WO2021084986A1 - 高濃度鉄系凝集剤とその製造方法 - Google Patents
高濃度鉄系凝集剤とその製造方法 Download PDFInfo
- Publication number
- WO2021084986A1 WO2021084986A1 PCT/JP2020/036338 JP2020036338W WO2021084986A1 WO 2021084986 A1 WO2021084986 A1 WO 2021084986A1 JP 2020036338 W JP2020036338 W JP 2020036338W WO 2021084986 A1 WO2021084986 A1 WO 2021084986A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- reaction
- iron
- sulfate
- reaction vessel
- solution
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/52—Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
- C02F1/5236—Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using inorganic agents
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G49/00—Compounds of iron
- C01G49/14—Sulfates
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D21/00—Separation of suspended solid particles from liquids by sedimentation
- B01D21/01—Separation of suspended solid particles from liquids by sedimentation using flocculating agents
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/52—Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
- C02F1/5236—Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using inorganic agents
- C02F1/5245—Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using inorganic agents using basic salts, e.g. of aluminium and iron
Definitions
- the present invention relates to a high-concentration iron-based flocculant used for wastewater treatment and a method for producing the same.
- Patent Document 1 includes adding sodium nitrite and an oxidizing agent as catalysts to a ferrous sulfate (FeSO 4 ) solution, which is an iron-based raw material, at room temperature and pressure for about 10 hours.
- FeSO 4 ferrous sulfate
- a method of obtaining a solution of ferric polysulfate ([Fe 2 (OH) n (SO 4 ) 3-n / 2 ] m, where 0 ⁇ n ⁇ 2, m is a natural number) by advancing the oxidation reaction over a period of time. Is described. However, since this method requires a long time for the reaction, it has been required to shorten the reaction time by some method.
- magnetite Fe 3 O 4
- the molar ratio of sulfate ion to iron ion is adjusted, and then in a reaction vessel. It is a method of reacting at a temperature of 120 to 180 ° C. This method is a production method aiming at shortening the reaction time by advancing the reaction under high temperature and high pressure, but still requires a reaction time of 0.8 to 1.5 hours.
- ferric trioxide Fe 2 O 3
- Fe 2 (SO 4 ) 3 ferric sulfate
- a method for producing an iron-based flocculant that is partially neutralized with ferric oxide is disclosed.
- this method consists of two steps, a step of dissolving ferric trioxide in sulfuric acid and a step of partially neutralizing the produced ferric sulfate, the manufacturing process becomes complicated and the polyferric sulfate solution is efficiently prepared.
- it is required to keep the mixture heated to 100 ° C. for about 3 hours to allow the reaction to proceed.
- the patent applicant manufactures and sells the iron-based inorganic polymer flocculant "Polytetsu” (registered trademark), and its total iron concentration is approximately 11.0 to 12.5% ("normal product"). (Called). Iron-based inorganic polymer flocculants have high coagulation ability and dehydration property if the total iron concentration is high. Therefore, in recent years, iron-based inorganic polymer flocculants having a total iron concentration of 12.5% or more are "high-concentration products". It has been manufactured and sold as. However, even when a flocculant having a high total iron concentration is produced, the total iron concentration is limited to 12.7% (less than 13%) at most in relation to the above-mentioned problem that the production time becomes long.
- the concentration in the present invention is intended to mean all the weight% except where noted the molar concentration, [T-Fe] has a weight percentage of total iron concentration by weight of [SO 4 2-] sulfate ion Represents.
- the total iron concentration means a concentration including not only iron dissolved in the raw material but also iron existing in the raw material liquid as a solid (powder or the like) without being dissolved.
- Even iron-based powder present in the raw material solution contributes to the production reaction of the ferric polysulfate solution, so it is rational to include iron-based components that are not dissolved in the raw material solution in the iron concentration. is there.
- the concentration is indicated by the total iron concentration, but it is natural that all the iron is dissolved.
- the present invention has been made to solve these problems, and an object of the present invention is to provide a production method capable of continuously producing a ferric polysulfate solution having a higher total iron concentration as compared with a conventional product. is there.
- An object of the present invention is to provide a high-concentration ferric polysulfate solution at low cost by continuously producing the solution while pressurizing using a reaction vessel.
- the present invention comprises the following technical means. (1) Using ferric sulfate, sulfuric acid and oxygen gas as raw materials, a raw material solution containing ferric sulfate and sulfuric acid and oxygen gas satisfying the following conditions are continuously supplied into the reaction vessel, and the reaction is carried out at high temperature and high pressure. A method for continuously producing an iron-based flocculant containing a ferric polysulfate solution, which comprises continuously taking out the ferric polysulfate solution produced in the process from the reaction vessel.
- the reaction vessel is filled with 9 liters of ferric sulfate solution, and the raw material liquid containing ferrous sulfate and sulfuric acid to be supplied into the reaction vessel is heated to 55 to 70 ° C.
- ( 1) A method for continuously producing an iron-based flocculant according to any one of (3).
- the ultra-high-concentration iron-based flocculant of the present invention is characterized in that it has a higher concentration than the high-concentration iron-based flocculant commercially available by the applicant of the present invention, and has high flocculation ability and dehydration. have.
- the water content is less than that of a normal product, the product transportation cost can be reduced.
- the production time which required 10 hours or more in the conventional method, can be significantly shortened for continuous production, and the iron-based flocculant can be produced continuously. Efficient manufacturing can be performed.
- an inorganic flocculant inorganic flocculant.
- suspended particles and colloidal particles in sludge are agglomerated with a flocculant and dehydrated for solid-liquid separation.
- the surface of suspended particles and colloidal particles in sewage sludge is usually negatively charged, and is in a stable state due to repulsive force and hydration due to surface charge.
- the aggregating agent is a drug having an action of adsorbing on the surface of these particles to neutralize the surface charge and weakening the repulsive force between the particles to cause agglomeration.
- the iron-based flocculant is a typical inorganic flocculant, and positively charged iron ions neutralize the negative charge on the surface of suspended substances such as suspended particles and colloidal particles to perform a flocculant action. ..
- the iron-based flocculant always has an agglutinating action in the presence of iron ions, but if the iron ion concentration is high, the coagulation ability of the suspended substance is increased, so that the amount of the flocculant added can be small.
- a certain amount of negative ions must be present. In the case of iron-based flocculants, sulfate ions usually play this role. If the amount of negative ions has an appropriate molar ratio with the amount of iron ions, the iron-based flocculant will be stable, but if the amount of negative ions is excessive or insufficient, it will become unstable and precipitate as crystals. ..
- the present invention first of all, when a raw material solution containing ferrous sulfate (FeSO 4 ) and sulfuric acid and oxygen gas are used as raw materials and an oxidation reaction is carried out under high temperature and high pressure conditions, the total iron of the raw material solution to be added is used. Set the relationship between the concentration and the sulfate ion concentration within a specific range.
- the invention in all the molar ratio of iron and sulfate ion (SO 4 2- / T-Fe ) is a specific value or more, by a lower than a specific value [SO 4 2-], predicted from the prior art
- the ferric sulfate solution produced can be produced at an ultra-high concentration of total iron ([T-Fe]), which cannot be produced by conventional techniques. Achieves a remarkable effect.
- the first feature of the present invention is that a raw material liquid containing ferrous sulfate and sulfuric acid satisfying the following conditions and oxygen gas are reacted under high temperature and high pressure.
- the molar ratio of total iron and sulfate ion SO 4 2- / T-Fe
- [SO 4 2-] is 35 wt%
- the total iron concentration of ferrous sulfate and the ion concentration of sulfate have such a relationship, it is possible to obtain an ultra-high concentration ferrous sulfate solution in a short time without generating ridges. , A new finding found by the present inventors.
- reaction conditions of high temperature and high pressure as (1) reaction temperature of 110 ° C., reaction pressure of 0.3 MPa, reaction time of 10 minutes, (2) reaction temperature of 120 ° C., and reaction pressure of 10 MPa.
- the reaction time was set to 10 minutes, and the raw material liquid containing ferrous sulfate and sulfuric acid was adjusted to have various concentrations.
- Nitric acid was added as a catalyst to this, and a high-temperature and high-pressure reaction was carried out in a batch manner. Then, it was examined whether or not the palace was generated after the reaction time had elapsed.
- the present inventors have decided to specify this specific region from the following two viewpoints.
- the upper limit of this region can be a weight concentration of sulfate [SO 4 2-] is set to 35 wt% or less.
