WO2021082310A1 - 一种具有美白功能的大米肽及其制备方法 - Google Patents

一种具有美白功能的大米肽及其制备方法 Download PDF

Info

Publication number
WO2021082310A1
WO2021082310A1 PCT/CN2020/076899 CN2020076899W WO2021082310A1 WO 2021082310 A1 WO2021082310 A1 WO 2021082310A1 CN 2020076899 W CN2020076899 W CN 2020076899W WO 2021082310 A1 WO2021082310 A1 WO 2021082310A1
Authority
WO
WIPO (PCT)
Prior art keywords
rice
peptide
content
enzymolysis
peptides
Prior art date
Application number
PCT/CN2020/076899
Other languages
English (en)
French (fr)
Inventor
蔡木易
谷瑞增
陈亮
马勇
张海欣
魏颖
刘艳
王雨晴
张瑞雪
马永庆
刘文颖
秦修远
Original Assignee
中国食品发酵工业研究院有限公司
颜如玉医药科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国食品发酵工业研究院有限公司, 颜如玉医药科技有限公司 filed Critical 中国食品发酵工业研究院有限公司
Priority to JP2022525163A priority Critical patent/JP7461470B2/ja
Publication of WO2021082310A1 publication Critical patent/WO2021082310A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/01Hydrolysed proteins; Derivatives thereof
    • A61K38/011Hydrolysed proteins; Derivatives thereof from plants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/01Hydrolysed proteins; Derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/04Peptides having up to 20 amino acids in a fully defined sequence; Derivatives thereof
    • A61K38/05Dipeptides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/64Proteins; Peptides; Derivatives or degradation products thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/64Proteins; Peptides; Derivatives or degradation products thereof
    • A61K8/645Proteins of vegetable origin; Derivatives or degradation products thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • A61P17/16Emollients or protectives, e.g. against radiation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • A61P17/18Antioxidants, e.g. antiradicals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P39/00General protective or antinoxious agents
    • A61P39/06Free radical scavengers or antioxidants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q19/00Preparations for care of the skin
    • A61Q19/02Preparations for care of the skin for chemically bleaching or whitening the skin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q19/00Preparations for care of the skin
    • A61Q19/08Anti-ageing preparations
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/14Extraction; Separation; Purification
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/14Extraction; Separation; Purification
    • C07K1/16Extraction; Separation; Purification by chromatography
    • C07K1/18Ion-exchange chromatography
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/14Extraction; Separation; Purification
    • C07K1/34Extraction; Separation; Purification by filtration, ultrafiltration or reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/14Extraction; Separation; Purification
    • C07K1/36Extraction; Separation; Purification by a combination of two or more processes of different types
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K5/00Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof
    • C07K5/04Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof containing only normal peptide links
    • C07K5/06Dipeptides
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P21/00Preparation of peptides or proteins
    • C12P21/06Preparation of peptides or proteins produced by the hydrolysis of a peptide bond, e.g. hydrolysate products
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2236/00Isolation or extraction methods of medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicine
    • A61K2236/10Preparation or pretreatment of starting material
    • A61K2236/19Preparation or pretreatment of starting material involving fermentation using yeast, bacteria or both; enzymatic treatment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2236/00Isolation or extraction methods of medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicine
    • A61K2236/30Extraction of the material
    • A61K2236/37Extraction at elevated pressure or temperature, e.g. pressurized solvent extraction [PSE], supercritical carbon dioxide extraction or subcritical water extraction
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K36/00Medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicines
    • A61K36/18Magnoliophyta (angiosperms)
    • A61K36/88Liliopsida (monocotyledons)
    • A61K36/899Poaceae or Gramineae (Grass family), e.g. bamboo, corn or sugar cane

