is a graph showing the relationship between Ro of coal and ⁇ 100 at a heat treatment temperature of 600 ° C.
  • the horizontal axis of FIGS. 6 and 7 is Ro (%), and the vertical axis is ⁇ 100 (mN / m).
  • FIGS. 6 and 7 even when the heat treatment temperatures were set to 400 ° C. and 600 ° C., a strong correlation was observed between ⁇ 100 and Ro, as in FIG. 2.
  • Patent Document 1 also discloses that the surface tension of semi-coke prepared at a heat treatment temperature of 350 to 800 ° C. or lower shows the same tendency regardless of the type of coal. From this, the method for estimating the surface tension of coal according to the present embodiment is not limited to semi-coke heat-treated at 500 ° C., and can be applied to semi-coke prepared at any temperature of 350 ° C. or higher and 800 ° C. or lower. I understand.
  • the surface tension and the degree of coalification of the semi-coke inert structure heat-treated at the predetermined temperature are expressed.
  • the first relational expression showing the relationship with the physical property value may be used, whereby ⁇ 100 , which is the surface tension of the inertial structure of coal heat-treated at the predetermined temperature, can be estimated.
  • the surface tension of coal estimated at the predetermined temperature is ⁇ 100 and ⁇ 0 at a predetermined temperature is determined.
  • a second relational expression showing the relationship between the surface tension of the obtained coal and the total amount of inertia may be used, whereby the surface tension of the coal heat-treated at the predetermined temperature can be estimated.
  • the coal shown in Tables 1, 2 and 5 is an example of coal that is generally used as a raw material for coke.
  • the coal used as a coke raw material has an MF of 0 to 60,000 ddpm (log MF of 4.8 or less), a Ro of 0.6 to 1.8%, and a TI of 3 to 50% by volume, according to the present embodiment.
  • the method for estimating the surface tension of coal can be particularly preferably used for coal in this range.
  • Ro has been used as the physical characteristic value indicating the degree of coalification, but the physical characteristic value indicating the degree of coalification is also the volatile content of coal, the carbon content, and the resolidification at the time of softening and melting. Temperatures and the like are known, and all of them show a good correlation with Ro. Therefore, as a physical property value representing the coal degree, instead of R O, volatiles coal, can be used physical properties correlated carbon content, the coalification degree such resolidification temperature during softening and melting.
  • the strength of coke produced from a blended coal containing coal with the same ⁇ is higher than that of coke produced from a blended coal containing coal with a different ⁇ . If ⁇ can be easily estimated by using the method for estimating the surface tension of coal according to the present embodiment, the ⁇ can be used for the coal compounding study. High-quality coke can be produced by using it in.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Medicinal Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Coke Industry (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)
  • Financial Or Insurance-Related Operations Such As Payment And Settlement (AREA)

Abstract

簡便に石炭の表面張力を推定する方法を提供する。 石炭の表面張力推定方法であって、石炭化度に基づいて推定した石炭のイナート組織の表面張力と、石炭の溶融組織の表面張力とから、石炭の表面張力と全イナート量との関係を示す関係式(第2の関係式)を算出しておき、表面張力を推定する石炭の全イナート量を測定し、測定された全イナート量と当該関係式とを用いて石炭の表面張力を算出する。