- the lower limit of this region can be defined by a diagonal straight line rising to the right.
- the oblique straight line, the straight line indicating the relationship between the molar ratio of total iron and sulfate ion (SO 4 2- / T-Fe ) is 1.2 or more, the vertical and horizontal axes and the weight concentration of sulfate ion all It is written by converting it into a figure showing the weight concentration of iron.
- the second feature of the present invention is that the ferric sulfate solution is continuously produced.
- the specific region shown in FIG. 1 is the result of performing a high-temperature and high-pressure reaction using an autoclave in a batch manner.
- the raw material composition is also used in the continuous production of the present invention. This is the area that can be applied to the adjustment of. Since it has been clarified that a ferric polysulfate solution can be produced in a short time by performing an oxidation reaction under high temperature and high pressure conditions using the raw materials in the above specific region, the present inventors have continuously started from the batch type. In order to make a transition, we examined the manufacturing conditions for continuous manufacturing.
- ferric sulfate FeSO 4
- an oxidation reaction is carried out under high temperature and high pressure conditions. Therefore, when continuously producing this, some conditions are adjusted. There is a need.
- FIG. 2 shows the flow of the continuous production method of high-concentration ferric sulfate adopted in the present invention.
- the reaction vessel is equipped with a heating device for start-up.
- a device for supplying raw materials is connected to this reaction vessel, and water, iron sulfate, sulfuric acid, and oxygen are supplied, and a catalyst is supplied as needed.
- the ferric polysulfate solution produced is stored in a product tank.
- a raw material liquid containing ferrous sulfate and sulfuric acid, and oxygen gas are supplied.
- oxygen gas is consumed in the reaction, so it is necessary to continuously supply it into the reaction vessel.
- nitric acid may be added as a catalyst.
- the reaction vessel is filled with ferric polysulfate, which is the final product heated in advance, and when continuous production is started, the reaction vessel is brought into a high temperature and high pressure state, and these raw materials are heated to a constant flow rate in the reaction vessel. Put in with.
- the ferric polysulfate solution which is a reaction product, is extracted at a constant flow rate.
- a catalyst in order to promote the reaction for producing the above-mentioned ferric sulfate solution.
- Preferred catalysts for accelerating the reaction include nitric acid and nitrite, and nitrite includes sodium salt and potassium salt of nitrite.
- Nitric acid is preferable from the viewpoint of the function of promoting the reaction and the cost.
- reaction temperature It is necessary to adjust the temperature in the reaction vessel to the range of 100 to 150 ° C. It has been confirmed that if the reaction temperature is less than 100 ° C, the oxidation reaction of ferrous sulfate does not proceed sufficiently, and if it exceeds 150 ° C, yellow deposits remain, and these deposits are analyzed by X-ray analysis. It has been found to be Fe (OH) SO 4. Therefore, the temperature inside the reaction vessel is preferably adjusted to be in the range of 110 ° C. to 130 ° C., and further preferably adjusted to the range of 115 ° C. to 125 ° C. Further, by preheating the raw material to be charged by utilizing the heat generated by the reaction, the heat of reaction can be recovered and ferric polysulfate can be produced at low cost.
- the pressure in the reaction vessel needs to be 0.3 MPa or more. It In the method of manufacturing the iron-based flocculants of the present invention, since the ferrous sulfate is a solid material (FeSO 4 ⁇ 7H 2 O) is the reaction proceeds by oxidation dissolved in sulfuric acid, at a high temperature condition As a result, the dissolution of ferrous sulfate progresses, the oxygen partial pressure rises under high pressure conditions, and the oxidation reaction is promoted. Therefore, theoretically, a higher pressure is preferable from the viewpoint of promoting the reaction.
- the lower limit of the pressure is set to 0.3 MPa. If the reaction is carried out at a lower pressure than this, the oxidation reaction of the solution is suppressed, the normal reaction conditions are disrupted, and stable continuous operation cannot be performed. Further, by setting the pressure in the reaction vessel to about 5.0 MPa, the production efficiency of ferric polysulfate can be remarkably improved.
- the present inventors have succeeded in significantly shortening the reaction time in the batch method by using ferrous sulfate and sulfuric acid as raw material liquids and reacting them under high temperature and high pressure conditions.
- a reaction time of 10 minutes or less is required when the total iron concentration of the raw material solution is less than 13%, and 30 minutes or less is required when the total iron concentration of the raw material solution is high concentration of 13% to 16%.
- Met is required when the total iron concentration of the raw material solution is high concentration of 13% to 16%.
- the time required for the reaction i.e., retention, even with a 20 liter capacity reaction vessel. It was experimentally confirmed that the time required was about 8 minutes when the reaction was carried out under pressure conditions of 0.3 MPa and 5.0 MPa.
- the reaction time (residence time) is shortened by continuously producing a ferric polysulfate solution
- the present inventors use the following mechanism. I think it might be.
- the technical content of the present invention should not be construed based on the following presumptions. That is, in continuous production, the raw material solution containing ferric sulfate and sulfuric acid is put into a ferric polysulfate solution maintained at a high temperature and high pressure required for the reaction together with the catalyst, and ferric polysulfate is added. Since the reaction starts in the solution, it is considered that the reaction is promoted as compared with the batch method in which the reaction is started from the environment of only the raw material solution.
- the residence time may be further shortened by taking various measures for promoting the oxidation reaction of ferrous sulfate.
- the residence time can be shortened by adopting stricter high temperature and high pressure conditions, a highly active catalyst, an efficient stirring method, and the like.
- the residence time is preferably 10 minutes or less.
- ferric polysulfate is used even when the residence time is set to a long time by disregarding economic efficiency, such as using a larger reaction vessel or loading raw materials and taking out products at a low flow rate. It goes without saying that continuous production of the above is possible.
- Table 3 summarizes how much efficiency can be improved by continuously producing the ferric polysulfate solution as compared with the production by the conventional batch method.
- the conventional method by the batch method is a conventional method for producing a ferric polysulfate solution proposed in Patent Document 1 by the applicant of the present application.
- the batch type it is necessary to carry out the steps of raw material input, oxidation reaction, and product take-out in sequence, so that it takes a long time for production. Specifically, in order to produce 1000 tons of ferric sulfate solution per month, a large reaction vessel with a capacity of 45 m 3 had to be used and the operation for 12 hours a day had to be continued for 20 days. ..
- the continuous production method according to the present invention since the above production steps can be carried out at the same time, it is possible to shorten the production time, increase the production amount, and reduce the size of the reaction vessel. Specifically, by using a container of 0.6 m 3, which corresponds to a volume of about one tenth of the reaction vessel used in the conventional method, by performing the 24-hour continuous operation, also in the amount of 3 times that of the conventional method at 20 days A ferric polysulfate solution can be produced. Further, even if the reaction vessel is downsized to a capacity of 0.2 m 3 , an amount of ferric polysulfate solution equivalent to that of the conventional method can be produced. Such effects bring immeasurable economic benefits in factory production.
- a 20 liter capacity autoclave was filled with 9 liters of ferric sulfate solution, and the temperature inside the container was adjusted to 120 ° C. and the pressure was adjusted to 0.3 MPa.
- Ferric filled poly sulfuric acid solution are those having a total iron concentration [T-Fe] sulfate ion concentration [SO 4 2-] 0 minute elapsed time shown in Table 4 below.
- Ferrous sulfate, sulfuric acid, sodium nitrite and oxygen gas heated to 60 ° C. were added thereto.
- Total iron concentration [T-Fe] sulfate ion concentration of the raw material liquid containing the charged ferrous and sulfate [SO 4 2-] was 12.7 wt% and 32.5 wt%, respectively.
- the molar ratio of the total iron and sulfate ion (SO 4 2- / T-Fe ) was 1.49.
- the input of the raw material liquid containing ferrous sulfate and sulfuric acid was 1.2 liters per minute.
- the reaction for producing ferric polysulfate was started by adding the raw material liquid, and the temperature inside the reaction vessel rose, but the temperature inside the vessel was kept in the range of 110 to 130 ° C. by performing the cooling operation. ..
- the reaction product was extracted at 1.2 liters per minute. Since 1.2 liters of the raw material solution was added to the 9 liters of ferric sulfate solution in the reaction vessel, the residence time was 8 minutes.