Definitions

  • the invention relates to a rice peptide with whitening function, a preparation method and application thereof, and belongs to the technical field of rice deep processing.
  • Rice is very nutritious and is the main food for people in most parts of China. Rice is mainly composed of starch and protein, the content of which is about 80% and 8% respectively. Because the biological value of protein in rice is equivalent to that of soybeans, and the content of lysine and threonine is very rich, the protein is usually extracted by processing the rice.
  • Rice protein refers to the protein extracted from rice, which is powdered by crushing, purifying, drying and other processes. It has excellent nutritional quality and is recognized as a high-quality plant protein among gluten proteins.
  • albumin accounts for 2-5% of the total
  • globulin accounts for 2-10% of the total
  • prolamin accounts for 1-5% of the total
  • gluten accounts for more than 80% of the total.
  • rice protein not only has the characteristics of excellent nutritional value and high absorption and utilization rate of the human body, but also has the advantages of hypoallergenic, no pigment interference, soft taste and no irritation.
  • rice protein powder are used for enzymatic hydrolysis to produce polypeptide products, also called rice peptides, and various functions of rice peptides.
  • Some short peptides formed by cutting large protein molecules have been recognized as including different small peptides that are beneficial to the life activities of biological organisms or have physiological effects.
  • Some research reports have recorded that some short peptides in rice peptides have certain functions of human metabolism and physiological regulation, and can be directly absorbed in the intestines. As a result, rice peptides can be absorbed more easily and quickly than rice protein.
  • Rice peptides obtained by enzymatic hydrolysis of rice protein are a new direction for deep processing of rice.
  • the present invention provides a rice peptide with whitening function.
  • the rice peptide contains functional peptides of specific mass content, glycylserine (Gly-Ser, GS), glycylleucine (Gly-Leu, GL) and glycylphenylalanine (Gly-Phe, GF), so it can show good effects in scavenging free radicals and inhibiting the synthesis of melanin color.
  • the present invention also provides a method for preparing the above-mentioned rice peptide.
  • the product clearly contains glycylserine (Gly-Ser, GS) and glycylleucine with a specific mass content.
  • Acid Gly-Leu, GL
  • glycylphenylalanine Gly-Phe, GF
  • the invention also provides an application of the above-mentioned rice peptide in antioxidant products and whitening products.
  • the present invention provides a rice peptide.
  • the rice peptide composition at least includes peptides glycylserine GS, glycylleucine GL and glycylphenylalanine GF.
  • the mass content of GS is ⁇ 200.00mg/100g
  • the mass content of GL is ⁇ 200.00mg/100g
  • the mass content of GF is ⁇ 100.00mg. /100g.
  • the above-mentioned rice peptides also have the characteristics of small average molecular weight and easy absorption. Specifically, the mass content of peptides with a molecular weight of less than 1000 u in the rice peptides is ⁇ 90%.
  • the above-mentioned rice peptide is obtained by sequentially performing steam explosion treatment, enzymatic hydrolysis treatment, and separation and purification treatment on rice protein raw materials, such as rice protein powder; wherein, the enzymatic hydrolysis treatment is performed at 40-60° C., followed by pepsin , Papain and aminopeptidase for three-stage enzymatic hydrolysis.
  • the steam explosion treatment of the rice protein raw material is mixed with water to obtain a mixed solution, and then pepsin, papain and aminopeptidase are used in sequence to perform three-stage enzymatic hydrolysis of the mixed solution. Specifically, first use Pepsin performs the first enzymolysis to obtain the first enzymolysis solution, and then uses papain to perform the second enzymolysis on the first enzymolysis solution to obtain the second enzymolysis solution. Finally, aminopeptidase is added to the second enzymolysis solution. The third enzymolysis is performed, and after the enzyme is inactivated, the third enzymolysis solution is obtained.
  • the pH environment and temperature of the three enzymatic hydrolysis are determined by the optimal enzymatic conditions of the respective enzymes, and the time of the three enzymatic hydrolysis is controlled within 3h, for example, the first enzymatic hydrolysis time can be controlled to be 1.5-3h, and the second enzymatic hydrolysis time The time for the solution is 1-2h, and the time for the third enzymatic hydrolysis is 0.5-1h.
  • the above-mentioned enzyme inactivation operation can utilize the high temperature enzyme inactivation technology commonly used in this field.
  • the third enzymolysis solution is separated and purified to obtain the above-mentioned rice peptide.
  • the separation and purification treatment includes filtration purification and resin purification treatment in sequence, wherein the resin purification treatment includes sequentially using a cation exchange resin and an anion exchange resin for purification treatment.
  • hydrogen-type cation exchange resins can be used in the cation exchange resin, and the particle size is between 0.315-1.25 nm; the hydroxide-type anion exchange resins can be used in the anion exchange resin, and the particle size is between 0.315-1.25 nm.
  • the filtration treatment may be at least two stages of filtration treatment, wherein the first stage filtration treatment selects a relatively large pore size filter membrane, such as a filter membrane with a pore size of 50-200 nm, to remove insoluble solid particles;
  • the filtration treatment selects a nanofiltration membrane with a molecular weight cut-off of 2000-5000u to filter the filtrate obtained from the first stage filtration again to remove soluble macromolecular substances and further increase the content of target peptides.
  • the three peptides of GS, GL and GF in the enzymatic hydrolysis product can be retained. Subsequently, the separated and purified liquid product is concentrated and dried to obtain the desired rice peptide product, which contains at least the peptides GS, GL and GF.
  • the present invention also provides a preparation method of any one of the above-mentioned rice peptides, which comprises the following steps:
  • pepsin is added to perform the first enzymolysis, and after 1.5-3 hours, the first enzymolysis solution is obtained;
  • the third enzymolysis solution is filtered and purified with resin in sequence to obtain the rice peptide.
  • the raw material for preparing rice peptides in the present invention is any raw material that can provide rice protein, such as rice protein powder.
  • the present invention can select rice protein powder with a purity of 60-90% and a particle size of 60-200 mesh as rice protein powder. raw material.
  • the pretreatment in the present invention refers to steam explosion treatment of the rice protein raw material using steam explosion equipment.
  • the steam explosion treatment refers to applying pressure to the target in a saturated water vapor environment, and after maintaining the high pressure for a period of time, the target is reduced to normal pressure in a very short time (explosive release). This process can make saturated water vapor and superheated liquid fill the inside of the target. When the high pressure is released instantly, the superheated liquid inside the target will vaporize and expand, thereby exploding the target and obtaining rice steam explosion particles.
  • the surface of the particles will have very dense pores, which not only facilitates the release of active ingredients during the enzymolysis process, but also increases the contact area between the enzyme and the raw material and improves the efficiency of enzymolysis.
  • the steam explosion treatment can be carried out according to the following conditions: after the rice protein raw material is maintained at a steam pressure of 0.5-1.5Mpa for 30-120s, the rice protein powder is restored to normal pressure within 3.0-8.5ms to obtain rice steam Blasting particles.
  • the device for implementing steam explosion may be, for example, Jinan Simingte SMT-BPXT-21 steam explosion test bench.
  • Collect the rice steam explosion particles add water to the rice steam explosion particles in a ratio of (5-20):1 according to the mass ratio of water to rice protein raw materials to prepare a mixed solution for enzymatic hydrolysis.
  • the fluidity of the mixed solution is poor when too little water is added, which reduces the efficiency of enzymolysis; and when too much water is added, the reaction volume is too large, which will affect the subsequent processing (such as concentration, etc.), and the cost will increase accordingly.
  • the water can be purified water, distilled water, deionized water, etc., and purified water is used in the present invention.
  • the inventors conducted a lot of research on how to make the enzymatic hydrolysis product of rice protein powder contain the expected mass content of GS, GL and GF peptides, and proved that the choice of enzyme preparation and the corresponding separation process have a key influence on the result.
  • the inventor unexpectedly discovered that the use of pepsin, papain and aminopeptidase to perform three enzymatic hydrolysis in sequence not only helps to obtain GS, GL and GF peptides at the same time, but also reduces the content of other enzymatic hydrolysis products.
  • the three-stage enzymatic hydrolysis of the present invention is carried out at a temperature of 40-60°C, and the time of each enzymatic hydrolysis is controlled to prevent the enzymatic hydrolysis time from being too short, which is not conducive to the degradation of the protein, or the time is too long (for example, more than 8h) May cause further degradation of the target peptide.
  • the amount of pepsin is 600-1500 U/100g
  • the amount of papain is 100000-200000 U/100g
  • the amount of aminopeptidase is 50-150 LPAU/100g.
  • the amount of each enzyme is based on the quality of the effective rice protein in the rice protein raw material, that is, for every 100 g of rice protein, 600-1500 U of pepsin, 100,000-200,000 U of papain, and 50-150 LPAU of aminopeptidase are used.
  • the third enzymatic hydrolysate is filtered by a filter membrane with a pore size of 50-200nm, the first-stage filtrate is collected, and then the first-stage filtrate is filtered by a nanofiltration membrane with a molecular weight cut-off of 2000-5000u to obtain Secondary filtrate.
  • the components with larger molecular weight can be further cut off, thereby increasing the quality content of the three target peptides in the rice peptide.
  • the secondary filtrate is subjected to resin purification treatment, specifically, the secondary filtrate is sequentially subjected to cation exchange resin purification treatment and anion exchange resin purification treatment.
  • the cation exchange resin purification treatment includes: passing the filtrate through the cation exchange resin column at a linear flow rate of 1-10mL/min, and collecting the effluent when the UV detection value reaches 200mAu. After all the material is processed, pure water is used to replace the filtrate stream. After the resin, stop collecting the effluent when the UV detection value is lower than 200mAu;
  • Anion exchange resin purification includes: passing the effluent purified by the cation exchange resin through the anion exchange resin column at a linear flow rate of 1-10mL/min. When the UV detection value reaches 200mAu, the effluent is collected. The effluent purified by water instead of the cation exchange resin flows through the resin, and the collection of the effluent is stopped when the UV detection value is lower than 200mAu.
  • the above-mentioned cation exchange resin column may be a pre-equilibrated hydrogen type cation exchange resin column, and the particle size is 0.315-1.25 nm; the anion exchange resin column may be a pre-equilibrated hydroxide type anion exchange resin column, and the particle size is 0.315 -1.25nm.
  • the mass content of the peptide GS ⁇ 200.00mg/100g and the mass content of the peptide GL can be achieved through appropriate process parameters. ⁇ 200.00mg/100g, the mass content of peptide GF ⁇ 100.00mg/100g.
  • the rice peptide of the present invention with a mass content of GS ⁇ 200.00mg/100g, a mass content of GL ⁇ 200.00mg/100g, and a mass content of GF ⁇ 100.00mg/100g exhibits excellent free radical scavenging ability.
  • the rice peptide provided by the present invention has significant antioxidant and whitening functions, and is more useful in addition to health care applications in the conventional sense. It is used in antioxidant products and whitening products, which broadens the application range of rice protein powder and provides a new direction for the deep processing of rice raw materials.
  • Figure 5 is a mass spectrum of GS, GL and GF in the rice peptide of 100 ⁇ g/mL in Example 2 of the present invention
  • Fig. 7 is a mass spectrum of GS, GL and GF in the rice peptide of 100 ⁇ g/mL in Example 3 of the present invention.
  • Figure 15 is a diagram showing the relationship between each test group and the promotion rate of melanin synthesis in PIG1 cells
  • Figure 18 is a graph showing the relationship between the rice peptide of Example 1 of the present invention and the activation rate of PIG1 cell tyrosinase at different mass concentrations.
  • Table 1 shows the molecular weight distribution data of rice peptide in Example 1.
  • Liquid chromatography conditions Column: Inertsil ODS-3 (5 ⁇ m, 2.1*250mm); mobile phase: A is 0.1% formic acid aqueous solution, B is 0.1% formic acid acetonitrile solution; gradient elution program: 0-15min, B 0- 50%; 15-20min, B 50-100%; 20-25min, B 100%; 25.1-35min, B 0%; Flow rate: 0.2mL/min; Injection volume: 1 ⁇ L; Column temperature: 40°C.
  • Figure 2 is a mass spectrum of 1 ⁇ g/mL standard sample used in the identification of GS, GL and GF in the Examples and Comparative Examples of the present invention
  • Figure 3 is a mass spectrum of GS, GL and GF in 100 ⁇ g/mL rice peptide in Example 1 of the present invention .
  • the rice peptide of this example was prepared according to the following method:
  • Table 3 shows the molecular weight distribution data of the rice peptide in Example 2.
  • Figure 5 is a mass spectrum of GS, GL and GF in the rice peptide of 100 ⁇ g/mL in Example 2 of the present invention.
  • Example 1 The same method as in Example 1 was used to detect the molecular weight distribution of the rice peptide in this example.
  • Figure 6 is a gel chromatogram of the molecular weight distribution of rice peptide in Example 3 of the present invention.
  • Table 4 shows the molecular weight distribution data of the rice peptide in Example 3.
  • Fig. 7 is a mass spectrum of GS, GL and GF in the rice peptide of 100 ⁇ g/mL in Example 3 of the present invention.
  • the rice peptide of this comparative example was prepared according to the following method:
  • Figure 8 is a mass spectrum of GS, GL and GF in the rice peptide in 100 ⁇ g/mL Comparative Example 1 of the present invention.
  • the rice peptide of this comparative example was prepared according to the following method:
  • Figure 9 is a mass spectrum of GS, GL and GF in rice peptide in 100 ⁇ g/mL Comparative Example 2 of the present invention.
  • the rice peptide of this comparative example was prepared according to the following method:
  • Fig. 10 is a mass spectrum of GS, GL and GF in the rice peptide in 100 ⁇ g/mL Comparative Example 3 of the present invention.
  • sample solutions of different mass concentrations and 0.1 mM DPPH-absolute ethanol solution were mixed uniformly in a volume ratio of 1:3, reacted for 30 minutes at room temperature under shading conditions, and the absorbance (A 1 ) was measured at 517 nm.
  • sample solutions of different mass concentrations and absolute ethanol solutions are mixed uniformly in a volume ratio of 1:3, stored at room temperature under shading for 30 minutes, and the absorbance (A 2 ) is measured at 517 nm.
  • Distilled water and 0.1 mM DPPH-anhydrous ethanol solution were mixed uniformly in a volume ratio of 1:3, stored at room temperature under shading for 30 minutes, and the absorbance (A 0 ) was measured at 517 nm.
  • a 6-well cell culture plate was inoculated at a density of 1.0 ⁇ 10 5 cells/mL human skin melanocytes (PIG1 cells), 2 mL per well, and placed in a 37°C, 5% CO 2 cell incubator for 24 hours. Then carefully aspirate the cell supernatant in the 6 wells, wash with PBS, add incomplete medium containing the sample, and incubate for 4 hours. After the incubation is completed, pour out the culture medium containing the sample, wash with PBS, add 0.5 mL of PBS buffer to each well to cover the bottom surface, and irradiate with UVB (irradiation dose is 700 mJ/cm 2 ).
  • the cell density was adjusted to 2.0 ⁇ 10 5 cells/mL, and 2 mL/well was connected to a 6-well plate. After 24 hours of cell attachment, the culture medium was discarded. Cover the bottom surface with 0.5mL PBS buffer solution per well, irradiate with UVB, the irradiation dose is 700mJ/cm 2 . After the irradiation is completed, the PBS solution is discarded, and the DMEM incomplete medium containing the sample is added to incubate for 24 hours.
  • DPPH is a kind of stable organic free radicals. By detecting the scavenging ability of the sample to DPPH free radicals, the strength of its antioxidant capacity can be indicated.
  • Fig. 11 is a graph showing the scavenging of DPPH free radicals of the rice peptides of Examples 1, 2, and 3 and the rice peptides of Comparative Examples 1, 2, and 3 at different mass concentrations.
  • concentration of rice peptide increases, although the scavenging rate of DPPH free radicals of the rice peptides of the examples and comparative examples gradually increases, the scavenging rate of DPPH free radicals of the rice peptides of the example is significantly better than that of the comparative example.
  • DPPH radical scavenging rice peptide; for Example 1, the DPPH radical scavenging stabilizer which is about 70%, and IC 50 5mg / mL.
  • OH free radical is a kind of free radical with very strong oxidizing ability. It is easy to participate in the oxidative metabolism process in life activities, causing DNA strand breaks, protein oxidation, lipid oxidation, etc., and then cause apoptosis, pigment deposition, etc. A series of reactions.
  • Fig. 12 is a graph showing the scavenging of OH free radicals of the rice peptides of Examples 1, 2, and 3 and the rice peptides of Comparative Examples 1, 2, and 3 at different mass concentrations.
  • the concentration of rice peptide increases, although the rice peptides of the examples and comparative examples can gradually increase the scavenging ability of -OH, the scavenging ability of -OH of the rice peptides of the examples is significantly better than that of the comparative rice peptides.
  • -OH scavenging ability as far as Example 1, the -OH scavenging rate is stable at about 50%.
  • ROS is an oxygen-containing active substance that is more active than oxygen produced in the metabolic process of aerobic organisms. Excessive ROS can cause oxidative stress in tissues and cells of the body, cause damage to biological macromolecules, affect normal biological functions, and change the content of ROS. It is one of the important indicators of antioxidant capacity.
  • the second test method (Method 2) is to load the sample first, then UVB induction, that is, inoculate a 6-well cell culture plate at a density of 1.0 ⁇ 10 5 cells/mL human skin melanocytes (PIG1 cells), 2 mL per well, and place at 37°C , Cultivate 24h in a 5% CO 2 cell incubator. Then carefully aspirate the cell supernatant in the 6 wells, wash with PBS, add incomplete medium containing the sample, and incubate for 2 hours.
  • UVB induction that is, inoculate a 6-well cell culture plate at a density of 1.0 ⁇ 10 5 cells/mL human skin melanocytes (PIG1 cells), 2 mL per well, and place at 37°C , Cultivate 24h in a 5% CO 2 cell incubator. Then carefully aspirate the cell supernatant in the 6 wells, wash with PBS, add incomplete medium containing the sample, and incubate for 2 hours.
  • Figure 15 is a graph showing the relationship between each test group and the promotion rate of melanin synthesis in PIG1 cells.
  • the blank group, model group, positive control group, and sample groups 1-6 are all the same as in Figure 13.
  • both method 1 and method 2 can significantly increase the melanin content, and the melanin synthesis promotion rate is 12.2% and 8.0%, respectively;
  • the positive control group can significantly reduce the melanin synthesis promotion rate;
  • sample group 1-3 can significantly reduce the melanin synthesis promotion rate, while the sample group 4-6 cannot significantly reduce the melanin synthesis promotion rate. Therefore, the effect of Example 1-3 in reducing the melanin synthesis promotion rate is stronger than that of Comparative Examples 1-3.
  • Figure 16 is a graph showing the relationship between the rice peptide of Example 1 of the present invention and the melanin synthesis promotion rate of PIG1 cells at different mass concentrations.
  • the blank group, model group, positive control group, and sample groups 1-3 are the same as those in Figure 14.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Medicinal Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Dermatology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Molecular Biology (AREA)
  • Genetics & Genomics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Epidemiology (AREA)
  • Biophysics (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Natural Medicines & Medicinal Plants (AREA)
  • Toxicology (AREA)
  • Analytical Chemistry (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Immunology (AREA)
  • Birds (AREA)
  • General Engineering & Computer Science (AREA)
  • Botany (AREA)
  • Gerontology & Geriatric Medicine (AREA)
  • Water Supply & Treatment (AREA)
  • Alternative & Traditional Medicine (AREA)
  • Mycology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Medical Informatics (AREA)
  • Peptides Or Proteins (AREA)

