WO2021079714A1 - 熱伝導性シリコーン組成物及びその製造方法 - Google Patents

熱伝導性シリコーン組成物及びその製造方法 Download PDF

Info

Publication number
WO2021079714A1
WO2021079714A1 PCT/JP2020/037438 JP2020037438W WO2021079714A1 WO 2021079714 A1 WO2021079714 A1 WO 2021079714A1 JP 2020037438 W JP2020037438 W JP 2020037438W WO 2021079714 A1 WO2021079714 A1 WO 2021079714A1
Authority
WO
WIPO (PCT)
Prior art keywords
component
mass
group
parts
average particle
Prior art date
Application number
PCT/JP2020/037438
Other languages
English (en)
French (fr)
Inventor
山田 邦弘
謙一 辻
啓太 北沢
Original Assignee
信越化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 信越化学工業株式会社 filed Critical 信越化学工業株式会社
Priority to CN202080074195.8A priority Critical patent/CN114641538B/zh
Priority to JP2021554220A priority patent/JP7276493B2/ja
Priority to KR1020227017035A priority patent/KR20220089701A/ko
Priority to US17/771,086 priority patent/US20220380548A1/en
Priority to EP20879166.5A priority patent/EP4050068A4/en
Publication of WO2021079714A1 publication Critical patent/WO2021079714A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3737Organic materials with or without a thermoconductive filler
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/01Hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/14Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers in which at least two but not all the silicon atoms are connected by linkages other than oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/08Materials not undergoing a change of physical state when used
    • C09K5/14Solid materials, e.g. powdery or granular
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/12Polysiloxanes containing silicon bound to hydrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/14Polysiloxanes containing silicon bound to oxygen-containing groups
    • C08G77/18Polysiloxanes containing silicon bound to oxygen-containing groups to alkoxy or aryloxy groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/20Polysiloxanes containing silicon bound to unsaturated aliphatic groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • C08K2003/0812Aluminium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2296Oxides; Hydroxides of metals of zinc
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/001Conductive additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/003Additives being defined by their diameter
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/005Additives being defined by their particle size in general
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/014Additives containing two or more different additives of the same subgroup in C08K