- Example 1 The reaction was carried out under the same conditions as in Example 1 except that the pressure in the reaction vessel was adjusted to 5.0 MPa, the composition of the raw material to be charged, the charging speed of the raw material, the extraction speed of the reaction product, the residence time and the like. As in Example 1, the reaction products were periodically sampled and extracted for chemical analysis. It was confirmed that ferric polysulfate was produced in the same manner as in Example 1.
- reaction products were sampled at predetermined time intervals, and the results of examining the changes in the component concentrations were summarized in Table 4.
- Example 2 in consideration of the safety of the experimental results, the conditions such as the raw material input rate, the reaction product extraction rate, and the residence time were set to the same conditions as in Example 1. However, since the pressure in the reaction vessel is overwhelmingly higher than that in Example 1, it is possible to increase the speed of feeding the raw material and extracting the reaction product to shorten the residence time in the reaction vessel. By doing so, it is considered that the production efficiency of ferric polysulfate can be significantly improved.
- the coagulant used in the treatment of wastewater such as sewage since the coagulant having high coagulation performance can be produced in a short time, it can be widely used in the field of wastewater treatment.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Hydrology & Water Resources (AREA)
- Engineering & Computer Science (AREA)
- Environmental & Geological Engineering (AREA)
- Water Supply & Treatment (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Separation Of Suspended Particles By Flocculating Agents (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
Abstract
従来の製造方法では反応時間が長時間になるため製造できなかった超高濃度のポリ硫酸第二鉄溶液を、連続的に製造する。 硫酸第一鉄、硫酸及び酸素ガスを原料とし、次の関係を満たす硫酸第一鉄と硫酸を含む原料液と酸素ガスを、高温高圧の反応容器中に供給し、連続的にポリ硫酸第二鉄溶液を取り出す。 全鉄と硫酸イオンのモル比(SO4
2-/T-Fe)が1.2以上 硫酸イオンの重量濃度を[SO4
2-] としたときに、[SO4
2-]が35重量%以下
Description
本発明は、排水処理に使用される高濃度の鉄系凝集剤及びその製造方法に関する。
本件特許出願人は、独自に開発した鉄系無機高分子凝集剤「ポリテツ」(登録商標)を中心に排水処理薬剤の販売を行っており、これに関するいくつかの特許を有する。
これらの特許のうち、特許文献1には、鉄系原料である硫酸第一鉄(FeSO4)溶液に対して触媒として亜硝酸ナトリウム及び酸化剤を添加して、常温常圧で約10時間程度の時間をかけて酸化反応を進行させ、ポリ硫酸第二鉄(〔Fe2(OH)n(SO4)3-n/2 〕m 但し0<n≦2、mは自然数)溶液を得る方法が記載されている。
しかし、この方法は反応に長時間を要するので、何らかの方法により反応時間の短縮化が求められていた。
これらの特許のうち、特許文献1には、鉄系原料である硫酸第一鉄(FeSO4)溶液に対して触媒として亜硝酸ナトリウム及び酸化剤を添加して、常温常圧で約10時間程度の時間をかけて酸化反応を進行させ、ポリ硫酸第二鉄(〔Fe2(OH)n(SO4)3-n/2 〕m 但し0<n≦2、mは自然数)溶液を得る方法が記載されている。
しかし、この方法は反応に長時間を要するので、何らかの方法により反応時間の短縮化が求められていた。
また、特許文献2に記載された鉄系無機凝集剤の製造方法は、鉄系原料としてマグネタイト(Fe3O4)を使用し、硫酸イオンと鉄イオンのモル比を調整した後に、反応容器中で120~180℃の温度で反応させる方法である。この方法は高温高圧下で反応を進めることにより反応時間の短縮化を目指す製造方法であるが、それでも0.8~1.5時間の反応時間が必要であった。
特許文献3には、鉄系原料である三酸化二鉄(Fe2O3)を過剰の硫酸に溶解して硫酸第二鉄(Fe2(SO4)3)を生成し、これを含水三酸化二鉄で部分中和する鉄系凝集剤の製造方法が開示されている。
しかし、この方法は、三酸化二鉄を硫酸に溶解させる工程と生成した硫酸第二鉄を部分中和する工程の2工程からなるので、製造工程が複雑になり効率よくポリ硫酸第二鉄溶液を生成することができないという難点がある。実施例では100℃に加熱した状態で3時間程度保持し、反応を進行させることが必要とされている。
しかし、この方法は、三酸化二鉄を硫酸に溶解させる工程と生成した硫酸第二鉄を部分中和する工程の2工程からなるので、製造工程が複雑になり効率よくポリ硫酸第二鉄溶液を生成することができないという難点がある。実施例では100℃に加熱した状態で3時間程度保持し、反応を進行させることが必要とされている。
上記したように、従来技術においては、様々な種類の鉄化合物を鉄系原料として選択し、様々な反応形態で反応させてポリ硫酸第二鉄溶液を製造することが試みられているが、遊離硫酸や反応残渣の発生が多い等の問題のほか、実用に耐えるポリ硫酸第二鉄溶液を製造するための製造時間が長くなるという問題が残されていた。
また、詳細は後記するが、鉄系凝集剤においては、全鉄濃度が高いほど凝集剤としての特性が高いとされている。そして、本件特許出願人は、鉄系無機高分子凝集剤「ポリテツ」(商標登録)を製造・販売しており、その全鉄濃度は、概ね11.0~12.5%(「通常品」と称する)である。鉄系無機高分子凝集剤は、その全鉄濃度が高濃度であれば、高い凝集能力と脱水性を有することから、近年では、全鉄濃度が12.5%以上のものが「高濃度品」として製造・販売されてきている。
しかしながら、全鉄濃度の高い凝集剤を製造することとしても、上記の製造時間が長くなるとの問題とも関係して、せいぜい全鉄濃度が12.7%(13%未満)が限度であった。
また、詳細は後記するが、鉄系凝集剤においては、全鉄濃度が高いほど凝集剤としての特性が高いとされている。そして、本件特許出願人は、鉄系無機高分子凝集剤「ポリテツ」(商標登録)を製造・販売しており、その全鉄濃度は、概ね11.0~12.5%(「通常品」と称する)である。鉄系無機高分子凝集剤は、その全鉄濃度が高濃度であれば、高い凝集能力と脱水性を有することから、近年では、全鉄濃度が12.5%以上のものが「高濃度品」として製造・販売されてきている。
