WO2024084897A1 - 硬化性オルガノポリシロキサン組成物及び半導体装置 - Google Patents

硬化性オルガノポリシロキサン組成物及び半導体装置 Download PDF

Info

Publication number
WO2024084897A1
WO2024084897A1 PCT/JP2023/034513 JP2023034513W WO2024084897A1 WO 2024084897 A1 WO2024084897 A1 WO 2024084897A1 JP 2023034513 W JP2023034513 W JP 2023034513W WO 2024084897 A1 WO2024084897 A1 WO 2024084897A1
Authority
WO
WIPO (PCT)
Prior art keywords
component
mass
composition
gallium
thermally conductive
Prior art date
Application number
PCT/JP2023/034513
Other languages
English (en)
French (fr)
Inventor
邦弘 山田
瞳子 久保埜
謙一 辻
Original Assignee
信越化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 信越化学工業株式会社 filed Critical 信越化学工業株式会社
Publication of WO2024084897A1 publication Critical patent/WO2024084897A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/10Metal compounds
    • C08K3/105Compounds containing metals of Groups 1 to 3 or of Groups 11 to 13 of the Periodic Table
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/08Materials not undergoing a change of physical state when used
    • C09K5/14Solid materials, e.g. powdery or granular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon

Definitions

  • the present invention relates to a curable organopolysiloxane composition, a method for producing the same, a cured product thereof, use of the cured product as a thermally conductive layer, a semiconductor device having the thermally conductive layer, and a method for producing the semiconductor device.
  • Heat-generating electronic components mounted on printed wiring boards can lose performance or be damaged due to temperature rise caused by heat generated during use.
  • a thermally conductive sheet with good thermal conductivity has been placed between the IC package and a heat dissipation member with heat dissipation fins, or thermally conductive grease has been applied to efficiently conduct heat generated from the IC package to the heat dissipation member for dissipation.
  • thermally conductive grease has been applied to efficiently conduct heat generated from the IC package to the heat dissipation member for dissipation.
  • Thermally conductive sheets have the advantage of being easy to mount and attach.
  • Thermally conductive grease has the advantage of being able to adhere the CPU, heat dissipation components, etc. to each other without being affected by the unevenness of their surfaces, following the unevenness, and not creating a gap between the two, and has the advantage of having low interfacial thermal resistance.
  • thermally conductive sheets and thermally conductive grease are obtained by blending a thermally conductive filler to impart thermal conductivity
  • thermally conductive sheets in order to avoid impeding workability and processability in the manufacturing process
  • thermally conductive grease in order to avoid problems with workability when applying it to heat-generating electronic components using a syringe, etc.
  • Patent Document 1 JP Patent Publication No. 7-207160
  • Patent Document 2 JP Patent Publication No. 8-53664
  • Patent Document 3 JP Patent Publication No. 2002-121292
  • thermally conductive materials using these low-melting-point metals have problems such as contaminating parts other than the coated area and leaking oily substances when used for long periods of time.
  • Patent Document 4 Japanese Patent No.
  • Patent Document 5 Patent No. 4913874 and Patent Document 6: Patent No. 5640945
  • Patent Document 5 Patent No. 4913874
  • Patent Document 6 Patent No. 5640945
  • cracks and voids tend to occur during hardening, and sufficient performance cannot be achieved.
  • the reliability of heat-generating electronic components can decrease when exposed to extremely low-temperature environments of -40°C or below.
  • Another object of the present invention is to provide a thermally conductive layer comprising a cured product crosslinked by heat treatment, in which the curable organopolysiloxane composition is disposed between a heat-generating electronic component and a heat-dissipating member in the same manner as conventional thermally conductive greases, without forming gaps due to conforming to the irregularities on the surface of the component or member.
  • a further object of the present invention is to provide a semiconductor device having excellent heat dissipation performance, in which a heat-generating electronic component and a heat-dissipating member are joined via the thermally conductive layer, and a method for producing the same.
  • the inventors conducted extensive research to solve the above problems and discovered that by blending low-melting-point gallium and/or its alloy, a specific alkoxypolysiloxane, a specific silicon-bonded organohydrogenpolysiloxane, and a thermally conductive filler, it is possible to easily obtain a composition in which the gallium and/or its alloy is uniformly dispersed in fine particle form, and that the alloy fine particles can be cooled to a freezing point of -40°C or lower, thereby exhibiting high reliability even in extremely low temperature environments of -40°C or lower. They also discovered that the occurrence of cracks and voids is reduced in the process of heat-treating the composition to form a cured product. They also discovered that high reliability can be obtained by setting the storage modulus of the cured product of the composition within a specific range.
  • the inventors then discovered that by arranging the cured product obtained as described above in a layer so as to be sandwiched between a heat-generating electronic component and a heat dissipation member, it can be used as a thermally conductive layer with low thermal resistance, and that heat generated during operation of the heat-generating electronic component can be rapidly conducted to the heat dissipation member via the thermally conductive layer containing gallium and/or its alloy fixed and held in the structure described above, thereby obtaining a semiconductor product with excellent heat dissipation characteristics.
  • the inventors have completed the present invention. That is, the present invention provides the following curable organopolysiloxane composition and a semiconductor device using the curable organopolysiloxane composition.
  • a curable organopolysiloxane composition comprising: (A) an organopolysiloxane that is liquid at 25°C and has two or more alkenyl groups bonded to silicon atoms in each molecule; (B) an organohydrogenpolysiloxane that has hydrogen atoms bonded to silicon atoms; (C) one or more members selected from the group consisting of gallium and gallium alloys having a melting point of -20 to 70°C; (D) a thermally conductive filler having an average particle size of 0.1 to 30 ⁇ m; and (E) a platinum group metal catalyst; and the gallium and/or gallium alloy of (C) is dispersed in particulate form in the organopolysiloxane, thereby causing the freezing point of the gallium and/or gallium alloy to be -40°C or lower.
  • the freezing point was determined as the temperature at the maximum peak position of the exothermic curve obtained when the curable organopolysiloxane composition was cooled from 25° C. to ⁇ 80° C. at a rate of 3° C./min using a differential scanning calorimeter (DSC).
  • DSC differential scanning calorimeter
  • (G-1) Organopolysiloxane represented by the following general formula (1): 10 to 500 parts by mass
  • R 1 is the same or different alkyl group
  • R 2 is an alkyl group, an alkenyl group, or an acyl group
  • a is an integer of 5 to 100
  • b is an integer of 1 to 3.
  • (G-2) the following general formula (2): R3cR4dSi ( OR5 ) 4-cd ( 2 )
  • R 3 is independently an alkyl group having 6 to 16 carbon atoms
  • R 4 is independently an unsubstituted or substituted monovalent hydrocarbon group having 1 to 8 carbon atoms
  • R 5 is independently an alkyl group having 1 to 6 carbon atoms
  • c is an integer of 1 to 3
  • d is an integer of 0 to 2
  • the sum of c and d is an integer of 1 to 3.
  • Component (B) has five or more hydrogen atoms bonded to silicon atoms at non-terminal locations in each molecule and is represented by the following formula (3): 0.1 ⁇ / ⁇ (3)
  • represents the number of hydrogen atoms bonded to silicon atoms not at the molecular chain terminals, and ⁇ represents the total number of silicon atoms in component (B).
  • ⁇ 6> The curable organopolysiloxane composition according to any one of ⁇ 1> to ⁇ 5>, wherein the component (C) is dispersed in the composition in the form of particles having a size of 1 to 200 ⁇ m.
  • ⁇ 7> ⁇ 6> A thermally conductive silicone grease composition comprising the curable organopolysiloxane composition according to any one of ⁇ 1> to ⁇ 6>.
  • ⁇ 8> A cured product of the curable organopolysiloxane composition according to any one of ⁇ 1> to ⁇ 6>.
  • ⁇ 12> A method for manufacturing a semiconductor device according to ⁇ 11>, (a) applying the curable organopolysiloxane composition according to any one of ⁇ 1> to ⁇ 6> onto a surface of a heat-generating electronic component to form a coating layer made of the composition on the surface; (b) pressing and fixing a heat dissipation member to the coating layer; and (c) heating the structure obtained after step (b) at 80 to 180°C to harden the coating layer into a thermally conductive layer.
  • the gallium and/or its alloy contained in the composition is dispersed in the organopolysiloxane base oil, so that the low melting point metal exists in liquid form even when exposed to an extremely low temperature environment of -40°C or lower (e.g., a space environment), improving reliability in an extremely low temperature environment.
  • an extremely low temperature environment of -40°C or lower e.g., a space environment
  • cracks and voids during heat curing are suppressed.
  • the cured product of the curable organopolysiloxane composition of the present invention has a low storage modulus, so it can sufficiently follow the warping of the substrate during thermal shock, improving reliability.
  • the curable organopolysiloxane composition of the present invention is in a grease-like state before curing, and therefore exhibits good workability when applied to heat-generating electronic components such as CPUs. Furthermore, when the heat dissipation component is pressed against the composition, the composition conforms to the irregularities on the surfaces of both components, allowing the two to be closely attached without any gaps being generated between them, and therefore no interfacial thermal resistance is generated.
  • the gallium and/or its alloy contained in the composition of the present invention has a path-like structure fixed and held in the three-dimensional crosslinked network formed by the curing of the resin component, so that the heat generated from the heat-generating electronic component can be quickly conducted to the heat dissipation member, and therefore a higher heat dissipation effect can be reliably exhibited than that of conventional heat conductive sheets or heat conductive greases.
  • the gallium and/or its alloy contained in the heat conductive layer made of the cured product of the composition of the present invention incorporated in the semiconductor device and forming the path is fixed and held in the three-dimensional crosslinked network of the cured resin, it does not contaminate other parts, which was a problem in the case of conventional heat conductive greases, and does not leak oily substances over time. Therefore, the reliability of the semiconductor device can be further improved.
  • FIG. 1 is a schematic vertical cross-sectional view showing an example of a semiconductor device to which a composition of the present invention is applied.
  • Component (A) of the composition of the present invention is an organopolysiloxane that is liquid at 25° C. and has two or more alkenyl groups bonded to silicon atoms in each molecule, and serves as the main component (base polymer) in the addition reaction curing system of the present invention.
  • Component (A) preferably consists of the following (A-1) and (A-2):