Description

石炭のイナート組織の表面張力推定方法、石炭の表面張力推定方法およびコークスの製造方法
 本発明は、石炭のイナート組織の表面張力推定方法、石炭の表面張力推定方法およびコークスの製造方法に関する。
 高炉において溶銑を製造するために高炉原料として用いられるコークスは高強度であることが好ましい。コークスは強度が低いと高炉内で粉化し、高炉の通気性が阻害され、安定的な溶銑の生産が行なえなくなるからである。
 コークスは、石炭を乾留することによって得られる。乾留とは、石炭を非酸化性の雰囲気で熱分解温度以上(概ね300℃以上)に加熱する操作を指す。コークスの原料となる石炭としては、乾留過程の350~600℃で軟化溶融する石炭が好適に用いられる。軟化溶融することによって、粉状あるいは粒子状の石炭が相互に接着、融着して塊状のコークスが得られる。
 高強度のコークスを製造するためには、石炭が相互によく接着することが好ましい。この石炭の接着性を評価するための物性値として、熱処理した石炭(セミコークス)の表面張力が用いられている。
 石炭のような材料の表面張力の測定方法として、毛管上昇法、最大泡圧法、液重法、懸滴法、輪環法、Wilhelmy法、拡張/収縮法、滑落法、フィルム・フローテーション(Film Flotation)法などが知られている。石炭は様々な分子構造で構成されており、その表面張力も一様ではないことが予想されるため、表面張力分布の評価が期待できる非特許文献1や特許文献1に記載されたフィルム・フローテーション法が一番理にかなった測定法だといえる。
 フィルム・フローテーション法は、粉砕した試料粒子を液体に投入したとき、試料粒子が浮上状態から沈降を始める場合に、試料粒子と液体の表面張力が等しいとする考えを応用した手法である。種々の表面張力を持つ液体に試料粒子を落下させ、それぞれの液体に対して浮遊した試料粒子の質量割合を求め、その結果から表面張力分布を得る。強粘結炭、非微粘結炭、無煙炭およびそれらを熱処理した熱処理石炭(セミコークス)など、炭種を問わず、あらゆる石炭の表面張力を測定できる。
特許第5737473号公報
D.W.Fuerstenau:International Journal of Mineral Processing,20(1987),153
 フィルム・フローテーション法による石炭の表面張力の測定には、長時間(約1日程度)を要し、時間の観点から効率的ではないという問題がある。表面張力の測定操作が煩雑なので、熟練した測定者でなければ、表面張力の測定が安定しないという問題もある。そこで、本発明は、石炭の表面張力の測定におけるこれらの問題を解決し、簡便に石炭の表面張力を推定する方法を提供することを目的とする。
 上記課題を解決するための手段は、以下の通りである。
(1)石炭におけるイナート組織の表面張力と石炭化度を表す物性値との関係を示す第1の関係式を予め把握しておき、イナート組織の表面張力を推定する石炭の石炭化度を表す物性値を測定し、測定された石炭化度を表す物性値と前記第1の関係式とを用いて石炭のイナート組織の表面張力を算出する、石炭のイナート組織の表面張力推定方法。
(2)前記石炭化度を表す物性値がビトリニットの平均最大反射率である、(1)に記載の石炭のイナート組織の表面張力推定方法。
(3)前記石炭は350℃以上800℃以下の何れかの温度まで加熱されたセミコークスである、(1)または(2)に記載の石炭のイナート組織の表面張力推定方法。
(4)(1)から(3)の何れか1つに記載の石炭のイナート組織の表面張力推定方法で推定されたイナート組織の表面張力と予め定められた溶融組織の表面張力とから、石炭の表面張力と全イナート量との関係を示す第2の関係式を算出しておき、表面張力を推定する石炭の全イナート量を測定し、測定された全イナート量と前記第2の関係式とを用いて石炭の表面張力を算出する、石炭の表面張力推定方法。
(5)前記予め定められた溶融組織の表面張力は、複数の銘柄の石炭における溶融組織の表面張力の算術平均値である、(4)に記載の石炭の表面張力推定方法。
(6)(4)または(5)に記載の石炭の表面張力推定方法で表面張力が推定された石炭を配合して配合炭とし、前記配合炭を乾留してコークスを製造する、コークスの製造方法。
 本発明に係る石炭のイナート組織の表面張力推定方法の実施により、簡便にイナート組織の表面張力が推定でき、当該イナート組織の表面張力を用いて、簡便に石炭の表面張力を推定できる。このように、石炭の表面張力が簡便に推定できれば、当該表面張力の推定値を石炭の配合検討に使用することができ、これにより、高品質なコークスの製造が実現できる。
図1は、6銘柄(A~F)の石炭におけるイナート量の異なる試料の表面張力のプロット(3点)と当該プロットの回帰直線とを示すグラフである。 図2は、石炭のビトリニットの平均最大反射率とγ100との関係を示すグラフである。 図3は、実測表面張力と推定表面張力との関係を示すグラフである。 図4は、熱処理温度を400℃とした3銘柄(H、I、J)の石炭におけるイナート量の異なる試料の表面張力のプロット(3点)と当該プロットの回帰直線とを示すグラフである。 図5は、熱処理温度を600℃とした3銘柄(H、I、J)の石炭におけるイナート量の異なる試料の表面張力のプロット(3点)と当該プロットの回帰直線とを示すグラフである。 図6は、熱処理温度を400℃とした石炭のRoとγ100との関係を示すグラフである。 図7は、熱処理温度を600℃とした石炭のRoとγ100との関係を示すグラフである。
 以下、本発明を本発明の実施形態を通じて説明する。以下の説明では主に石炭の表面張力推定方法の実施形態について説明し、その中で、石炭のイナート組織の表面張力推定方法およびコークスの製造方法について説明する。
 本発明者らは、石炭の成分として加熱により軟化溶融する成分(以後、軟化溶融組織と記載する)と、加熱しても軟化溶融しない成分(以後、イナート組織と記載する)とに着目した。まず、軟化溶融組織およびイナート組織の表面張力と石炭の表面張力との関係について説明する。以後の説明において、石炭の表面張力をγと記載する場合がある。 石炭のイナート組織は軟化溶融組織よりも硬いので、粉砕後の石炭では、イナート組織は粗粒側に濃縮される傾向がある。この傾向を利用して、粉砕と篩分けによって同じ銘柄の石炭からイナート量の異なる試料を調製できる。このように調製されたイナート量の異なる試料について全イナート量(以後、TIと記載する場合がある)を測定し、試料を所定の温度でそれぞれ熱処理してセミコークスとした。TIは、JIS M 8816に規定される全イナート量であり、石炭に含まれるイナート組織の割合(体積%)を示す。
 本実施形態において、表面張力を推定する対象となる石炭は、熱処理された石炭すなわちセミコークスを含む。本実施形態に係る石炭の表面張力の推定方法は、熱処理していない石炭にもセミコークスにも適用可能である。セミコークスの表面張力は、コークス強度の予測や強度の高いコークスの製造に特に有用であるので、本実施形態では熱処理した石炭であるセミコークスの表面張力の測定方法を説明する。本実施形態においてセミコークスは下記(a)~(c)で作製される。
(a)石炭を粉砕する。石炭の粉砕粒度は、組織、性状などが不均一である石炭から均質な試料を作製するという観点から、JIS M8812に記載されている石炭の工業分析における粉砕粒度である粒径250μm以下に石炭を粉砕することが好ましく、200μm以下に粉砕することがより好ましい。
(b)粉砕した石炭を、空気を遮断してあるいは不活性ガス中で、適当な加熱速度で350℃以上から、800℃以下のいずれかの温度まで加熱する。加熱速度は、コークス炉においてコークスが製造されるときの加熱速度に応じて定めることが好ましい。
(c)加熱した石炭を不活性ガス中で冷却してセミコークスを製造する。
 石炭を加熱する加熱温度は、石炭粒子間の接着に表面張力が影響しているという考えから、石炭が軟化溶融を開始する350℃以上から、コークス化が完了する800℃までのいずれかの温度まで加熱することが適当であると考えられる。しかしながら、加熱温度である350~800℃において、特に接着に寄与している温度は軟化溶融時の温度である350~550℃であり、接着構造は500℃近傍で決まると考えられる。このため、加熱温度としては特に500℃近傍である480~520℃が好ましく、本実施形態では加熱温度を500℃とした。加熱は石炭と反応しない不活性ガス(例えば窒素、アルゴン、ヘリウムなど)雰囲気で行なうことが好ましい。
 冷却は、石炭と反応しない不活性ガス雰囲気で行なうことが好ましい。熱処理した後の石炭を10℃/sec以上の冷却速度で急冷することが好ましい。急冷する理由は軟化溶融状態での分子構造を保つためであり、分子構造が変化しないと考えられる10℃/sec以上の冷却速度で冷却することが好ましい。液体窒素、氷水、水や窒素ガスのような不活性ガスなどを用いて急冷してよいが、液体窒素を用いて急冷することが好ましい。
 石炭の表面張力は、非特許文献1に記載されたフィルム・フローテーション法を用いて測定できる。この方法は、石炭であってもその石炭から得られるセミコークスであっても同様に適用することができ、微粉砕した試料を用いて、表面張力の分布を求めることができ、得られた表面張力の分布の平均値をその試料の表面張力(以後、γと記載する場合がある)とした。フィルム・フローテーション法を用いたセミコークスの表面張力の測定の詳細は特許文献1に記載されている。
 図1は、500℃で熱処理した6銘柄(A~F)の石炭(セミコークス)におけるイナート量の異なる試料の表面張力(表面張力分布の平均値)のプロット(3点)と当該プロットの回帰直線とを示すグラフである。図1の横軸はTI(%)であり、縦軸はγ(mN/m)である。表1に石炭A~Fの性状を示す。
Figure JPOXMLDOC01-appb-T000001
 