しかしながら、全鉄濃度の高い凝集剤を製造することとしても、上記の製造時間が長くなるとの問題とも関係して、せいぜい全鉄濃度が12.7%(13%未満)が限度であった。
なお、本発明における濃度は、モル濃度を明記する場合以外は全て重量%を意味するものであり、[T-Fe]は全鉄の重量濃度、[SO4
2-]は硫酸イオンの重量濃度をあらわす。
ここで全鉄濃度とは、原料中に溶解している鉄ばかりでなく、溶解することなく固体(粉体等)として原料液中に存在する鉄を含めた濃度であることを意味する。原料液中に存在する鉄系粉末であっても、ポリ硫酸第二鉄溶液の製造反応に寄与するので、原料液中に溶解していない鉄系成分も鉄の濃度に含めることが合理的である。
しかし、本発明で製造したポリ硫酸第二鉄溶液でも、全鉄濃度で濃度表示をするが、鉄はすべて溶解していることは当然のことである。
ここで全鉄濃度とは、原料中に溶解している鉄ばかりでなく、溶解することなく固体(粉体等)として原料液中に存在する鉄を含めた濃度であることを意味する。原料液中に存在する鉄系粉末であっても、ポリ硫酸第二鉄溶液の製造反応に寄与するので、原料液中に溶解していない鉄系成分も鉄の濃度に含めることが合理的である。
しかし、本発明で製造したポリ硫酸第二鉄溶液でも、全鉄濃度で濃度表示をするが、鉄はすべて溶解していることは当然のことである。
本発明は、これらの課題を解決すべくなされたもので、従来品と比較して、全鉄濃度が高いポリ硫酸第二鉄溶液を連続的に製造することができる製造方法を提供することにある。本発明では、反応容器を用いて加圧しつつ連続的に製造することにより、高濃度のポリ硫酸第二鉄溶液を低いコストで提供することを目的とする。
これらの課題を解決するため、本発明は、次の技術的手段から構成されるものである。
(1)硫酸第一鉄、硫酸及び酸素ガスを原料とし、次の条件を満たす硫酸第一鉄と硫酸を含む原料液と酸素ガスを連続的に反応容器中に供給し、高温高圧で反応を行なわせて生成したポリ硫酸第二鉄溶液を連続的に反応容器から取り出すことを特徴とする、ポリ硫酸第二鉄溶液を含有する鉄系凝集剤の連続的製造方法。
全鉄と硫酸イオンのモル比(SO4 2-/T-Fe)が1.2以上
硫酸イオンの重量濃度を[SO4 2-] としたときに、[SO4 2-]が35重量%以下
(2)触媒として、硝酸又は亜硝酸塩を反応容器中にさらに加えることを特徴とする(1)の鉄系凝集剤の連続的製造方法。
(3)高温高圧の反応条件が、100℃以上、0.3MPa以上であることを特徴とする(1)又は(2)の鉄系凝集剤の連続的製造方法。
(4)反応容器内に9リットルのポリ硫酸第二鉄溶液を充填し、反応容器内へ供給する硫酸第一鉄と硫酸を含む原料液を55~70℃に加熱することを特徴とする(1)~(3)のいずれかの鉄系凝集剤の連続的製造方法。
(5)滞留時間は10分以内であることを特徴とする(1)~(4)のいずれかに記載された鉄系凝集剤の連続的製造方法。
(6)反応容器内の温度を、反応を通じて100℃~150℃に保つことを特徴とする(1)~(5)のいずれかに記載された鉄系凝集剤の連続的製造方法。
(1)硫酸第一鉄、硫酸及び酸素ガスを原料とし、次の条件を満たす硫酸第一鉄と硫酸を含む原料液と酸素ガスを連続的に反応容器中に供給し、高温高圧で反応を行なわせて生成したポリ硫酸第二鉄溶液を連続的に反応容器から取り出すことを特徴とする、ポリ硫酸第二鉄溶液を含有する鉄系凝集剤の連続的製造方法。
全鉄と硫酸イオンのモル比(SO4 2-/T-Fe)が1.2以上
硫酸イオンの重量濃度を[SO4 2-] としたときに、[SO4 2-]が35重量%以下
(2)触媒として、硝酸又は亜硝酸塩を反応容器中にさらに加えることを特徴とする(1)の鉄系凝集剤の連続的製造方法。
(3)高温高圧の反応条件が、100℃以上、0.3MPa以上であることを特徴とする(1)又は(2)の鉄系凝集剤の連続的製造方法。
(4)反応容器内に9リットルのポリ硫酸第二鉄溶液を充填し、反応容器内へ供給する硫酸第一鉄と硫酸を含む原料液を55~70℃に加熱することを特徴とする(1)~(3)のいずれかの鉄系凝集剤の連続的製造方法。
(5)滞留時間は10分以内であることを特徴とする(1)~(4)のいずれかに記載された鉄系凝集剤の連続的製造方法。
(6)反応容器内の温度を、反応を通じて100℃~150℃に保つことを特徴とする(1)~(5)のいずれかに記載された鉄系凝集剤の連続的製造方法。
本発明の超高濃度鉄系凝集剤は、本発明の出願人が市販している高濃度の鉄系凝集剤に比較しても高濃度である点に特徴があり、高い凝集能力と脱水性を有している。また、通常品に比較して含有水分が少ないことから、製品輸送コストを低減することができる。
また、本発明の鉄系凝集剤の製造方法によれば、従来の方法では10時間以上の時間を要していた製造時間を大幅に短縮して連続生産することができ、鉄系凝集剤の効率的な製造を行なうことができる。
また、本発明の鉄系凝集剤の製造方法によれば、従来の方法では10時間以上の時間を要していた製造時間を大幅に短縮して連続生産することができ、鉄系凝集剤の効率的な製造を行なうことができる。
ここで、本発明に係る鉄系凝集剤の製造方法の技術的特徴について説明する前に、まず、無機系凝集剤について説明する。
一般に、下水汚泥処理においては、汚泥中の懸濁粒子やコロイド状粒子を凝集剤で凝集させて脱水処理して固液分離することが行われている。下水汚泥中の懸濁粒子やコロイド状粒子は、その表面が通常は負に帯電しており、表面電荷による反発力と水和により安定状態にある。凝集剤はこれらの粒子表面に吸着して表面電荷を中和し、粒子間の反発力を弱めることにより凝集させる作用を持つ薬剤である。
一般に、下水汚泥処理においては、汚泥中の懸濁粒子やコロイド状粒子を凝集剤で凝集させて脱水処理して固液分離することが行われている。下水汚泥中の懸濁粒子やコロイド状粒子は、その表面が通常は負に帯電しており、表面電荷による反発力と水和により安定状態にある。凝集剤はこれらの粒子表面に吸着して表面電荷を中和し、粒子間の反発力を弱めることにより凝集させる作用を持つ薬剤である。
鉄系凝集剤は代表的な無機系凝集剤で、正に帯電した鉄イオンが懸濁粒子やコロイド状粒子等の懸濁物質の表面の負の電荷を中和して凝集作用を行っている。このため、鉄系凝集剤は鉄イオンが存在すれば必ず凝集作用を有するが、鉄イオン濃度が高ければ懸濁物質の凝集能力が高まるため、凝集剤の添加量は少なくてすむことになる。
また、凝集剤中の鉄イオンが安定的に存在するためには、ある程度の量の負イオンが存在しなければならない。鉄系凝集剤の場合には、通常は硫酸イオンがこの役割を担っている。負イオンが鉄イオン量と適切なモル比の関係にあれば鉄系凝集剤は安定するが、負イオン量が過剰な場合や不足する場合には不安定になり、結晶等として析出してしまう。
また、凝集剤中の鉄イオンが安定的に存在するためには、ある程度の量の負イオンが存在しなければならない。鉄系凝集剤の場合には、通常は硫酸イオンがこの役割を担っている。負イオンが鉄イオン量と適切なモル比の関係にあれば鉄系凝集剤は安定するが、負イオン量が過剰な場合や不足する場合には不安定になり、結晶等として析出してしまう。
また、このような鉄系凝集剤を用いて下水汚泥の処理を行った場合、鉄イオンは懸濁粒子やコロイド状粒子表面に吸着されて固形分として分離回収されるが、硫酸イオンは被処理水中に残留してしまう。
このため、被処理水は強度の酸性となるので、これを河川に放流するためには多量の中和剤で中和する必要があり、これが下水汚泥処理のコストを上げる要因の一つであるといわれている。すなわち、鉄系凝集剤に求められる特徴として、凝集剤中に含まれる全鉄濃度([T-Fe])が高く、硫酸イオン濃度([SO4 2-])が低いことが求められていた。
このため、被処理水は強度の酸性となるので、これを河川に放流するためには多量の中和剤で中和する必要があり、これが下水汚泥処理のコストを上げる要因の一つであるといわれている。すなわち、鉄系凝集剤に求められる特徴として、凝集剤中に含まれる全鉄濃度([T-Fe])が高く、硫酸イオン濃度([SO4 2-])が低いことが求められていた。
(使用する原料)
硫酸第1鉄を原料とするポリ硫酸第二鉄溶液の製造においては、次の化学反応が進行していると考えられている。
m[2FeSO4+(1-n/2)H2SO4+1/2O2+(n-1)H2O]
→ 〔Fe2(OH)n(SO4)3-n/2 〕m
但し0<n≦2、mは自然数
本発明は、上記したポリ硫酸第二鉄溶液からなる鉄系凝集剤について、[T-Fe]が高い溶液を連続的に形成する方法及びこれにより製造された鉄系凝集剤を提供するものである。
硫酸第1鉄を原料とするポリ硫酸第二鉄溶液の製造においては、次の化学反応が進行していると考えられている。
m[2FeSO4+(1-n/2)H2SO4+1/2O2+(n-1)H2O]
→ 〔Fe2(OH)n(SO4)3-n/2 〕m
但し0<n≦2、mは自然数
本発明は、上記したポリ硫酸第二鉄溶液からなる鉄系凝集剤について、[T-Fe]が高い溶液を連続的に形成する方法及びこれにより製造された鉄系凝集剤を提供するものである。