  • A-1) An organopolysiloxane having two or more silicon-bonded alkenyl groups per molecule, and having a viscosity at 25°C of 0.01 to 10 Pa ⁇ s.
  • A-2) An organopolysiloxane having two or more silicon-bonded alkenyl groups per molecule, and having a viscosity at 25°C of 11 to 1,000 Pa ⁇ s.
  • the viscosity of (A-1) is preferably in the range of 0.1 to 5 Pa ⁇ s, and more preferably 0.1 to 1 Pa ⁇ s. If the viscosity of (A-1) is less than 0.01 Pa ⁇ s, the cured product will be brittle and prone to cracking, and if it is more than 10 Pa ⁇ s, the cured product will be soft and prone to voids.
  • the viscosity of (A-2) is preferably in the range of 15 to 500 Pa ⁇ s, and more preferably in the range of 20 to 100 Pa ⁇ s. If the viscosity of (A-2) is less than 11 Pa ⁇ s, the material will not be subjected to stirring shear during production, making it difficult for the composition to become grease-like, and if it is more than 1000 Pa ⁇ s, the viscosity of the composition will be too high, making it difficult to handle.
  • the viscosity is a value measured at 25°C using a spiral viscometer PC-ITL (manufactured by Malcom Co., Ltd.).
  • the proportion of (A-1) to the total of (A-1) and (A-2) is from 10 to 90% by mass, preferably from 20 to 80% by mass, and more preferably from 30 to 70% by mass. If the proportion of (A-1) is less than 10% by mass, the cured product will become soft and voids will be more likely to occur during curing. If it exceeds 90% by mass, the materials will not be subjected to stirring shear during production, making it difficult for the composition to become grease-like.
  • the molecular structure of the organopolysiloxanes (A-1) and (A-2) is not limited, and may be, for example, linear, branched, or partially branched linear, with linear being particularly preferred.
  • the number of alkenyl groups bonded to silicon atoms in each of (A-1) and (A-2) may be 2 or more, preferably 2 to 10, and more preferably 2 to 5, per molecule.
  • alkenyl groups bonded to silicon atoms include vinyl groups, allyl groups, 1-butenyl groups, and 1-hexenyl groups. Of these, vinyl groups are preferred because of their high versatility.
  • the alkenyl groups may be bonded to either silicon atoms at the molecular chain terminals or silicon atoms in the middle of the molecular chain, but are preferably bonded only to silicon atoms at the molecular chain terminals in order to provide a cured product with good flexibility.
  • Groups bonded to silicon atoms other than alkenyl groups include, for example, unsubstituted or substituted monovalent hydrocarbon groups, such as alkyl groups such as methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl, octyl, nonyl, decyl, and dodecyl; cycloalkyl groups such as cyclopentyl and cyclohexyl; aryl groups such as phenyl, tolyl, xylyl, and naphthyl; aralkyl groups such as benzyl, 2-phenylethyl, and 2-phenylpropyl; and halogenated alkyl groups such as chloromethyl, 3,3,3-trifluoropropyl, and 3-chloropropyl. From the standpoint of synthesis and economy, it is preferable that 90% or more of these groups are methyl groups.
  • suitable organopolysiloxanes include polydimethylsiloxanes with both molecular chain terminals blocked with dimethylvinylsiloxy groups, polydimethylsiloxanes with both molecular chain terminals blocked with methyldivinylsiloxy groups, and dimethylsiloxane-methylphenylsiloxane copolymers with both molecular chain terminals blocked with dimethylvinylsiloxy groups.
  • Component (B) of the composition of the present invention is an organohydrogenpolysiloxane having two or more hydrogen atoms bonded to silicon atoms (hereinafter referred to as "Si-H groups") per molecule, and acts as a crosslinking agent for component (A) above. That is, the Si-H groups in component (B) undergo addition via a hydrosilylation reaction with the alkenyl groups in component (A) under the action of a platinum catalyst, component (E) described below, to give a crosslinked cured product having a three-dimensional network structure with crosslinked bonds.
  • Si-H groups silicon atoms
  • the number of Si-H groups in component (B) is at least 2, preferably at least 5 from the viewpoint of suppressing voids during curing, and more preferably at least 10. Furthermore, component (B) is more preferably an organohydrogenpolysiloxane that has at least 5 hydrogen atoms bonded to silicon atoms at non-terminal locations in each molecule and satisfies the following formula (3): 0.1 ⁇ / ⁇ (3)
  • represents the number of hydrogen atoms bonded to silicon atoms not at the molecular chain terminals
  • represents the total number of silicon atoms in component (B).
  • ⁇ / ⁇ is preferably 0.11 or more, particularly 0.12 or more, and although there is no particular upper limit, it is preferably 0.95 or less, particularly 0.90 or less.
  • the molecular structure of component (B) is not particularly limited as long as it satisfies the above requirements, and may be any of the conventionally known structures, such as linear, cyclic, branched, and three-dimensional network (resinous).
  • the number of silicon atoms (or degree of polymerization) in one molecule is usually 3 to 1,000, preferably 5 to 400, more preferably 10 to 300, even more preferably 10 to 100, and particularly preferably 10 to 60.
  • the organohydrogenpolysiloxane of component (B) typically has a kinetic viscosity of 1 to 10,000 mm 2 /s, preferably 3 to 5,000 mm 2 /s, and more preferably 5 to 3,000 mm 2 /s, and is preferably in a liquid state at room temperature (25° C.) This kinetic viscosity is measured at 25° C. using an Ostwald viscometer.
  • R6eHfSiO ( 4-ef)/2 ( 4) (In formula (4), R6 represents an unsubstituted or substituted monovalent hydrocarbon group having no aliphatic unsaturated bonds, e is a number from 0.7 to 2.2, f is a number from 0.001 to 0.5, and e+f is a number that satisfies the range of 0.8 to 2.5.)
  • R 6 is usually an unsubstituted or substituted monovalent hydrocarbon group having 1 to 10 carbon atoms, preferably 1 to 6 carbon atoms, and having no aliphatic unsaturated bonds.
  • alkyl groups such as methyl, ethyl, propyl, isopropyl, butyl, isobutyl, tert-butyl, pentyl, neopentyl, hexyl, cyclohexyl, octyl, nonyl, and decyl groups; aryl groups such as phenyl, tolyl, xylyl, and naphthyl groups; aralkyl groups such as benzyl, phenylethyl, and phenylpropyl groups; and 3,3,3-trifluoropropyl groups in which some or all of the hydrogen atoms of these groups are substituted with halogen atoms such as fluorine and chlorine, among
  • e, f, and e+f are as described above, but e is preferably a number between 0.9 and 2.1, f is preferably a number between 0.002 and 0.2, and more preferably a number between 0.005 and 0.1, and e+f is preferably a number between 1.0 and 2.3, and more preferably a number between 1.5 and 2.2.
  • the molecular structure of the organohydrogenpolysiloxane represented by the above formula (4) is not particularly limited, and may be any of linear, cyclic, branched, three-dimensional network (resinous), etc. Among them, those in which the number of silicon atoms in one molecule and the kinetic viscosity satisfy the above-mentioned ranges, and linear ones are particularly preferred.
  • organohydrogenpolysiloxanes represented by the above formula (4) include dimethylsiloxane-methylhydrogensiloxane copolymers capped at both molecular chain terminals with dimethylhydrogensiloxy groups, methylhydrogensiloxane-dimethylsiloxane-diphenylsiloxane copolymers capped at both molecular chain terminals with dimethylhydrogensiloxy groups, dimethylsiloxane-methylhydrogensiloxane copolymers capped at one molecular chain terminal with a dimethylhydrogensiloxy group and one terminal with a trimethylsiloxy group, methylhydrogensiloxane-dimethylsiloxane-diphenylsiloxane copolymers capped at one molecular chain terminal with a dimethylhydrogensiloxy group and one terminal with a trimethylsiloxy group, methylhydrogensiloxane-dimethylsiloxane-diphenylsi
  • the amount of component (B) is such that there are 0.1 to 5.0 silicon-bonded hydrogen atoms in component (B) per silicon-bonded alkenyl group in component (A), preferably 0.3 to 3.0, and more preferably 0.5 to 2.0. If there are fewer than 0.1 silicon-bonded hydrogen atoms, the crosslink density will be too low, voids will be more likely to occur during curing, and the composition will be more likely to flow out of designated locations, reducing reliability. If there are more than 5.0, the resulting thermally conductive silicone composition will be too hard, reducing reliability.
  • the organohydrogenpolysiloxane of the component (B) may use either a single compound, or a combination of two or more different compounds.
  • the component (C) of the composition of the present invention is gallium and/or an alloy thereof having a melting point of ⁇ 20 to 70° C.
  • the component (C) is a component that is blended in order to impart good thermal conductivity to the cured product obtained from the composition of the present invention, and the blending of this component is a feature of the present invention.
  • the melting point of component (C) must be in the range of -20 to 70°C. Although a material below -20°C can be physically used in the present invention, it is difficult to obtain a material with a melting point below -20°C, which is economically undesirable. Conversely, if the melting point exceeds 70°C, it will not melt quickly in the composition preparation process, resulting in poor workability. Therefore, as mentioned above, the appropriate melting point for component (C) is in the range of -20 to 70°C. In particular, a material in the range of -19 to 50°C makes it easy to prepare the composition of the present invention, and a range of -18 to 40°C is even more preferable.
  • the component (C) may use either a single compound or a combination of two or more different compounds.
  • the shape of the liquid or solid fine particles of gallium and/or its alloy present in the composition of the present invention in an uncured state is approximately spherical, and may include particles of an indefinite shape.
  • the average particle size is usually 1 to 200 ⁇ m, particularly 5 to 150 ⁇ m, and more preferably 10 to 100 ⁇ m. If the average particle size is too small, the viscosity of the composition becomes too high, resulting in poor extensibility and problems with coating workability. Conversely, if the average particle size is too large, the composition becomes non-uniform, making it difficult to apply a thin film to heat-generating electronic components, etc.
  • the shape and average particle size, as well as the dispersion state in the composition can be maintained until the coating process on heat-generating electronic components, etc., because the composition is quickly stored at low temperatures after preparation of the composition.
  • the average particle size was calculated by sandwiching the composition before curing between two slide glasses and observing it with a VR-3000 manufactured by Keyence Corporation. That is, 30 particles were randomly selected from the images taken with this measuring device, the particle sizes of each were measured, and the average value was calculated.
  • the freezing point of component (C) is lower than the freezing point of the bulk when dispersed in component (A) with particle sizes within the aforementioned range.
  • the freezing point of component (C) in the composition of the present invention is preferably -40°C or lower, more preferably -50°C or lower, and even more preferably -60°C or lower.
  • the freezing point was determined as the temperature at the maximum peak position of the heat generation curve obtained when the curable organopolysiloxane composition was cooled from 25°C to -80°C at 3°C/min using a differential scanning calorimeter (DSC). This measurement can be performed using a differential scanning calorimeter (DSC) model DSC7000X manufactured by Hitachi High-Tech Science Corporation.