 図1の回帰直線は、TIに対するγの単回帰式であり、当該単回帰式と各石炭における各プロットとの誤差が最小になるように最小二乗法を用いて算出した。図1に示すように、各石炭の各プロットは回帰直線上となり、TIとγとの間にはおおむね直線的な関係がみられた。このため、この回帰直線におけるTI=100に対応する値が、イナート組織が100%であるとした場合のイナート組織の表面張力(以後、γ100と記載する場合がある)とし、TI=0に対応する値が、軟化溶融組織が100%であるとした場合の表面張力(以後、γと記載する場合がある)とした。石炭の軟化溶融組織が100%である場合、イナート組織は0%である。
 表1の「lоgMF(lоg/ddpm)」は、JIS M8801のギーセラープラストメータ法で測定した石炭の最高流動度(Maximum Fluidity:MF/ddpm)の常用対数値である。表1の「Rо(%)」は石炭化度を表す指標の一例として本実施形態で用いた物性値でありJIS M 8816のビトリニットの平均最大反射率である。表1の「TI(%)」は全イナート量(体積%)であり、JIS M 8816の石炭または配合炭の微細組織成分の測定方法およびその解説に記載のParrの式に基づいた下記(1)式で算出した。
 イナート量(体積%)=フジニット(体積%)+ミクリニット(体積%)+(2/3)×セミフジニット(体積%)+鉱物質(体積%)・・・(1)
 表1の「γ(mN/m)」は、フィルム・フローテーション法を用いて、所定粒度となるように粉砕された石炭A~Fを500℃で加熱処理して作製されたセミコークスの表面張力(表面張力分布の平均値)である。「γ」は、図1に示した石炭A~Fのそれぞれの回帰直線におけるTI=0に対応する値であり、「γ100」はTI=100に対応する値である。
 図1から、石炭の銘柄に関わらず、γはほぼ一定の値に収束する傾向がみられた。一方、γ100は一定の値に収束する傾向はなく、石炭の銘柄により大きく異なっていた。このように、γに一定の値に収束する傾向が見られたことから、γについては、複数の銘柄の石炭において算出されたγからγの代表値を予め定めることができる。本実施形態においてγの代表値を複数の銘柄の石炭におけるγの算術平均値とした。
 一方、γ100は石炭の銘柄により大きく異なるので、γ100は石炭の銘柄ごとに求める必要がある。発明者らは、γ100と石炭化度との間に良好な相関関係があることを見出して本発明を完成した。図2は、石炭のビトリニットの平均最大反射率(以後、Rと記載する場合がある)とγ100との関係を示すグラフである。図2の横軸はR(%)であり縦軸はγ100(mN/m)である。図2を用いて、石炭のイナート組織の表面張力推定方法を説明する。図2の回帰直線は、Roに対するγ100の単回帰式であり、当該単回帰式と各プロットとの誤差が最小になるように最小二乗法を用いて算出した。この単回帰式がγ100とRoとの関係を示す第1の関係式であり、表1に示した石炭A~Fを用いて第1の関係式を構築した所、下記(2)式となった。
 γ100=-14.791Ro+59.324・・・(2)
 表2に第1の関係式の構築に用いていない石炭Gの性状を示す。表3に、表1に示したRoと上記(2)式とを用いて算出されたγ100を示す。
Figure JPOXMLDOC01-appb-T000002
 