Abstract

一种具有美白功能的大米肽及其制备方法和应用,所述大米肽组成中至少包括肽段GS、GL以及GF;基于大米肽的质量,所述肽段GS的含量≥200.00mg/100g、肽段GL的含量≥200.00mg/100g、肽段GF的含量≥100.00mg/100g。所述大米肽是通过对大米蛋白原料依次进行蒸汽爆破处理、酶解处理以及分离纯化处理获得。所述大米肽具有较强的抗氧化能力和美白能力。

Description

一种具有美白功能的大米肽及其制备方法 技术领域
本发明涉及一种具有美白功能的大米肽及其制备方法和应用,属于大米深加工技术领域。
背景技术
大米的营养十分丰富,是中国大部分地区人民的主要食品。大米主要由淀粉和蛋白质构成,含量分别约为80%和8%。由于大米中蛋白质的生物价值与大豆相当,赖氨酸、苏氨酸等含量十分丰富,因此通常会对大米进行加工处理对其中的蛋白质进行提取。
大米蛋白是指从大米中提取的蛋白质,经粉碎、提纯、干燥等工艺形成的粉末物质,其具有优良的营养品质,是公认的谷类蛋白中的优质植物蛋白。在大米蛋白中,清蛋白占总量2-5%、球蛋白占总量2-10%、醇溶性蛋白占总量1-5%、谷蛋白占总量80%以上。与玉米蛋白、小麦蛋白相比,大米蛋白除了具有营养价值优及人体吸收利用率高等特点,还具有低过敏性、无色素干扰、味道柔和无刺激等优点。
现阶段,为了能够进一步提高对大米中蛋白的利用率,多以含大米蛋白的原料,例如大米蛋白粉为原料进行酶解,制成的多肽产物,也称大米肽,大米肽的各类功效来自蛋白质大分子被切断而形成的某些短肽,已有共识认为其中包括了对生物机体的生命活动有益或具有生理作用的不同小肽。已经有的研究报道记载,大米肽中某些短肽具有一定的人体代谢和生理调节功能,可以在肠道内直接被吸收,导致大米肽相较大米蛋白能更容易,也更迅速被吸收,所以由大米蛋白经酶解得到的大米肽是大米深加工的新方向。
目前对大米肽的研究与开发应用,多以能为人体提供更易吸收的营养,关于保持和提升身体健康状态为方向,对大米蛋白的酶解工艺探索也是更多关注来自大米蛋白的常规功效相关的结果,至于酶解产物是否还会存在某些不仅是促进吸收的肽段,以及是否还能通过得到具有其他功能的肽段来拓展大米肽应用范围,还未有更多的研究和报道,也影响了对大米原料深加工的研究进程。
发明内容
本发明提供一种具有美白功能的大米肽,该大米肽通过其中包含的特定质量含量的功能肽段,甘氨酰丝氨酸(Gly-Ser,GS)、甘氨酰亮氨酸(Gly-Leu,GL)以及甘氨酰苯丙氨酸(Gly-Phe,GF),因而在清除自由基、抑制黑素色合成等方面能表现出良好功效。
本发明还提供一种上述大米肽的制备方法,通过对大米蛋白酶解以及分离纯化工序的控制,使产物明确含有特定质量含量的甘氨酰丝氨酸(Gly-Ser,GS)、甘氨酰亮氨酸(Gly-Leu,GL)以及甘氨酰苯丙氨酸(Gly-Phe,GF)等功能性肽段。
本发明还提供一种上述大米肽在抗氧化产品和美白产品中的应用。
本发明提供一种大米肽,所述大米肽组成中至少包括肽段甘氨酰丝氨酸GS、甘氨酰亮氨酸GL以及甘氨酰苯丙氨酸GF。
具体地,本发明所提供的大米肽中,基于大米肽的总质量(干基),GS的质量含量≥200.00mg/100g、GL的质量含量≥200.00mg/100g、GF的质量含量≥100.00mg/100g。
除此之外,上述大米肽还具备平均分子量小易吸收的特点,具体地,大米肽中分子量小于1000u的肽的质量含量≥90%。
进一步地,上述大米肽是通过对大米蛋白原料,例如大米蛋白粉,依次进行蒸汽爆破处理、酶解处理以及分离纯化处理获得;其中,酶解处理是在40-60℃下,依次利用胃蛋白酶、木瓜蛋白酶以及氨基肽酶进行三段的酶解。
在具体实施过程中,大米蛋白原料在进行蒸汽爆破处理后的产物与水混合得到混合液,然后依次使用胃蛋白酶、木瓜蛋白酶以及氨基肽酶对混合液进行三段酶解,具体地,先利用胃蛋白酶进行第一酶解,得到第一酶解液,再利用木瓜蛋白酶对第一酶解液进行第二酶解,得到第二酶解液,最后向第二酶解液中加入氨基肽酶进行第三酶解,灭酶后,得到第三酶解液。其中,三次酶解的pH环境和温度以各自酶的最佳酶解条件确定,而三次酶解的时间分别控制在3h之内,例如可以控制第一酶解时间为1.5-3h,第二酶解的时间为1-2h,第三酶解的时间为0.5-1h。上述 灭酶操作可以利用本领域常用的高温灭酶技术。
酶解处理中,除了需要对酶解的温度、pH环境以及时间进行控制外,还需要对酶的用量进行控制以尽可能保证产物中的肽段GS、GL以及GF具有较高质量含量。以大米蛋白原料中大米蛋白的有效质量为基准,每100g大米蛋白可以利用600-1500U胃蛋白酶,100000-200000U木瓜蛋白酶,50-150LAPU氨基肽酶。
酶解结束后,对第三酶解液进行分离纯化处理,得到上述大米肽。
其中,分离纯化处理依次包括过滤纯化以及树脂纯化处理,其中,树脂纯化处理包括依次使用阳离子交换树脂和阴离子交换树脂进行纯化处理。
其中,阳离子交换树脂中可选用氢型阳离子交换树脂,且颗粒尺寸为0.315-1.25nm之间;阴离子交换树脂中可选用氢氧型阴离子交换树脂,且颗粒尺寸为0.315-1.25nm之间。
进一步地,过滤处理可以为至少两级过滤处理,其中,第一级过滤处理选用孔径相对较大的滤膜进行过滤,例如孔径50-200nm的滤膜,以除去不溶的固体颗粒;第二级过滤处理选用截留分子量为2000-5000u的纳滤膜对第一级过滤得到的滤液进行再次过滤,除去可溶性大分子物质,进一步提高目标肽段的含量。
经过上述分离纯化处理后,能够保留酶解产物中GS、GL以及GF这三个肽段。随后,对分离纯化后的液体产物进行浓缩干燥,得到所需要的大米肽产品,其中至少含有了肽段GS、GL以及GF。
研究表明:上述含有特定质量含量的肽段GS、GL以及GF的大米肽能够显著清除DPPH自由基以及OH自由基,降低人皮肤黑色素细胞内ROS含量、黑色素合成速率、酪氨酸酶活性,具有较强的抗氧化能力和美白能力。
本发明还提供一种上述任一所述的大米肽的制备方法,包括以下步骤:
对大米蛋白原料进行蒸汽爆破处理后,加水制成混合液;
调节所述混合液的pH至酸性后加入胃蛋白酶进行第一酶解,1.5-3h后,得到第一酶解液;
调节所述第一酶解液的pH至弱酸或中性后,加入木瓜蛋白酶进行第二酶解,1-2h后,得到第二酶解液;
向所述第二酶解液加入氨基肽酶进行第三酶解,0.5-1h后,灭酶,得到第三酶解液;
将所述第三酶解液依次进行过滤以及树脂纯化处理,得到所述大米肽。
本发明制备大米肽的原料为能提供大米蛋白的任何原料,例如大米蛋白粉,为了保证酶解处理的效率,本发明可以选用纯度为60-90%,粒度为60-200目的大米蛋白粉作为原料。
在进行酶解之前,需要对大米蛋白原料进行预处理,本发明的预处理是指利用蒸汽爆破设备对大米蛋白原料进行蒸汽爆破处理。具体地,蒸汽爆破处理是指在饱和水蒸气环境下对目标物施压,并且维持高压一段时间后,在极短时间内将目标物降至常压(爆破释放)。该过程能够使饱和水蒸气以及过热液体充盈目标物内部,当瞬间将高压解除后,目标物内部的过热液体会气化膨胀,从而使目标物发生爆破,得到大米蒸汽爆破颗粒。
经过蒸汽爆破处理,颗粒表面会具有十分致密的孔洞,从而不仅有利于在酶解过程中释放有效成分,更增加了酶与原料的接触面积,提高了酶解效率。
具体地,可以按照下述条件进行蒸汽爆破处理:大米蛋白原料在0.5-1.5Mpa的蒸汽压下维持30-120s后,使所述大米蛋白粉在3.0-8.5ms内恢复常压,得到大米蒸汽爆破颗粒。实施蒸汽爆破的装置例如可以是济南思明特SMT-BPXT-21型蒸汽爆破实验台。
收集大米蒸汽爆破颗粒,按照水与大米蛋白原料的质量比为(5-20):1的比例向大米蒸汽爆破颗粒加入水,配制用于酶解的混合液。制备混合液时,加水过少时混合液流动性差,使酶解效率降低;而加水过多时反应体积过大,会影响后续处理(例如浓缩等),此外成本也会相应增加。其中,水可以采用纯净水、蒸馏水、去离子水等,本发明中采用纯净水。
本发明人对于如何使大米蛋白粉的酶解产物中能含有预期质量含量 的GS、GL以及GF肽段进行了大量研究摸索,证明酶制剂的选择及相应的分离工艺对结果具有关键影响。发明人在研究过程中意外地发现,采用胃蛋白酶、木瓜蛋白酶以及氨基肽酶依次进行三段酶解,不仅有助于同时得到GS、GL以及GF肽段,还能够降低其他酶解产物的含量,从而有利于后续对GS、GL以及GF肽段的分离纯化使GS的质量含量≥200.00mg/100g、GL的质量含量≥200.00mg/100g、GF的质量含量≥100.00mg/100g。
本发明的三段酶解均在40-60℃的温度下进行,并且对每段酶解的时间进行控制,防止酶解时间过短不利于蛋白的降解,或时间过长(例如超过8h)可能导致目标肽段的进一步降解。
加入胃蛋白酶之前,可以利用浓盐酸调节混合液的pH值至酸性,例如2-3,然后加入胃蛋白酶,1.5-3h后,得到第一酶解液;随后利用氢氧化钠调节第一酶解液的pH值为6-7,在木瓜蛋白酶的适宜酶解温度下加入木瓜蛋白酶进行第二酶解,2-3h后,得到第二酶解液;
最后,在氨基肽酶的适宜酶解温度下,直接向第二酶解液加入氨基肽酶进行第三酶解,0.5-1h后,将体系升温至90-95℃灭酶,得到第三酶解液。
在本发明的酶解中,胃蛋白酶的用量为600-1500U/100g,所述木瓜蛋白酶的用量为100000-200000U/100g,所述氨基肽酶的用量为50-150LPAU/100g。具体地,各酶的用量是基于大米蛋白原料中有效大米蛋白的质量,即,每100g大米蛋白,使用600-1500U的胃蛋白酶、100000~200000U的木瓜蛋白酶以及50-150LPAU的氨基肽酶。
以下,对酶解液的后处理进行详细介绍。
首先,采用孔径为50-200nm的滤膜对第三酶解液进行一级过滤,收集一级滤液,接着,采用截留分子量为2000-5000u的纳滤膜对一级滤液进行二级过滤,得到二级滤液。通过多级过滤工艺可进一步地截留分子量较大的成分,从而提高大米肽中三种目标肽段的质量含量。
多级过滤结束后,对二级滤液进行树脂纯化处理,具体对二级滤液依次进行阳离子交换树脂纯化处理和阴离子交换树脂纯化处理。