  • the amount of component (C) blended is 300 to 20,000 parts by mass, particularly preferably 2,000 to 15,000 parts by mass, and even more preferably 3,000 to 12,000 parts by mass, per 100 parts by mass of component (A). If the blended amount is less than 300 parts by mass, the thermal conductivity will be low, and if the composition is thick, sufficient heat dissipation performance will not be obtained. If the blended amount is more than 20,000 parts by mass, it will be difficult to obtain a uniform composition, and the viscosity of the composition will be too high, so that it may not be possible to obtain a composition in the form of a grease with extensibility.
  • the composition of the present invention needs to contain, together with the component (C), a thermally conductive filler (D) (excluding component (C)) that is conventionally blended in a thermally conductive sheet or thermally conductive grease.
  • the component (D) is not particularly limited as long as it has good thermal conductivity, and any conventionally known component can be used, such as aluminum powder, zinc oxide powder, alumina powder, boron nitride powder, aluminum nitride powder, silicon nitride powder, copper powder, diamond powder, nickel powder, zinc powder, stainless steel powder, carbon powder, etc.
  • the component (D) can be used alone or in combination of two or more. In particular, from the viewpoints of availability and economy, zinc oxide powder and alumina powder are particularly preferred.
  • the average particle size of component (D) is 0.1 to 30 ⁇ m, preferably 1 to 20 ⁇ m. If the average particle size is too small, the viscosity of the resulting composition will be too high, resulting in poor extensibility. Conversely, if the particle size is too large, it will be difficult to obtain a uniform composition.
  • This average particle size is the volume-based mean diameter [MV] measured using a Microtrac MT3300EX (manufactured by Nikkiso Co., Ltd.).
  • component (D) is less than 10 parts by mass per 100 parts by mass of component (A)
  • the gallium and/or its alloy will not disperse uniformly in (A) or in a mixture of component (A) and component (G), which will be described later, and if it is more than 1,000 parts by mass, the viscosity of the composition will increase and it will be difficult to obtain a composition that is in the form of a grease with extensibility. Therefore, the range of 10 to 1,000 parts by mass, and preferably 50 to 500 parts by mass, is recommended.
  • the platinum group metal catalyst of component (E) of the composition of the present invention is a component (curing catalyst) that is blended in order to promote the addition reaction between the alkenyl groups in component (A) and the SiH groups in component (B) and to give the composition of the present invention a crosslinked cured product in a three-dimensional network state.
  • component (E) All known substances used in normal hydrosilylation reactions can be used as component (E), including, for example, platinum metal (platinum black), chloroplatinic acid, platinum-olefin complexes, platinum-alcohol complexes, platinum coordination compounds, etc.
  • the amount of component (E) to be added is not particularly limited as long as it is an effective amount required to cure the composition of the present invention, but it is usually preferable to use, for example, about 0.1 to 500 ppm of platinum atoms relative to the mass of component (A).
  • a polysiloxane represented by the following general formula (1) for the purposes of hydrophobizing the gallium and/or alloy thereof of the component (C) during preparation of the composition, improving the wettability of the component (C) with the organopolysiloxane of the component (A), and dispersing the component (C) as fine particles uniformly in the matrix composed of the component (A).
  • this component (G-1) also has the effect of improving the wettability of the surface of the thermally conductive filler (D) component, thereby improving its uniform dispersion.
  • the component (G-1) is represented by the following general formula (1): (In formula (1), R 1 is the same or different alkyl group, R 2 is an alkyl group, an alkenyl group, or an acyl group, a is an integer of 5 to 100, and b is an integer of 1 to 3.) and has a kinetic viscosity of 10 to 10,000 mm 2 /s at 25° C. The kinetic viscosity is a value measured at 25° C. using an Ostwald viscometer.
  • the amount of component (G-1) per 100 parts by mass of component (A) is 10 parts by mass or more, components (C) and (D) are sufficiently dispersed to form a uniform grease composition, which is preferable, but if it is more than 500 parts by mass, the amount of component (A) will be relatively small, which will cause the problem that the resulting composition will be difficult to harden. If the grease does not harden, it may shift after being applied to a device such as a CPU, resulting in a significant decrease in performance. Therefore, the amount of component (G-1) should be in the range of 10 to 500 parts by mass, and preferably 50 to 300 parts by mass.
  • the curable organopolysiloxane composition of the present invention may contain the following components, if necessary.
  • the addition reaction inhibitor, component (F) of the composition of the present invention is a component that is added if necessary, and it is a component that suppresses the hydrosilylation reaction due to the action of the above-mentioned platinum-based catalyst at room temperature, thereby ensuring the pot life (shelf life, pot life) of the composition of the present invention and not interfering with the coating operation of heat-generating electronic components, etc.
  • component (F) All known addition reaction inhibitors used in normal addition reaction curing silicone compositions can be used as component (F), including, for example, acetylene compounds such as 1-ethynyl-1-cyclohexanol and 3-butyn-1-ol, various nitrogen compounds, organic phosphorus compounds, oxime compounds, and organic chloro compounds.
  • acetylene compounds such as 1-ethynyl-1-cyclohexanol and 3-butyn-1-ol
  • various nitrogen compounds such as 1-ethynyl-1-cyclohexanol and 3-butyn-1-ol
  • various nitrogen compounds such as 1-ethynyl-1-cyclohexanol and 3-butyn-1-ol
  • various nitrogen compounds such as 1-ethynyl-1-cyclohexanol and 3-butyn-1-ol
  • various nitrogen compounds such as 1-ethynyl-1-cyclohexanol and 3-butyn-1-ol
  • the amount of component (F) to be used varies depending on the amount of component (E) used, and cannot be generalized; however, it is sufficient to use an effective amount that can inhibit the progress of the hydrosilylation reaction, and is not particularly limited. For example, it is usually about 0.001 to 5 parts by mass per 100 parts by mass of component (A). If the amount of component (F) is too small, it is not possible to ensure sufficient pot life, and if it is too large, the curability of the composition of the present invention decreases. Note that component (F) can be diluted with an organic solvent such as toluene, xylene, or isopropyl alcohol, if necessary, to improve its dispersibility in the composition.
  • an organic solvent such as toluene, xylene, or isopropyl alcohol
  • composition of the present invention may further contain the following alkoxysilane as component (G-2).
  • G-2 The following general formula (2): R3cR4dSi ( OR5 ) 4-cd ( 2 )
  • R 3 is independently an alkyl group having 6 to 16 carbon atoms
  • R 4 is independently an unsubstituted or substituted monovalent hydrocarbon group having 1 to 8 carbon atoms
  • R 5 is independently an alkyl group having 1 to 6 carbon atoms
  • c is an integer of 1 to 3
  • d is an integer of 0 to 2
  • the sum of c and d is an integer of 1 to 3.
  • R3 in the above general formula (2) examples include a hexyl group, an octyl group, a nonyl group, a decyl group, a dodecyl group, a tetradecyl group, etc. If the number of carbon atoms is less than 6, the improvement in the wettability of the above components (C) and (D) is insufficient, and if it exceeds 16, the organosilane of the component (G-2) solidifies at room temperature, making it inconvenient to handle and reducing the low-temperature properties of the resulting composition.
  • R 4 in the general formula (2) examples include alkyl groups such as methyl, ethyl, propyl, hexyl, and octyl; cycloalkyl groups such as cyclopentyl and cyclohexyl; alkenyl groups such as vinyl and allyl; aryl groups such as phenyl and tolyl; aralkyl groups such as 2-phenylethyl and 2-methyl-2-phenylethyl; and halogenated hydrocarbon groups such as 3,3,3-trifluoropropyl, 2-(nanofluorobutyl)ethyl, 2-(heptadecafluorooctyl)ethyl, and p-chlorophenyl. Of these, methyl and ethyl groups are particularly preferred.
  • R5 in the general formula (2) examples include alkyl groups such as methyl, ethyl, propyl, butyl, pentyl, and hexyl. Of these, methyl and ethyl are particularly preferred.
  • This (G-2) component can be used alone or in combination of two or more.
  • the amount of (G-2) to be added is preferably in the range of 0.1 to 100 parts by mass, since the viscosity of the composition is likely to fall within the desired range if the amount is 0.1 part by mass or more per 100 parts by mass of component (A), and more than 100 parts by mass is uneconomical without increasing the wetter effect. More preferably, it is in the range of 0.1 to 100 parts by mass. The amount is more preferably 1 to 50 parts by mass.
  • composition of the present invention may further contain trifluoropropyltrimethoxysilane as component (G-3) in some cases.
  • the amount of trifluoropropyltrimethoxysilane to be added is preferably in the range of 0.1 to 100 parts by mass, since the viscosity of the composition is likely to fall within the desired range if the amount is 0.1 parts by mass or more relative to 100 parts by mass of component (A), and if the amount is more than 100 parts by mass, the wetter effect does not increase and it is uneconomical. More preferably, it is in the range of 0.1 to 100 parts by mass. The amount is more preferably 1 to 50 parts by mass.
  • the components (G-1), (G-2) and (G-3) may be used alone or in combination.
  • composition of the present invention may also contain an organopolysiloxane represented by the following average composition formula (5) within the limits not impairing the objects and effects of the present invention.
  • R 7 g SiO (4-g)/2 (5) (In formula (5), R 7 is independently an unsubstituted or substituted monovalent hydrocarbon group having 1 to 18 carbon atoms and no aliphatic unsaturated bonds, and g is a number from 1.8 to 2.2.) These organopolysiloxanes have a kinetic viscosity at 25° C. of 10 to 100,000 mm 2 /s, and may be used alone or in combination of two or more kinds.
  • R 7 is independently an unsubstituted or substituted monovalent hydrocarbon group having 1 to 18 carbon atoms.
  • R 7 include alkyl groups such as methyl, ethyl, propyl, hexyl, octyl, decyl, dodecyl, tetradecyl, hexadecyl, and octadecyl; cyclohexyl groups such as cyclopentyl and cyclohexyl; alkenyl groups such as vinyl and allyl; aryl groups such as phenyl and tolyl; aralkyl groups such as 2-phenylethyl and 2-methyl-2-phenylethyl; and halogenated hydrocarbon groups such as 3,3,3-trifluoropropyl, 2-(perfluorobutyl)ethyl, 2-(perfluorooctyl)ethyl, and p-chlorophenyl.
  • composition of the present invention may further contain, for example, heat resistance improvers such as iron oxide and cerium oxide; viscosity adjusters such as silica; colorants, etc.
  • heat resistance improvers such as iron oxide and cerium oxide
  • viscosity adjusters such as silica
  • colorants etc.
  • composition of the present invention is applied to the surface of a heat-generating electronic component, and after a heat dissipation member is pressed onto the composition, it is cured by heat treatment to form a thermally conductive layer.
  • the composition of the present invention needs to be in a grease-like form.