Figure JPOXMLDOC01-appb-T000003
 
 表3に示すように、上記(2)式の構築に用いていない石炭Gのγ100を、表2に示したRoと(2)式とを用いて算出した所41.1mN/mとなった。イナート量の異なる3つの試料を500℃で熱処理したセミコークスのγをそれぞれ測定し、当該γの単回帰式から算出されたγ100が41.2mN/mであったことから、第1の関係式である(2)式を用いることでRoからγ100が高い精度で推定できることがわかる。図2に示した単回帰式の決定係数Rは0.86であり、当該決定係数が1に近い値となった。ここで、決定係数Rは、回帰式の相関の高さを示す指標であり、この値が1に近いほどRoとγ100との相関が高いことを示す。これらの結果から、第1の関係式とRoとからγ100が高い精度で推定できることが確認された。このように、γ100とRоとの関係を示す第1の関係式を予め把握しておき、γ100を推定する石炭のRоを測定し、測定されたRоと第1の関係式とを用いて石炭のイナート組織の表面張力を算出する方法が、石炭のイナート組織の表面張力推定方法である。
 上述したようにγ100を求めるにはイナート量の異なる試料を2つ以上作製し、これら試料をセミコークスとした上でフィルム・フローテーション法を用いて当該試料の表面張力をそれぞれ測定し、当該表面張力の単回帰式を求める必要がある。これに対して、図2に示したγ100とRoとの関係を示す第1の関係式を予め把握しておけば、γ100を推定する対象のRoを測定するだけで当該測定値と第1の関係式とからγ100を算出できるので、石炭のイナート組織の表面張力推定方法を用いることで簡便にγ100を推定できることがわかる。
 石炭のイナート組織の表面張力推定方法を用いてγ100が推定できれば、予め定められたγの代表値と推定されたγ100とを用いて、図1に示した単回帰式に対応するγとTIとの関係を示す関係式を算出できる。この関係式がγとTIとの関係を示す第2の関係式となる。第2の関係式は、下記(3)式で表すことができる。
 γ=[(γ100-γ)/100]×TI+γ・・・(3)
 本実施形態に係る石炭の表面張力推定方法では、予め定められたγとγ100とから算出される第2の関係式を予め把握しておき、γを推定する対象の石炭のTIを測定し、当該TIと第2の関係式とから石炭の表面張力を算出する。本実施形態に係る石炭の表面張力推定方法では、γとして予め定められたγの代表値を用い、γ100として石炭のイナート組織の表面張力推定方法を用いて算出されたγ100の推定値を用いる。この第2の関係式を予め把握しておけば、表面張力を推定する対象の石炭のTIを測定するだけで、当該測定値と第2の関係式とから石炭の表面張力を算出できるので、実施形態に係る石炭の表面張力推定方法を用いることで簡便に石炭の表面張力を推定できる。
 第2の関係式を算出するのに用いた石炭A~Fのγ(代表値)およびγ100(推定値)と、γ(推定値)を下記表4に示す。γ(推定値)は、γ(代表値)とγ100(推定値)とから石炭A~Fのそれぞれについて第2の関係式を算出し、当該第2の関係式と表1または表2のTIとを用いて算出した。
Figure JPOXMLDOC01-appb-T000004
 