其中,阳离子交换树脂纯化处理包括:将滤液以1~10mL/min的线性流速通过阳离子交换树脂柱,待紫外检测值达到200mAu时开始收集流出 液,料液全部处理后,用纯净水代替滤液流经树脂,待紫外检测值低于200mAu时停止收集流出液;
阴离子交换树脂纯化包括:将经阳离子交换树脂纯化的流出液以1~10mL/min的线性流速通过阴离子交换树脂柱,待紫外检测值达到200mAu时开始收集流出液,料液全部处理后,用纯净水代替阳离子交换树脂纯化的流出液流经树脂,待紫外检测值低于200mAu时停止收集流出液。
上述阳离子交换树脂柱可以为预平衡好的氢型阳离子交换树脂柱,且颗粒尺寸为0.315-1.25nm;阴离子交换树脂柱可以为预平衡好的氢氧型阴离子交换树脂柱,且颗粒尺寸为0.315-1.25nm。
进一步地,可对从阴离子交换树脂收集到的流出液进行蒸发浓缩,例如可采用真空蒸发浓缩设备进行蒸发浓缩,控制浓缩液的浓度为20%±2%。进一步地,在浓缩后可进行干燥,例如采用喷雾干燥塔,控制干燥塔进口温度为140-160℃,出口温度为60-80℃,从而制得本发明的大米肽。
通过上述酶解工艺与分离纯化工艺,不仅能够保留大米蛋白粉中的GS、GL以及GF,更通过适宜的工艺参数能够使肽段GS的质量含量≥200.00mg/100g、肽段GL的质量含量≥200.00mg/100g、肽段GF的质量含量≥100.00mg/100g。
本发明还提供了上述任一所述的大米肽在抗氧化产品和美白产品中的应用。
通过大量研究数据证明,本发明的GS的质量含量≥200.00mg/100g、GL的质量含量≥200.00mg/100g、GF的质量含量≥100.00mg/100g的大米肽表现出优异的清除自由基能力,尤其是针对DPPH自由基和OH自由基的清除能力,并且有效抑制黑色素合成,可以认为,本发明提供的大米肽具有显著的抗氧化功能和美白功能,除常规意义上的保健应用外,更可用于抗氧化制品和美白制品等,从而拓宽了大米蛋白粉的应用范围,为大米原料的深加工提供了新的方向。
并且,该大米肽中,分子量小于1000u的成分所占比例高于90%,从而利用被人体肠道完整吸收,更易在人体内发挥作用。
本发明的实施,至少具有以下优势:
1、本发明提供的大米肽,明确含有GS、GL以及GF肽段,且GS的质量含量≥200.00mg/100g、GL的质量含量≥200.00mg/100g、GF的质量含量≥100.00mg/100g,因此本发明的大米肽具有显著的抗氧化功能和美白功能,用于相关功能产品的原料,为大米肽产品提供了更为广泛的应用前景。
2、本发明提供的大米肽的制备方法,通过采用特殊的预处理、酶解以及分离纯化工艺,得到具有特定质量含量的肽段GS、GL以及GF肽段的大米蛋白深加工产物。
附图说明
图1为本发明实施例1中大米肽的分子量分布凝胶色谱图;
图2为本发明实施例及对比例中鉴定GS、GL和GF所用的1μg/mL标样质谱图;
图3为本发明100μg/mL实施例1中大米肽中GS、GL和GF的质谱图;
图4为本发明实施例2中大米肽的分子量分布凝胶色谱图;
图5为本发明100μg/mL实施例2中大米肽中GS、GL和GF的质谱图;
图6为本发明实施例3中大米肽的分子量分布凝胶色谱图;
图7为本发明100μg/mL实施例3中大米肽中GS、GL和GF的质谱图;
图8为本发明100μg/mL对比例1中大米肽中GS、GL和GF的质谱图;
图9为本发明100μg/mL对比例2中大米肽中GS、GL和GF的质谱图;
图10为本发明100μg/mL对比例3中大米肽中GS、GL和GF的质谱图;
图11为本发明实施例1、2、3的大米肽以及对比例1、2、3的大米 肽在不同质量浓度下清除DPPH自由基的曲线图;
图12为本发明实施例1、2、3的大米肽以及对比例1、2、3的大米肽在不同质量浓度下清除OH自由基的曲线图;
图13为各试验组与ROS含量的关系图;
图14为本发明实施例1的大米肽在不同质量浓度下与ROS含量的关系图;
图15为各试验组与PIG1细胞黑色素合成促进率的关系图;
图16为本发明实施例1的大米肽在不同质量浓度下与PIG1细胞黑色素合成促进率的关系图;
图17为各试验组与PIG1细胞酪氨酸酶激活率的关系图;
图18为本发明实施例1的大米肽在不同质量浓度下与PIG1细胞酪氨酸酶激活率的关系图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将结合本发明的实施例,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
以下实施例和对比例中,大米蛋白粉购自江西金农,80级;胃蛋白酶购自SIGMA,3000U/g;木瓜蛋白酶购自南宁庞博,1000000U/g;氨基肽酶购自诺维信,500LAPU/g(每克产品中亮氨酸氨基肽酶的单位);碱性蛋白酶购自南宁庞博,200000U/g;中性蛋白酶购自南宁庞博,200000U/g;菠萝蛋白酶购自南宁庞博,500000U/g。
实施例1
本实施例的大米肽按照以下方法制备得到:
1、将500g大米蛋白粉(蛋白含量80%,60目)加入蒸汽爆破反应罐中,通入蒸汽,控制压力在0.65Mpa,维持100s,然后在5.0毫秒释放压力,得到大米蒸汽爆破颗粒;
向大米蒸汽爆破颗粒加入5L纯净水,得到混合液;
2、将混合液升温至50℃,加入浓盐酸10mL调节pH为3.0后,加入胃蛋白酶2g进行第一酶解,酶解3h后得到第一酶解液;
然后向第一酶解液加入氢氧化钠4g调节pH为7.0后,加入木瓜蛋白酶1g进行第二酶解,酶解1h后得到第二酶解液;
向第二酶解液加入氨基肽酶0.5g,酶解1h后,将体系升温至95℃并保温30min进行灭酶,得到第三酶解液;
3、采用孔径为200nm的陶瓷膜对第三酶解液进行过滤,去除固体杂质,初步澄清酶解液,得到一级滤液;再用截留分子量为2000u的纳滤膜对一级滤液进行二次过滤,去除可溶性大分子杂质,收集二级滤液;
将二级滤液以10mL/min的流速通过预平衡好的氢型阳离子交换树脂柱,待紫外检测值高于200mAu时开始收集流出液,上完样品后继续用去离子水冲洗阳离子交换树脂柱,待紫外检测值低于200mAu时停止收集流出液;将从阳离子交换树脂柱中收集的流出液以10mL/min的流速通过预平衡好的氢氧型阴离子交换树脂柱,待紫外检测值高于200mAu时开始收集,上完样品后继续用去离子水冲洗阴离子交换树脂柱,待紫外检测值低于200mAu时,停止收集流出液;
4、使用真空蒸发浓缩设备对离子交换树脂柱收集的流出液进行浓缩至波美值为22%,再将浓缩液送入喷雾干燥塔,干燥塔进口温度140℃,得到本实施例的大米肽。
产物测定
1、大米肽的分子量分布检测
采用GB/T 22492-2008大豆肽粉中附录规定的实验方法对大米肽的分子量分布进行检测。
图1为本发明实施例1中大米肽的分子量分布凝胶色谱图。
表1为实施例1中大米肽的分子量分布数据。
表1
Figure PCTCN2020076899-appb-000001
2、大米肽中功能肽段GS、GL以及GF的含量检测
利用超高效液相色谱仪Nexera X2与三重四极杆质谱仪联用系统(岛津,日本)对本实施例中的大米肽中的肽组分进行鉴定。
液相色谱条件:色谱柱:Inertsil ODS-3(5μm,2.1*250mm);流动相:A为0.1%甲酸水溶液,B为0.1%甲酸乙腈溶液;梯度洗脱程序:0-15min,B 0-50%;15-20min,B 50-100%;20-25min,B 100%;25.1-35min,B 0%;流速:0.2mL/min;进样体积:1μL;柱温:40℃。
质谱条件:离子化模式:ESI,正离子模式;离子喷雾电压:+4.5kV;雾化气流速:氮气3.0L/min;加热气流速:氮气10L/min;干燥气流速:氮气10L/min;DL温度:250℃;加热模块温度:400℃;离子源温度:300℃;扫描模式:多反应监测(MRM);驻留时间:100ms;延迟时间:3ms;MRM参数:见表2。
表2
Figure PCTCN2020076899-appb-000002
Figure PCTCN2020076899-appb-000003
*表示定量离子
肽段标准品配制:分别准确称取GS、GL及GF标准品粉末20.0mg,加水溶解,涡旋混匀,定容至100mL,即为200μg/mL的标准储备液。分别取500μL上述标准储备液,定容至10mL,即得混合标准母液10μg/mL。将上述混合标准母液用纯水逐级稀释至0.0625、0.125、0.25、0.5、1、2.5、5和10μg/mL的系列标准工作溶液。
图2为本发明实施例及对比例中鉴定GS、GL和GF所用的1μg/mL标样质谱图,图3为本发明100μg/mL实施例1中大米肽中GS、GL和GF的质谱图。
通过图3和图2的比对可知,本实施例1中的大米肽中同时存在肽段GS、GL和GF。经检测,本实施例1制备的大米肽中GS含量为208.35mg/100g,GL含量为208.74mg/100g,GF含量为105.63mg/100g。
实施例2
本实施例的大米肽按照以下方法制备得到:
1、将200g大米蛋白粉(蛋白含量80%,60目)加入蒸汽爆破反应罐中,通入蒸汽,控制压力在0.6Mpa,维持100s,然后在5.0毫秒释放压力,得到大米蒸汽爆破颗粒;
向大米蒸汽爆破颗粒用加入2L纯净水,得到混合液;
2、将混合液升温至50℃,加入浓盐酸4mL调节pH为3.0后,加入胃蛋白酶1g进行第一酶解,酶解3h后得到第一酶解液;
然后向第一酶解液加入氢氧化钠1.5g调节pH为6.5后,加入木瓜蛋白酶0.4g进行第二酶解,酶解1.5h后得到第二酶解液;
向第二酶解液加入氨基肽酶0.2g,酶解1h后,将体系升温至95℃并保温30min进行灭酶,得到第三酶解液;
3、采用孔径为50nm的陶瓷膜对第三酶解液进行过滤,去除固体杂质,初步澄清酶解液,得到一级滤液;再用截留分子量为5000u的纳滤 膜对一级滤液进行二次过滤,去除可溶性大分子杂质,收集二级滤液;
将二级滤液以5mL/min的流速通过预平衡好的氢型阳离子交换树脂柱,待紫外检测值高于200mAu时开始收集流出液,上完样品后继续用去离子水冲洗阳离子交换树脂柱,待紫外检测值低于200mAu时停止收集流出液;将从阳离子交换树脂柱中收集的流出液以5mL/min的流速通过预平衡好的氢氧型阴离子交换树脂柱,待紫外检测值高于200mAu时开始收集,上完样品后继续用去离子水冲洗阴离子交换树脂柱,待紫外检测值低于200mAu时,停止收集流出液;