  • the composition of the present invention is stored in a syringe and applied from the syringe to the surface of a heat-generating electronic component such as a CPU to form a coating layer, to which a heat dissipation member is then pressed.
  • the viscosity of the composition of the present invention is usually preferably 10 to 1,000 Pa ⁇ s, and particularly 30 to 400 Pa ⁇ s. If the viscosity is too low, dripping may occur during application, which may cause problems in operation. Conversely, if the viscosity is too high, it may be difficult to extrude the composition from the syringe, which may result in poor efficiency in application operations.
  • the viscosity is measured at 25°C using a spiral viscometer PC-ITL (manufactured by Malcom Co., Ltd.).
  • the curable organopolysiloxane composition of the present invention comprises: (i) a step of kneading the (A), (C), (D), and optionally the (G-1), and, when contained, the (G-2) and (G-3) components at a temperature within a range of 20 to 120° C.
  • a stirring/kneading machine such as a conditioning mixer or planetary mixer equipped with a heating means and, if necessary, a cooling means is used.
  • the liquid of gallium and/or its alloy (C) and the thermally conductive filler (D) are uniformly dispersed in a mixture of component (A), (G-1), and any one or more of components (G-2) and (G-3).
  • step (ii) The temperature-lowering or cooling operation in step (ii) is preferably carried out quickly.
  • the component (C) in the form of liquid fine particles or solid fine particles uniformly dispersed in the matrix consisting of the mixed liquid of the component (A), the component (G-1), and any one or a combination of two or more of the components (G-2) and (G-3) maintains its average particle size and the dispersion state.
  • step (iii) it is also preferable to complete step (iii) in as short a time as possible. At the end of step (iii), there is substantially no change in the dispersion state of the fine particles of component (C).
  • the resulting composition is placed in a container and promptly stored in a freezer or freezer room at a temperature of about -30 to -10°C, preferably -25 to -15°C. It is also preferable to use a vehicle equipped with a freezer for transportation. By storing and transporting at low temperatures in this manner, the composition and dispersion state of the composition of the present invention can be stably maintained, for example, even during long-term storage.
  • the composition of the present invention can be cured by maintaining it at a temperature of 80 to 180° C. for about 30 to 240 minutes.
  • the cured product of the composition of the present invention can be used as a thermally conductive cured product for forming a thermally conductive layer by being interposed between a heat-generating electronic part and a heat-dissipating member.
  • the composition of the present invention can be used to obtain a semiconductor device with excellent heat dissipation characteristics, i.e., a semiconductor device having a heat-generating electronic component, a heat dissipation member, and a thermally conductive layer made of a cured product of the composition of the present invention, in which the heat-generating electronic component and the heat dissipation member are bonded via the thermally conductive layer.
  • the cured product of the composition of the present invention preferably has a storage modulus at 25° C. of 3,000 to 300,000 Pa, more preferably 5,000 to 200,000 Pa, and even more preferably 10,000 to 150,000 Pa.
  • the storage modulus is less than 3,000 Pa, voids may easily appear and the resin may easily flow out from a predetermined location, resulting in poor reliability. If the storage modulus is more than 300,000 Pa, the resin may not be able to follow the warping that occurs during the operation of heat-generating components such as a CPU, and the desired heat dissipation characteristics may not be obtained.
  • the semiconductor device includes: (a) applying the composition of the present invention to a surface of a heat-generating electronic component to form a coating layer made of the composition on the surface;
  • the thermal conductive layer can be obtained by a manufacturing method including the steps of: (b) pressing and fixing a heat dissipation member to the coating layer; and (c) heating the structure obtained after step (b) at 80 to 180° C. to harden the coating layer into a thermally conductive layer.
  • the semiconductor device and the method for manufacturing the same will be described with reference to Fig. 1. Note that the device shown in Fig. 1 merely shows one example of the application of the composition of the present invention to a semiconductor device, and is not intended to limit the semiconductor device according to the present invention to that shown in Fig. 1.
  • the composition of the present invention stored in a frozen state is left at room temperature to thaw naturally and become grease-like.
  • the liquid composition of the present invention is placed in an application tool such as a syringe.
  • composition of the present invention is applied (dispensed) from a syringe or the like onto the surface of a heat-generating electronic component, such as CPU 2, which is a heat-generating electronic component mounted on substrate 3 as shown in FIG. 1, to form a curable composition layer (coating layer) 1.
  • a heat-generating electronic component such as CPU 2
  • adhesive 5 is also applied to fix heat dissipation member 4, and heat dissipation member 4 is then pressed against CPU 2 via coating layer 1 to fix it.
  • the thickness of the coating layer 1 sandwiched between the CPU 2 and the heat dissipation member 4 it is advisable to adjust the thickness of the coating layer 1 sandwiched between the CPU 2 and the heat dissipation member 4 so that it is usually 5 to 100 ⁇ m, and more preferably 10 to 70 ⁇ m. If the thickness is too thin, peeling will occur more easily and reliability will decrease, and conversely, if it is too thick, the thermal resistance will increase and sufficient heat dissipation effect will not be achieved.
  • the coating layer 1 made of the composition of the present invention is cured in a heating device to form a thermally conductive layer 1.
  • the temperature conditions required for this curing are 80 to 180°C, and particularly preferably 100 to 150°C. If the temperature is less than 80°C, curing will be insufficient, and conversely, at high temperatures exceeding 180°C, there is a risk of deterioration of electronic components and substrates.
  • the liquid fine particles of gallium and/or its alloy, component (C) in the composition of the present invention also link with component (D) to form a kind of continuous pathway.
  • the liquid particles of component (C) are fused to the surfaces of the CPU 2 and heat dissipation member 4 that they come into contact with. Therefore, the CPU 2 and heat dissipation member 4 are essentially integrated and continuous through a type of pathway in which the liquid particles of component (C) and the thermally conductive filler of component (D) are linked together, making them highly thermally conductive. Furthermore, the pathway-like structure is fixed and maintained in the three-dimensional crosslinked network of the cured product formed by the addition reaction of components (A) and (B).
  • the surface temperature of heat-generating electronic components such as a CPU usually reaches a high temperature of about 60 to 120°C.
  • the thermally conductive layer made of the cured product of the composition of the present invention exhibits high thermal conductivity as described above, and exhibits significantly superior heat dissipation characteristics compared to conventional thermally conductive sheets and thermally conductive greases. Furthermore, even when the semiconductor device is operated and used continuously for a long period of time, the gallium and/or its alloy of component (C) contained in the thermally conductive layer and forming the pathways does not leak out of the thermally conductive layer because it is fixed and held in the three-dimensional crosslinked network of the cured product.
  • this thermally conductive layer has tackiness, and even if the heat dissipation component becomes misaligned, or even after long-term use, it has stable flexibility and will not peel off from the heat-generating electronic component or heat dissipation component.
  • the same effect can also be achieved by first preparing a sheet-like cured product of the composition of the present invention in the desired thickness and then interposing this between a heat-generating electronic component and a heat dissipation member in the same manner as a conventional thermally conductive sheet.
  • sheets of the cured product of the composition of the present invention can also be used as appropriate as components for other devices and the like that require thermal conductivity and heat resistance.
  • Component (F) (F-1) 1-ethynyl-1-cyclohexanol
  • (G) Component (G-1) Dimethylpolysiloxane capped at one end with a trimethoxysilyl group and having a kinetic viscosity of 32 mm 2 /s, represented by the following structural formula: (G-2) Organosilane represented by the structural formula C10H21Si ( OCH3 ) 3 (G-3) Trifluoropropyltrimethoxysilane
  • “Component (G)” collectively represents (G-1), (G-2), and (G-3) used in each example described in Table 1.
  • compositions were prepared as follows.
  • Component (A), component (C), component (D) and component (G) were placed in a 250 mL conditioning mixer (manufactured by Thinky Corporation, product name: Awatori Rentaro) and the mixture was heated to 70° C. and kneaded for 5 minutes while maintaining the temperature. Then, kneading was stopped and the mixture was cooled to 15° C. Next, the components (B), (E) and (F) were added to the mixture of the components (A), (C), (D) and (G), and the mixture was kneaded at 25°C until homogeneous to prepare each composition.
  • ⁇ Measurement of initial thermal resistance The thermal resistance ( mm2 ⁇ K/W) of each of the cured compositions was measured using a thermal resistance measuring device (NETZSCH Model: LFA447). The initial measurement results are shown in Tables 1 to 3.
  • ⁇ Measurement of thermal resistance after thermal shock test> After measuring the initial thermal resistance, the sample was placed in a Kato Corporation rapid rise/fall type low/high temperature oven (model SP-61NX-A) and the thermal resistance after 1000 cycles of -55°C/30 minutes and 125°C/30 minutes was measured. The measurement results are shown in Table 1.
  • a viscoelasticity measuring device (TA Instruments, Type ARES-G2) was used, and two parallel plates with a diameter of 2.5 cm were used (the thickness of the curable organopolysiloxane composition was set to 2 mm). The temperature was first raised from room temperature to 125° C. at 10° C./min, then raised from 125° C. to 150° C. at 2° C./min, and once it reached 150° C., the temperature was maintained for 2 hours to completely cure the composition. Thereafter, the composition was cooled to 25° C., and the storage modulus of the cured composition was measured (frequency: 1.0 Rad/sec, strain (displacement): 1%).
  • the particle size of the thermally conductive filler is a cumulative average diameter on a volume basis measured using a particle size analyzer, Microtrac MT3300EX, manufactured by Nikkiso Co., Ltd.
  • the heat generation temperature of the CPU was about 100°C, but in each case, stable heat conduction and heat dissipation were possible for a long period of time, and performance degradation and damage of the CPU due to overheat accumulation were prevented. Therefore, it was confirmed that the reliability of semiconductor devices is improved by using a cured product of the composition of the present invention.
  • the ratio of the number of silicon-bonded hydrogen atoms in component (B) to one silicon-bonded alkenyl group in component (A) is represented as SiH/Vi.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Thermal Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