 図3は、実測表面張力と推定表面張力との関係を示すグラフである。図3において、横軸は実測γ(mN/m)であり、表1または表2に示したγである。縦軸は推定γ(mN/m)であり、表4に示したγ(推定値)である。図3における丸プロットは石炭A~Fのプロットを示し、四角プロットは石炭Gのプロットを示す。図3から、実測γと推定γとは非常に強い相関関係を有することがわかる。これらの結果から、本実施形態に係る石炭の表面張力推定方法により、高い精度でγを推定できることが確認された。
 図2および図3では、500℃で熱処理した石炭の表面張力を推定する例を示したが、本実施形態における石炭の熱処理温度は500℃の熱処理に限らない。本実施形態に係る石炭の表面張力推定方法が500℃で熱処理した場合に限定されないことを確認するため、図1に示したTIと表面張力との関係が他の熱処理温度の場合でも成立するかどうかを確認した。
 3銘柄(H、I、J)の石炭を用い、上述の方法でTI含有量の異なる試料を調製した。当該試料を、熱処理温度のみを400℃と600℃に変更して、他の条件は上述した(a)~(c)の方法でセミコークスを調製し、それぞれのセミコークスの表面張力を測定し、図1と同様に表面張力とTIの関係を確認した。石炭H~Jの性状を下記表5に示す。
Figure JPOXMLDOC01-appb-T000005
 