4、使用真空蒸发浓缩设备对离子交换树脂柱收集的流出液进行浓缩至波美值为20%,再将浓缩液送入喷雾干燥塔,干燥塔进口温度140℃,得到本实施例的大米肽。
产物测定
1、采用与实施例1相同的方法对本实施例大米肽的分子量分布进行检测
图4为本发明实施例2中大米肽的分子量分布凝胶色谱图。
表3为实施例2中大米肽的分子量分布数据。
表3
Figure PCTCN2020076899-appb-000004
2、采用与实施例1相同的方法对大米肽中功能肽段GS、GL和GF的含量进行检测。
图5为本发明100μg/mL实施例2中大米肽中GS、GL和GF的质谱图。
通过图5和图2的比对可知,本实施例2中的大米肽中同时存在肽段GS、GL和GF。经检测,本实施例2制备的大米肽中GS含量为205.58mg/100g,GL含量为210.75mg/100g,GF含量为103.95mg/100g。
实施例3
本实施例的大米肽按照以下方法制备得到:
1、将100g大米蛋白粉(蛋白含量80%,60目)加入蒸汽爆破反应罐中,通入蒸汽,控制压力在0.6Mpa,维持100s,然后在5.0毫秒释放压力,得到大米蒸汽爆破颗粒;
向大米蒸汽爆破颗粒用加入5L纯净水,得到混合液;
2、将混合液升温至50℃,加入浓盐酸2mL调节pH为3.0后,加入胃蛋白酶0.3g进行第一酶解,酶解3h后得到第一酶解液;
然后向第一酶解液加入氢氧化钠1.0g调节pH为7.5后,加入木瓜蛋白酶0.2g进行第二酶解,酶解1.5h后得到第二酶解液;
向第二酶解液加入氨基肽酶0.1g,酶解0.5h后,将体系升温至95℃并保温30min进行灭酶,得到第三酶解液;
3、采用孔径为200nm的陶瓷膜对第三酶解液进行过滤,去除固体杂质,初步澄清酶解液,得到一级滤液;再用截留分子量为5000u的纳滤膜对一级滤液进行二次过滤,去除可溶性大分子杂质,收集二级滤液;
将二级滤液以1mL/min的流速通过预平衡好的氢型阳离子交换树脂柱,待紫外检测值高于200mAu时开始收集流出液,上完样品后继续用去离子水冲洗阳离子交换树脂柱,待紫外检测值低于200mAu时停止收集流出液;将从阳离子交换树脂柱中收集的流出液以1mL/min的流速通过预平衡好的氢氧型阴离子交换树脂柱,待紫外检测值高于200mAu时开始收集,上完样品后继续用去离子水冲洗阴离子交换树脂柱,待紫外检测值低于200mAu时,停止收集流出液;
4、使用真空蒸发浓缩设备对离子交换树脂柱收集的流出液进行浓缩 至波美值为18%,再将浓缩液送入喷雾干燥塔,干燥塔进口温度140℃,得到本实施例的大米肽。
产物测定
1、采用与实施例1相同的方法对本实施例大米肽的分子量分布进行检测
图6为本发明实施例3中大米肽的分子量分布凝胶色谱图。
表4为实施例3中大米肽的分子量分布数据。
表4
Figure PCTCN2020076899-appb-000005
2、采用与实施例1相同的方法对大米肽中功能肽段GS、GL和GF的含量进行检测。
图7为本发明100μg/mL实施例3中大米肽中GS、GL和GF的质谱图。
通过图7和图2的比对可知,本实施例3中的大米肽中同时存在肽段GS、GL和GF。经检测,本实施例3制备的大米肽中GS含量为203.67mg/100g,GL含量为207.85mg/100g,GF含量为104.54mg/100g。
对比例1
本对比例的大米肽按照以下方法制备得到:
1、将500g大米蛋白粉(蛋白含量80%,60目)加入5L纯净水,得到混合液;
2、将混合液升温至50℃,加入浓盐酸10mL调节pH为3.0后,加入胃蛋白酶2g进行第一酶解,酶解3h后得到第一酶解液;
然后向第一酶解液加入氢氧化钠4g调节pH为7.0后,加入木瓜蛋白酶1g进行第二酶解,酶解1h后得到第二酶解液;
向第二酶解液加入氨基肽酶0.5g,酶解1h后,将体系升温至95℃并保温30min进行灭酶,得到第三酶解液;
3、采用孔径为200nm的陶瓷膜对第三酶解液进行过滤,去除固体杂质,初步澄清酶解液,得到一级滤液;再用截留分子量为2000u的纳滤膜对一级滤液进行二次过滤,去除可溶性大分子杂质,收集二级滤液;
将二级滤液以10mL/min的流速通过预平衡好的氢型阳离子交换树脂柱,待紫外检测值高于200mAu时开始收集流出液,上完样品后继续用去离子水冲洗阳离子交换树脂柱,待紫外检测值低于200mAu时停止收集流出液;将从阳离子交换树脂柱中收集的流出液以10mL/min的流速通过预平衡好的氢氧型阴离子交换树脂柱,待紫外检测值高于200mAu时开始收集,上完样品后继续用去离子水冲洗阴离子交换树脂柱,待紫外检测值低于200mAu时,停止收集流出液;
4、使用真空蒸发浓缩设备对离子交换树脂柱收集的流出液进行浓缩至波美值为21%,再将浓缩液送入喷雾干燥塔,干燥塔进口温度140℃,得到本对比例的大米肽。
产物测定
1、采用与实施例1相同的方法对大米肽中功能肽段GS、GL和GF的含量进行检测。
图8为本发明100μg/mL对比例1中大米肽中GS、GL和GF的质谱图。
通过图8和图2的比对可知,本对比例1中的大米肽中同时存在肽段GS、GL和GF。经检测,本对比例1制备的大米肽中GS含量为145.86mg/100g,GL含量为153.61mg/100g,GF含量为76.84mg/100g。
对比例2
本对比例的大米肽按照以下方法制备得到:
1、将500g大米蛋白粉(蛋白含量80%,60目)加入蒸汽爆破反应罐中,通入蒸汽,控制压力在0.65Mpa,维持100s,然后在5.0毫秒释放压力,得到大米蒸汽爆破颗粒;
向大米蒸汽爆破颗粒用加入5L纯净水,得到混合液;
2、将混合液升温至50℃,加入氢氧化钠4g调节pH为8.0后,加入碱性蛋白酶5g,中性蛋白酶2g,共同酶解3h后,再加入菠萝蛋白酶1g,继续酶解1h后,将体系升温至95℃并保温30min进行灭酶,得到酶解液;
3、采用孔径为200nm的陶瓷膜对酶解液液进行过滤,去除固体杂质,初步澄清酶解液,得到一级滤液;再用截留分子量为2000u的纳滤膜对一级滤液进行二次过滤,去除可溶性大分子杂质,收集二级滤液;
将二级滤液以10mL/min的流速通过预平衡好的氢型阳离子交换树脂柱,待紫外检测值高于200mAu时开始收集流出液,上完样品后继续用去离子水冲洗阳离子交换树脂柱,待紫外检测值低于200mAu时停止收集流出液;将从阳离子交换树脂柱中收集的流出液以10mL/min的流速通过预平衡好的氢氧型阴离子交换树脂柱,待紫外检测值高于200mAu时开始收集,上完样品后继续用去离子水冲洗阴离子交换树脂柱,待紫外检测值低于200mAu时,停止收集流出液;
4、使用真空蒸发浓缩设备对离子交换树脂柱收集的流出液进行浓缩至波美值为20%,再将浓缩液送入喷雾干燥塔,干燥塔进口温度140℃,得到本对比例的大米肽。
产物测定
1、采用与实施例1相同的方法对大米肽中功能肽段GS、GL和GF的含量进行检测。
图9为本发明100μg/mL对比例2中大米肽中GS、GL和GF的质谱图。
通过图9和图2的比对可知,本对比例2中的大米肽中同时存在肽段GS、GL和GF。经检测,本对比例2制备的大米肽中GS含量为95.35mg/100g, GL含量为108.98mg/100g,GF含量为49.83mg/100g。
对比例3
本对比例的大米肽按照以下方法制备得到:
1、将500g大米蛋白粉(蛋白含量80%,60目)加入蒸汽爆破反应罐中,通入蒸汽,控制压力在0.65Mpa,维持100s,然后在5.0毫秒释放压力,得到大米蒸汽爆破颗粒;
向大米蒸汽爆破颗粒用加入5L纯净水,得到混合液;
2、将混合液升温至50℃,加入浓盐酸10mL调节pH为3.0后,加入胃蛋白酶2g进行第一酶解,酶解3h后得到第一酶解液;
然后向第一酶解液加入氢氧化钠4g调节pH为7.0后,加入木瓜蛋白酶1g进行第二酶解,酶解1h后得到第二酶解液;
向第二酶解液加入氨基肽酶0.5g,酶解1h后,将体系升温至95℃并保温30min进行灭酶,得到第三酶解液;
3、采用孔径为200nm的陶瓷膜对第三酶解液进行过滤,去除固体杂质,初步澄清酶解液,得到一级滤液;再用截留分子量为2000u的纳滤膜对一级滤液进行二次过滤,去除可溶性大分子杂质,收集二级滤液;
4、使用真空蒸发浓缩设备对二级滤液进行浓缩至波美值为23%,再将浓缩液送入喷雾干燥塔,干燥塔进口温度140℃,得到本对比例的大米肽。
产物测定
1、采用与实施例1相同的方法对大米肽中功能肽段GS、GL和GF的含量进行检测。
图10为本发明100μg/mL对比例3中大米肽中GS、GL和GF的质谱图。
通过图10和图2的比对可知,本对比例3中的大米肽中同时存在肽段GS、GL和GF。经检测,本对比例3制备的大米肽中GS含量为71.39mg/100g,GL含量为75.81mg/100g,GF含量为34.68mg/100g。
利用下述方法对样品的抗氧化功能和美白功能进行评价。
抗氧化功能评价
a.清除DPPH自由基能力测定
不同质量浓度的样品溶液与0.1mM DPPH-无水乙醇溶液以1:3的体积比例混合均匀,遮光条件下,室温反应30min,于517nm处测量吸光度(A 1)。相应的,以不同质量浓度的样品溶液与无水乙醇溶液以1:3的体积比例混合均匀,遮光条件下室温保存30min,于517nm处测量吸光度(A 2)。以蒸馏水与0.1mM DPPH-无水乙醇溶液以1:3的体积比例混合均匀,遮光条件下室温保存30min,于517nm处测量吸光度(A 0)。根据下式计算得到样品对DPPH自由基的清除率:
Figure PCTCN2020076899-appb-000006
b.清除OH自由基能力测定
将不同质量浓度的样品溶液与5mM FeSO 4、5mM水杨酸-无水乙醇溶液以1:2:2的体积比例混合均匀,以1体积的5mM H 2O 2溶液开启反应,在37℃恒温水中孵育反应1h,510nm处测量吸光度(A 1)。相应的,以1体积的水代替5mM H 2O 2溶液,其余试剂比例不变,在37℃恒温水中孵育反应1h,510nm处测量吸光度(A 2)。以蒸馏水代替样品溶液,其余试剂比例不变,在37℃恒温水中孵育中反应1h,510nm处测量吸光度(A 0)。根据下式计算得到大米肽对OH自由基的清除率:
Figure PCTCN2020076899-appb-000007
c.降低ROS含量能力测定
以1.0×10 5个/mL人皮肤黑色素细胞(PIG1细胞)密度接种6孔细胞培养板,每孔2mL,放置37℃、5%CO 2细胞培养箱中培养24h。随后小心吸走6孔中的细胞上清液,PBS清洗后,加入含有样品的不完全培养基,孵育4h。孵育完成后,倒出含有样品的培养液,PBS清洗,每孔加入0.5mL PBS缓冲液覆盖底面,UVB辐照(辐照剂量为700mJ/cm 2)。加入终浓度为10μmol/L的荧光染料DCFH-DA,于37℃、5%CO 2细胞培养箱中培养30min,然后取出吸走上清液,用PBS小心清洗3次。消化,完全培养基终止,置于流式细 胞仪测定相对荧光值。人皮肤黑色素细胞内抗氧化能力以ROS含量来表示,计算公式如下:
Figure PCTCN2020076899-appb-000008
美白功能评价
a.黑色素合成促进率测定
将细胞密度调整2.0×10 5个/mL,2mL/孔接入6孔板中,24h细胞贴壁后,弃去培养液。每孔0.5mL PBS缓冲液覆盖底面,UVB辐照,辐照剂量为700mJ/cm 2。照射完成后,弃掉PBS溶液,加入含有样品的DMEM不完全培养基孵育24h。从细胞培养箱中取出,弃上清液,PBS缓冲液清洗两次,每孔加入200μL的1%Triton X-100溶液,放入-80℃冰箱30min后溶解,12000r/min离心10min,沉淀加入1mol/L的NaOH(含10%DMSO)溶解混匀,90℃水浴30min,于405nm读取吸光值,离心后的上清液用BCA法测蛋白含量。测得各组吸光值后,分别除以各组上清液蛋白含量,即为平均吸光值,用平均吸光值计算黑色素合成促进率,公式如下:
Figure PCTCN2020076899-appb-000009
b.L-DOPA法检测酪氨酸酶活激活率测定
取a.实验方法中的上清液,加入等量的0.1%左旋多巴(L-DOPA)在37℃温育1h,测量475nm处的吸光值,计算公式如下:
Figure PCTCN2020076899-appb-000010
以实施例1-3中的大米肽以及对比例1-3中的大米肽为样品进行以下试验。
试验例1
DPPH是一种稳定的有机自由基,通过检测样品对DPPH自由基的清除能力可以表示其抗氧化性的强弱。
图11为本发明实施例1、2、3的大米肽以及对比例1、2、3的大米肽在不同质量浓度下清除DPPH自由基的曲线图。如图11所示,随着大米肽浓度的增加,虽然实施例以及对比例的大米肽对DPPH自由基的清除率都逐渐增加,但是实施例大米肽的DPPH自由基清除率显著优于对比例大米肽的DPPH自由基清除率;就实施例1而言,其DPPH自由基清除率稳定在70%左右,且IC 50=5mg/mL。
试验例2
OH自由基(-OH)是一种氧化能力非常强的自由基,很容易参与生命活动中氧化代谢过程,引起DNA链断裂、蛋白质氧化、脂质氧化等,进而引起细胞凋亡、色素沉积等一系列反应。
图12为本发明实施例1、2、3的大米肽以及对比例1、2、3的大米肽在不同质量浓度下清除OH自由基的曲线图。如图12所示,随着大米肽浓度的增加,虽然实施例以及对比例的大米肽对-OH清除能力能逐渐增强,但是实施例大米肽的-OH清除能力明显优于对比例大米肽的-OH清除能力;就实施例1而言,其-OH清除率稳定在50%左右。
试验例3
ROS是需氧生物在代谢过程中产生的比氧活泼的含氧活性物质,过量的ROS会引起机体组织细胞氧化应激反应,造成生物大分子物质损伤,影响正常的生物学功能,ROS含量变化是抗氧化能力重要指标之一。
本试验例采用两种不同的试验方法对大米肽与ROS含量的关系进行试验说明。
第一种试验方法(法1)为UVB先诱导,再上样的方法,即以1.0×10 5个/mL人皮肤黑色素细胞(PIG1细胞)密度接种6孔细胞培养板,每孔2mL,放置37℃、5%CO 2细胞培养箱中培养24h。随后小心吸走6孔中的细胞上清液,PBS清洗后,每孔加入0.5mL PBS缓冲液覆盖底面,UVB辐照(辐照剂 量为700mJ/cm 2)后,加入含有样品的不完全培养基,孵育4h。孵育完成后,倒出含有样品的培养液,PBS清洗,加入终浓度为10μmol/L的荧光染料DCFH-DA,于37℃、5%CO 2细胞培养箱中培养30min,然后取出吸走上清液,用PBS小心清洗3次。消化,完全培养基终止,置于流式细胞仪测定相对荧光值。
第二种试验方法(法2)为先上样,再UVB诱导,即以1.0×10 5个/mL人皮肤黑色素细胞(PIG1细胞)密度接种6孔细胞培养板,每孔2mL,放置37℃、5%CO 2细胞培养箱中培养24h。随后小心吸走6孔中的细胞上清液,PBS清洗后,加入含有样品的不完全培养基,孵育2h。孵育完成后,倒出含有样品的培养液,PBS清洗,每孔加入0.5mL PBS缓冲液覆盖底面,UVB辐照(辐照剂量为700mJ/cm 2)。加入含有样品的不完全培养基,继续孵育2h。孵育完成后,倒出含有样品的培养液,PBS清洗,加入终浓度为10μmol/L的荧光染料DCFH-DA,于37℃、5%CO 2细胞培养箱中培养30min,然后取出吸走上清液,用PBS小心清洗3次。消化,完全培养基终止,置于流式细胞仪测定相对荧光值。
图13为各试验组与ROS含量的关系图。图13中,空白组为PIG1细胞且不给予UVB光照;模型组为PIG1细胞且给予UVB(700mJ/cm 2)光照;阳性对照组为10μg/mL熊果苷+PIG1细胞,且给予UVB(700mJ/cm 2)光照;样品组1为100μg/mL实施例1大米肽+PIG1细胞,且给予UVB(700mJ/cm 2)光照;样品组2为100μg/mL实施例2大米肽+PIG1细胞,且给予UVB(700mJ/cm 2)光照;样品组3为100μg/mL实施例3大米肽+PIG1细胞,且给予UVB(700mJ/cm 2)光照;样品组4为100μg/mL对比例1大米肽+PIG1细胞,且给予UVB(700mJ/cm 2)光照;样品组5为100μg/mL对比例2大米肽+PIG1细胞,且给予UVB(700mJ/cm 2)光照;样品组6为100μg/mL对比例3大米肽+PIG1细胞,且给予UVB(700mJ/cm 2)光照。如图13所示:根据模型组可知,法1和法2均能极显著提高胞内ROS含量,产生氧化应激反应,且法1产生的的ROS比法2产生的ROS多,分别为186.5%和163.3%;阳性对照组和样品组1-6均能显著降低ROS含量,且样品组4-6的ROS含量以及阳性对照组的ROS含量均比样品组1-3的ROS含量高,即表明对比例1-3和阳性对照组的抗氧化 效果没有实施例1-3效果好。
图14为本发明实施例1的大米肽在不同质量浓度下与ROS含量的关系图。图14中,空白组为PIG1细胞且不给予UVB光照;模型组为PIG1细胞且给予UVB(700mJ/cm 2)光照;阳性对照组为10μg/mL熊果苷+PIG1细胞,且给予UVB(700mJ/cm 2)光照;样品组1为50μg/mL实施例1大米肽+PIG1细胞,且给予UVB(700mJ/cm 2)光照;样品组2为100μg/mL实施例1大米肽+PIG1细胞,且给予UVB(700mJ/cm 2)光照;样品组3为200μg/mL实施例1大米肽+PIG1细胞,且给予UVB(700mJ/cm 2)光照;
如图14所示,随着实施例1大米肽浓度的增大,降低ROS含量的能力越强,法2的200μg/mL大米肽降低氧化应激反应的效果最好,此时ROS含量为113%。
试验例4
人类肤色与黑色素细胞生成的黑色素在皮肤中的含量和分布状态有关,肤色的显色过程为:黑色素细胞中的黑素小体中合成黑色素并将其包裹转运至角质细胞,角质细胞摄取黑色素显色并向皮肤角质层上移,形成最终肤色。
图15为各试验组与PIG1细胞黑色素合成促进率的关系图。图15中,空白组、模型组、阳性对照组、样品组1-6均与图13相同。如图15所示,由模型组可知,法1和法2均能极显著提高黑色素含量,黑色素合成促进率分别为12.2%和8.0%;阳性对照组能极显著降低黑色素合成促进率;样品组1-3能显著降低黑色素合成促进率,而样品组4-6不能显著降低黑色素合成促进率,因此实施例1-3降低黑色素合成促进率效果强于对比例1-3。
图16为本发明实施例1的大米肽在不同质量浓度下与PIG1细胞黑色素合成促进率的关系图。图16中,空白组、模型组、阳性对照组、样品组1-3均与图14相同。
如图16所示,法1处理时,实施例1的200μg/mL大米肽降低黑色素合成促进率的能力最强,此时促进率为1.1%;法2处理时,随着大米肽浓度的提高,黑色素合成促进率逐渐降低,200μg/mL时为2.4%。综合来看,法2的黑色素合成促进率更低,效果更好。
试验例5
黑色素的合成必需3种物质:底物酪氨酸,反应关键酶—酪氨酸酶以及氧元素。酪氨酸酶是一种含铜的氧化还原酶,广泛存在于生物体中,是黑色素生成的限速酶,催化L-酪氨酸为L-左旋多巴(L-DOPA),进一步被氧化成L-多巴醌,合成黑色素。
图17为各试验组与PIG1细胞酪氨酸酶激活率的关系图。图17中,空白组、模型组、阳性对照组、样品组1-6均与图13相同。如图17所示,模型组能极显著提高酪氨酸酶激活率,分别为21.0%和17.6%;阳性对照组和样品组1-3均能降低酪氨酸酶激活率;样品组4-6不能降低酪氨酸酶激活率,因此对比例1-3的降低酪氨酸酶活性的能力低于实施例1-3。
图18为本发明实施例1的大米肽在不同质量浓度下与PIG1细胞酪氨酸酶激活率的关系图。图18中,空白组、模型组、阳性对照组、样品组1-3均与图14相同。
如图18所示,随着实施例1大米肽浓度的升高,PIG1细胞酪氨酸酶激活率逐渐降低;法1处理时,200μg/mL大米肽降低酪氨酸酶激活率的能力最强,此时和法2酪氨酸酶激活(10.2%)率相差不多。
图13-图18中,“ *”代表与空白组比较,P<0.05;“ **”代表与空白组比较,P<0.01;“ #”代表与模型组比较,P<0.05;“ ##”代表与模型组比较,P<0.01。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (10)