本発明においては、まず第1に、原料として硫酸第一鉄(FeSO4)と硫酸を含む原料液と酸素ガスを用い、高温高圧条件下で酸化反応を行なうにあたり、投入する原料液の全鉄濃度と硫酸イオン濃度との関係を特定の範囲のものに設定する。本発明は、全鉄と硫酸イオンのモル比(SO4
2-/T-Fe)が特定値以上で、[SO4
2-]が特定値以下のものとすることにより、従来技術からは予測のできない連続的製造を行うことができ、さらに、製造されたポリ硫酸第二鉄溶液は従来技術では製造できない超高濃度の全鉄濃度([T-Fe])のものを製造できる、という格別に顕著な効果を達成するものである。
すなわち、本発明においては、次の条件を満たす硫酸第一鉄と硫酸を含む原料液と酸素ガスを高温高圧下で反応させることを第1の特徴とするものである。
全鉄と硫酸イオンのモル比(SO4 2-/T-Fe)が1.2以上
硫酸イオンの重量濃度を[SO4 2-] としたときに、[SO4 2-]が35重量%以下
硫酸第一鉄の全鉄濃度と硫酸イオン濃度とがこのような関係にあるとき、殿物を発生させることなく、短時間で超高濃度のポリ硫酸第二鉄溶液を得ることができることは、本発明者らにより見出された新たな知見である。
全鉄と硫酸イオンのモル比(SO4 2-/T-Fe)が1.2以上
硫酸イオンの重量濃度を[SO4 2-] としたときに、[SO4 2-]が35重量%以下
硫酸第一鉄の全鉄濃度と硫酸イオン濃度とがこのような関係にあるとき、殿物を発生させることなく、短時間で超高濃度のポリ硫酸第二鉄溶液を得ることができることは、本発明者らにより見出された新たな知見である。
この領域は次のような実験により設定したものである。
本発明の発明者らは、高温高圧の反応条件として、(1)反応温度を110℃、反応圧力を0.3MPa、反応時間を10分、(2)反応温度を120℃、反応圧力を10MPa、反応時間を10分と設定して、硫酸第一鉄及び硫酸を含む原料液を種々の濃度となるように調整した。これに触媒として硝酸を添加し、バッチ式で高温高圧反応をおこなった。そして、反応時間経過後に殿物が発生するか否かを検討した。
本発明の発明者らは、高温高圧の反応条件として、(1)反応温度を110℃、反応圧力を0.3MPa、反応時間を10分、(2)反応温度を120℃、反応圧力を10MPa、反応時間を10分と設定して、硫酸第一鉄及び硫酸を含む原料液を種々の濃度となるように調整した。これに触媒として硝酸を添加し、バッチ式で高温高圧反応をおこなった。そして、反応時間経過後に殿物が発生するか否かを検討した。
その結果を下記の表にまとめる。上記(1)、(2)のいずれの条件でおこなった場合でも同じ結果となることが判明した。すなわち、表1で示す全鉄濃度[T-Fe]と全硫酸濃度[SO4
2-]の場合には、殿物が形成されずにポリ硫酸第二鉄溶液が形成され、表2で示す場合には殿物の発生が確認された。
(特定領域)
これらの結果をまとめたものを図1に示す。図中○印で占められた領域は、殿物が形成されずにポリ硫酸第二鉄溶液が形成された領域である。これは、本発明で規定する領域で、以下では「特定領域」という。この特定領域に含まれる白○印が示す[T-Fe]、[SO4 2-]が、本発明における連続的製造において安定的にポリ硫酸第二鉄溶液が製造できる原料組成である。この組成物を高温高圧条件下で反応させることにより、ポリ硫酸第二鉄の赤褐色の溶液を得ることができる。
一方、特定領域の外側にある▲印が示す原料組成を用いて、高温高圧下で反応を行なわせた場合には、いずれも殿物の発生が確認されており、鉄と硫酸イオンのモル比(SO4 2-/T-Fe)が1.2より低い領域のサンプルでは、殿物はハイドロニウムジャロサイトであることが確認されている。
これらの結果をまとめたものを図1に示す。図中○印で占められた領域は、殿物が形成されずにポリ硫酸第二鉄溶液が形成された領域である。これは、本発明で規定する領域で、以下では「特定領域」という。この特定領域に含まれる白○印が示す[T-Fe]、[SO4 2-]が、本発明における連続的製造において安定的にポリ硫酸第二鉄溶液が製造できる原料組成である。この組成物を高温高圧条件下で反応させることにより、ポリ硫酸第二鉄の赤褐色の溶液を得ることができる。
一方、特定領域の外側にある▲印が示す原料組成を用いて、高温高圧下で反応を行なわせた場合には、いずれも殿物の発生が確認されており、鉄と硫酸イオンのモル比(SO4 2-/T-Fe)が1.2より低い領域のサンプルでは、殿物はハイドロニウムジャロサイトであることが確認されている。
本発明者らは、この特定領域を次の2つ観点から特定することとした。
まず、この領域の上限は、硫酸イオンの重量濃度[SO4 2-]が35重量%以下と設定することができる。
次に、この領域の下限は、右肩上がりの斜めの直線で規定できる。この斜めの直線は、全鉄と硫酸イオンのモル比(SO4 2-/T-Fe)が1.2以上となる関係を示す直線を、縦軸と横軸が硫酸イオンの重量濃度と全鉄の重量濃度である図に換算して書き込んだものである。
本発明で特定する上記の[T-Fe]と [SO4 2-]の原料組成に関する特定領域は、高温高圧条件下でポリ硫酸第二鉄溶液の生成を短時間で安定的に行うことができる領域を示しているといえる。
まず、この領域の上限は、硫酸イオンの重量濃度[SO4 2-]が35重量%以下と設定することができる。
次に、この領域の下限は、右肩上がりの斜めの直線で規定できる。この斜めの直線は、全鉄と硫酸イオンのモル比(SO4 2-/T-Fe)が1.2以上となる関係を示す直線を、縦軸と横軸が硫酸イオンの重量濃度と全鉄の重量濃度である図に換算して書き込んだものである。
本発明で特定する上記の[T-Fe]と [SO4 2-]の原料組成に関する特定領域は、高温高圧条件下でポリ硫酸第二鉄溶液の生成を短時間で安定的に行うことができる領域を示しているといえる。
(連続製造)
本発明の第2の特徴は、ポリ硫酸第二鉄溶液の製造を連続的に行うことである。
上記図1に示す特定領域は、オートクレーブを用いた高温高圧反応をバッチ式で行った結果であるが、同様に高温高圧条件下で反応をおこなうため、本発明の連続式の製造においても原料組成の調整に適用できる領域である。上記特定領域の原料を使用して高温高圧条件下で酸化反応を行なうことにより、ポリ硫酸第二鉄溶液を短時間で製造できることが明らかとなったので、本発明者らは、バッチ式から連続的に移行すべく、連続的製造をおこなう製造条件を検討した。
ポリ硫酸第二鉄の製造反応は、原料として硫酸第一鉄(FeSO4)を用いて高温高圧条件下で酸化反応を行なうので、これを連続製造する場合には、いくつかの条件を調整する必要がある。
本発明の第2の特徴は、ポリ硫酸第二鉄溶液の製造を連続的に行うことである。
上記図1に示す特定領域は、オートクレーブを用いた高温高圧反応をバッチ式で行った結果であるが、同様に高温高圧条件下で反応をおこなうため、本発明の連続式の製造においても原料組成の調整に適用できる領域である。上記特定領域の原料を使用して高温高圧条件下で酸化反応を行なうことにより、ポリ硫酸第二鉄溶液を短時間で製造できることが明らかとなったので、本発明者らは、バッチ式から連続的に移行すべく、連続的製造をおこなう製造条件を検討した。
ポリ硫酸第二鉄の製造反応は、原料として硫酸第一鉄(FeSO4)を用いて高温高圧条件下で酸化反応を行なうので、これを連続製造する場合には、いくつかの条件を調整する必要がある。
(製造条件の設定)
まず、この反応は、原料である硫酸第一鉄の溶解反応と二価の鉄イオンの酸化反応による発熱が伴う反応であるので、連続反応を行う場合には反応容器内の温度管理が必要になる。また、反応容器内に投入する原料の投入速度と反応生成物であるポリ硫酸第二鉄溶液の取り出し速度を調整することにより、反応容器内でポリ硫酸第二鉄の生成のために十分な反応時間を確保する必要がある。
本発明者らは、これらの反応条件を調整することにより、従来では考えられなかったポリ硫酸第二鉄溶液の連続製造に成功することができた。
まず、この反応は、原料である硫酸第一鉄の溶解反応と二価の鉄イオンの酸化反応による発熱が伴う反応であるので、連続反応を行う場合には反応容器内の温度管理が必要になる。また、反応容器内に投入する原料の投入速度と反応生成物であるポリ硫酸第二鉄溶液の取り出し速度を調整することにより、反応容器内でポリ硫酸第二鉄の生成のために十分な反応時間を確保する必要がある。
本発明者らは、これらの反応条件を調整することにより、従来では考えられなかったポリ硫酸第二鉄溶液の連続製造に成功することができた。
(製造方法のフロー)
図2に本発明で採用する高濃度ポリ硫酸第二鉄の連続式製造方法のフローを示す。反応容器はスタートアップ用の加熱装置を備えている。
この反応容器に原料を供給する装置が接続されており、水、硫酸鉄、硫酸、及び酸素が供給され、必要に応じて触媒が供給される。製造されたポリ硫酸第二鉄溶液は、製品タンクに貯蔵される。