熱伝導特性に優れた材料が必要にして十分な量配合され、かつ前記材料が微粒子の状態で樹脂成分からなるマトリックス中に、均一に分散し、硬化時にひび割れやボイドが発生しない硬化物となる硬化性オルガノポリシロキサン組成物の提供。 (A)25℃で液状であり、ケイ素原子に結合したアルケニル基を1分子中に2個以上有するオルガノポリシリオキサン、(B)ケイ素原子に結合した水素原子を有するオルガノハイドロジェンポリシロキサン、(C)融点が-20~70℃のガリウム及びガリウム合金からなる群より選択される一種以上、(D)平均粒径が0.1~30μmの熱伝導性充填剤、及び、(E)白金族金属触媒を含み、(C)のガリウム及び/又はガリウム合金が粒子状にオルガノポリシロキサン中に分散することで、ガリウム及び/又はガリウム合金の凝固点が-40℃以下となる硬化性オルガノポリシロキサン組成物。

Description

硬化性オルガノポリシロキサン組成物及び半導体装置
 本発明は、硬化性オルガノポリシロキサン組成物、その製造方法、その硬化物、該硬化物の熱伝導性層としての使用、該熱伝導性層を有する半導体装置、及び該半導体装置の製造方法に関する。
 プリント配線基板上に実装される発熱性電子部品、例えば、CPU等のICパッケージは、使用時の発熱による温度上昇によって性能が低下したり破損したりすることがあるため、従来、ICパッケージと放熱フィンを有する放熱部材との間に、熱伝導性が良好な熱伝導性シートを配置したり、熱伝導性グリースを適用して、前記ICパッケージ等から生じる熱を効率よく放熱部材に伝導して放熱させることが実施されている。しかしながら、電子部品等の高性能化に伴い、その発熱量が益々増加する傾向にあり、従来のものよりも更に熱伝導性に優れた材料・部材の開発が求められている。
 従来の熱伝導性シートは、手軽にマウント・装着することができるという作業・工程上の利点を有する。また、熱伝導性グリースの場合は、CPU、放熱部材等の表面の凹凸に影響されることなく、前記凹凸に追随して、前記両者間に隙間を生じせしめることなく、前記両者を密着させることができ、界面熱抵抗が小さいという利点がある。しかし、熱伝導性シート及び熱伝導性グリースは、ともに熱伝導性を付与するため熱伝導性充填剤を配合して得られるが、熱伝導性シートの場合は、その製造工程における作業性・加工性に支障をきたさないようにするために、また、熱伝導性グリースの場合は、発熱性電子部品等へシリンジ等を用いて塗工する際の作業性に問題が生じないように、そのみかけ粘度の上限を一定限度に抑制する必要があるために、いずれの場合においても熱伝導性充填剤の配合量の上限は制限され、十分な熱伝導性効果が得られないという欠点があった。
 そこで、熱伝導性ペースト内に低融点金属を配合する方法(特許文献1:特開平7-207160号公報、特許文献2:特開平8-53664号公報)、液体金属を三相複合体中に固定し、安定化する働きをする粒状材料(特許文献3:特開2002-121292号公報)等が提案されている。しかしながら、これら低融点金属を用いた熱伝導性材料は、塗工部以外の部品を汚染し、また、長時間にわたって使用すると油状物が漏出してくる等の問題があった。それらを解決するために硬化性のシリコーン中にガリウム及び/又はガリウム合金を分散させる方法(特許文献4:特許第4551074号)が提案されているが、組成物の厚みが大きい場合、熱伝導率が低いため十分に満足できるものではなかった。また、その熱伝導率を上げる方法(特許文献5:特許第4913874号及び特許文献6:特許第5640945号)が提案されているが、硬化時にひび割れやボイドが発生しやすく、十分な性能が発揮できなかった。更には、-40℃以下のような極低温環境に曝されると発熱性電子部品の信頼性が落ちることがあった。
特開平7-207160号公報 特開平8-53664号公報 特開2002-121292号公報 特許第4551074号 特許第4913874号 特許第5640945号
 従って、本発明の目的は、熱伝導特性に優れた材料が必要にして十分な量配合され、かつ前記材料が微粒子の状態で樹脂成分からなるマトリックス中に、均一に分散し、硬化時にひび割れやボイドが発生しない硬化物となる硬化性オルガノポリシロキサン組成物を得ることにある。また、該硬化性オルガノポリシロキサン組成物を製造する方法を提供することにある。
 また、本発明の他の目的は、該硬化性オルガノポリシロキサン組成物を、従来の熱伝導性グリースと同様に、発熱性電子部品と放熱部材との間に挟まれるように配置し、前記部品又は部材の表面の凹凸に追随して隙間を生じせしめることなく、かつ、加熱処理により架橋された硬化物からなる熱伝導性層としての使用を提供することにある。更に、本発明の目的は、発熱性電子部品と放熱部材とが前記熱伝導性層を介して接合された放熱性能に優れた半導体装置及びその製造方法を提供することにある。
 本発明者らは、上記課題を解決するため鋭意研究を重ねた結果、低融点のガリウム及び/又はその合金、特定のアルコキシポリシロキン、特定のケイ素原子に結合したオルガノハイドロジェンポリシロキサン及び熱伝導性充填剤を配合することにより、前記ガリウム及び/又はその合金が微粒子状態で均一に分散した組成物が容易に得られ、またその合金の微粒子が-40℃以下の凝固点まで下がることにより、-40℃以下の極低温環境下でも高い信頼性を示すことを見出した。また、前記組成物を加熱処理して硬化物とする工程において、ひび割れやボイドの発生が少なくなる知見も得た。更に、前記組成物の硬化物の貯蔵弾性率を特定の範囲とすることにより高い信頼性が得られる知見を得た。
 そして、前記のとおりにして得られる硬化物を発熱性電子部品と放熱部材との間に挟まれるように層状に配置することにより、熱抵抗が低い熱伝導性層として使用することができ、前記発熱性電子部品の稼動時に発生する熱を、前記のとおりの構造に固定・保持されたガリウム及び/又はその合金を含む前記熱伝導性層を経由して、速やかに放熱部材に伝導し、放熱特性に優れた半導体製品が得られるとの知見を得て、これらの知見に基づき、本発明を完成させるに至った。
 即ち、本発明は、下記の硬化性オルガノポリシロキサン組成物、及び硬化性オルガノポリシロキサン組成物を用いた半導体装置を提供するものである。
<1>
(A)25℃で液状であり、ケイ素原子に結合したアルケニル基を1分子中に2個以上有するオルガノポリシリオキサン、(B)ケイ素原子に結合した水素原子を有するオルガノハイドロジェンポリシロキサン、(C)融点が-20~70℃のガリウム及びガリウム合金からなる群より選択される一種以上、(D)平均粒径が0.1~30μmの熱伝導性充填剤、及び、(E)白金族金属触媒を含み、(C)のガリウム及び/又はガリウム合金が粒子状にオルガノポリシロキサン中に分散することで、ガリウム及び/又はガリウム合金の凝固点が-40℃以下となる硬化性オルガノポリシロキサン組成物。