  1. 一种具有美白功能的大米肽,其特征在于,所述大米肽组成中至少包括肽段GS、GL以及GF;
    基于大米肽的质量,所述肽段GS的含量≥200.00mg/100g、肽段GL的含量≥200.00mg/100g、肽段GF的含量≥100.00mg/100g。
  2. 根据权利要求1所述的大米肽,其特征在于,所述大米肽中分子量小于1000u的肽的质量含量≥90%。
  3. 根据权利要求1-2任一所述的大米肽,其特征在于,所述大米肽是通过对大米蛋白原料依次进行蒸汽爆破处理、酶解处理以及分离纯化处理获得;
    其中,所述酶解处理包括依次利用胃蛋白酶、木瓜蛋白酶以及氨基肽酶进行三段酶解。
  4. 一种权利要求1-3任一项所述的大米肽的制备方法,其特征在于,包括以下步骤:
    对大米蛋白原料进行蒸汽爆破处理后,加水制成混合液;
    调节所述混合液的pH至酸性后加入胃蛋白酶进行第一酶解,1.5-3h后,得到第一酶解液;
    调节所述第一酶解液的pH至弱酸或中性后,加入木瓜蛋白酶进行第二酶解,1-2h后,得到第二酶解液;
    向所述第二酶解液加入氨基肽酶进行第三酶解,0.5-1h后,灭酶,得到第三酶解液;
    对所述第三酶解液依次进行过滤以及树脂纯化处理,得到所述大米肽。
  5. 根据权利要求4所述的大米肽的制备方法,其特征在于,所述蒸汽爆破处理包括:所述大米蛋白原料在0.5-1.5Mpa的蒸汽压下维持30-120s后,使所述大米蛋白粉在3.0-8.5ms内释放压力,得到大米蒸汽爆破颗粒。
  6. 根据权利要求5所述的大米肽的制备方法,其特征在于,按照水与所述大米蛋白原料的质量比为(5-20):1,向所述大米蒸汽爆破颗粒加水,得到所述混合液。
  7. 根据权利要求4所述的大米肽的制备方法,其特征在于,基于所述大米蛋白原料中的蛋白含量,所述胃蛋白酶的用量为600-1500U/100g,所述木瓜蛋白酶的用量为100000-200000U/100g,所述氨基肽酶的用量为50-150LAPU/100g。
  8. 根据权利要求4所述的大米肽的制备方法,其特征在于,采用多级过滤处理所述第三酶解液,包括:
    采用孔径为50-200nm的滤膜对所述第三酶解液进行一级过滤,收集一级滤液;
    采用截留分子量为2000-5000u的纳滤膜对所述一级滤液进行二级过滤,得到二级滤液。
  9. 根据权利要求8所述的大米肽的制备方法,其特征在于,所述树脂纯化处理包括对所述二级滤液依次进行阳离子交换树脂纯化处理和阴离子交换树脂纯化处理。
  10. 权利要求1-3任一项所述的大米肽在抗氧化产品和美白产品中的应用。
PCT/CN2020/076899 2019-10-29 2020-02-27 一种具有美白功能的大米肽及其制备方法 WO2021082310A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022525163A JP7461470B2 (ja) 2019-10-29 2020-02-27 美白機能を有する米ペプチド及びその調製方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911040377.9A CN112717118B (zh) 2019-10-29 2019-10-29 一种具有美白功能的大米肽及其制备方法
CN201911040377.9 2019-10-29