 図4は、熱処理温度を400℃とした3銘柄(H、I、J)の石炭におけるイナート量の異なる試料の表面張力のプロット(3点)と当該プロットの回帰直線とを示すグラフである。図5は、熱処理温度を600℃とした3銘柄(H、I、J)の石炭におけるイナート量の異なる試料の表面張力のプロット(3点)と当該プロットの回帰直線とを示すグラフである。図4、図5の横軸はTI(%)であり、縦軸はγ(mN/m)である。図4、図5に示すように、熱処理温度を変えて調製されたセミコークスにおいても、TIと表面張力とには図1と類似の関係が成立し、同じ石炭であれば、その傾向は変わらないことがわかる。
 図4、図5において各銘柄について回帰直線を求め、回帰直線からTI=100%における表面張力の値γ100を求め、各石炭のRoとの関係を確認した。図6は、熱処理温度を400℃とした石炭のRoとγ100との関係を示すグラフである。図7は、熱処理温度を600℃とした石炭のRoとγ100との関係を示すグラフである。図6、図7の横軸はRo(%)であり、縦軸はγ100(mN/m)である。図6、7に示すように、熱処理温度を400℃、600℃にしても、図2と同様に、γ100とRoとの間には強い相関関係が認められた。
 これらの結果から、本実施形態に係る石炭の表面張力の推定方法は、異なる温度で調製したセミコークスにおいても適用できることがわかる。350~800℃以下の熱処理温度で調製されたセミコークスの表面張力が、石炭の種類によらず同じ傾向を示すことは特許文献1も開示されている。このことから、本実施形態に係る石炭の表面張力の推定方法は500℃にて熱処理されたセミコークスに限らず、350℃以上800℃以下のいずれかの温度で調製されたセミコークスについて適用できることがわかる。
 すなわち、350℃以上800℃以下の所定の温度で熱処理した石炭のイナート組織の表面張力を推定したい場合には、当該所定の温度で熱処理したセミコークスのイナート組織の表面張力と石炭化度を表す物性値との関係を示す第1の関係式を用いればよく、これにより、当該所定の温度で熱処理した石炭のイナート組織の表面張力であるγ100を推定できる。
 350℃以上800℃以下の所定の温度で熱処理した石炭の表面張力を推定したい場合には、当該所定の温度において推定された石炭のγ100と、予め定められた所定の温度におけるγとから得られる石炭の表面張力と全イナート量との関係を示す第2の関係式を用いればよく、これにより、当該所定の温度で熱処理した石炭の表面張力を推定できる。
 表1、2、5に示した石炭は、一般的にコークス原料の石炭としてよく用いられる石炭の例である。コークス原料として用いられる石炭は、MFが0~60000ddpm(logMFが4.8以下)、Roが0.6~1.8%、TIが3~50体積%の範囲であり、本実施形態に係る石炭の表面張力の推定方法は、この範囲の石炭に対して特に好適に用いることができる。
 本実施形態においては、石炭化度を表す物性値としてRoを用いて説明したが、石炭化度を表す物性値はこの他にも、石炭の揮発分、炭素含有率、軟化溶融時の再固化温度などが知られており、これらはいずれもRoと良い相関を示す。したがって、石炭化度を表す物性値として、Rに代えて、石炭の揮発分、炭素含有量、軟化溶融時の再固化温度といった石炭化度と相関のある物性値を用いることができる。
 一般に、Roなどの石炭の炭化度を表す物性値や、TIなどの石炭組織分析は、石炭の特徴を表す目的で商取引の際にも広く利用され、分析されている。したがって、Roなどの石炭の炭化度からγ100を推定し、当該γ100を用いて石炭の表面張力を推定することができれば、熟練した測定者に頼ることなく石炭の表面張力の推定でき、且つ、当該表面張力を測定するための時間を節約できる。
 γが同等の石炭を配合した配合炭から製造されるコークスの強度は、γが異なる石炭を配合した配合炭から製造されるコークスよりも高くなる。本実施形態に係る石炭の表面張力推定方法を用いることで簡便にγが推定できれば、当該γを石炭の配合検討に利用できるので、当該配合検討によって配合割合が定められた配合炭をコークスの製造に用いることで高品質なコークスの製造が実現できる。

Claims (6)

  1.  石炭におけるイナート組織の表面張力と石炭化度を表す物性値との関係を示す第1の関係式を予め把握しておき、
     イナート組織の表面張力を推定する石炭の石炭化度を表す物性値を測定し、測定された石炭化度を表す物性値と前記第1の関係式とを用いて石炭のイナート組織の表面張力を算出する、石炭のイナート組織の表面張力推定方法。
  2.  前記石炭化度を表す物性値がビトリニットの平均最大反射率である、請求項1に記載の石炭のイナート組織の表面張力推定方法。
  3.  前記石炭は350℃以上800℃以下の何れかの温度まで加熱されたセミコークスである、請求項1または請求項2に記載の石炭のイナート組織の表面張力推定方法。
  4.  請求項1から請求項3のいずれか一項に記載の石炭のイナート組織の表面張力推定方法で推定されたイナート組織の表面張力と予め定められた溶融組織の表面張力とから、石炭の表面張力と全イナート量との関係を示す第2の関係式を算出しておき、
     表面張力を推定する石炭の全イナート量を測定し、測定された全イナート量と前記第2の関係式とを用いて石炭の表面張力を算出する、石炭の表面張力推定方法。
  5.  前記予め定められた溶融組織の表面張力は、複数の銘柄の石炭における溶融組織の表面張力の算術平均値である、請求項4に記載の石炭の表面張力推定方法。
  6.  請求項4または請求項5に記載の石炭の表面張力推定方法で表面張力が推定された石炭を配合して配合炭とし、前記配合炭を乾留してコークスを製造する、コークスの製造方法。
PCT/JP2020/038830 2019-10-28 2020-10-14 石炭のイナート組織の表面張力推定方法、石炭の表面張力推定方法およびコークスの製造方法 WO2021085146A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
CN202080072507.1A CN114556079B (zh) 2019-10-28 2020-10-14 煤的惰质组组织的表面张力推定方法、煤的表面张力推定方法和焦炭的制造方法
AU2020373691A AU2020373691B2 (en) 2019-10-28 2020-10-14 Method for estimating surface tension of coal inerts, method for estimating surface tension of coal, and method for producing coke
JP2021549615A JP7010419B2 (ja) 2019-10-28 2020-10-14 石炭のイナート組織の表面張力推定方法、石炭の表面張力推定方法およびコークスの製造方法
BR112022007327A BR112022007327A2 (pt) 2019-10-28 2020-10-14 Método para estimar a tensão superficial de inertes de carvão, método para estimar a tensão superficial do carvão, e método para produção de coque
EP20882743.6A EP4053246A4 (en) 2019-10-28 2020-10-14 METHOD OF ESTIMATION OF THE SURFACE TENSION OF AN INERT STRUCTURE IN COAL, METHOD OF ESTIMATION OF THE SURFACE TENSION OF COAL, AND METHOD OF MAKING COKE
KR1020227012969A KR20220065830A (ko) 2019-10-28 2020-10-14 석탄의 이너트 조직의 표면 장력 추정 방법, 석탄의 표면 장력 추정 방법 및 코크스의 제조 방법
CA3152872A CA3152872A1 (en) 2019-10-28 2020-10-14 Method for estimating surface tension of coal inerts, method for estimating surface tension of coal, and method for producing coke
US17/770,573 US20220290054A1 (en) 2019-10-28 2020-10-14 Method of estimating surface tension of coal inert material, method of estimating surface tension of coal, and method of producing coke