 なお、凝固点は、硬化性オルガノポリシロキサン組成物を示差走査熱量計(DSC)にて、25℃から-80℃まで3℃/分で冷却したときに得られる発熱曲線の最大ピーク位置を温度とした。

<2>
(A)~(G-1)を含む<1>に記載の硬化性オルガノポリシロキサン組成物。
(A)下記(A-1)及び(A-2)からなり、且つ(A-1)と(A-2)との合計に対する(A-1)の割合が10~90質量%であるオルガノポリシロキサン:100質量部、
 (A-1)25℃における粘度が0.01~10Pa・sのケイ素原子に結合したアルケニル基を1分子中に2個以上有するオルガノポリシロキサン
 (A-2)25℃における粘度が11~1,000Pa・sのケイ素原子に結合したアルケニル基を1分子中に2個以上有するオルガノポリシロキサン
(B)ケイ素原子に結合した水素原子を1分子中に2個以上有するオルガノハイドロジェンポリシロキサン:前記(A)成分中のアルケニル基1個に対して、当該成分中のケイ素原子に結合した水素原子の個数が0.1~5.0個となる量、
(C)融点が-20~70℃の、ガリウム及びガリウム合金からなる群より選択される1種以上:300~20,000質量部、
(D)平均粒径が0.1~30μmの熱伝導性充填剤:10~1,000質量部、
(E)白金族金属触媒:(A)成分の質量に対して白金族金属の質量換算で0.1~500ppm
並びに、
(G-1)下記一般式(1)で表されるオルガノポリシロキサン:10~500質量部
Figure JPOXMLDOC01-appb-C000002
(式(1)中、R1は同一もしくは異種のアルキル基であり、R2はアルキル基、アルケニル基又はアシル基であり、aは5~100の整数であり、bは1~3の整数である。)

<3>
 更に、(G-2)下記一般式(2):
  R3 c4 dSi(OR54-c-d   (2)
(式(2)中、R3は独立に炭素原子数6~16のアルキル基であり、R4は独立に非置換又は置換の炭素原子数1~8の1価炭化水素基であり、R5は独立に炭素原子数1~6のアルキル基であり、cは1~3の整数、dは0~2の整数であり、c+dの和は1~3の整数である。)
で表されるアルコキシシラン化合物を、(A)成分100質量部に対し0.1~100質量部含む、<2>に記載の硬化性オルガノポリシロキサン組成物。

<4>
 更に、(G-3)トリフルオロプロピルトリメトキシシランを(A)成分100質量部に対し0.1~100質量部含む、<2>又は<3>に記載の硬化性オルガノポリシロキサン組成物。

<5>
 (B)成分が、分子鎖非末端にケイ素原子に結合した水素原子を1分子中に5個以上有し、且つ、下記式(3):
  0.1<α/β   (3)
(式(3)中、αは分子鎖非末端のケイ素原子に結合した水素原子の数を表し、βは(B)成分中の全ケイ素原子数を表す。)
を満たすオルガノハイドロジェンポリシロキサンである<1>~<4>のいずれか1項に記載の硬化性オルガノポリシロキサン組成物。

<6>
 (C)成分が、組成物中に1~200μmの粒子状に分散している<1>~<5>のいずれか1項に記載の硬化性オルガノポリシロキサン組成物。

<7>
 <1>~<6>のいずれか1項に記載の硬化性オルガノポリシロキサン組成物からなる熱伝導性シリコーングリース組成物。

<8>
 <1>~<6>のいずれか1項に記載の硬化性オルガノポリシロキサン組成物の硬化物。

<9>
 25℃における貯蔵弾性率が3,000~300,000Paとなる、<8>に記載の硬化性オルガノポリシロキサン組成物の硬化物。

<10>
 <8>に記載の硬化物の、発熱性電子部品と放熱部材との間に挟まれて配置される熱伝導性層としての使用。

<11>
 発熱性電子部品と、放熱部材と、<8>に記載の硬化物からなる熱伝導性層とを有する半導体装置であって、前記発熱性電子部品と前記放熱部材とが前記熱伝導性層を介して接合されている半導体装置。