Definitions

  • the present invention relates to a thermally conductive silicone composition having high thermal conductivity and excellent displacement resistance, and a method for producing the same.
  • heat conductive material In general, electric and electronic parts generate heat during use, so it is necessary to remove heat in order to operate the electric parts properly, and various heat conductive materials for heat removal have been proposed.
  • This heat conductive material is roughly classified into two types: 1) a sheet-like material that is easy to handle, and 2) a paste-like material.
  • the sheet-shaped material has the advantages of being easy to handle and excellent in stability, but the heat dissipation performance is inferior to that of the paste-shaped material because the contact thermal resistance is large due to its nature. Further, a certain level of strength / hardness is required to maintain the sheet shape, the tolerance generated between the electric / electronic component element and the heat radiating member cannot be absorbed, and the element may be destroyed by the stress.
  • the paste-like material can be adapted to mass production by using a coating device or the like, and has excellent heat dissipation performance due to its low contact thermal resistance.
  • the viscosity of the paste should be low, but if the viscosity is low, the paste will shift due to the cold impact of the element (pump-out phenomenon), and heat removal will not be sufficient. Therefore, as a result, the element may malfunction.
  • the following silicone compositions have been proposed as past techniques, but there has been a demand for a thermally conductive silicone composition having more sufficient performance and excellent displacement resistance.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a thermally conductive silicone composition having high thermal conductivity and excellent workability and displacement resistance, and a method for producing the same.
  • a thermally conductive silicone composition containing a powder and further containing a volatile solvent, particularly an isoparaffinic solvent having a boiling point of 80 to 360 ° C., has both workability and pump-out resistance while having high thermal conductivity. We have found that it can be achieved and have come to the present invention.
  • the present invention provides the following thermally conductive silicone composition and a method for producing the same.
  • (C-1) Aluminum powder having an average particle size of 40 ⁇ m or more and 100 ⁇ m or less: an amount of 30 to 70% by mass in the component (C).
  • (C-2) Aluminum powder having an average particle size of 6 ⁇ m or more and less than 40 ⁇ m: an amount of 10 to 60% by mass in the component (C).
  • (C-3) Aluminum powder having an average particle size of 0.4 ⁇ m or more and less than 6 ⁇ m: an amount of 10 to 60% by mass in the component (C).
  • (D) Zinc oxide powder having an average particle size of 0.1 to 10 ⁇ m: 50 to 500 parts by mass with respect to a total of 100 parts by mass of the components (A) and (B), and (E) volatile solvent: (A) ), (B) A thermally conductive silicone composition containing 10 to 300 parts by mass with respect to 100 parts by mass in total.
  • the component (B) contains a silicone oil (B-1) composed of a one-terminal hydrolyzable organopolysiloxane represented by the following general formula (1), and the blending amounts of the component (B) are (A) and ( B) The thermally conductive silicone composition according to [1], which is an amount that is 10 to 90% by mass of the total amount of the components.
  • R 1 independently represents an alkyl group having 1 to 6 carbon atoms
  • R 2 is an unsubstituted or substituted monovalent hydrocarbon group having 1 to 18 carbon atoms and having no aliphatic unsaturated bond.
  • c is a number from 1.7 to 2.2, where b + c is a number that satisfies 1.9 to 2.4.
  • Organopolysiloxane which has at least one alkenyl group bonded to a silicon atom represented by.
  • a molecule having at least four hydrogen atoms bonded to a silicon atom at the non-terminal of the molecular chain has the following formula (3). 0.1 ⁇ / ⁇ (3) (In the formula, ⁇ represents the number of hydrogen atoms bonded to silicon atoms at the non-terminal of the molecular chain, and ⁇ represents the total number of silicon atoms in the component (G).)
  • Organohydrogen polysiloxane that meets the requirements.
  • the component (B) further contains a non-functional liquid silicone oil having a kinematic viscosity at 25 ° C. of (B-2) of 10 to 500,000 mm 2 / s in an amount of 10 to 70% by mass in the component (B) [1]. ] To [3]. The thermally conductive silicone composition according to any one of [3]. [5] The thermally conductive silicone composition according to any one of [1] to [4], wherein the component (E) is an isoparaffin-based solvent having a boiling point of 80 to 360 ° C.
  • (C-3) Aluminum powder having an average particle size of 0.4 ⁇ m or more and less than 6 ⁇ m: an amount of 10 to 60% by mass in the component (C).
  • (D) Zinc oxide powder having an average particle size of 0.1 to 10 ⁇ m: 50 to 500 parts by mass with respect to a total of 100 parts by mass of the components (A) and (B), and (E) volatile solvent: (A) ),
  • (B) A method for producing a thermally conductive silicone composition, which comprises a step of mixing 10 to 300 parts by mass with respect to a total of 100 parts by mass of the components.
  • the thermally conductive silicone composition of the present invention has high thermal conductivity, yet has high workability and improved pump-out resistance.
  • the silicone gel crosslinked product of the component (A) is used as a matrix of the thermally conductive silicone composition of the present invention.
  • the component (A) is preferably obtained by subjecting the following components (F) and (G) to a hydrosilylation reaction (addition reaction) in the presence of the component (H).
  • (F) The following average composition formula (2) R 3 b R 4 c SiO (4-bc) / 2 (2) (In the formula, R 3 represents an alkenyl group, R 4 represents an unsubstituted or substituted monovalent hydrocarbon group having no aliphatic unsaturated bond, and b is a number from 0.0001 to 0.2.
  • c is a number from 1.7 to 2.2, where b + c is a number that satisfies 1.9 to 2.4.
  • Organopolysiloxane which has at least one alkenyl group bonded to a silicon atom represented by.
  • G A molecule having at least four hydrogen atoms bonded to a silicon atom at the non-terminal of the molecular chain has the following formula (3). 0.1 ⁇ / ⁇ (3) (In the formula, ⁇ represents the number of hydrogen atoms bonded to silicon atoms at the non-terminal of the molecular chain, and ⁇ represents the total number of silicon atoms in the component (G).)
  • Organohydrogen polysiloxane which meets (H) Platinum-based catalyst.
  • the component (F) is a component that serves as a main component of the component (A).
  • the component (F) is an organopolysiloxane having at least one alkenyl group bonded to a silicon atom (hereinafter referred to as "silicon atom-bonded alkenyl group") in one molecule represented by the above average composition formula (2). ..
  • the alkenyl group preferably has at least 2 in one molecule, more preferably 2 to 50, and particularly preferably 2 to 20.
  • alkenyl groups may be attached to a silicon atom at the end of the molecular chain, a silicon atom at the non-terminal of the molecular chain (that is, other than both ends of the molecular chain), or a combination thereof. Good.
  • R 3 usually represents an alkenyl group having 2 to 6 carbon atoms, preferably 2 to 4 carbon atoms. Specific examples thereof include lower alkenyl groups such as a vinyl group, an allyl group, a propenyl group, an isopropenyl group, a butenyl group, and an isobutenyl group, and a vinyl group is preferable.
  • R 4 usually represents an unsubstituted or substituted monovalent hydrocarbon group having 1 to 10 carbon atoms, preferably 1 to 6 aliphatic unsaturated bonds.
  • alkyl group such as a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, a tert-butyl group, a pentyl group, a hexyl group, a cyclohexyl group, an octyl group and a decyl group; a phenyl group.
  • Aryl groups such as trill groups; Aralkyl groups such as benzyl groups and phenylethyl groups; Chloromethyl groups in which some or all of the hydrogen atoms of these groups are substituted with halogen atoms such as fluorine and chlorine, 3,3 , 3-Trifluoropropyl group and the like, but from the viewpoint of ease of synthesis and the like, a methyl group, a phenyl group and a 3,3,3-trifluoropropyl group are preferable.
  • b, c, and b + c are as described above, but b is preferably a number of 0.0005 to 0.1, and c is a number of 1.9 to 2.0. It is preferable that b + c is a number satisfying 1.95 to 2.05.
  • the molecular structure of the organopolysiloxane of the component (F) is not particularly limited, and is linear; R 3 SiO 3/2 units, R 4 SiO 3/2 units, SiO 2 units (in the formula) in a part of the molecular chain. , R 3 and R 4 are as defined above), etc., and may be branched; cyclic; three-dimensional network (resin), etc., but usually the main chain is the basic. It is a linear diorganopolysiloxane consisting of repeating diorganosiloxane units and having both ends of the molecular chain sealed with a triorganosyloxy group.
  • (F) kinematic viscosity of the organopolysiloxane of the component is preferably from 50 ⁇ 100,000mm 2 / s at 25 ° C., more preferably 100 ⁇ 10,000mm 2 / s.
  • the kinematic viscosity is 50 to 100,000 mm 2 / s, the obtained cured product has excellent fluidity and workability.
  • the kinematic viscosity is a value at 25 ° C. by an Ostwald viscometer (hereinafter, the same applies).
  • organopolysiloxane of the component (F) examples include the following general formula (4).
  • R 5 independently represents an unsubstituted or substituted monovalent hydrocarbon group, except that at least one, preferably two or more of R 5 is an alkenyl group, and d is 20 to 2,000. Is an integer of.
  • the ones represented by are mentioned.
  • the unsubstituted or substituted monovalent hydrocarbon group represented by R 5 is R 3 (alkenyl group) and R 4 (unsubstituted or substituted 1 having no aliphatic unsaturated bond). It is the same as that defined in (valent hydrocarbon group), and its carbon number, specific examples, etc. are also the same. Further, d is preferably an integer of 40 to 1,200, and more preferably an integer of 50 to 600.
  • organopolysiloxane represented by the above formula (4) include dimethylpolysiloxane having both ends of the molecular chain dimethylvinylsiloxy group blocked, dimethylpolysiloxane having one end of the molecular chain trimethylsiloxy group and one end dimethylvinylsiloxy group blocking dimethylpolysiloxane.
  • the organopolysiloxane of the component (F) may be used alone or in combination of two or more.
  • the component (G) reacts with the component (F) and acts as a cross-linking agent.
  • the component (G) has sufficient resistance when the number of hydrogen atoms bonded to a silicon atom at the non-terminal of the molecular chain (that is, a SiH group, hereinafter referred to as "silicon atom-bonded hydrogen atom") is 3 or less in one molecule.
  • represents the number of hydrogen atoms bonded to silicon atoms at the non-terminal of the molecular chain, and ⁇ represents the total number of silicon atoms in the component (G).
  • represents the total number of silicon atoms in the component (G).
  • It is an organohydrogenpolysiloxane that satisfies the above conditions. If the range of ⁇ / ⁇ is as small as 0.1 or less, the deviation resistance of the present composition deteriorates, so that 0.1 ⁇ / ⁇ is also required at the same time.
  • ⁇ / ⁇ is preferably 0.11 or more, particularly 0.12 or more, and the upper limit thereof is not particularly limited, but is preferably 0.95 or less, particularly 0.90 or less.
  • the molecular structure of the component (G) is not particularly limited as long as it satisfies the above requirements, and may be any of conventionally known, for example, linear, cyclic, branched, three-dimensional network (resin) and the like. May be good.
  • the number of silicon atoms (or degree of polymerization) in one molecule is usually 3 to 1,000. It is preferably 5 to 400 pieces, more preferably 10 to 300 pieces, still more preferably 10 to 100 pieces, and particularly preferably 10 to 60 pieces.
  • the kinematic viscosity of the organohydrogenpolysiloxane of the component (G) is usually 1 to 10,000 mm 2 / s, preferably 3 to 5,000 mm 2 / s, and more preferably 5 to 3,000 mm 2 / s. , Liquid at room temperature (25 ° C) is desirable.
  • organohydrogenpolysiloxane of the component (G) for example, one represented by the following average composition formula (5) is preferable.
  • R 6 e H f SiO (4-ef) / 2 (5) (In the formula, R 6 represents an unsubstituted or substituted monovalent hydrocarbon group having no aliphatic unsaturated bond, e is a number of 0.7 to 2.2, and f is 0.001 to 0. It is a number of 5, where e + f is a number that satisfies 0.8 to 2.5.)
  • R 6 is usually an unsubstituted or substituted monovalent hydrocarbon group having 1 to 10 carbon atoms, preferably 1 to 6 carbon atoms and having no aliphatic unsaturated bond. Specific examples thereof include methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, tert-butyl group, pentyl group, neopentyl group, hexyl group, cyclohexyl group, octyl group, nonyl group and decyl group.
  • Alkyl groups such as phenyl group, trill group, xylyl group, naphthyl group and other aryl groups; benzyl group, phenylethyl group, phenylpropyl group and other aralkyl groups; some or all of the hydrogen atoms of these groups are fluorine. , 3,3,3-trifluoropropyl group substituted with halogen atom such as chlorine, preferably alkyl group, aryl group, 3,3,3-trifluoropropyl group, more preferably methyl. Group, phenyl group, 3,3,3-trifluoropropyl group.
  • e, f, and e + f are as described above, but e is preferably a number of 0.9 to 2.1, and f is a number of 0.002 to 0.2, particularly. The number is preferably 0.005 to 0.1, and e + f is preferably a number satisfying 1.0 to 2.3, particularly 1.5 to 2.2.
  • the molecular structure of the organohydrogenpolysiloxane represented by the above formula (5) is not particularly limited, and may be any of linear, cyclic, branched, three-dimensional network (resin) and the like. Among them, those in which the number of silicon atoms and the kinematic viscosity in one molecule satisfy the above-mentioned ranges, and those having a linear shape are particularly preferable.
  • organohydrogenpolysiloxane represented by the above formula (5) include a trimethylsiloxy group-blocked dimethylsiloxane / methylhydrogensiloxane copolymer at both ends of the molecular chain and a trimethylsiloxy group-blocked methylhydrogen at both ends of the molecular chain.
  • the blending amount of the component (G) is such that the number of silicon atom-bonded hydrogen atoms in the component (G) is 0.3 to 2.0 with respect to one silicon atom-bonded alkenyl group in the component (F).
  • the amount is preferably 0.4 to 1.5, and more preferably 0.5 to 1.0.
  • the number of silicon atom-bonded hydrogen atoms is less than 0.3, the crosslink density becomes too low, the deviation resistance of the obtained thermally conductive silicone composition deteriorates, and when the number is more than 2.0, it is obtained. This is because the viscosity of the thermally conductive silicone composition becomes too high and the handleability deteriorates.
  • the organohydrogenpolysiloxane of the component (G) may be used alone or in combination of two or more.
  • the component (H) is a component for accelerating the addition reaction between the silicon atom-bonded alkenyl group in the component (F) and the silicon atom-bonded hydrogen atom in the component (G).
  • the component (H) is a platinum-based catalyst, specifically platinum and / or a platinum-based compound.
  • platinum and platinum-based compounds can be used. Specifically, for example, platinum black; chloroplatinic acid; alcohol-modified product of chloroplatinic acid; chloroplatinic acid and olefin aldehyde, vinyl siloxane. , Complexes such as acetylene alcohols and the like.
  • the blending amount of the component (H) may be an effective amount and may be appropriately increased or decreased according to a desired curing rate, but is usually 0.1 to 1 in terms of mass of platinum atom with respect to the component (F). It is 000 ppm, preferably 1 to 300 ppm. If this amount is too small, the addition reaction may be significantly slowed down or cross-linking may not occur. If this amount is too large, not only the heat resistance of the cured product is lowered, but also platinum is expensive, which is disadvantageous in terms of cost.
  • the platinum-based catalyst of the component (H) may be used alone or in combination of two or more.
  • a reaction control agent may be used in addition to the above components (F), (G) and (H).
  • a reaction control agent a conventionally known reaction control agent used in the addition-curable silicone composition can be used.
  • acetylene compounds such as acetylene alcohols (for example, 1-ethynyl-1-cyclohexanol, 3,5-dimethyl-1-hexin-3-ol), and various nitrogen compounds such as tributylamine, tetramethylethylenediamine, and benzotriazole.
  • Organic phosphorus compounds such as triphenylphosphine, oxime compounds, organic chloro compounds and the like.
  • the silicone gel crosslinked product of the component (A) is crosslinked by heating and mixing the component (F) and the component (G) in the presence of the platinum-based catalyst of the component (H), that is, a hydrosilylation reaction (addition reaction). It is obtained by advancing.
  • the reaction temperature is usually about 50 to 180 ° C., but is not limited thereto.
  • the reaction time is affected by the heating temperature, but usually 0.5 to 12 hours is sufficient for the reaction to proceed.
  • a product subjected to such treatment is defined as a "crosslinked product".
  • the components (F) and (G) are crosslinked in the presence of the component (H) to obtain the component (A), and then the component (A) is obtained.
  • the components (B) to (E) may be mixed, or in order to obtain the component (A), the component (B) is added to the components (F), (G), and (H) in advance before heating.
  • the components (F) and (G) may be mixed by heating in the presence of the component (H), and then the components (C), (D) and (E) may be mixed, and further, the component (A) may be mixed.
  • the component (B) is a component that does not participate in the cross-linking of the components (F) and (G), and is therefore a silicone oil that does not contain an aliphatic unsaturated bond and a SiH group, and is a component (C) and (D) described later. It is used as a surface treatment agent for the above, and in particular, it is preferably a hydrolyzable organopolysiloxane (B-1) having a trifunctional single end represented by the following general formula (1).
  • R 1 independently represents an alkyl group having 1 to 6 carbon atoms
  • R 2 is an unsubstituted or substituted monovalent hydrocarbon group having 1 to 18 carbon atoms and having no aliphatic unsaturated bond. Represents one or more groups selected from the group, where a is an integer from 5 to 120.
  • the organopolysiloxane of the general formula (1) which is the component (B-1), is used for treating the surface of the heat conductive filler of the components (C) and (D), and is highly filled with powder.
  • covering the surface of the powder makes it difficult for the powders to agglomerate with each other, and the effect lasts even at high temperatures. Therefore, it works to improve the heat resistance of the thermally conductive silicone composition of the present invention. is there.
  • R 1 includes, for example, an alkyl group having 1 to 6 carbon atoms such as a methyl group, an ethyl group and a propyl group, and a methyl group and an ethyl group are particularly preferable.