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019194865 2019-10-28
JP2019-194865 2019-10-28

Publications (1)

Publication Number Publication Date
WO2021085146A1 true WO2021085146A1 (ja) 2021-05-06

Family

ID=75715914

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/038830 WO2021085146A1 (ja) 2019-10-28 2020-10-14 石炭のイナート組織の表面張力推定方法、石炭の表面張力推定方法およびコークスの製造方法

Country Status (10)

Country Link
US (1) US20220290054A1 (ja)
EP (1) EP4053246A4 (ja)
JP (1) JP7010419B2 (ja)
KR (1) KR20220065830A (ja)
CN (1) CN114556079B (ja)
AU (1) AU2020373691B2 (ja)
BR (1) BR112022007327A2 (ja)
CA (1) CA3152872A1 (ja)
TW (1) TWI793466B (ja)
WO (1) WO2021085146A1 (ja)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5737473B2 (ja) 1977-05-20 1982-08-10
JPH08176553A (ja) * 1994-12-22 1996-07-09 Kawasaki Steel Corp 非・微粘結炭の流動性等推定方法
JP2000356633A (ja) * 1999-04-13 2000-12-26 Nkk Corp 石炭のコークス強度の測定方法およびコークスの製造方法
JP2005194358A (ja) * 2004-01-06 2005-07-21 Nippon Steel Corp コークス強度の推定方法
JP2005281355A (ja) * 2004-03-29 2005-10-13 Jfe Steel Kk 配合炭のコークス強度推定方法及びコークスの製造方法
JP2011213827A (ja) * 2010-03-31 2011-10-27 Nippon Steel Corp 高炉用コークスの製造方法
WO2013145678A1 (ja) * 2012-03-27 2013-10-03 Jfeスチール株式会社 石炭の配合方法及び配合炭、並びに、コークス製造方法
WO2013145680A1 (ja) * 2012-03-27 2013-10-03 Jfeスチール株式会社 コークス製造用石炭混合物の調製方法及び石炭混合物、並びに、コークス製造方法
JP2016069469A (ja) * 2014-09-29 2016-05-09 新日鐵住金株式会社 コークス強度の推定方法
JP2018197319A (ja) * 2017-05-24 2018-12-13 新日鐵住金株式会社 コークス強度の推定方法
JP2019031641A (ja) * 2017-08-09 2019-02-28 新日鐵住金株式会社 高炉用コークスの製造方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4135983A (en) * 1970-12-28 1979-01-23 Kureha Kagaku Kogyo Kabushiki Kaisha Method for improving coking property of coal for use in production of cokes
JPS6095354A (ja) * 1983-10-31 1985-05-28 Nippon Steel Chem Co Ltd 石炭組織の自動分析法
JP4147986B2 (ja) * 2003-03-14 2008-09-10 Jfeスチール株式会社 石炭のコークス強度の測定方法及びコークスの製造方法
JP4121523B2 (ja) * 2005-11-10 2008-07-23 独立行政法人海洋研究開発機構 ビトリニット反射率測定方法およびビトリニット反射率測定装置
JP5071578B2 (ja) * 2010-09-01 2012-11-14 Jfeスチール株式会社 コークス製造用石炭の調製方法
JP5505567B2 (ja) * 2011-10-14 2014-05-28 Jfeスチール株式会社 コークスの製造方法
CN104245889B (zh) * 2012-03-27 2017-03-08 杰富意钢铁株式会社 焦炭制造用煤的配合方法及焦炭的制造方法
US9857350B2 (en) * 2012-03-27 2018-01-02 Jfe Steel Corporation Coal-to-coal adhesiveness evaluation method
WO2014129337A1 (ja) * 2013-02-21 2014-08-28 Jfeスチール株式会社 冶金用コークスの製造方法
JP5910659B2 (ja) * 2013-04-09 2016-04-27 Jfeスチール株式会社 配合炭の製造方法及びそれを用いたコークスの製造方法
JP5812037B2 (ja) * 2013-04-09 2015-11-11 Jfeスチール株式会社 表面張力測定方法
JP6044708B2 (ja) * 2013-04-12 2016-12-14 Jfeスチール株式会社 石炭の風化度の評価方法、風化石炭のコークス化性の評価方法、及び、石炭の風化度の管理方法、並びに、コークスの製造方法
JP6036891B2 (ja) * 2014-03-28 2016-11-30 Jfeスチール株式会社 コークスの製造方法
CN104090084B (zh) * 2014-06-27 2016-03-09 江苏省沙钢钢铁研究院有限公司 一种配合煤镜质组反射率分布的预测方法的应用