<12>
 <11>に記載の半導体装置の製造方法であって、
(a)発熱性電子部品の表面に、<1>~<6>のいずれか1項に記載の硬化性オルガノポリシロキサン組成物を塗布して、前記表面に前記組成物からなる被覆層を形成させる工程、
(b)前記被覆層に放熱部材を圧接して固定させる工程、及び
(c)工程(b)後に得られた構造体を80~180℃で加熱して、前記被覆層を硬化させて熱伝導性層とする工程
を有する半導体装置の製造方法。
 本発明の硬化性オルガノポリシロキサン組成物は、組成中に含まれるガリウム及び/又はその合金が、ベースオイルであるオルガノポリシロキサンに分散することで、-40℃以下の極低温環境(例えば、宇宙環境)に曝されても低融点金属が液体で存在するため、極低温環境での信頼性が向上する。また、加熱硬化時のひび割れやボイド発生も抑えられる。さらに、本発明の硬化性オルガノポリシロキサン組成物の硬化物は、貯蔵弾性率が低く抑えられているため、熱衝撃時の基板の反りに十分追随することができ、信頼性が向上する。
 本発明の硬化性オルガノポリシロキサン組成物は、硬化前においてはグリース状であるので、CPU等の発熱性電子部品上に塗工する際の作業性が良好であり、更に放熱部材を圧接させる際に、両者の表面の凹凸に追従して、両者間に隙間を生じることなく両者を密着できることから、界面熱抵抗が生じることがない。
 また、付加反応による樹脂成分の硬化に際する加熱処理工程において、ひび割れやボイドの発生も少なく、本発明の組成物に含まれるガリウム及び/又はその合金は、樹脂成分の硬化により形成される3次元架橋網状体中に、前記経路状の構造が固定・保持されることから、発熱性電子部品から生じる熱を速やかに放熱部材に伝導することができるため、従来の熱伝導性シート又は熱伝導性グリースよりも、高い放熱効果を確実に発揮することができる。そして、半導体装置に組み込まれた本発明の組成物の硬化物からなる熱伝導性層に含まれ前記経路を形成しているガリウム及び/又はその合金は、硬化樹脂の3次元架橋網状体中に固定・保持されていることから、従来の熱伝導性グリースの場合に問題とされた他の部品を汚染したり、また、経時的に油状物が漏出してくることがない。従って、半導体装置の信頼性を更に向上させることができる。
本発明の組成物を適用する半導体装置の一例を示す縦断面概略図である。
[硬化性オルガノポリシロキサン組成物]
<(A)オルガノポリシロキサン>
 本発明組成物の(A)成分は、25℃で液状であり、ケイ素原子に結合したアルケニル基を1分子中に2個以上有するオルガノポリシロキサンであり、本発明の付加反応硬化系における主剤(ベースポリマー)である。(A)成分は、下記(A-1)及び(A-2)からなるものが好ましい。
(A-1)25℃における粘度が0.01~10Pa・sのケイ素原子に結合したアルケニル基を1分子中に2個以上有するオルガノポリシロキサン
(A-2)25℃における粘度が11~1,000Pa・sのケイ素原子に結合したアルケニル基を1分子中に2個以上有するオルガノポリシロキサン
 (A-1)の粘度は好ましくは0.1~5Pa・sの範囲であり、更に好ましくは0.1~1Pa・sである。(A-1)の粘度が0.01Pa・s未満であると硬化物が脆くなりひび割れが入りやすく、10Pa・sより大きいと硬化物が柔らかくなりボイドが出やすくなる。
 (A-2)の粘度は好ましくは15~500Pa・sの範囲であり、より好ましくは20~100Pa・sの範囲である。(A-2)の粘度が11Pa・sより小さいと、製造時に材料に攪拌シェアーがかからず、組成物がグリース状になりにくくなり、1000Pa・sより大きいと組成物の粘度が上がりすぎてしまい取り扱い難くなる。
 なお、本発明において、粘度はスパイラル粘度計PC-ITL(株式会社マルコム社製)を用いて25℃で測定した値である。
 (A-1)と(A-2)との合計に対する(A-1)の割合は10~90質量%であり、好ましくは20~80質量%であり、更に好ましくは30~70質量%である。
 (A-1)の割合が10質量%より少ないと硬化物が柔らかくなり硬化時ボイドが出やすくなり、90質量%より多いと、製造時に材料に攪拌シェアーがかからず、組成物がグリース状になりにくくなる。
 (A-1)及び(A-2)のオルガノポリシロキサンの分子構造は限定されず、例えば、直鎖状、分岐鎖状、一部分岐を有する直鎖状が挙げられるが、特に好ましくは直鎖状である。
 ケイ素原子に結合したアルケニル基の数は、(A-1)及び(A-2)それぞれにおいて、1分子中2個以上であればよく、好ましくは2~10個、より好ましくは2~5個である。
 ケイ素原子に結合したアルケニル基としては、例えば、ビニル基、アリル基、1-ブテニル基、1-へキセニル基等が挙げられる。これらの中でも、汎用性が高いビニル基が好ましい。このアルケニル基は、分子鎖末端のケイ素原子、また分子鎖途中のケイ素原子のいずれに結合していてもよいが、得られる硬化物の柔軟性がよいものとするため、分子鎖末端のケイ素原子にのみ結合して存在することが好ましい。
 アルケニル基以外のケイ素原子に結合する基としては、例えば、非置換又は置換の一価炭化水素基であり、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ドデシル基等のアルキル基;シクロペンチル基、シクロヘキシル基等のシクロアルキル基;フェニル基、トリル基、キシリル基、ナフチル基等のアリール基;ベンジル基、2-フェニルエチル基、2-フェニルプロピル基等のアラルキル基;クロロメチル基、3,3,3-トリフルオロプロピル基、3-クロロプロピル基等のハロゲン化アルキル基等が挙げられる。そして、合成面及び経済性の点から、これらのうち、90%以上がメチル基であることが好ましい。
 このようなオルガノポリシロキサンの好適な具体例としては、分子鎖両末端ジメチルビニルシロキシ基封鎖ポリジメチルシロキサン、分子鎖両末端メチルジビニルシロキシ基封鎖ポリジメチルシロキサン、分子鎖両末端ジメチルビニルシロキシ封鎖ジメチルシロキサン・メチルフェニルシロキサン共重合体等が挙げられる。
<(B)オルガノハイドロジェンポリシロキサン>
 本発明の組成物の(B)成分は、ケイ素原子に結合した水素原子(以下、「Si-H基」という)を、1分子中に2個以上有するオルガノハイドロジェンポリシロキサンであり、上記(A)成分の架橋剤として作用するものである。即ち、この(B)成分中のSi-H基が、後記(E)成分の白金系触媒の作用により、(A)成分中のアルケニル基とヒドロシリル化反応により付加して、架橋結合を有する3次元網状構造を有する架橋硬化物を与える。
 (B)成分のSi-H基の数は、1分子中に2個以上であり、5個以上であることが硬化時のボイド抑制の観点から好ましく、更に好ましくは10個以上である。また、(B)成分は、分子鎖非末端にケイ素原子に結合した水素原子を1分子中に5個以上有し、且つ、下記式(3)を満たすオルガノハイドロジェンポリシロキサンであることがより好ましい。
  0.1<α/β   (3)
(式(3)中、αは分子鎖非末端のケイ素原子に結合した水素原子の数を表し、βは(B)成分中の全ケイ素原子数を表す。)
上記α/βの範囲が0.1以下と小さい場合、硬化時ボイドが発生しやすくなるため、0.1<α/βであることも同時に必要である。この場合、α/βは好ましくは0.11以上、特に0.12以上であり、その上限は特に制限されないが、0.95以下、特に0.90以下であることが好ましい。
 (B)成分の分子構造は、上記要件を満たすものであれば特に限定されず、従来公知の、例えば、直鎖状、環状、分岐状、三次元網状(樹脂状)等のいずれであってもよい。1分子中のケイ素原子数(又は重合度)が、通常、3~1,000個、好ましくは5~400個、より好ましくは10~300個、更に好ましくは10~100個、特に好ましくは10~60個のものが好ましい。
 (B)成分のオルガノハイドロジェンポリシロキサンの動粘度は、通常、1~10,000mm2/s、好ましくは3~5,000mm2/s、より好ましくは5~3,000mm2/sであり、室温(25℃)で液状のものが好ましい。なお、この動粘度はオストワルド粘度計により25℃で測定した値である。
 上記要件を満たすオルガノハイドロジェンポリシロキサンとしては、例えば、下記平均組成式(4)で表されるものが好ましい。
  R6 efSiO(4-e-f)/2   (4)
(式(4)中、R6は、脂肪族不飽和結合を有しない非置換又は置換の1価炭化水素基を表し、eは0.7~2.2の数であり、fは0.001~0.5の数であり、但しe+fは0.8~2.5を満たす数である。)
 上記式(4)中、R6は、通常、炭素数が1~10、好ましくは1~6の脂肪族不飽和結合を有しない非置換又は置換の1価炭化水素基である。その具体例としては、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、tert-ブチル基、ペンチル基、ネオペンチル基、へキシル基、シクロヘキシル基、オクチル基、ノニル基、デシル基等のアルキル基;フェニル基、トリル基、キシリル基、ナフチル基等のアリール基;ベンジル基、フェニルエチル基、フェニルプロピル基等のアラルキル基;これらの基の水素原子の一部又は全部が、フッ素、塩素等のハロゲン原子で置換された3,3,3-トリフルオロプロピル基等が挙げられ、好ましくはアルキル基、アリール基、3,3,3-トリフルオロプロピル基であり、より好ましくはメチル基、フェニル基、3,3,3-トリフルオロプロピル基である。
 上記式(4)中、e、f及びe+fはそれぞれ上述した通りであるが、eは0.9~2.1の数であることが好ましく、fは0.002~0.2の数、特に0.005~0.1の数であることが好ましく、e+fは1.0~2.3、特に1.5~2.2を満たす数であることが好ましい。
 上記式(4)で表されるオルガノハイドロジェンポリシロキサンの分子構造は、特に限定されず、直鎖状、環状、分岐状、三次元網状(樹脂状)等のいずれであってもよい。中でも、1分子中のケイ素原子数及び動粘度が上述した範囲を満たすもので、特には直鎖状のものが好ましい。
 上記式(4)で表されるオルガノハイドロジェンポリシロキサンの具体例としては、分子鎖両末端ジメチルハイドロジェンシロキシ基封鎖ジメチルシロキサン・メチルハイドロジェンシロキサン共重合体、分子鎖両末端ジメチルハイドロジェンシロキシ基封鎖メチルハイドロジェンシロキサン・ジメチルシロキサン・ジフェニルシロキサン共重合体、分子鎖片末端ジメチルハイドロジェンシロキシ基・片末端トリメチルシロキシ基封鎖ジメチルシロキサン・メチルハイドロジェンシロキサン共重合体、分子鎖片末端ジメチルハイドロジェンシロキシ基・片末端トリメチルシロキシ基封鎖メチルハイドロジェンシロキサン・ジメチルシロキサン・ジフェニルシロキサン共重合体、(CH32HSiO1/2単位と(CH33SiO1/2単位と(CH3)HSiO2/2単位とSiO4/2単位とからなる共重合体、(CH32HSiO1/2単位と(CH33SiO1/2単位と(CH3)HSiO2/2単位と(CH32SiO2/2単位とSiO4/2単位とからなる共重合体、(CH32HSiO1/2単位と(CH3)HSiO2/2単位と(CH32SiO2/2単位とSiO4/2単位とからなる共重合体、(CH32HSiO1/2単位とSiO4/2単位と(CH3)HSiO2/2単位と(CH32SiO2/2単位と(C653SiO1/2単位とからなる共重合体、(CH32HSiO1/2単位と(CH33SiO1/2単位と(C652SiO2/2単位と(CH3)HSiO2/2単位と(CH32SiO2/2単位とSiO4/2単位とからなる共重合体等が挙げられる。
 (B)成分の配合量は、(A)成分中のケイ素原子結合アルケニル基1個に対して、(B)成分中のケイ素原子結合水素原子が0.1~5.0個となる量であり、好ましくは0.3~3.0個となる量であり、更に好ましくは0.5~2.0個となる量である。このケイ素原子結合水素原子が0.1個より少ない場合には、架橋密度が低くなりすぎ、硬化時ボイドが発生しやすくなるし、所定の場所から流失しやすく信頼性が悪くなる。5.0個より多いと得られる熱伝導性シリコーン組成物が硬くなりすぎ信頼性が悪くなる。