Publications (1)

Publication Number Publication Date
WO2021082310A1 true WO2021082310A1 (zh) 2021-05-06

Family

ID=75589066

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/076899 WO2021082310A1 (zh) 2019-10-29 2020-02-27 一种具有美白功能的大米肽及其制备方法

Country Status (3)

Country Link
JP (1) JP7461470B2 (zh)
CN (1) CN112717118B (zh)
WO (1) WO2021082310A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115521962B (zh) * 2022-09-26 2024-03-15 福瑞施生物医药科技(深圳)有限公司 水稻多肽组合物及其制备方法和应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102524736A (zh) * 2011-12-27 2012-07-04 广州合诚实业有限公司 一种以大米蛋白为原料制备功能性呈味基料的方法
CN107319329A (zh) * 2017-07-18 2017-11-07 安徽省寿县丰茂农产品开发有限公司 一种降低gi指数的复合大米的加工方法
CN109575106A (zh) * 2019-01-07 2019-04-05 无限极(中国)有限公司 一种从大米多肽中制备抗氧化三肽的方法及应用
CN109880874A (zh) * 2019-04-24 2019-06-14 山东大树达孚特膳食品有限公司 一种大米活性肽的制备方法、大米活性肽及其应用

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2999301B2 (ja) * 1991-07-25 2000-01-17 協和醗酵工業株式会社 化粧料
JPH05170637A (ja) * 1991-12-25 1993-07-09 Narisu Keshohin:Kk 美白化粧料
JPH06345797A (ja) * 1993-06-11 1994-12-20 Yakult Honsha Co Ltd ジペプチド及びこれを含有する化粧料
WO2012051741A1 (zh) * 2010-10-22 2012-04-26 新钰生技股份有限公司 抑制黑色素生成的甘胺酸衍生物及其美白组合物
JP5887630B2 (ja) * 2011-08-11 2016-03-16 岡山県 ジペプチジルペプチダーゼ−iv阻害剤の製造方法
CN103409491B (zh) * 2013-08-27 2015-02-11 无锡群硕谷唐生物科技有限公司 一种大米蛋白寡肽的制备方法
CN108201515B (zh) * 2016-12-20 2020-12-01 武汉弘跃医药科技有限公司 一类生物活性肽在护肤和皮肤美白中的应用
CN106947798A (zh) * 2017-03-15 2017-07-14 乐康珍泰(天津)生物技术有限公司 一种鹰嘴豆肽的制备方法
CN110791542A (zh) * 2019-12-09 2020-02-14 武汉轻工大学 一种从大米中提取大米淀粉和大米活性肽的方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102524736A (zh) * 2011-12-27 2012-07-04 广州合诚实业有限公司 一种以大米蛋白为原料制备功能性呈味基料的方法
CN107319329A (zh) * 2017-07-18 2017-11-07 安徽省寿县丰茂农产品开发有限公司 一种降低gi指数的复合大米的加工方法
CN109575106A (zh) * 2019-01-07 2019-04-05 无限极(中国)有限公司 一种从大米多肽中制备抗氧化三肽的方法及应用
CN109880874A (zh) * 2019-04-24 2019-06-14 山东大树达孚特膳食品有限公司 一种大米活性肽的制备方法、大米活性肽及其应用

Also Published As

Publication number Publication date
JP2022554263A (ja) 2022-12-28
CN112717118B (zh) 2023-03-31
JP7461470B2 (ja) 2024-04-03
CN112717118A (zh) 2021-04-30

Similar Documents

Publication Publication Date Title
Pérez-Corona et al. Selenium biotransformation by Saccharomyces cerevisiae and Saccharomyces bayanus during white wine manufacture: Laboratory-scale experiments
JP4854199B2 (ja) 液化酒粕を再発酵して得られる機能性素材
JP2006256977A (ja) メイラード反応阻害剤
CN114190562B (zh) 一种含有花胶和轮叶党参低聚肽的抗皮肤衰老组合物及其制备方法和用途
CN110564800B (zh) 一种具有抗氧化活性的鱿鱼皮蛋白美拉德肽液的制备方法
WO2021004463A1 (zh) 一种高压辅助酶解制备的花生抗氧化肽及其制备方法
CN111041059B (zh) 一种具有抗氧化活性南极磷虾肽的制备方法
CN110218756B (zh) 一种具有抗衰作用的富硒鲟鱼骨肽提取方法及产品
CN114480549A (zh) 一种由蜗牛制备生物活性肽及其制备方法和应用
CN107488693A (zh) 马尾藻活性多肽的制备方法
WO2021082310A1 (zh) 一种具有美白功能的大米肽及其制备方法
CN103275181A (zh) 一种金枪鱼碎肉多肽类血管生成抑制因子及其制备方法和用途
Jeampakdee et al. The apoptotic and free radical–scavenging abilities of the protein hydrolysate obtained from chicken feather meal
CN117965668A (zh) 一种具有抗氧化和抗衰老功能的牛骨胶原蛋白肽及其制备方法与应用
WO2021082311A1 (zh) 一种具有辅助降血糖功能的豌豆肽及其制备方法
CN109806383A (zh) 一种鳗鱼肽在制备促进免疫的食品、药品或保健品中的应用
Wu et al. Fruiting bodies of Chinese caterpillar mushroom, Ophiocordyceps sinensis (Ascomycetes) alleviate diabetes-associated oxidative stress
CN116869853A (zh) 鲟鱼籽肽粉及其制备方法、化妆品组合物
CN104758925A (zh) 带鱼鱼骨铁螯合胶原肽的铁螯合用途
CN108619011B (zh) 一种复合菌菇提取液及其制备方法和在化妆品中的应用
CN113493489A (zh) 具有醒酒功能的多肽scgh及其用途
CN114717285A (zh) 一种酶解法提取大豆抗氧化肽的方法
CN113845564A (zh) 刺梨抗氧化寡肽及其制备方法、应用和抗氧化制品
CN109608520B (zh) 一种珍珠来源的功能肽及其用途
JPH07285881A (ja) アルコール代謝促進剤

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20882913

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022525163

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20882913

Country of ref document: EP

Kind code of ref document: A1