  • R 2 is an unsubstituted or substituted monovalent hydrocarbon group having 1 to 18 carbon atoms, preferably 1 to 14 carbon atoms and having no aliphatic unsaturated bond, independently of each other.
  • Alkyl groups such as phenyl group, trill group, xylyl group, naphthyl group and other aryl groups; benzyl group, phenylethyl group, phenylpropyl group and other aralkyl groups; some or all of the hydrogen atoms of these groups are fluorine.
  • 3,3,3-trifluoropropyl group substituted with halogen atom such as chlorine, preferably alkyl group, aryl group, 3,3,3-trifluoropropyl group, more preferably methyl.
  • halogen atom such as chlorine
  • alkyl group preferably alkyl group
  • aryl group 3,3,3-trifluoropropyl group, more preferably methyl.
  • phenyl group, 3,3,3-trifluoropropyl group. a is an integer of 5 to 120, preferably an integer of 10 to 90.
  • (B-1) a kinematic viscosity at 25 ° C. components preferably 5 ⁇ 500mm 2 / s, more preferably 10 ⁇ 300mm 2 / s.
  • the silicone oil of the component (B-1) may be used alone or in combination of two or more.
  • a non-functional liquid silicone oil (B-2) having no reactive group may be added to the component (B) of the present invention as the silicone oil not involved in the above-mentioned cross-linking.
  • [(B-2) component] (B-2) non-functional liquid silicone oil of component 25 kinematic viscosity at °C is 10 ⁇ 500,000mm 2 / s, is an organopolysiloxane preferably 30 ⁇ 10,000mm 2 / s.
  • the kinematic viscosity of the organopolysiloxane is lower than the above lower limit value, the obtained thermally conductive silicone composition tends to bleed oil.
  • it is larger than the above upper limit value the viscosity of the obtained composition becomes too high and the handleability becomes poor.
  • the non-functional liquid silicone oil of the component (B-2) may be any one having the above kinematic viscosity, and a conventionally known organopolysiloxane can be used.
  • the molecular structure of the organopolysiloxane (silicone oil) is not particularly limited, and may be linear, branched, cyclic, or the like.
  • the main chain consists of repeating diorganosiloxane units and has a linear structure in which both ends of the molecular chain are closed with a triorganosyloxy group.
  • This non-functional liquid silicone oil can be represented by the following average composition formula (6).
  • R 7 is independently an unsubstituted or substituted monovalent hydrocarbon group having 1 to 18 carbon atoms, preferably 1 to 14 carbon atoms and having no aliphatic unsaturated bond. Specific examples thereof include methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, tert-butyl group, pentyl group, neopentyl group, hexyl group, cyclohexyl group, octyl group, nonyl group and decyl group.
  • Alkyl groups such as phenyl group, trill group, xylyl group, naphthyl group and other aryl groups; benzyl group, phenylethyl group, phenylpropyl group and other aralkyl groups; some or all of the hydrogen atoms of these groups are fluorine. , 3,3,3-trifluoropropyl group substituted with halogen atom such as chlorine, preferably alkyl group, aryl group, 3,3,3-trifluoropropyl group, more preferably methyl. Group, phenyl group, 3,3,3-trifluoropropyl group.
  • g is a number in the range of 1.8 to 2.2, particularly in the range of 1.9 to 2.1.
  • the obtained thermally conductive silicone composition can have the required good kinematic viscosity.
  • organopolysiloxane represented by the above formula (6) a linear organopolysiloxane represented by the following formula (7) is preferable.
  • R 8 is an unsubstituted or substituted monovalent hydrocarbon group having 1 to 18 carbon atoms, preferably 1 to 14 carbon atoms and having no aliphatic unsaturated bond, independently of each other.
  • the monovalent hydrocarbon group include the same groups as those exemplified by R 7 in the above formula (6). Among them, it is preferable that all R 8 is a methyl group.
  • h is the organo kinematic viscosity at 25 ° C. polysiloxane 10 ⁇ 500,000mm 2 / s, preferably 30 ⁇ 10,000mm 2 / s, more preferably a number which is a 100 ⁇ 8,000mm 2 / s.
  • the content thereof is preferably 10 to 70% by mass, more preferably 10 to 60% by mass, and further preferably 10 to 50% by mass in the component (B). Is. If the amount of the component (B-2) is too large, the component (B-1) is relatively reduced, so that the surface treatment of the heat conductive filler of the component (D) may be insufficient, and the amount is too small. It may be uneconomical in terms of cost.
  • the non-functional liquid silicone oil of the component (B-2) may be used alone or in combination of two or more.
  • the blending amount of the silicone oil of the component (B) is preferably 10 to 90% by mass, more preferably 30 to 80% by mass, and further preferably 30 to 80% by mass in the total of the components (A) and (B). It is preferably 50 to 80% by mass. If it is less than 10% by mass, the viscosity of the obtained composition becomes high, which may result in poor handleability, and if it is more than 90% by mass, the displacement resistance of the composition may deteriorate.
  • Component (C) The aluminum powder of the component (C) is for imparting thermal conductivity to the thermally conductive silicone composition of the present invention.
  • the components (C) are (C-1) component: an aluminum powder having an average particle size of 40 ⁇ m or more and 100 ⁇ m or less, and (C-2) component: an aluminum powder having an average particle size of 6 ⁇ m or more and less than 40 ⁇ m, and (C). -3) Ingredients: Contains aluminum powder having an average particle size of 0.4 ⁇ m or more and less than 6 ⁇ m, and the above-mentioned components (C-1) to (C-3) are blended in a specific ratio. .. It is preferable that the components consist only of the above components (C-1) to (C-3).
  • the "average particle size” means the particle size at an integrated value of 50% in the volume-based particle size distribution obtained by the laser diffraction / scattering method.
  • the average particle size and particle size distribution of aluminum powder can be measured by a laser diffraction / scattering method, for example, with a Microtrack particle size analyzer MT3300EX (manufactured by Nikkiso Co., Ltd.).
  • the shape of the aluminum powder may be irregular, spherical, or any shape, and may be a powder whose surface has been treated in advance.
  • the shape of the aluminum powder includes, for example, scaly shape, teardrop shape, spherical shape, needle shape, irregular shape and the like.
  • the aluminum powder (C) of the present invention is 800 to 2,000 parts by mass, preferably 900 to 1,800 parts by mass, more preferably 1, with respect to 100 parts by mass of the total of the components (A) and (B). It is contained in an amount of 000 to 1,600 parts by mass. If the content of the aluminum powder of the component (C) is less than the above lower limit value, the thermal conductivity of the composition is low, and if it is more than the above upper limit value, the viscosity of the composition is increased, which is not preferable.
  • the component (C-1) is an aluminum powder having an average particle size of 40 ⁇ m or more and 100 ⁇ m or less, preferably 40 ⁇ m or more and 80 ⁇ m or less. If the average particle size of the component (C-1) is smaller than the above lower limit, the thermal conductivity of the thermally conductive silicone composition will decrease. Further, if the average particle size of the component (C-1) is larger than the above upper limit value, the smoothness of the thermally conductive silicone composition is lost, and the contact with the substrate becomes poor when actually used, resulting in heat. Resistance goes up.
  • the blending amount of the component (C-1) is 30 to 70% by mass, preferably 40 to 60% by mass, based on the total mass of the component (C): aluminum powder.
  • the thermal conductivity of the thermally conductive silicone composition will be low. Further, if the blending amount of the component (C-1) is larger than the above upper limit value, the close-packed structure cannot be formed between the component (C-2) and the component (C-3), and the thermal conductivity is increased. The viscosity of the silicone composition increases.
  • the component (C-2) is an aluminum powder having an average particle size of 6 ⁇ m or more and less than 40 ⁇ m, preferably 6 ⁇ m or more and 20 ⁇ m or less, and more preferably 6 ⁇ m or more and 12 ⁇ m or less. If the average particle size of the component (C-2) is smaller than the above lower limit, the close-packed structure cannot be formed with the component (C-3), and the viscosity of the thermally conductive silicone composition increases. It ends up. Further, if the average particle size of the component (C-2) is larger than the above upper limit value, a close-packed structure cannot be formed between the component (C-1) and the component (C-1), and the viscosity of the thermally conductive silicone composition increases. Resulting in.
  • the blending amount of the component (C-2) is 10 to 60% by mass, preferably 10 to 40% by mass, and more preferably 15 to 35% by mass in the total mass of the component (C): aluminum powder. If the blending amount of the component (C-2) is less than the above lower limit value, a close-packed structure cannot be obtained with the component (C-3), and the viscosity of the thermally conductive silicone composition increases. Further, even if the blending amount of the component (C-2) is larger than the above upper limit value, the close-packed structure cannot be obtained with the component (C-1), and the viscosity of the thermally conductive silicone composition increases. It ends up.
  • the component (C-3) is an aluminum powder having an average particle size of 0.4 ⁇ m or more and less than 6 ⁇ m, more preferably 0.4 ⁇ m or more and 3 ⁇ m or less. If the average particle size of the component (C-3) is smaller than the above lower limit, the viscosity of the thermally conductive silicone composition increases, which is not preferable. Further, if the average particle size of the component (C-3) is larger than the above upper limit value, a close-packed structure cannot be formed between the component (C-2) and the component (C-2), and the viscosity of the thermally conductive silicone composition increases. Resulting in.
  • the blending amount of the component (C-3) is 10 to 60% by mass, preferably 10 to 40% by mass, and more preferably 15 to 35% by mass in the total mass of the component (C): aluminum powder. If the blending amount of the component (C-3) is less than the above lower limit value, the close-packed structure cannot be obtained, so that the viscosity of the thermally conductive silicone composition increases. Further, even if the blending amount of the component (C-3) is larger than the above upper limit value, the close-packed structure cannot be obtained with the component (C-2), and the viscosity of the thermally conductive silicone composition increases. ..
  • the shape of the volume integration distribution curve by the laser diffraction method of the aluminum powder composed of the above components (C-1), (C-2) and (C-3) is not particularly limited, and the curve is not particularly limited. It may have three maximum peaks, two maximum peaks, or one maximum peak.
  • the zinc oxide powder of the component (D) has an average particle size of 0.1 to 10 ⁇ m, preferably 1 to 4 ⁇ m, and the shape of the zinc oxide powder is not particularly limited, for example, a spherical shape, an indefinite shape, or the like. Can be mentioned. If the average particle size of the zinc oxide powder is smaller than 0.1 ⁇ m, the viscosity of the obtained silicone composition becomes high and the handleability becomes poor, and if it is larger than 10 ⁇ m, the obtained silicone composition becomes non-uniform.
  • the zinc oxide powder of the component (D) contains 50 to 500 parts by mass, preferably 100 to 400 parts by mass, and more preferably 200 to 300 parts by mass with respect to 100 parts by mass of the total of the components (A) and (B). To do. This is because if the amount is less than 50 parts by mass or more than 500 parts by mass, the viscosity becomes high and the handleability deteriorates.
  • the heat conductive silicone composition of the present invention includes titanium oxide powder, alumina powder, boron nitride powder, aluminum nitride powder, diamond powder, gold powder, silver powder, and copper powder.
  • one or more powders selected from carbon powder, nickel powder, indium powder, gallium powder, metallic silicon powder, and silica powder have a total of 100 parts by mass of the components (A) and (B)
  • the total amount of these powders may be up to 200 parts by mass, preferably up to 150 parts by mass.
  • the volatile solvent of the component (E) may be any solvent as long as the components (A) and (B) can be dissolved or dispersed, and for example, toluene, xylene, acetone, methyl ethyl ketone, cyclohexane, n-hexane, n-heptane. , Butanol, IPA (isopropyl alcohol), isoparaffin and the like, and isoparaffin-based solvents are preferable from the viewpoints of safety, health and workability in printing.
  • the volatile solvent of the component (E) has a boiling point of 80 to 360 ° C, preferably 150 to 350 ° C. If the boiling point is less than 80 ° C., volatilization is too fast and the viscosity may increase during the coating operation, causing a problem. If the boiling point exceeds 360 ° C., it tends to remain in the thermally conductive silicone composition of the present invention, and the thermal properties may deteriorate.
  • the viscosity of the thermally conductive silicone composition of the present invention at room temperature is sufficient. Since it cannot be lowered to the maximum, workability during printing may deteriorate, and if it is more than 300 parts by mass, the filler may settle faster and the heat conductive silicone composition may have poor storage stability. It is preferably in the range of 10 to 300 parts by mass, more preferably in the range of 20 to 200 parts by mass, and further preferably in the range of 20 to 100 parts by mass.
  • the viscosity of the composition before containing the component (E) is preferably in the range of 300 to 2,000 Pa ⁇ s, more preferably 400 to 1,500 Pa ⁇ s.
  • the range is, more preferably 500 to 1,000 Pa ⁇ s. This is because if it is lower than 300 Pa ⁇ s, the displacement resistance deteriorates, and if it is higher than 2,000 Pa ⁇ s, it is too hard and the semiconductor element may be damaged.
  • the viscosity after containing the component (E) is preferably in the range of 10 to 300 Pa ⁇ s, more preferably 30 to 250 Pa ⁇ s, and further preferably 30 to 200 Pa ⁇ s.
  • the viscosity is a value at 25 ° C. by a rotational viscometer (hereinafter, the same applies).
  • the method for producing the thermally conductive silicone composition of the present invention is not particularly limited, but it can be obtained by mixing the above components (A) to (E), and other components may be added if necessary.
  • the mixing device is not particularly limited, and a mixer such as a planetary mixer, a trimix, or a twin mix can be used.
  • the components (A) to (E) may be mixed after the component (A) is prepared, and then the components (B) to (E) may be mixed, or the raw material of the component (A) (
  • the component (A) may be prepared by mixing (components (F), (G) and (H)) into the components (B) to (E) and then heating.
  • the mixture of A) to (D) and the component (E) may be mixed.
  • the thermally conductive silicone composition of the present invention is suitable because the volatile solvent volatilizes and the viscosity of the thermally conductive silicone composition increases when it is applied by screen printing or the like and left at room temperature for a certain period of time. Demonstrates slip resistance.
  • the thermally conductive silicone composition of the present invention When the thermally conductive silicone composition of the present invention is thinly applied to a heat sink or the like using a printing means such as a metal screen, the contained solvent can be easily volatilized by heating at room temperature or positively. Therefore, a high-performance thermally conductive silicone composition, which has been difficult to apply uniformly and thinly in the past, can be easily put into practical use.
  • the thermally conductive silicone composition of the present invention is particularly preferably used for heat dissipation of heat generating devices such as CPUs and GPUs of notebook computers and for heat generating devices of in-vehicle ECUs.
  • the present invention will be described in more detail with reference to Examples and Comparative Examples, but the present invention is not limited thereto.
  • the kinematic viscosity is a value at 25 ° C. by an Ostwald viscometer.
  • the tests on Examples and Comparative Examples conducted to clarify the superiority of the present invention were carried out as follows.
  • the average particle size of the components (C) and (D) is measured by a laser diffraction / scattering method, and is a volume-based cumulative average diameter measured by a microtrack MT3300EX, which is a particle size analyzer manufactured by Nikkiso Co., Ltd.
  • the thermal conductivity of the thermally conductive silicone composition was 25 by TPS-2500S manufactured by Kyoto Denshi Kogyo Co., Ltd. in the hot disk method compliant with ISO 22007-2. Measured at ° C.
  • the viscosity of the thermally conductive silicone composition (before and after the addition of the component (E)) is a value at 25 ° C. by a rotational viscometer, and at 25 ° C., a Malcolm viscometer manufactured by Malcolm Co., Ltd. (type PC-10AA). ) was used for measurement.
  • a 0.3 mm spacer is provided, and a thermally conductive silicone composition is sandwiched between two slide glass plates so as to form a circle with a diameter of 1.5 cm, and the test piece is tilted 90 degrees with respect to the ground. It was placed in a thermal shock tester (model number: TSE-11-A) manufactured by ESPEC CORPORATION, which was set to alternately repeat 40 ° C and 125 ° C (30 minutes each), and a 500-cycle test was performed. .. After 500 cycles, it was measured how much the thermally conductive silicone composition deviated from its original location. ⁇ Criteria> If it is 1 mm or less, it can be said that the displacement resistance is excellent.
  • Examples 1 to 4 As shown in Tables 1 to 3, each component was charged into a planetary mixer, and a thermally conductive silicone composition was prepared by the following procedure. That is, the components (B), (C), (D), and (F) were put into a planetary mixer, and the mixture was first stirred at room temperature for 10 minutes. After that, the components (G) and (H) are added, the temperature is raised to 170 ° C., and the mixture is heated and mixed for 2 hours as it is to carry out a hydrosilylation reaction with the components (F) and (G) (A). ) Ingredients were crosslinked with silicone gel. After cooling this to 40 ° C. or lower, the component (E) was added to obtain a composition. The various tests described above were performed using the obtained composition. The results are also shown in Tables 1 to 3.
  • (F) component A linear dimethylpolysiloxane having a vinyl group at both ends and having a kinematic viscosity of 600 mm 2 / s.
  • (F-2) A linear dimethylpolysiloxane having a vinyl group at both ends and having a kinematic viscosity of 30,000 mm 2 / s.
  • the number in "" in the component (C) indicates the mass% in the component (C) (hereinafter, the same applies). * For convenience, the number of silicon atom-bonded hydrogen atoms in the component (G) with respect to one silicon atom-bonded alkenyl group in the component (F) is designated as H / Vi (hereinafter, the same applies).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Thermal Sciences (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