図2に本発明で採用する高濃度ポリ硫酸第二鉄の連続式製造方法のフローを示す。反応容器はスタートアップ用の加熱装置を備えている。
この反応容器に原料を供給する装置が接続されており、水、硫酸鉄、硫酸、及び酸素が供給され、必要に応じて触媒が供給される。製造されたポリ硫酸第二鉄溶液は、製品タンクに貯蔵される。
(投入原料)
原料としては、硫酸第一鉄と硫酸を含む原料液、および酸素ガスが供給される。バッチ式では酸素ガスの供給は不要であるが、連続式では酸素は反応に消費されるので継続的に反応容器内に供給する必要がある。また、必要に応じて、触媒として硝酸を投入してもよい。
反応容器内には、あらかじめ加熱した最終生成物であるポリ硫酸第二鉄を充填しておき、連続製造を開始する際に高温高圧状態にし、これらの原料を加熱して反応容器内に一定流量で投入する。それと同時に、一定流量で反応生成物であるポリ硫酸第二鉄溶液を抜き出す。
原料としては、硫酸第一鉄と硫酸を含む原料液、および酸素ガスが供給される。バッチ式では酸素ガスの供給は不要であるが、連続式では酸素は反応に消費されるので継続的に反応容器内に供給する必要がある。また、必要に応じて、触媒として硝酸を投入してもよい。
反応容器内には、あらかじめ加熱した最終生成物であるポリ硫酸第二鉄を充填しておき、連続製造を開始する際に高温高圧状態にし、これらの原料を加熱して反応容器内に一定流量で投入する。それと同時に、一定流量で反応生成物であるポリ硫酸第二鉄溶液を抜き出す。
前記したポリ硫酸第二鉄溶液の生成反応を促進するために、触媒を使用することが好ましい。反応を促進するために好ましい触媒としては、硝酸、亜硝酸塩が挙げられ、亜硝酸塩としては亜硝酸のナトリウム塩やカリウム塩がある。反応を促進する機能やコストの面からは、硝酸が好ましい。
(反応温度)
反応容器内の温度は100~150℃の範囲に調整することが必要である。
反応温度が100℃に満たないと硫酸第一鉄の酸化反応が十分に進行しないし、150℃を超えると黄色の殿物が残存することが確認されており、この殿物はX線分析によりFe(OH)SO4であることが判明している。そこで、反応容器内の温度は110℃~130℃の範囲となるように調整することが好ましく、更に115℃~125℃の範囲に調整することが好ましい。
また、反応によって発生する熱を利用して投入する原料をあらかじめ加熱することにより、反応熱を回収して低コストでポリ硫酸第二鉄を製造することができる。
反応容器内の温度は100~150℃の範囲に調整することが必要である。
反応温度が100℃に満たないと硫酸第一鉄の酸化反応が十分に進行しないし、150℃を超えると黄色の殿物が残存することが確認されており、この殿物はX線分析によりFe(OH)SO4であることが判明している。そこで、反応容器内の温度は110℃~130℃の範囲となるように調整することが好ましく、更に115℃~125℃の範囲に調整することが好ましい。
また、反応によって発生する熱を利用して投入する原料をあらかじめ加熱することにより、反応熱を回収して低コストでポリ硫酸第二鉄を製造することができる。
(圧力)
反応容器内の圧力は0.3MPa以上であることが必要である。
本発明の鉄系凝集剤の製造方法では、固体原料である硫酸第一鉄(FeSO4・7H2O)が硫酸中に溶解して酸化することにより反応が進むため、高温の条件であることにより、硫酸第一鉄の溶解が進み、高圧の条件により酸素分圧が上昇して酸化反応が促進される。このため、理論的にはより高圧であることが、反応促進という観点からは好ましい。
反応容器内の圧力は0.3MPa以上であることが必要である。
本発明の鉄系凝集剤の製造方法では、固体原料である硫酸第一鉄(FeSO4・7H2O)が硫酸中に溶解して酸化することにより反応が進むため、高温の条件であることにより、硫酸第一鉄の溶解が進み、高圧の条件により酸素分圧が上昇して酸化反応が促進される。このため、理論的にはより高圧であることが、反応促進という観点からは好ましい。
しかし、工業生産という観点からは低圧であることが好ましいのは当然のことである。本発明においては、圧力の下限を0.3MPaと設定した。これより低圧で反応を行うと、溶液の酸化反応が抑制され、正常の反応条件が崩れてしまい、安定的に連続運転を行うことができない。また、反応容器内の圧力を5.0MPa程度とすることで、ポリ硫酸第二鉄の製造効率を格段に向上することができる。
(滞留時間)
連続的なポリ硫酸第二鉄溶液の製造では、反応容器内へ投入される原料液および別途供給される酸素ガスが反応容器内で化学反応を行い、ポリ硫酸第二鉄溶液として反応容器から取り出されるまでの時間(ここではこの時間を滞留時間と表記する)が重要になる。
本発明においては、滞留時間を次のように定義する。すなわち、製造反応を開始する前にあらかじめ反応容器内に充填した液量をM [L]、原料液の投入量および反応液の抜出量をQ [L/min]とすると、滞留時間 t [min]は次の式であらわされる。
t = M/Q
連続的なポリ硫酸第二鉄溶液の製造では、反応容器内へ投入される原料液および別途供給される酸素ガスが反応容器内で化学反応を行い、ポリ硫酸第二鉄溶液として反応容器から取り出されるまでの時間(ここではこの時間を滞留時間と表記する)が重要になる。
本発明においては、滞留時間を次のように定義する。すなわち、製造反応を開始する前にあらかじめ反応容器内に充填した液量をM [L]、原料液の投入量および反応液の抜出量をQ [L/min]とすると、滞留時間 t [min]は次の式であらわされる。
t = M/Q
バッチ式の製造の場合には、投入した原料の酸化反応が終了するまで反応容器内にとどめておけばよい。しかし、連続式の場合には、反応が終了するまでに長時間を要する場合には、原料液の投入と反応生成物の取り出しが連続的に行われるので、反応容器を大型化したり、原料投入と製品取り出し速度を遅くするといった手段を取ることが必要になる。
このため、適切な滞留時間を確保することが、工業的な連続的な製造を可能とするためには大きな問題である。一方で、製造を効率的に行うためには、反応容器内の滞留時間が短いほうが好ましいことは当然のことである。
特にポリ硫酸第二鉄溶液の製造では、従来技術では、反応を終結するまでに最低でも数時間かかっていたため、これを連続的に製造することは、従来技術では考えられないことであった。
このため、適切な滞留時間を確保することが、工業的な連続的な製造を可能とするためには大きな問題である。一方で、製造を効率的に行うためには、反応容器内の滞留時間が短いほうが好ましいことは当然のことである。
特にポリ硫酸第二鉄溶液の製造では、従来技術では、反応を終結するまでに最低でも数時間かかっていたため、これを連続的に製造することは、従来技術では考えられないことであった。
本発明者らは、上記したように、原料液として硫酸第一鉄と硫酸を用い、高温高圧の条件下で反応させることにより、バッチ式での反応時間を大幅に短縮することに成功した。しかし、その場合でも、原料液の全鉄濃度が13%未満の場合で10分以内、原料液の全鉄濃度が13%~16%の高濃度の場合には30分以内の反応時間が必要であった。
しかし、驚くべきことに、ポリ硫酸第二鉄溶液の製造をバッチ式から連続的に製造に移行することにより、20リットル容量の反応容器を用いた場合でも、反応に必要な時間、すなわち、滞留時間は、反応圧力が0.3MPa及び5.0MPaの圧力条件で反応させた場合に、約8分で済むことが実験的に確認された。
しかし、驚くべきことに、ポリ硫酸第二鉄溶液の製造をバッチ式から連続的に製造に移行することにより、20リットル容量の反応容器を用いた場合でも、反応に必要な時間、すなわち、滞留時間は、反応圧力が0.3MPa及び5.0MPaの圧力条件で反応させた場合に、約8分で済むことが実験的に確認された。
ポリ硫酸第二鉄溶液の連続式製造を行うことで反応時間(滞留時間)が短縮されることについて、理論的な解明はなされていないが、本発明者らは次のような機序によるのではないかと考えている。しかし、本発明の技術的内容は、以下の推定に基づいて解釈されるべきものではない。
すなわち、連続的な製造においては、硫酸第一鉄と硫酸を含む原料液は、触媒とともに、反応に必要な高温高圧に維持されたポリ硫酸第二鉄溶液中に投入され、ポリ硫酸第二鉄溶液中で反応が開始するため、原料液のみの環境から反応を開始するバッチ式に比較して反応が促進されるのではないかと考えられる。
すなわち、連続的な製造においては、硫酸第一鉄と硫酸を含む原料液は、触媒とともに、反応に必要な高温高圧に維持されたポリ硫酸第二鉄溶液中に投入され、ポリ硫酸第二鉄溶液中で反応が開始するため、原料液のみの環境から反応を開始するバッチ式に比較して反応が促進されるのではないかと考えられる。
なお、硫酸第一鉄の酸化反応を促進するための各種手段を講じることにより、滞留時間がさらに短縮される可能性があることは、技術的には当然のことである。たとえば、より厳しい高温高圧条件、活性の高い触媒、効率的な撹拌方法等を採用すれば、滞留時間を短縮できると考えられる。工業的な操業上の経済性を考慮すれば、滞留時間は10分以内であることが好ましい。