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5737473B2 (ja) 1977-05-20 1982-08-10
JPH08176553A (ja) * 1994-12-22 1996-07-09 Kawasaki Steel Corp 非・微粘結炭の流動性等推定方法
JP2000356633A (ja) * 1999-04-13 2000-12-26 Nkk Corp 石炭のコークス強度の測定方法およびコークスの製造方法
JP2005194358A (ja) * 2004-01-06 2005-07-21 Nippon Steel Corp コークス強度の推定方法
JP2005281355A (ja) * 2004-03-29 2005-10-13 Jfe Steel Kk 配合炭のコークス強度推定方法及びコークスの製造方法
JP2011213827A (ja) * 2010-03-31 2011-10-27 Nippon Steel Corp 高炉用コークスの製造方法
WO2013145678A1 (ja) * 2012-03-27 2013-10-03 Jfeスチール株式会社 石炭の配合方法及び配合炭、並びに、コークス製造方法
WO2013145680A1 (ja) * 2012-03-27 2013-10-03 Jfeスチール株式会社 コークス製造用石炭混合物の調製方法及び石炭混合物、並びに、コークス製造方法
JP2016069469A (ja) * 2014-09-29 2016-05-09 新日鐵住金株式会社 コークス強度の推定方法
JP2018197319A (ja) * 2017-05-24 2018-12-13 新日鐵住金株式会社 コークス強度の推定方法
JP2019031641A (ja) * 2017-08-09 2019-02-28 新日鐵住金株式会社 高炉用コークスの製造方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
D. W. FUERSTENAU, INTERNATIONAL JOURNAL OF MINERAL PROCESSING, vol. 20, 1987, pages 153
See also references of EP4053246A4

Also Published As

Publication number Publication date
EP4053246A1 (en) 2022-09-07
AU2020373691B2 (en) 2023-03-30
EP4053246A4 (en) 2022-12-14
TW202132551A (zh) 2021-09-01
BR112022007327A2 (pt) 2022-07-05
CN114556079B (zh) 2024-04-09
CA3152872A1 (en) 2021-05-06
KR20220065830A (ko) 2022-05-20
JPWO2021085146A1 (ja) 2021-12-16
CN114556079A (zh) 2022-05-27
TWI793466B (zh) 2023-02-21
US20220290054A1 (en) 2022-09-15
AU2020373691A1 (en) 2022-05-12
JP7010419B2 (ja) 2022-01-26

Similar Documents

Publication Publication Date Title
JP5505567B2 (ja) コークスの製造方法
WO2013145678A1 (ja) 石炭の配合方法及び配合炭、並びに、コークス製造方法
US9845439B2 (en) Method for blending coals for cokemaking and method for producing coke
WO2013145677A1 (ja) 石炭間の接着性の評価方法
CA2866569C (en) Method for preparing coal mixture for cokemaking, coal mixture, and method for producing coke
WO2021085146A1 (ja) 石炭のイナート組織の表面張力推定方法、石炭の表面張力推定方法およびコークスの製造方法
WO2021085145A1 (ja) 石炭の表面張力推定方法およびコークスの製造方法
RU2794598C1 (ru) Способ оценки поверхностного натяжения угля и способ получения кокса
WO2021140947A1 (ja) 配合炭の製造方法およびコークスの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20882743

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021549615

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 3152872

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 20227012969

Country of ref document: KR

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112022007327

Country of ref document: BR

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020373691

Country of ref document: AU

Date of ref document: 20201014

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020882743

Country of ref document: EP

Effective date: 20220530

ENP Entry into the national phase

Ref document number: 112022007327

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20220414