(A)シリコーンゲル架橋物、 (B)脂肪族不飽和結合及びSiH基をそれぞれ含有せず、下記(C)、(D)成分の表面処理剤としてのシリコーンオイル、 (C)下記(C-1)~(C-3)を含むアルミニウム粉末、 (C-1)平均粒径が40μm以上100μm以下であるアルミニウム粉末、 (C-2)平均粒径が6μm以上40μm未満であるアルミニウム粉末、 (C-3)平均粒径が0.4μm以上6μm未満であるアルミニウム粉末、 (D)平均粒径が0.1~10μmである酸化亜鉛粉末、 (E)揮発性溶剤 を特定割合で含有する熱伝導性シリコーン組成物が、高い熱伝導率を有し、作業性、耐ズレ性に優れる。

Description

熱伝導性シリコーン組成物及びその製造方法
 本発明は、高熱伝導性を有し、且つ、耐ズレ性に優れた熱伝導性シリコーン組成物及びその製造方法に関する。
 一般に電気・電子部品は使用中に熱が発生するので、電気部品を適切に動作させるため除熱が必要であり、除熱用の種々の熱伝導性材料が提案されている。この熱伝導性材料は大別して、1)取り扱いが容易なシート状のもの、2)ペースト状のもの、との2種類の形態がある。
 シート状のものは、取り扱いが容易であり、且つ安定性に優れるメリットがあるが、接触熱抵抗が性質上大きくなるため、放熱性能はペースト状のものに劣ってしまう。また、シート状を保たせるためにある程度の強度/硬さが必要となり、電気・電子部品素子と放熱部材の間に生じる公差を吸収できず、それら応力によって素子を破壊してしまうこともある。
 一方、ペースト状のものは、塗布装置等を用いれば、大量生産にも適応できるし、接触熱抵抗が低いことから放熱性能は優れる。但し、スクリーン印刷等で大量生産する場合、そのペーストの粘度は低い方がよいが、粘度が低い場合、素子の冷熱衝撃等でそのペーストがズレてしまい(ポンプアウト現象)、除熱が十分できないため、その結果素子が誤作動を起こしてしまうようなことがあった。また、過去の技術として以下のようなシリコーン組成物などが提案されているが、更に十分な性能を与え、耐ズレ性に優れた熱伝導性シリコーン組成物が求められていた。
特許第3948642号公報 特許第3195277号公報 特開2000-169873号公報 特開2006-143978号公報 特開2004-210856号公報 特開2005-162975号公報 特許第5300408号公報 特許第4796704号公報 特許第3541390号公報 特許第4130091号公報 特許第5388329号公報
 本発明は、上記事情に鑑みなされたもので、高い熱伝導率を有し、作業性、耐ズレ性に優れる熱伝導性シリコーン組成物及びその製造方法を提供することを目的とする。
 本発明者らは、上記目的を達成するため鋭意検討した結果、シリコーンゲル架橋物、特定のシリコーンオイル、特に片末端加水分解性オルガノポリシロキサン、アルミニウム粉末、特に特定のアルミニウム粉末混合物、及び酸化亜鉛粉末を含有し、更に揮発性溶剤、特に沸点80~360℃のイソパラフィン系溶剤を含有する熱伝導性シリコーン組成物が、高い熱伝導率を有しながら、作業性、耐ポンプアウト性の両立を達成し得ることを見出し、本発明をなすに至ったものである。
 従って、本発明は下記熱伝導性シリコーン組成物及びその製造方法を提供する。
〔1〕
 (A)シリコーンゲル架橋物、
(B)脂肪族不飽和結合及びSiH基をそれぞれ含有せず、下記(C)、(D)成分の表面処理剤としてのシリコーンオイル、
(C)下記(C-1)~(C-3)を含むアルミニウム粉末:(A)、(B)成分の合計100質量部に対して800~2,000質量部、
(C-1)平均粒径が40μm以上100μm以下であるアルミニウム粉末:(C)成分中30~70質量%となる量、
(C-2)平均粒径が6μm以上40μm未満であるアルミニウム粉末:(C)成分中10~60質量%となる量、
(C-3)平均粒径が0.4μm以上6μm未満であるアルミニウム粉末:(C)成分中10~60質量%となる量、
(D)平均粒径が0.1~10μmである酸化亜鉛粉末:(A)、(B)成分の合計100質量部に対して50~500質量部、及び
(E)揮発性溶剤:(A)、(B)成分の合計100質量部に対して10~300質量部
を含有する熱伝導性シリコーン組成物。
〔2〕
 (B)成分が、下記一般式(1)で表される片末端加水分解性オルガノポリシロキサンからなるシリコーンオイル(B-1)を含み、(B)成分の配合量が、(A)、(B)成分の合計量の10~90質量%となる量である〔1〕に記載の熱伝導性シリコーン組成物。
Figure JPOXMLDOC01-appb-C000002
(式中、R1はそれぞれ独立に、炭素数1~6のアルキル基を表し、R2は炭素数1~18の脂肪族不飽和結合を有しない非置換又は置換の1価炭化水素基の群の中から選択される1種もしくは2種以上の基を表し、aは5~120の整数である。)
〔3〕
 (A)成分が、下記(F)成分と(G)成分とのシリコーンゲル架橋物を含むものである〔1〕又は〔2〕に記載の熱伝導性シリコーン組成物。
(F)下記平均組成式(2)
  R3 b4 cSiO(4-b-c)/2     (2)
(式中、R3はアルケニル基を表し、R4は脂肪族不飽和結合を有しない非置換又は置換の1価炭化水素基を表し、bは0.0001~0.2の数であり、cは1.7~2.2の数であり、但しb+cは1.9~2.4を満たす数である。)
で表されるケイ素原子に結合したアルケニル基を1分子中に少なくとも1個有するオルガノポリシロキサン、
(G)分子鎖非末端にケイ素原子に結合した水素原子を1分子中に少なくとも4個有し、下記式(3)
  0.1<α/β     (3)
(式中、αは分子鎖非末端のケイ素原子に結合した水素原子の数を表し、βは(G)成分中の全ケイ素原子数を表す。)
を満たすオルガノハイドロジェンポリシロキサン。
〔4〕
 (B)成分が、更に(B-2)25℃における動粘度が10~500,000mm2/sである無官能性液状シリコーンオイルを、(B)成分中10~70質量%含有する〔1〕~〔3〕のいずれかに記載の熱伝導性シリコーン組成物。
〔5〕
 (E)成分が、沸点80~360℃のイソパラフィン系溶剤である〔1〕~〔4〕のいずれかに記載の熱伝導性シリコーン組成物。
〔6〕
 (A)シリコーンゲル架橋物、
(B)脂肪族不飽和結合及びSiH基をそれぞれ含有せず、下記(C)、(D)成分の表面処理剤としてのシリコーンオイル、
(C)下記(C-1)~(C-3)を含むアルミニウム粉末:(A)、(B)成分の合計100質量部に対して800~2,000質量部、
(C-1)平均粒径が40μm以上100μm以下であるアルミニウム粉末:(C)成分中30~70質量%となる量、
(C-2)平均粒径が6μm以上40μm未満であるアルミニウム粉末:(C)成分中10~60質量%となる量、
(C-3)平均粒径が0.4μm以上6μm未満であるアルミニウム粉末:(C)成分中10~60質量%となる量、
(D)平均粒径が0.1~10μmである酸化亜鉛粉末:(A)、(B)成分の合計100質量部に対して50~500質量部、及び
(E)揮発性溶剤:(A)、(B)成分の合計100質量部に対して10~300質量部
を混合する工程を有する熱伝導性シリコーン組成物の製造方法。
 本発明の熱伝導性シリコーン組成物は、高い熱伝導率を有しながら、高い作業性、耐ポンプアウト性の向上が認められる。
 以下、本発明について詳述する。
[(A)成分]
 (A)成分のシリコーンゲル架橋物は、本発明の熱伝導性シリコーン組成物のマトリックスとして使用される。(A)成分は、下記(F)成分と(G)成分を(H)成分の存在下でハイドロシリル化反応(付加反応)させることによって得られるものが好ましい。
(F)下記平均組成式(2)
  R3 b4 cSiO(4-b-c)/2     (2)
(式中、R3はアルケニル基を表し、R4は脂肪族不飽和結合を有しない非置換又は置換の1価炭化水素基を表し、bは0.0001~0.2の数であり、cは1.7~2.2の数であり、但しb+cは1.9~2.4を満たす数である。)
で表されるケイ素原子に結合したアルケニル基を1分子中に少なくとも1個有するオルガノポリシロキサン、
(G)分子鎖非末端にケイ素原子に結合した水素原子を1分子中に少なくとも4個有し、下記式(3)
  0.1<α/β     (3)
(式中、αは分子鎖非末端のケイ素原子に結合した水素原子の数を表し、βは(G)成分中の全ケイ素原子数を表す。)
を満たすオルガノハイドロジェンポリシロキサン、
(H)白金系触媒。
[(F)成分]
 (F)成分は、(A)成分の主剤となる成分である。(F)成分は、上記平均組成式(2)で表される1分子中にケイ素原子に結合したアルケニル基(以下、「ケイ素原子結合アルケニル基」という)を少なくとも1個有するオルガノポリシロキサンである。前記アルケニル基は、1分子中に、少なくとも2個有することが好ましく、2~50個有することがより好ましく、2~20個有することが特に好ましい。これらのアルケニル基は、分子鎖末端のケイ素原子に結合していても、分子鎖非末端(即ち、分子鎖両末端以外)のケイ素原子に結合していても、あるいはそれらの組み合わせであってもよい。
 上記式(2)中、R3は、通常、炭素数が2~6、好ましくは2~4のアルケニル基を表す。その具体例としては、ビニル基、アリル基、プロペニル基、イソプロペニル基、ブテニル基、イソブテニル基等の低級アルケニル基が挙げられ、ビニル基が好ましい。
 R4は、通常、炭素数が1~10、好ましくは1~6の脂肪族不飽和結合を有しない非置換又は置換の1価炭化水素基を表す。その具体例としては、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、tert-ブチル基、ペンチル基、ヘキシル基、シクロヘキシル基、オクチル基、デシル基等のアルキル基;フェニル基、トリル基等のアリール基;ベンジル基、フェニルエチル基等のアラルキル基;これらの基の水素原子の一部又は全部が、フッ素、塩素等のハロゲン原子で置換されたクロロメチル基、3,3,3-トリフルオロプロピル基等が挙げられるが、合成の容易さ等の観点から、メチル基、フェニル基、3,3,3-トリフルオロプロピル基が好ましい。
 上記式(2)中、b、c、b+cの値は上述した通りであるが、bは0.0005~0.1の数であることが好ましく、cは1.9~2.0の数であることが好ましく、b+cは1.95~2.05を満たす数であることが好ましい。
 (F)成分のオルガノポリシロキサンの分子構造は、特に限定されず、直鎖状;分子鎖の一部にR3SiO3/2単位、R4SiO3/2単位、SiO2単位(式中、R3及びR4で表される基は、上記で定義した通りである。)等を含む分岐状;環状;三次元網状(樹脂状)等のいずれでもよいが、通常、主鎖が基本的にジオルガノシロキサン単位の繰り返しからなり、分子鎖両末端がトリオルガノシロキシ基で封鎖された直鎖状のジオルガノポリシロキサンである。
 (F)成分のオルガノポリシロキサンの動粘度は、好ましくは25℃において50~100,000mm2/sであり、より好ましくは100~10,000mm2/sである。この動粘度が50~100,000mm2/sである場合には、得られる硬化物は、流動性、作業性により優れたものとなる。なお、本発明において、動粘度は、オストワルド粘度計による25℃における値である(以下、同じ)。
 (F)成分のオルガノポリシロキサンとしては、例えば、下記一般式(4)
Figure JPOXMLDOC01-appb-C000003
(式中、R5はそれぞれ独立に、非置換又は置換の1価炭化水素基を表し、但しR5の少なくとも1個、好ましくは2個以上がアルケニル基であり、dは20~2,000の整数である。)
で表されるものが挙げられる。
 この式(4)中、R5で表される非置換又は置換の1価炭化水素基は、前記R3(アルケニル基)及びR4(脂肪族不飽和結合を有しない非置換又は置換の1価炭化水素基)で定義したものと同じであり、その炭素数、具体例等も同じである。また、dは好ましくは40~1,200の整数、より好ましくは50~600の整数である。
 上記式(4)で表されるオルガノポリシロキサンの具体例としては、分子鎖両末端ジメチルビニルシロキシ基封鎖ジメチルポリシロキサン、分子鎖片末端トリメチルシロキシ基・片末端ジメチルビニルシロキシ基封鎖ジメチルポリシロキサン、分子鎖両末端トリメチルシロキシ基封鎖ジメチルシロキサン・メチルビニルシロキサン共重合体、分子鎖片末端トリメチルシロキシ基・片末端ジメチルビニルシロキシ基封鎖ジメチルシロキサン・メチルビニルシロキサン共重合体、分子鎖両末端ジメチルビニルシロキシ基封鎖ジメチルシロキサン・メチルビニルシロキサン共重合体、分子鎖両末端ジメチルビニルシロキシ基封鎖ジメチルシロキサン・ジフェニルシロキサン共重合体等が挙げられる。
 (F)成分のオルガノポリシロキサンは、1種単独で用いても2種以上を併用してもよい。
[(G)成分]
 (G)成分は、上記(F)成分と反応して、架橋剤として作用するものである。(G)成分は、分子鎖非末端にケイ素原子に結合した水素原子(即ち、SiH基であり、以下、「ケイ素原子結合水素原子」という)が1分子中に3個以下だと十分な耐ズレ性が発揮できないため、少なくとも4個有していることが必要であり、且つ、下記式(3)
  0.1<α/β     (3)
(式中、αは分子鎖非末端のケイ素原子に結合した水素原子の数を表し、βは(G)成分中の全ケイ素原子数を表す。)
を満たすオルガノハイドロジェンポリシロキサンである。
 上記α/βの範囲が0.1以下と小さい場合、本組成物の耐ズレ性が悪くなることから、0.1<α/βであることも同時に必要である。この場合、α/βは好ましくは0.11以上、特に0.12以上であり、その上限は特に制限されないが、0.95以下、特に0.90以下であることが好ましい。
 (G)成分の分子構造は、上記要件を満たすものであれば特に限定されず、従来公知の、例えば、直鎖状、環状、分岐状、三次元網状(樹脂状)等のいずれであってもよい。中でも、取り扱い作業性、及び(F)成分を架橋して得られる硬化物の耐ズレ性の観点から、1分子中のケイ素原子数(又は重合度)が、通常、3~1,000個、好ましくは5~400個、より好ましくは10~300個、更に好ましくは10~100個、特に好ましくは10~60個のものが望ましい。