また、より大きな反応容器を使用する、あるいは、原料の投入と製品の取り出しを低流量でおこなう等、経済性を度外視することで、滞留時間を長時間に設定した場合でも、ポリ硫酸第二鉄の連続的な製造が可能であることはいうまでもないことである。
また、より大きな反応容器を使用する、あるいは、原料の投入と製品の取り出しを低流量でおこなう等、経済性を度外視することで、滞留時間を長時間に設定した場合でも、ポリ硫酸第二鉄の連続的な製造が可能であることはいうまでもないことである。
バッチ式による従来法は、本出願の出願人が特許文献1に提案した従来のポリ硫酸第二鉄溶液の製造方法である。バッチ式では、原料投入、酸化反応、製品の取り出しの工程を順次実施する必要があるため、製造のために長時間かける必要があった。具体的には、月に1000トンのポリ硫酸第二鉄溶液を製造するためには、容量が45m3の大型の反応容器を用い、一日12時間の操業を20日間続けなければならなかった。
しかし、本発明による連続的な製造方法によれば、上記の製造工程を同時に進行させることができるので、製造時間の短縮化、製造量の増加、反応容器の小型化を実現することができる。
具体的には、従来法で用いた反応容器の約1/10程度の容量にあたる0.6m3の容器を用いて、24時間連続操業を行えば、20日間で従来法の3倍もの量のポリ硫酸第二鉄溶液を製造することができる。さらに反応容器を0.2m3の容量に小型化しても、従来法と同等の量のポリ硫酸第二鉄溶液を製造することができる。
このような効果は、工場生産において計り知れない経済的な利益をもたらすものである。
具体的には、従来法で用いた反応容器の約1/10程度の容量にあたる0.6m3の容器を用いて、24時間連続操業を行えば、20日間で従来法の3倍もの量のポリ硫酸第二鉄溶液を製造することができる。さらに反応容器を0.2m3の容量に小型化しても、従来法と同等の量のポリ硫酸第二鉄溶液を製造することができる。
このような効果は、工場生産において計り知れない経済的な利益をもたらすものである。
以下に、本発明の実施例をまとめる。しかし、本発明は、これらの実施例に限定されるものではない。
20リットル容量のオートクレーブ内に9リットルのポリ硫酸第二鉄溶液を充填し、容器内の温度を120℃、圧力を0.3MPaに調整した。充填したポリ硫酸第二鉄溶液は、下記表4の経過時間0分における全鉄濃度[T-Fe]と硫酸イオン濃度[SO4
2-]を有するものである。
これに、60℃に加熱した硫酸第一鉄、硫酸、亜硝酸ナトリウムおよび酸素ガスを投入した。投入した硫酸第一鉄と硫酸を含む原料液の全鉄濃度[T-Fe]と硫酸イオン濃度[SO4 2-]は、それぞれ12.7重量%と32.5重量%であった。また、全鉄と硫酸イオンのモル比(SO4 2-/T-Fe)は1.49であった。
硫酸第一鉄と硫酸を含む原料液の投入は毎分1.2リットルとした。原料液を投入することによりポリ硫酸第二鉄の生成反応が開始し、反応容器内の温度は上昇するが、冷却操作をすることにより容器内の温度は110~130℃の範囲に保たれた。反応生成物の抜き出しは毎分1.2リットルで行った。反応容器内の9リットルのポリ硫酸第二鉄溶液に対し、毎分1.2リットルの原料液を投入したので、滞留時間は8分であった。
反応容器から抜き出した生成物溶液を定期的に化学分析し、二価鉄の数値を確認したところ、ポリ硫酸第二鉄が生成していることが確認できた。
これに、60℃に加熱した硫酸第一鉄、硫酸、亜硝酸ナトリウムおよび酸素ガスを投入した。投入した硫酸第一鉄と硫酸を含む原料液の全鉄濃度[T-Fe]と硫酸イオン濃度[SO4 2-]は、それぞれ12.7重量%と32.5重量%であった。また、全鉄と硫酸イオンのモル比(SO4 2-/T-Fe)は1.49であった。
硫酸第一鉄と硫酸を含む原料液の投入は毎分1.2リットルとした。原料液を投入することによりポリ硫酸第二鉄の生成反応が開始し、反応容器内の温度は上昇するが、冷却操作をすることにより容器内の温度は110~130℃の範囲に保たれた。反応生成物の抜き出しは毎分1.2リットルで行った。反応容器内の9リットルのポリ硫酸第二鉄溶液に対し、毎分1.2リットルの原料液を投入したので、滞留時間は8分であった。
反応容器から抜き出した生成物溶液を定期的に化学分析し、二価鉄の数値を確認したところ、ポリ硫酸第二鉄が生成していることが確認できた。
反応容器内の圧力を5.0MPaに調整した以外は、投入する原料の組成、原料の投入速度、反応生成物の抜き出し速度、滞留時間等において、実施例1と同じ条件で反応を行なった。
実施例1と同様に、反応生成物を定期的にサンプリングして抽出し、化学分析を行った。実施例1と同様に、ポリ硫酸第二鉄が生成していることを確認した。
実施例1と同様に、反応生成物を定期的にサンプリングして抽出し、化学分析を行った。実施例1と同様に、ポリ硫酸第二鉄が生成していることを確認した。
表4から明らかなように、反応開始から約100分間にわたって全鉄濃度が12.5%以上の高濃度のポリ硫酸第二鉄溶液を安定的に製造することができた。また、Fe2+濃度が検出限界以下であったので、未反応の残存物はないことが確認できた。
実施例2では、実験結果の安全を考慮して、原料の投入速度、反応生成物の抜き出し速度、滞留時間等の条件を実施例1と同じ条件とした。しかし、反応容器内の圧力が実施例1に比較して圧倒的に高いため、原料投入と反応生成物抜き出しの速度を上げて反応容器内の滞留時間を短縮することは可能である。そうすれば、ポリ硫酸第二鉄の製造効率を格段に向上することができると考えられる。
実施例2では、実験結果の安全を考慮して、原料の投入速度、反応生成物の抜き出し速度、滞留時間等の条件を実施例1と同じ条件とした。しかし、反応容器内の圧力が実施例1に比較して圧倒的に高いため、原料投入と反応生成物抜き出しの速度を上げて反応容器内の滞留時間を短縮することは可能である。そうすれば、ポリ硫酸第二鉄の製造効率を格段に向上することができると考えられる。
下水等の廃水処理において利用する凝集剤に関し、凝集性能の高い凝集剤を短時間で製造できるので、排水処理の分野において広く利用することができる。
Claims (6)
- 硫酸第一鉄、硫酸及び酸素ガスを原料とし、次の条件を満たす硫酸第一鉄と硫酸を含む原料液と酸素ガスを反応容器中に供給し、高温高圧で反応を行なわせて生成したポリ硫酸第二鉄を連続的に反応容器から取り出すことを特徴とする、ポリ硫酸第二鉄溶液を含有する鉄系凝集剤の連続的製造方法。
全鉄と硫酸イオンのモル比(SO4 2-/T-Fe)が1.2以上
硫酸イオンの重量濃度を[SO4 2-] としたときに、[SO4 2-]が35重量%以下 - 触媒として、硝酸又は亜硝酸塩を反応容器中にさらに加えることを特徴とする請求項1の鉄系凝集剤の連続的製造方法。
- 高温高圧の反応条件が、100℃以上、0.3MPa以上であることを特徴とする請求項1~2のいずれかに記載された鉄系凝集剤の連続的製造方法。
- 反応容器内に9リットルのポリ硫酸第二鉄溶液を充填し、反応容器内に供給する硫酸第一鉄と硫酸を含む原料液を55~70℃に加熱することを特徴とする請求項1~3のいずれかに記載された鉄系凝集剤の連続的製造方法。
- 滞留時間は10分以内であることを特徴とする請求項1~4のいずれかに記載された鉄系凝集剤の連続的製造方法。
- 反応容器内の温度を、反応を通じて100℃~150℃に保つことを特徴とする請求項1~5のいずれかに記載された鉄系凝集剤の連続的製造方法。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020227014860A KR20220086592A (ko) | 2019-10-29 | 2020-09-25 | 고농도 철계 응집제와 그 제조 방법 |
CN202080076339.3A CN114630810A (zh) | 2019-10-29 | 2020-09-25 | 高浓度铁系絮凝剂及其生产方法 |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019-195754 | 2019-10-29 | ||
JP2019195754 | 2019-10-29 | ||
JP2019-233622 | 2019-12-25 | ||
JP2019233622A JP7333262B2 (ja) | 2019-10-29 | 2019-12-25 | 高濃度鉄系凝集剤とその製造方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021084986A1 true WO2021084986A1 (ja) | 2021-05-06 |
Family
ID=75712003