 (G)成分のオルガノハイドロジェンポリシロキサンの動粘度は、通常、1~10,000mm2/s、好ましくは3~5,000mm2/s、より好ましくは5~3,000mm2/sであり、室温(25℃)で液状のものが望ましい。
 (G)成分のオルガノハイドロジェンポリシロキサンとしては、例えば、下記平均組成式(5)で表されるものが好ましい。
  R6 efSiO(4-e-f)/2     (5)
(式中、R6は脂肪族不飽和結合を有しない非置換又は置換の1価炭化水素基を表し、eは0.7~2.2の数であり、fは0.001~0.5の数であり、但しe+fは0.8~2.5を満たす数である。)
 上記式(5)中、R6は、通常、炭素数が1~10、好ましくは1~6の脂肪族不飽和結合を有しない非置換又は置換の1価炭化水素基である。その具体例としては、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、tert-ブチル基、ペンチル基、ネオペンチル基、へキシル基、シクロヘキシル基、オクチル基、ノニル基、デシル基等のアルキル基;フェニル基、トリル基、キシリル基、ナフチル基等のアリール基;ベンジル基、フェニルエチル基、フェニルプロピル基等のアラルキル基;これらの基の水素原子の一部又は全部が、フッ素、塩素等のハロゲン原子で置換された3,3,3-トリフルオロプロピル基等が挙げられ、好ましくはアルキル基、アリール基、3,3,3-トリフルオロプロピル基であり、より好ましくはメチル基、フェニル基、3,3,3-トリフルオロプロピル基である。
 上記式(5)中、e、f、e+fは上述した通りであるが、eは0.9~2.1の数であることが好ましく、fは0.002~0.2の数、特に0.005~0.1の数であることが好ましく、e+fは1.0~2.3、特に1.5~2.2を満たす数であることが好ましい。
 上記式(5)で表されるオルガノハイドロジェンポリシロキサンの分子構造は、特に限定されず、直鎖状、環状、分岐状、三次元網状(樹脂状)等のいずれであってもよい。中でも、1分子中のケイ素原子数及び動粘度が上述した範囲を満たすもので、特には直鎖状のものが好ましい。
 上記式(5)で表されるオルガノハイドロジェンポリシロキサンの具体例としては、分子鎖両末端トリメチルシロキシ基封鎖ジメチルシロキサン・メチルハイドロジェンシロキサン共重合体、分子鎖両末端トリメチルシロキシ基封鎖メチルハイドロジェンポリシロキサン、分子鎖両末端ジメチルハイドロジェンシロキシ基封鎖ジメチルシロキサン・メチルハイドロジェンシロキサン共重合体、分子鎖両末端ジメチルハイドロジェンシロキシ基封鎖メチルハイドロジェンシロキサン・ジメチルシロキサン・ジフェニルシロキサン共重合体、分子鎖片末端ジメチルハイドロジェンシロキシ基・片末端トリメチルシロキシ基封鎖ジメチルシロキサン・メチルハイドロジェンシロキサン共重合体、分子鎖片末端ジメチルハイドロジェンシロキシ基・片末端トリメチルシロキシ基封鎖メチルハイドロジェンシロキサン・ジメチルシロキサン・ジフェニルシロキサン共重合体、(CH32HSiO1/2単位と(CH33SiO1/2単位と(CH3)HSiO2/2単位とSiO4/2単位とからなる共重合体、(CH32HSiO1/2単位と(CH33SiO1/2単位と(CH3)HSiO2/2単位と(CH32SiO2/2単位とSiO4/2単位とからなる共重合体、(CH32HSiO1/2単位と(CH3)HSiO2/2単位と(CH32SiO2/2単位とSiO4/2単位とからなる共重合体、(CH32HSiO1/2単位とSiO4/2単位と(CH3)HSiO2/2単位と(CH32SiO2/2単位と(C653SiO1/2単位とからなる共重合体、(CH32HSiO1/2単位と(CH33SiO1/2単位と(C652SiO2/2単位と(CH3)HSiO2/2単位と(CH32SiO2/2単位とSiO4/2単位とからなる共重合体等が挙げられる。
 (G)成分の配合量は、(F)成分中のケイ素原子結合アルケニル基1個に対して、(G)成分中のケイ素原子結合水素原子が0.3~2.0個となる量であり、好ましくは0.4~1.5個となる量であり、更に好ましくは0.5~1.0個となる量である。このケイ素原子結合水素原子が0.3個より少ない場合には、架橋密度が低くなりすぎ、得られる熱伝導性シリコーン組成物の耐ズレ性が悪くなるし、2.0個より多いと得られる熱伝導性シリコーン組成物の粘度が高くなりすぎ、取り扱い性が悪くなるためである。
 (G)成分のオルガノハイドロジェンポリシロキサンは、1種単独で用いても2種以上を併用してもよい。
[(H)成分:白金系触媒]
 (H)成分は、前記(F)成分中のケイ素原子結合アルケニル基と前記(G)成分中のケイ素原子結合水素原子との付加反応を促進させるための成分である。(H)成分は白金系触媒であり、具体的には白金及び/又は白金系化合物である。
 この白金及び白金系化合物としては従来公知のものを使用することができ、具体的には、例えば、白金ブラック;塩化白金酸;塩化白金酸のアルコール変性物;塩化白金酸とオレフィンアルデヒド、ビニルシロキサン、アセチレンアルコール類等の錯体等が挙げられる。
 (H)成分の配合量は、有効量であればよく、所望の硬化速度により適宜増減すればよいが、(F)成分に対して、白金原子の質量換算で、通常、0.1~1,000ppmであり、好ましくは1~300ppmである。この配合量が少なすぎると、付加反応が著しく遅くなったり、架橋しなくなったりする場合がある。この配合量が多すぎると、硬化物の耐熱性が低下するだけでなく、白金は高価であることからコスト面でも不利となる。
 (H)成分の白金系触媒は、1種単独で用いても2種以上を併用してもよい。
[その他の任意成分]
 本発明の(A)成分を得る場合には、上記(F)、(G)、(H)成分以外に、反応制御剤を使用してもよい。該反応制御剤は、付加硬化型シリコーン組成物に使用される従来公知の反応制御剤を使用することができる。例えば、アセチレンアルコール類(例えば、1-エチニル-1-シクロヘキサノール、3,5-ジメチル-1-ヘキシン-3-オール)等のアセチレン化合物、トリブチルアミン、テトラメチルエチレンジアミン、ベンゾトリアゾール等の各種窒素化合物、トリフェニルホスフィン等の有機リン化合物、オキシム化合物、有機クロロ化合物等が挙げられる。
 (A)成分のシリコーンゲル架橋物は、(H)成分の白金系触媒存在下において、(F)成分と(G)成分を加熱混合することで、架橋、即ちハイドロシリル化反応(付加反応)が進むことで得られる。反応温度は、通常、50~180℃程度であるが、それに制限されるものではない。反応時間は加熱する温度にも影響されるが、通常、0.5~12時間で十分に反応は進む。このような処理が行われたものを「架橋物」と定義している。
 (B)~(E)成分の詳細は後述するが、本発明においては、(F)成分と(G)成分を(H)成分の存在下で架橋させ、(A)成分を得てから、(B)~(E)成分を混合してもよいし、(A)成分を得るために、加熱前に予め(F)、(G)、(H)成分に(B)成分を投入してから(F)、(G)成分を(H)成分の存在下で加熱混合させ、その後成分(C)、(D)、(E)成分を混合してもよいし、更に、(A)成分を得るために、加熱前に(F)、(G)、(H)成分に(B)~(E)成分の全てを予め投入してから(F)、(G)成分を(H)成分の存在下で加熱混合するのでもよいが、効率及び安全性の観点から、(A)成分を得るために、加熱前に(F)、(G)、(H)成分に(B)、(C)、(D)成分を投入してから、(F)、(G)成分を(H)成分の存在下で加熱混合し、冷却後(E)成分を入れるのが好ましい。
[(B)成分]
 (B)成分は、上記(F)、(G)成分の架橋に関与しない成分であり、従って脂肪族不飽和結合及びSiH基を含まないシリコーンオイルで、後述する(C)、(D)成分の表面処理剤として用いられるものであり、特に、下記一般式(1)で表される片末端3官能の加水分解性オルガノポリシロキサン(B-1)であることが好ましい。
Figure JPOXMLDOC01-appb-C000004
(式中、R1はそれぞれ独立に、炭素数1~6のアルキル基を表し、R2は炭素数1~18の脂肪族不飽和結合を有しない非置換又は置換の1価炭化水素基の群の中から選択される1種もしくは2種以上の基を表し、aは5~120の整数である。)
[(B-1)成分]
 (B-1)成分である一般式(1)のオルガノポリシロキサンは、(C)、(D)成分の熱伝導性充填剤の表面を処理するために用いるものであるが、粉末の高充填化を補助するばかりでなく、粉末表面を覆うことにより粉末同士の凝集を起こり難くし、高温下でもその効果は持続するため、本発明の熱伝導性シリコーン組成物の耐熱性を向上させる働きがある。
 上記式(1)中、R1は、例えば、メチル基、エチル基、プロピル基等の炭素数1~6のアルキル基が挙げられるが、特にメチル基、エチル基が好ましい。
 R2は、互いに独立に、炭素数1~18、好ましくは1~14の脂肪族不飽和結合を有しない非置換又は置換の1価炭化水素基である。その具体例としては、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、tert-ブチル基、ペンチル基、ネオペンチル基、へキシル基、シクロヘキシル基、オクチル基、ノニル基、デシル基等のアルキル基;フェニル基、トリル基、キシリル基、ナフチル基等のアリール基;ベンジル基、フェニルエチル基、フェニルプロピル基等のアラルキル基;これらの基の水素原子の一部又は全部が、フッ素、塩素等のハロゲン原子で置換された3,3,3-トリフルオロプロピル基等が挙げられ、好ましくはアルキル基、アリール基、3,3,3-トリフルオロプロピル基であり、より好ましくはメチル基、フェニル基、3,3,3-トリフルオロプロピル基である。
 aは5~120の整数であり、好ましくは10~90の整数である。
 (B-1)成分の25℃における動粘度は5~500mm2/sが好ましく、10~300mm2/sがより好ましい。
 (B-1)成分のシリコーンオイルは、1種単独で用いても2種以上を併用してもよい。
 本発明の(B)成分には、上記架橋に関与しないシリコーンオイルとして、反応性基のない無官能性液状シリコーンオイル(B-2)を添加してもよい。
[(B-2)成分]
 (B-2)成分の無官能性液状シリコーンオイルは、25℃における動粘度が10~500,000mm2/s、好ましくは30~10,000mm2/sのオルガノポリシロキサンである。該オルガノポリシロキサンの動粘度が上記下限値より低いと得られる熱伝導性シリコーン組成物がオイルブリードし易くなる。また、上記上限値より大きいと、得られる組成物の粘度が高くなりすぎて取り扱い性の悪いものになる。
 上記(B-2)成分の無官能性液状シリコーンオイルは、上記動粘度を有するものであればよく、従来公知のオルガノポリシロキサンを使用することができる。オルガノポリシロキサン(シリコーンオイル)の分子構造は特に限定されず、直鎖状、分岐状、環状等のいずれであってもよい。特には、主鎖がジオルガノシロキサン単位の繰り返しからなり、分子鎖両末端がトリオルガノシロキシ基で封鎖された直鎖状構造を有するのがよい。
 この無官能性液状シリコーンオイルは、下記平均組成式(6)で表すことができる。
  R7 gSiO(4-g)/2     (6)
 上記式(6)において、R7は、独立に、炭素数1~18、好ましくは1~14の脂肪族不飽和結合を有しない非置換又は置換の1価炭化水素基である。その具体例としては、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、tert-ブチル基、ペンチル基、ネオペンチル基、へキシル基、シクロヘキシル基、オクチル基、ノニル基、デシル基等のアルキル基;フェニル基、トリル基、キシリル基、ナフチル基等のアリール基;ベンジル基、フェニルエチル基、フェニルプロピル基等のアラルキル基;これらの基の水素原子の一部又は全部が、フッ素、塩素等のハロゲン原子で置換された3,3,3-トリフルオロプロピル基等が挙げられ、好ましくはアルキル基、アリール基、3,3,3-トリフルオロプロピル基であり、より好ましくはメチル基、フェニル基、3,3,3-トリフルオロプロピル基である。
 上記式(6)において、gは1.8~2.2の範囲、特には1.9~2.1の範囲にある数である。gが上記範囲内にあることにより、得られる熱伝導性シリコーン組成物は要求される良好な動粘度を有することができる。
 上記式(6)で表されるオルガノポリシロキサンとしては、下記式(7)で表される直鎖状オルガノポリシロキサンが好ましい。
Figure JPOXMLDOC01-appb-C000005
 上記式(7)において、R8は、互いに独立に、炭素数1~18、好ましくは1~14の脂肪族不飽和結合を有しない非置換又は置換の1価炭化水素基である。該1価炭化水素基としては、上述した式(6)におけるR7で例示したものと同様の基が挙げられる。中でも、R8は全てメチル基であることが好ましい。hは該オルガノポリシロキサンの25℃における動粘度が10~500,000mm2/s、好ましくは30~10,000mm2/s、更に好ましくは100~8,000mm2/sとなる数である。
 また(B-2)成分を配合する場合、その含有量は、(B)成分中、10~70質量%が好ましく、より好ましくは10~60質量%であり、更に好ましくは10~50質量%である。(B-2)成分が多すぎると(B-1)成分が相対的に減るため(C)、(D)成分の熱伝導性充填剤の表面処理が不十分となる場合があり、少なすぎるとコスト的に不経済になる場合がある。
 (B-2)成分の無官能性液状シリコーンオイルは、1種単独で用いても2種以上を併用してもよい。
 (B)成分のシリコーンオイルの配合量は、(A)、(B)成分の合計中、10~90質量%となる量であることが好ましく、より好ましくは30~80質量%であり、更に好ましくは50~80質量%である。10質量%より少ないと得られる組成物の粘度が高くなり、取り扱い性の悪いものになる場合があるし、90質量%より多いと組成物の耐ズレ性が悪くなる場合がある。
[(C)成分]
 (C)成分のアルミニウム粉末は、本発明の熱伝導性シリコーン組成物に熱伝導性を付与するためのものである
 (C)成分は、(C-1)成分:平均粒径が40μm以上100μm以下であるアルミニウム粉末と、(C-2)成分:平均粒径が6μm以上40μm未満であるアルミニウム粉末と、(C-3)成分:平均粒径が0.4μm以上6μm未満であるアルミニウム粉末を含有し、上記(C-1)~(C-3)成分が特定の比率で配合されていることを特徴とする。好ましくは上記(C-1)~(C-3)成分のみからなるものが好ましい。
 なお、本発明において「平均粒径」は、レーザー回折・散乱法によって求めた体積基準粒度分布における積算値50%での粒径を意味する。レーザー回折・散乱法によるアルミニウム粉末の平均粒径及び粒度分布の測定は、例えば、マイクロトラック粒度分析計MT3300EX(日機装(株)製)により測定できる。また、アルミニウム粉末の形状は不定形でも球状でも如何なる形状でもよく、事前に表面を処理した粉末であってもよい。アルミニウム粉末の形状には例えば、鱗片状、涙滴状、球状、針状、不規則形状等がある。
 本発明の(C)アルミニウム粉末は、(A)、(B)成分の合計100質量部に対して、800~2,000質量部、好ましくは900~1,800質量部、より好ましくは1,000~1,600質量部で含有する。(C)成分のアルミニウム粉末の含有量が上記下限値未満では組成物の熱伝導率が低くなり、上記上限値より多いと組成物の粘度が上昇するため好ましくない。
 (C-1)成分は、平均粒径が40μm以上100μm以下、好ましくは40μm以上80μm以下のアルミニウム粉末である。(C-1)成分の平均粒径が上記下限値より小さいと熱伝導性シリコーン組成物の熱伝導率が低下してしまう。また、(C-1)成分の平均粒径が上記上限値より大きいと、熱伝導性シリコーン組成物の滑らかさがなくなってしまい、実際に使用した際に基材との接触が悪くなり、熱抵抗が上昇してしまう。
 (C-1)成分の配合量は、(C)成分:アルミニウム粉末の合計質量中、30~70質量%、好ましくは40~60質量%である。(C-1)成分の配合量が上記下限値より少ないと、熱伝導性シリコーン組成物の熱伝導率が低くなってしまう。また、(C-1)成分の配合量が上記上限値より多いと、(C-2)成分及び(C-3)成分との間で最密充填構造をとることができず、熱伝導性シリコーン組成物の粘度が上昇してしまう。
 (C-2)成分は、平均粒径が6μm以上40μm未満、好ましくは6μm以上20μm以下、更に好ましくは6μm以上12μm以下のアルミニウム粉末である。(C-2)成分の平均粒径が上記下限値より小さいと(C-3)成分との間で最密充填構造をとることができず、熱伝導性シリコーン組成物の粘度が上昇してしまう。また、(C-2)成分の平均粒径が上記上限値より大きいと(C-1)成分との間で最密充填構造をとることができず、熱伝導性シリコーン組成物の粘度が上昇してしまう。
 (C-2)成分の配合量は、(C)成分:アルミニウム粉末の合計質量中、10~60質量%、好ましくは10~40質量%、更に好ましくは15~35質量%である。(C-2)成分の配合量が上記下限値より少ないと(C-3)成分との間で最密充填構造が得られず、熱伝導性シリコーン組成物の粘度が上昇してしまう。また、(C-2)成分の配合量が上記上限値より多くても(C-1)成分との間で最密充填構造が得られず、熱伝導性シリコーン組成物の粘度が上昇してしまう。
 (C-3)成分は、平均粒径が0.4μm以上6μm未満、より好ましくは0.4μm以上3μm以下のアルミニウム粉末である。(C-3)成分の平均粒径が上記下限値より小さいと、熱伝導性シリコーン組成物の粘度が上昇してしまうため好ましくない。また、(C-3)成分の平均粒径が上記上限値より大きいと(C-2)成分との間で最密充填構造をとることができず、熱伝導性シリコーン組成物の粘度が上昇してしまう。
 (C-3)成分の配合量は、(C)成分:アルミニウム粉末の合計質量中、10~60質量%、好ましくは10~40質量%、更に好ましくは15~35質量%である。(C-3)成分の配合量が上記下限値より少ないと最密充填構造をとることができないため、熱伝導性シリコーン組成物の粘度が上昇してしまう。また(C-3)成分の配合量が上記上限値より多くても(C-2)成分との間で最密充填構造が得られず、熱伝導性シリコーン組成物の粘度が上昇してしまう。
 本発明において、上記(C-1)、(C-2)及び(C-3)成分からなるアルミニウム粉末のレーザー回折法による体積積算分布曲線の形は特に制限されるものでなく、該曲線が極大ピークを3つ有するものであっても、2つ有するものであっても、1つ有するものであってもよい。
[(D)成分]
 (D)成分の酸化亜鉛粉末は、平均粒径が0.1~10μm、好ましくは1~4μmのものであり、酸化亜鉛粉末の形状は特に制限されるものでなく、例えば球状、不定形状等が挙げられる。
 酸化亜鉛粉末の平均粒径が、0.1μmより小さいと得られるシリコーン組成物の粘度が高くなり、取り扱い性が悪くなるし、また10μmより大きいと、得られるシリコーン組成物が不均一となる。
 (D)成分の酸化亜鉛粉末は、(A)、(B)成分の合計100質量部に対して、50~500質量部、好ましくは100~400質量部、より好ましくは200~300質量部含有する。50質量部より少なくても500質量部より多くても粘度が高くなり、取り扱い性が悪くなるためである。
 また、本発明の熱伝導性シリコーン組成物は、上記アルミニウム粉末及び酸化亜鉛粉末以外に、酸化チタン粉末、アルミナ粉末、窒化ホウ素粉末、窒化アルミニウム粉末、ダイヤモンド粉末、金粉末、銀粉末、銅粉末、カーボン粉末、ニッケル粉末、インジウム粉末、ガリウム粉末、金属ケイ素粉末、及びシリカ粉末から選ばれる1種又は2種以上の粉末を、(A)及び(B)成分の合計を100質量部とした時、これら粉末の合計で200質量部まで、好ましくは150質量部まで含有していてもよい。
[(E)成分]
 (E)成分の揮発性溶剤としては、(A)成分及び(B)成分を溶解あるいは分散できれば如何なる溶剤でもよいが、例えば、トルエン、キシレン、アセトン、メチルエチルケトン、シクロヘキサン、n-ヘキサン、n-ヘプタン、ブタノール、IPA(イソプロピルアルコール)、イソパラフィンなどが挙げられ、安全面、健康面及び印刷での作業性の点からイソパラフィン系の溶剤が好ましい。
 (E)成分の揮発性溶剤は、沸点が80~360℃、好ましくは150~350℃のものである。沸点が80℃未満では、揮発が速すぎて塗布作業中に粘度が上昇して不具合が生じる場合がある。沸点が360℃を超えると、本発明の熱伝導性シリコーン組成物中に残存し易くなり、熱特性が低下する場合がある。
 (E)成分の添加量は、(A)、(B)成分の合計100質量部に対して、10質量部より少ないと、本発明の熱伝導性シリコーン組成物の、室温での粘度を十分に下げることができないため印刷時の作業性が悪くなる場合があるし、300質量部より多いと充填剤の沈降が速くなり、熱伝導性シリコーン組成物の保存性が悪くなる場合があるため、10~300質量部の範囲であることが好ましく、より好ましくは20~200質量部の範囲であり、更に好ましくは20~100質量部である。
 本発明の熱伝導性シリコーン組成物は、(E)成分を含有する前の組成物の粘度が300~2,000Pa・sの範囲であることが好ましく、より好ましくは400~1,500Pa・sの範囲であり、更に好ましくは500~1,000Pa・sの範囲である。300Pa・sより低いと耐ズレ性が悪くなるし、2,000Pa・sより高いと硬すぎて半導体素子を壊す可能性があるためである。
 (E)成分を含有させた後の粘度は10~300Pa・sの範囲であることが好ましく、より好ましくは30~250Pa・sであり、更に好ましくは30~200Pa・sである。10Pa・sより低いと熱伝導性充填剤が沈降し易くなるし、300Pa・sより高いと取り扱いが悪くなるためである。なお、本発明において、粘度は回転粘度計による25℃における値である(以下、同じ)。
 本発明の熱伝導性シリコーン組成物の製造方法は、特に限定されないが、上記(A)~(E)成分を混合することにより得ることができ、必要に応じてその他成分を加えてもよい。混合装置は特に限定されず、プラネタリーミキサー、トリミックス、ツウィンミックス等の混合機を用いることができる。上述したように、(A)~(E)成分の混合は、(A)成分を調製してから、(B)~(E)成分を混合してもよいし、(A)成分の原料((F)、(G)、(H)成分)を(B)~(E)成分中に混合した後、加熱することにより(A)成分を調製してもよく、(E)成分は、(A)~(D)の混合物と(E)成分とを混合してもよい。
 本発明の熱伝導性シリコーン組成物は、スクリーン印刷などで塗布を行い、室温にて一定期間放置することで揮発性溶剤が揮発し、熱伝導性シリコーン組成物の粘度が上昇することで好適な耐ズレ性能を発揮する。
 本発明の熱伝導性シリコーン組成物をヒートシンク等にメタルスクリーンなどの印刷手段等を用いて薄く塗布した場合には、含有している溶剤を常温あるいは積極的に加熱して容易に揮発させることができるので、従来では均一且つ薄く塗布することが困難であった高性能の熱伝導性シリコーン組成物を、容易に実用に供することができる。
 本発明の熱伝導性シリコーン組成物は、特にノートパソコンのCPUやGPUなどの発熱デバイスの放熱や、車載ECUの発熱デバイスの用途に用いることが好ましい。
 以下、本発明を実施例及び比較例によって更に詳述するが、本発明はこれによって限定されるものではない。なお、下記例において、動粘度は、オストワルド粘度計による25℃における値である。本発明の優位性をより明確にするために行った実施例及び比較例にかかる試験は、次のようにして行った。
〔平均粒径測定〕
 (C)、(D)成分の平均粒径測定は、レーザー回折・散乱法によるもので、日機装(株)製の粒度分析計であるマイクロトラックMT3300EXにより測定した体積基準の累積平均径である。
〔熱伝導率〕
 熱伝導性シリコーン組成物((E)成分添加前及び添加後)の熱伝導率は、ISO 22007-2準拠のホットディスク法において、京都電子工業(株)製のTPS-2500Sにより、いずれも25℃において測定した。
〔熱伝導性シリコーン組成物の粘度〕
 熱伝導性シリコーン組成物((E)成分添加前及び添加後)の粘度は、回転粘度計による25℃における値であり、25℃にて(株)マルコム製のマルコム粘度計(タイプPC-10AA)にて測定を行った。
〔印刷作業性〕
 3cm角に切り抜かれた厚さ120μmのメタルスクリーン用のSUS板を用意し、スキージを用いて製造した熱伝導性シリコーン組成物(グリース)をヒートシンクに塗布した。
(評価結果)
○;一面均一に塗布できた。
△;ややグリース表面にムラが生じた。
×;スキージにグリースが巻き付いて全く塗布できない。
〔ズレ性〕
 0.3mmのスペーサーを設け、2枚のスライドガラス板の間に、直径1.5cmの円状になるように熱伝導性シリコーン組成物を挟み込み、この試験片を地面に対し90度傾くように、-40℃と125℃(各30分)を交互に繰り返すようにセットされたエスペック(株)製の熱衝撃試験機(型番:TSE-11-A)の中に配置し、500サイクル試験を行った。500サイクル後、熱伝導性シリコーン組成物が元の場所からどのくらいズレたかを測定した。
<基準>
 1mm以下であれば耐ズレ性は優れていると言える。
〔ズレ試験後外観〕
 上記500サイクル後の熱伝導性シリコーン組成物の状態を観察した。該組成物中、ボイドやひび割れがない状態を○、ボイドやひび割れがあった状態を×と評価した。
[実施例1~4、比較例1~8]
 表1~3に示すように各成分をプラネタリーミキサーに仕込み、以下の手順にて熱伝導性シリコーン組成物を調製した。
 即ち、(B)、(C)、(D)、(F)成分をプラネタリーミキサーに投入し、まず室温にて10分間撹拌した。その後、(G)、(H)成分を投入してから、170℃に温度を上げ、そのまま2時間加熱混合して、(F)、(G)成分によるハイドロシリル化反応を行わせて(A)成分のシリコーンゲル架橋物を調製した。これを40℃以下に冷却後、(E)成分を投入し、組成物を得た。得られた組成物を用いて上述した各種試験を行った。結果を表1~3に併記する。
[(B)成分]
(B-1-1)
Figure JPOXMLDOC01-appb-C000006
動粘度35mm2/s
(B-2-1)
 両末端がトリメチルシリル基を有する直鎖状の1,000mm2/sのジメチルポリシロキサン。
[(C)成分]
(C-1-1)アルミニウム粉末(平均粒径:61μm)
(C-1-2)アルミニウム粉末(平均粒径:46μm)
(C-2-1)アルミニウム粉末(平均粒径:10μm)
(C-3-1)アルミニウム粉末(平均粒径:1.1μm)
(C-4-1)アルミニウム粉末(平均粒径:0.2μm)<比較例用>
[(D)成分]
(D-1)酸化亜鉛粉末(平均粒径:1.0μm)
[(E)成分]
(E-1)IPソルベント2028(イソパラフィン系溶剤、出光興産(株)商品名、沸点;210~254℃)
[(F)成分]
(F-1)
 両末端にビニル基を有する直鎖状の動粘度600mm2/sのジメチルポリシロキサン。
(F-2)
 両末端にビニル基を有する直鎖状の動粘度30,000mm2/sのジメチルポリシロキサン。
[(G)成分]
(G-1)
Figure JPOXMLDOC01-appb-C000007
α/β=0.35、動粘度113mm2/s
(G-2)
Figure JPOXMLDOC01-appb-C000008
α/β=0.13、動粘度25mm2/s
[(H)成分]
(H-1)
 白金-ジビニルテトラメチルジシロキサン錯体を上記(F-1)と同じジメチルポリシロキサンに溶解した溶液(白金原子含有量:1質量%)。
Figure JPOXMLDOC01-appb-T000009