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/036338 WO2021084986A1 (ja) | 2019-10-29 | 2020-09-25 | 高濃度鉄系凝集剤とその製造方法 |
Country Status (4)
Country | Link |
---|---|
JP (1) | JP7333262B2 (ja) |
KR (1) | KR20220086592A (ja) |
CN (1) | CN114630810A (ja) |
WO (1) | WO2021084986A1 (ja) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7543977B2 (ja) | 2021-05-10 | 2024-09-03 | 株式会社Sumco | 研磨条件決定用相関関係式の作成方法、研磨条件の決定方法および半導体ウェーハの製造方法 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5766566A (en) * | 1994-02-03 | 1998-06-16 | Kemira Pigments Oy | Process for preparing ferric sulfate |
JP2003104728A (ja) * | 2001-09-28 | 2003-04-09 | Nittetsu Mining Co Ltd | 含鉄硫酸溶液の処理方法 |
CN104071853A (zh) * | 2014-07-17 | 2014-10-01 | 广西平果锋华科技有限公司 | 利用废硫酸和硫酸亚铁氧气加压生产聚合硫酸铁的方法 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2430798C3 (de) | 1974-06-24 | 1979-03-29 | Siemens Ag, 1000 Berlin Und 8000 Muenchen | Anordnung zur Erfassung von Erdschlüssen im Läuferkreis einer schleifringlos über umlaufende Gleichrichter erregten Synchronmaschine |
JP2741137B2 (ja) | 1992-07-29 | 1998-04-15 | 鶴見曹達株式会社 | 鉄系凝集剤の製造方法 |
JP3379204B2 (ja) | 1994-04-06 | 2003-02-24 | 王子製紙株式会社 | 鉄系無機凝集剤の製造方法 |
CN1109027A (zh) * | 1994-11-30 | 1995-09-27 | 华南理工大学 | 聚合硫酸铁的生产新工艺 |
JP2006182618A (ja) * | 2004-12-28 | 2006-07-13 | Nittetsu Mining Co Ltd | ポリ硫酸第2鉄を効率的に製造する方法 |
JP5472087B2 (ja) * | 2010-12-27 | 2014-04-16 | 八州家 三上 | ポリ硫酸第2鉄溶液及びその製造方法 |
CN104355336A (zh) * | 2014-10-17 | 2015-02-18 | 陕西华陆化工环保有限公司 | 利用硫酸亚铁废渣制备聚合硫酸铁的方法 |
JP6132965B1 (ja) * | 2016-07-12 | 2017-05-24 | 日鉄鉱業株式会社 | ポリ硫酸第二鉄の製造方法及び汚泥焼却炉用固結抑制剤 |
-
2019
- 2019-12-25 JP JP2019233622A patent/JP7333262B2/ja active Active
-
2020
- 2020-09-25 WO PCT/JP2020/036338 patent/WO2021084986A1/ja active Application Filing
- 2020-09-25 KR KR1020227014860A patent/KR20220086592A/ko unknown
- 2020-09-25 CN CN202080076339.3A patent/CN114630810A/zh active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5766566A (en) * | 1994-02-03 | 1998-06-16 | Kemira Pigments Oy | Process for preparing ferric sulfate |
JP2003104728A (ja) * | 2001-09-28 | 2003-04-09 | Nittetsu Mining Co Ltd | 含鉄硫酸溶液の処理方法 |
CN104071853A (zh) * | 2014-07-17 | 2014-10-01 | 广西平果锋华科技有限公司 | 利用废硫酸和硫酸亚铁氧气加压生产聚合硫酸铁的方法 |
Also Published As
Publication number | Publication date |
---|---|
JP2021070016A (ja) | 2021-05-06 |
KR20220086592A (ko) | 2022-06-23 |
CN114630810A (zh) | 2022-06-14 |
JP7333262B2 (ja) | 2023-08-24 |
TW202124286A (zh) | 2021-07-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5005225B2 (ja) | 弗素含有廃液の処理方法 | |
TWI507363B (zh) | Treatment of Copper Etching Waste | |
JP6511040B2 (ja) | 銅含有酸性廃液の処理方法及び銅含有酸性廃液からの銅の回収装置 | |
WO2018092396A1 (ja) | 硫酸、フッ素及び重金属イオン含有廃水の処理方法および処理装置 | |
CN105084589A (zh) | 湿式镁法脱硫废水的处理方法及系统 | |
CN109502655A (zh) | 一种聚合硫酸铁的生产工艺 | |
CN111018192A (zh) | 一种使用硫化钠固体沉淀亚铁溶液中重金属离子制取高纯亚铁的方法 | |
WO2021084986A1 (ja) | 高濃度鉄系凝集剤とその製造方法 | |
JP5790525B2 (ja) | 不純物除去方法 | |
JPS5834197B2 (ja) | ハイスイノシヨリホウ | |
CA2251480A1 (en) | Waste treatment of metal plating solutions | |
JP2017159194A (ja) | 重金属含有水の処理装置および処理方法 | |
JP6307276B2 (ja) | セレン含有水の処理装置およびセレン含有水の処理方法 | |
CN110615485A (zh) | 一种聚合氯化铁的连续生产方法及其应用 | |
JP5720722B2 (ja) | 難生物分解性有機物含有水の処理方法及び処理装置 | |
CN106396187B (zh) | 一种含氰废水处理和回用的方法 | |
CN104402102B (zh) | 一种印染废水强化预处理混凝剂及其制备方法 | |
WO2021065732A1 (ja) | 高濃度鉄系凝集剤とその製造方法 | |
JP5693992B2 (ja) | 多種金属イオン含有排水からの溶存鉄の回収方法 | |
KR100569649B1 (ko) | 난분해성 불소함유 폐수 처리 시스템 | |
CN115135607B (zh) | 高浓度铁系絮凝剂及其生产方法 | |
JP3018020B2 (ja) | クロム等を含む塩化鉄系廃液の浄液方法 | |
CN113526562B (zh) | 一种臭氧微气泡氧化法处理含砷烟尘制备臭葱石的方法 | |
JPH08309369A (ja) | セレン含有水の処理方法 | |
JPH07242426A (ja) | ステンレス鋼の硫酸酸洗廃液から高純度硫酸鉄を製造する方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20880359 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 20227014860 Country of ref document: KR Kind code of ref document: A |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20880359 Country of ref document: EP Kind code of ref document: A1 |