(C)成分中の「」内の数字は、(C)成分中の質量%を示す(以下、同じ)。
*(F)成分中のケイ素原子結合アルケニル基1個に対する(G)成分のケイ素原子結合水素原子の個数を便宜的にH/Viと標記する(以下、同じ)。
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011

Claims (6)

  1.  (A)シリコーンゲル架橋物、
    (B)脂肪族不飽和結合及びSiH基をそれぞれ含有せず、下記(C)、(D)成分の表面処理剤としてのシリコーンオイル、
    (C)下記(C-1)~(C-3)を含むアルミニウム粉末:(A)、(B)成分の合計100質量部に対して800~2,000質量部、
    (C-1)平均粒径が40μm以上100μm以下であるアルミニウム粉末:(C)成分中30~70質量%となる量、
    (C-2)平均粒径が6μm以上40μm未満であるアルミニウム粉末:(C)成分中10~60質量%となる量、
    (C-3)平均粒径が0.4μm以上6μm未満であるアルミニウム粉末:(C)成分中10~60質量%となる量、
    (D)平均粒径が0.1~10μmである酸化亜鉛粉末:(A)、(B)成分の合計100質量部に対して50~500質量部、及び
    (E)揮発性溶剤:(A)、(B)成分の合計100質量部に対して10~300質量部
    を含有する熱伝導性シリコーン組成物。
  2.  (B)成分が、下記一般式(1)で表される片末端加水分解性オルガノポリシロキサンからなるシリコーンオイル(B-1)を含み、(B)成分の配合量が、(A)、(B)成分の合計量の10~90質量%となる量である請求項1に記載の熱伝導性シリコーン組成物。
    Figure JPOXMLDOC01-appb-C000001
    (式中、R1はそれぞれ独立に、炭素数1~6のアルキル基を表し、R2は炭素数1~18の脂肪族不飽和結合を有しない非置換又は置換の1価炭化水素基の群の中から選択される1種もしくは2種以上の基を表し、aは5~120の整数である。)
  3.  (A)成分が、下記(F)成分と(G)成分とのシリコーンゲル架橋物を含むものである請求項1又は2に記載の熱伝導性シリコーン組成物。
    (F)下記平均組成式(2)
      R3 b4 cSiO(4-b-c)/2     (2)
    (式中、R3はアルケニル基を表し、R4は脂肪族不飽和結合を有しない非置換又は置換の1価炭化水素基を表し、bは0.0001~0.2の数であり、cは1.7~2.2の数であり、但しb+cは1.9~2.4を満たす数である。)
    で表されるケイ素原子に結合したアルケニル基を1分子中に少なくとも1個有するオルガノポリシロキサン、
    (G)分子鎖非末端にケイ素原子に結合した水素原子を1分子中に少なくとも4個有し、下記式(3)
      0.1<α/β     (3)
    (式中、αは分子鎖非末端のケイ素原子に結合した水素原子の数を表し、βは(G)成分中の全ケイ素原子数を表す。)
    を満たすオルガノハイドロジェンポリシロキサン。
  4.  (B)成分が、更に(B-2)25℃における動粘度が10~500,000mm2/sである無官能性液状シリコーンオイルを、(B)成分中10~70質量%含有する請求項1~3のいずれか1項に記載の熱伝導性シリコーン組成物。
  5.  (E)成分が、沸点80~360℃のイソパラフィン系溶剤である請求項1~4のいずれか1項に記載の熱伝導性シリコーン組成物。
  6.  (A)シリコーンゲル架橋物、
    (B)脂肪族不飽和結合及びSiH基をそれぞれ含有せず、下記(C)、(D)成分の表面処理剤としてのシリコーンオイル、
    (C)下記(C-1)~(C-3)を含むアルミニウム粉末:(A)、(B)成分の合計100質量部に対して800~2,000質量部、
    (C-1)平均粒径が40μm以上100μm以下であるアルミニウム粉末:(C)成分中30~70質量%となる量、
    (C-2)平均粒径が6μm以上40μm未満であるアルミニウム粉末:(C)成分中10~60質量%となる量、
    (C-3)平均粒径が0.4μm以上6μm未満であるアルミニウム粉末:(C)成分中10~60質量%となる量、
    (D)平均粒径が0.1~10μmである酸化亜鉛粉末:(A)、(B)成分の合計100質量部に対して50~500質量部、及び
    (E)揮発性溶剤:(A)、(B)成分の合計100質量部に対して10~300質量部
    を混合する工程を有する熱伝導性シリコーン組成物の製造方法。
PCT/JP2020/037438 2019-10-24 2020-10-01 熱伝導性シリコーン組成物及びその製造方法 WO2021079714A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN202080074195.8A CN114641538B (zh) 2019-10-24 2020-10-01 导热性有机硅组合物及其制造方法
JP2021554220A JP7276493B2 (ja) 2019-10-24 2020-10-01 熱伝導性シリコーン組成物及びその製造方法
KR1020227017035A KR20220089701A (ko) 2019-10-24 2020-10-01 열전도성 실리콘 조성물 및 그 제조 방법
US17/771,086 US20220380548A1 (en) 2019-10-24 2020-10-01 Thermally conductive silicone composition and production method therefor
EP20879166.5A EP4050068A4 (en) 2019-10-24 2020-10-01 HEAT-CONDUCTING SILICONE COMPOSITION AND METHOD FOR PRODUCING IT

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-193234 2019-10-24
JP2019193234 2019-10-24

Publications (1)

Publication Number Publication Date
WO2021079714A1 true WO2021079714A1 (ja) 2021-04-29

Family

ID=75619849

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/037438 WO2021079714A1 (ja) 2019-10-24 2020-10-01 熱伝導性シリコーン組成物及びその製造方法

Country Status (7)

Country Link
US (1) US20220380548A1 (ja)
EP (1) EP4050068A4 (ja)
JP (1) JP7276493B2 (ja)
KR (1) KR20220089701A (ja)
CN (1) CN114641538B (ja)
TW (1) TW202128948A (ja)
WO (1) WO2021079714A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023143730A1 (de) * 2022-01-28 2023-08-03 Wacker Chemie Ag Leichtmetalllegierung-haltige wärmeleitpasten
WO2023143728A1 (de) 2022-01-28 2023-08-03 Wacker Chemie Ag Aluminiumhaltige wärmeleitpasten
WO2023149175A1 (ja) * 2022-02-02 2023-08-10 信越化学工業株式会社 熱伝導性シリコーン組成物及びその製造方法
TWI849624B (zh) 2022-01-28 2024-07-21 德商瓦克化學公司 含鋁導熱膏、用於製備彼之方法以及彼之應用

Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53408B2 (ja) 1972-07-03 1978-01-09
JPS541390B2 (ja) 1974-03-07 1979-01-24
JP2000169873A (ja) 1998-12-02 2000-06-20 Shin Etsu Chem Co Ltd シリコーングリース組成物
JP3195277B2 (ja) 1997-08-06 2001-08-06 信越化学工業株式会社 熱伝導性シリコーン組成物
JP2002327116A (ja) * 2001-05-01 2002-11-15 Shin Etsu Chem Co Ltd 熱伝導性シリコーン組成物及び半導体装置
JP2004210856A (ja) 2002-12-27 2004-07-29 Shin Etsu Chem Co Ltd 熱伝導性シリコーングリース組成物
JP2005162975A (ja) 2003-12-05 2005-06-23 Ge Toshiba Silicones Co Ltd 熱伝導性シリコーン組成物
JP2006143978A (ja) 2004-11-25 2006-06-08 Ge Toshiba Silicones Co Ltd 熱伝導性シリコーン組成物
JP3948642B2 (ja) 1998-08-21 2007-07-25 信越化学工業株式会社 熱伝導性グリース組成物及びそれを使用した半導体装置
JP2008056761A (ja) * 2006-08-30 2008-03-13 Shin Etsu Chem Co Ltd 熱伝導性シリコーン組成物及びその硬化物
JP4130091B2 (ja) 2002-04-10 2008-08-06 信越化学工業株式会社 放熱用シリコーングリース組成物
JP4796704B2 (ja) 2001-03-30 2011-10-19 株式会社タイカ 押出可能な架橋済グリース状放熱材を充填・封入した容器の製法
JP5388329B2 (ja) 2008-11-26 2014-01-15 株式会社デンソー 放熱用シリコーングリース組成物
JP2014037460A (ja) * 2012-08-13 2014-02-27 Shin Etsu Chem Co Ltd 熱伝導性組成物
JP2016084378A (ja) * 2014-10-23 2016-05-19 信越化学工業株式会社 熱伝導性シリコーンポッティング組成物
JP2017043717A (ja) * 2015-08-27 2017-03-02 信越化学工業株式会社 熱伝導性シリコーン組成物
WO2018016566A1 (ja) * 2016-07-22 2018-01-25 モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社 熱伝導性ポリシロキサン組成物
WO2018131486A1 (ja) * 2017-01-13 2018-07-19 デンカ株式会社 熱伝導性樹脂組成物、放熱シート、放熱部材及びその製造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53408A (en) 1976-06-23 1978-01-06 Ebara Corp Operation control method for blower or like
JP3541390B2 (ja) 1991-02-22 2004-07-07 東レ・ダウコーニング・シリコーン株式会社 グリース状シリコーン組成物およびその製造方法
JP5664563B2 (ja) * 2012-01-23 2015-02-04 信越化学工業株式会社 熱伝導性シリコーン組成物及びその硬化物
JP3195277U (ja) 2014-08-06 2015-01-15 横尾 雅道 毛鉤用携帯糸通し器
CN107406678B (zh) * 2015-03-02 2020-08-04 信越化学工业株式会社 热传导性硅酮组合物
KR102601088B1 (ko) * 2017-11-09 2023-11-13 신에쓰 가가꾸 고교 가부시끼가이샤 열전도성 실리콘 그리스 조성물

Patent Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53408B2 (ja) 1972-07-03 1978-01-09
JPS541390B2 (ja) 1974-03-07 1979-01-24
JP3195277B2 (ja) 1997-08-06 2001-08-06 信越化学工業株式会社 熱伝導性シリコーン組成物
JP3948642B2 (ja) 1998-08-21 2007-07-25 信越化学工業株式会社 熱伝導性グリース組成物及びそれを使用した半導体装置
JP2000169873A (ja) 1998-12-02 2000-06-20 Shin Etsu Chem Co Ltd シリコーングリース組成物
JP4796704B2 (ja) 2001-03-30 2011-10-19 株式会社タイカ 押出可能な架橋済グリース状放熱材を充填・封入した容器の製法
JP2002327116A (ja) * 2001-05-01 2002-11-15 Shin Etsu Chem Co Ltd 熱伝導性シリコーン組成物及び半導体装置
JP4130091B2 (ja) 2002-04-10 2008-08-06 信越化学工業株式会社 放熱用シリコーングリース組成物
JP2004210856A (ja) 2002-12-27 2004-07-29 Shin Etsu Chem Co Ltd 熱伝導性シリコーングリース組成物
JP2005162975A (ja) 2003-12-05 2005-06-23 Ge Toshiba Silicones Co Ltd 熱伝導性シリコーン組成物
JP2006143978A (ja) 2004-11-25 2006-06-08 Ge Toshiba Silicones Co Ltd 熱伝導性シリコーン組成物
JP2008056761A (ja) * 2006-08-30 2008-03-13 Shin Etsu Chem Co Ltd 熱伝導性シリコーン組成物及びその硬化物
JP5388329B2 (ja) 2008-11-26 2014-01-15 株式会社デンソー 放熱用シリコーングリース組成物
JP2014037460A (ja) * 2012-08-13 2014-02-27 Shin Etsu Chem Co Ltd 熱伝導性組成物
JP2016084378A (ja) * 2014-10-23 2016-05-19 信越化学工業株式会社 熱伝導性シリコーンポッティング組成物
JP2017043717A (ja) * 2015-08-27 2017-03-02 信越化学工業株式会社 熱伝導性シリコーン組成物
WO2018016566A1 (ja) * 2016-07-22 2018-01-25 モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社 熱伝導性ポリシロキサン組成物
WO2018131486A1 (ja) * 2017-01-13 2018-07-19 デンカ株式会社 熱伝導性樹脂組成物、放熱シート、放熱部材及びその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4050068A4

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023143730A1 (de) * 2022-01-28 2023-08-03 Wacker Chemie Ag Leichtmetalllegierung-haltige wärmeleitpasten
WO2023143728A1 (de) 2022-01-28 2023-08-03 Wacker Chemie Ag Aluminiumhaltige wärmeleitpasten
TWI849624B (zh) 2022-01-28 2024-07-21 德商瓦克化學公司 含鋁導熱膏、用於製備彼之方法以及彼之應用
TWI850903B (zh) 2022-01-28 2024-08-01 德商瓦克化學公司 可交聯導熱矽酮組合物、生產彼之方法、以及其應用
WO2023149175A1 (ja) * 2022-02-02 2023-08-10 信越化学工業株式会社 熱伝導性シリコーン組成物及びその製造方法

Also Published As

Publication number Publication date
US20220380548A1 (en) 2022-12-01
KR20220089701A (ko) 2022-06-28
CN114641538A (zh) 2022-06-17
JP7276493B2 (ja) 2023-05-18
TW202128948A (zh) 2021-08-01
JPWO2021079714A1 (ja) 2021-04-29
CN114641538B (zh) 2023-10-31
EP4050068A4 (en) 2023-12-27
EP4050068A1 (en) 2022-08-31

Similar Documents

Publication Publication Date Title
JP5233325B2 (ja) 熱伝導性硬化物及びその製造方法
JP7276493B2 (ja) 熱伝導性シリコーン組成物及びその製造方法
KR102108902B1 (ko) 열전도성 실리콘 조성물, 열전도성 층 및 반도체 장치
KR102132243B1 (ko) 열전도성 실리콘 조성물 및 경화물, 및 복합 시트
JP4993611B2 (ja) 放熱材及びそれを用いた半導体装置
JP6705426B2 (ja) 熱伝導性シリコーン組成物
EP3354707B1 (en) Thermosoftening and heat conductive silicone grease composition, heat conductive film formation method, heat dissipation structure, and power module device
JP5472055B2 (ja) 熱伝導性シリコーングリース組成物
JP2009096961A (ja) リワーク性に優れた熱伝導性シリコーングリース組成物
JP5947267B2 (ja) シリコーン組成物及び熱伝導性シリコーン組成物の製造方法
KR20210098991A (ko) 열전도성 실리콘 조성물의 경화물
CN114846084A (zh) 导热性有机硅组合物
WO2022230600A1 (ja) 硬化性オルガノポリシロキサン組成物及び半導体装置
JP6977869B2 (ja) シリコーン組成物
JP7467017B2 (ja) 熱伝導性シリコーン組成物及びその硬化物
JP7286575B2 (ja) 熱軟化性付加硬化型熱伝導性シリコーン組成物
EP4082970A1 (en) Thermally conductive silicone resin composition
WO2023149175A1 (ja) 熱伝導性シリコーン組成物及びその製造方法
JP2016076678A (ja) 熱伝導性シート
JP2021195478A (ja) 熱伝導性シリコーン組成物、その硬化物、及び放熱シート
KR20240137093A (ko) 열전도성 실리콘 조성물 및 그 제조 방법
WO2024084897A1 (ja) 硬化性オルガノポリシロキサン組成物及び半導体装置
WO2024154455A1 (ja) シート状放熱部材
WO2024185377A1 (ja) シリコーン組成物
JP2024035628A (ja) 熱伝導性シリコーン組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20879166

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021554220

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20227017035

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020879166

Country of ref document: EP

Effective date: 20220524