 (B)成分のオルガノハイドロジェンポリシロキサンは、1種単独で用いても2種以上を併用してもよい。
<(C)ガリウム及び/又はその合金>
 本発明の組成物の(C)成分は、融点が-20~70℃の、ガリウム及び/又はその合金である。該(C)成分は、本発明の組成物から得られる硬化物に良好な熱伝導性を付与するために配合される成分であり、この成分の配合が本発明の特徴をなすものである。
 この(C)成分の融点は、上記のとおり、-20~70℃の範囲とすることが必要である。本発明に使用するためには物理的には-20℃以下のものでも使用できるが、融点が-20℃未満のものを入手するのは困難であり経済的に好ましくなく、また逆に、70℃を超えると組成物調製工程において速やかに融解しないため、作業性に劣る結果となる。よって、前記のとおり、(C)成分の融点は-20~70℃の範囲が適切な範囲である。特に、-19~50℃の範囲内のものが、本発明の組成物の調製が容易であり、更に好ましくは-18~40℃の範囲である。
 金属ガリウムの融点は29.8℃である。また、代表的なガリウム合金としては、例えば、ガリウム-インジウム合金;例えば、Ga-In(質量比=75.4:24.6、融点=15.7℃)、ガリウム-スズ合金、ガリウム-スズ-亜鉛合金;例えば、Ga-Sn-Zn(質量比=82:12:6、融点=17℃)、ガリウム-インジウム-スズ合金;例えば、Ga-In-Sn(質量比=68.5:21.5:10、融点=-19℃や、質量比=62:25:13、融点=5.0℃や、質量比=21.5:16.0:62.5、融点=10.7℃)、ガリウム-インジウム-ビスマス-スズ合金;例えば、Ga-In-Bi-Sn(質量比=9.4:47.3:24.7:18.6、融点=48.0℃)等が挙げられる。
 この(C)成分は1種単独でも2種以上を組み合わせても使用することができる。
 未硬化状態の本発明の組成物中に存在するガリウム及び/又はその合金の液状微粒子又は固体微粒子の形状は、略球状であり、不定形のものが含まれていてもよい。また、その平均粒径が、通常、1~200μm、特に5~150μmであることが好ましく、更に好ましくは10~100μmである。前記平均粒径が小さすぎると組成物の粘度が高くなりすぎるため、伸展性が乏しいものとなるので塗工作業性に問題があり、また、逆に大きすぎると組成物が不均一となるため発熱性電子部品等への薄膜状の塗布が困難となる。なお、前記形状及び平均粒径、更に組成物中での分散状態は、上記のとおり、組成物調製後に速やかに低温下で保存されることから、発熱性電子部品等への塗工工程まで維持することができる。なお、この平均粒径は、硬化前の組成物を2枚のスライドガラスで挟み込み、株式会社キーエンス社製のVR-3000で観察することにより算出した。即ち、この測定器により撮影した画像の中から、ランダムに30個の粒子を選び、それぞれの粒径を計測し、それらの平均値を算出した。
 この(C)成分の凝固点は、前述した範囲内の粒径で(A)成分中に分散されるとバルクの持つ凝固点より下がることを本発明者らは見出した。電子分品は極低温環境に曝されることもあり、信頼性の観点から、本発明の組成物中の(C)成分の凝固点は-40℃以下が好ましく、-50℃以下がより好ましく、-60℃以下が更に好ましい。なお、凝固点は、硬化性オルガノポリシロキサン組成物を示差走査熱量計(DSC)にて、25℃から-80℃まで3℃/分で冷却したときに得られる発熱曲線の最大ピーク位置の温度とした。本測定は株式会社日立ハイテクサイエンス社製の示差走査熱量計(DSC)のモデルDSC7000Xにて測定できる。
 この(C)成分の配合量は、上記(A)成分100質量部に対して、300~20,000質量部であり、特に好ましくは2,000~15,000質量部であり、更に好ましくは3,000~12,000である。前記配合量が300質量部未満であると熱伝導率が低くなり、組成物が厚い場合、十分な放熱性能が得られない。20,000質量部より多いと均一組成物とすることが困難となり、また、組成物の粘度が高すぎるものとなるため、伸展性があるグリース状のものとして組成物を得ることができない場合がある。
<(D)熱伝導性充填剤>
 本発明の組成物には、前記(C)成分とともに、従来から公知の熱伝導性シート又は熱伝導性グリースに配合される(D)熱伝導性充填剤(但し、(C)成分を除く)を配合することが必要である。
 この(D)成分としては、熱伝導率が良好なものであれば特に限定されず、従来から公知のものを全て使用することができ、例えば、アルミニウム粉末、酸化亜鉛粉末、アルミナ粉末、窒化硼素粉末、窒化アルミニウム粉末、窒化珪素粉末、銅粉末、ダイヤモンド粉末、ニッケル粉末、亜鉛粉末、ステンレス粉末、カーボン粉末等が挙げられる。また、この(D)成分は1種単独でも2種以上を組み合わせても使用することができる。
 特に、入手のしやすさ、経済的な観点から、酸化亜鉛粉末、アルミナ粉末が特に好ましい。
 (D)成分の平均粒径は、0.1~30μmであり、好ましくは1~20μmである。前記平均粒径が小さすぎると、得られる組成物の粘度が高くなりすぎるので伸展性の乏しいものとなる。また、逆に大きすぎると、均一な組成物を得ることが困難となる。なお、この平均粒径はマイクロトラックMT3300EX(日機装株式会社製)により測定した体積基準の体積平均径[MV]である。
 (D)成分の配合量が(A)成分100質量部に対して10質量部より少ないと、ガリウム及び/又はその合金が前記(A)中又は(A)成分と後述の(G)成分との混合物中に均一に分散せず、1,000質量部より多いと組成物の粘度が高くなり伸展性があるグリース状のものとして組成物を得ることができないという問題があるため10~1,000質量部の範囲、好ましくは50~500質量部がよい。
<(E)白金族金属触媒>
 本発明の組成物の(E)成分の白金族金属触媒は、上記(A)成分中のアルケニル基と上記(B)成分中のSiHとの付加反応を促進し、本発明の組成物から3次元網状状態の架橋硬化物を与えるために配合される成分(硬化触媒)である。
 この(E)成分としては、通常のヒドロシリル化反応に用いられる公知のものを全て使用することができ、例えば、白金金属(白金黒)、塩化白金酸、白金-オレフィン錯体、白金-アルコール錯体、白金配位化合物等が挙げられる。(E)成分の配合量は、本発明の組成物を硬化させるに必要な有効量であればよく、特に制限されないが、例えば、白金原子として(A)成分の質量に対して、通常、0.1~500ppm程度とすることが好ましい。
<(G-1)表面処理剤>
 本発明の組成物には、組成物調製時に(C)成分のガリウム及び/又はその合金を疎水化処理し、且つ前記(C)成分の(A)成分のオルガノポリシロキサンとの濡れ性を向上させ、前記(C)成分を微粒子として、前記(A)成分からなるマトリックス中に均一に分散させることを目的として下記一般式(1)で示されるポリシロキサンを(G-1)表面処理剤として配合することが好ましい。
 また、この(G-1)成分は、上記(D)成分の熱伝導性充填剤も、同様にその表面の濡れ性を向上させて、その均一分散性を良好なものとする作用をも有する。
 (G-1)成分としては、下記一般式(1)
Figure JPOXMLDOC01-appb-C000003
(式(1)中、R1は同一もしくは異種のアルキル基であり、R2はアルキル基、アルケニル基又はアシル基であり、aは5~100の整数であり、bは1~3の整数である。)
で表される、分子鎖の片末端が加水分解性基で封鎖されたポリシロキサンであり、25℃における動粘度が10~10,000mm2/sである。なお、この動粘度はオストワルド粘度計により25℃で測定した値である。
 (A)成分100質量部に対する(G-1)成分の配合量が10質量部以上であれば、(C)成分及び(D)成分が十分に分散して均一なグリース組成物となるため好ましいが、500質量部より多いと相対的に(A)成分が少なくなるため得られる組成物が硬化しにくくなるという問題点が生じる。硬化しないとグリースがCPU等のデバイスに塗布された後ズレてしまい性能が著しく落ちる可能性がある。従って、(G-1)成分の配合量は10~500質量部の範囲であり、好ましくは50~300質量部である。
<その他の成分>
 上記成分に加えて、本発明の硬化性オルガノポリシロキサン組成物には、必要により、下記成分を配合してもよい。
<(F)付加反応制御剤>
 本発明の組成物の(F)成分の付加反応制御剤は、必要により配合される成分で、室温における上記白金系触媒の作用にヒドロシリル化反応を抑制し、本発明の組成物の可使時間(シェルフライフ、ポットライフ)を確保して、発熱性電子部品等への塗工作業に支障をきたさないように配合される成分である。
 この(F)成分としては、通常の付加反応硬化型シリコーン組成物に用いられる公知の付加反応制御剤を全て使用することができ、例えば、1-エチニル-1-シクロヘキサノール、3-ブチン-1-オール等のアセチレン化合物や、各種窒素化合物、有機りん化合物、オキシム化合物、有機クロロ化合物等が挙げられる。
 この(F)成分の配合量は、上記(E)成分の使用量によっても異なり、一概にいえないが、ヒドロシリル化反応の進行を抑制することができる有効量であればよく、特に制限されない。例えば、(A)成分100質量部に対して、通常、0.001~5質量部程度とすることがよい。(F)成分の配合量が少なすぎれば、十分な可使時間を確保することができず、また、多すぎると本発明の組成物の硬化性が低下する。なお、この(F)成分は、組成物中への分散性を向上させるため、必要に応じて、トルエン、キシレン、イソプロピルアルコール等の有機溶剤で希釈して使用することもできる。
 また、本発明の組成物には、更に(G-2)成分として、以下のアルコキシシランを配合してもよい。
 (G-2)下記一般式(2):
  R3 c4 dSi(OR54-c-d   (2)
(式(2)中、R3は独立に炭素原子数6~16のアルキル基であり、R4は独立に非置換又は置換の炭素原子数1~8の1価炭化水素基であり、R5は独立に炭素原子数1~6のアルキル基であり、cは1~3の整数、dは0~2の整数であり、c+dの和は1~3の整数である。)
 上記一般式(2)中のR3としては、例えば、ヘキシル基、オクチル基、ノニル基、デシル基、ドデシル基、テトラデシル基等が挙げられる。炭素原子数が6未満であると上記(C)成分及び(D)成分の濡れ性の向上が充分でなく、16を超えると該(G-2)成分のオルガノシランが常温で固化するので、取り扱いが不便な上、得られた組成物の低温特性が低下する。
 また、上記一般式(2)中のR4としては、例えば、メチル基、エチル基、プロピル基、ヘキシル基、オクチル基等のアルキル基;シクロペンチル基、シクロヘキシル基等のシクロアルキル基;ビニル基、アリル基等のアルケニル基;フェニル基、トリル基等のアリール基;2-フェニルエチル基、2-メチル-2-フェニルエチル基等のアラルキル基;3,3,3-トリフルオロプロピル基、2-(ナノフルオロブチル)エチル基、2-(へプタデカフルオロオクチル)エチル基、p-クロロフェニル基等のハロゲン化炭化水素基が挙げられる。これらの中では、特に、メチル基及びエチル基が好ましい。
 また、上記一般式(2)中のR5としては、例えば、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基等のアルキル基が挙げられる。これらの中では、特に、メチル基及びエチル基が好ましい。
 この(G-2)成分の好適な具体例としては、下記のものを挙げることができる。
  C613Si(OCH33
  C1021Si(OCH33
  C1225Si(OCH33
  C1225Si(OC253
  C1021(CH3)Si(OCH32
  C1021(C65)Si(OCH32
  C1021(CH3)Si(OC252
  C1021(CH=CH2)Si(OCH32
 なお、この(G-2)成分は1種単独でも2種以上を組み合わせても使用することができる。また、その配合量は、(A)成分100質量部に対して、0.1質量部以上であれば組成物の粘度が所望の範囲となりやすく、100質量部より多いと、ウェッター効果が増大することがなく不経済であるため0.1~100質量部の範囲が良い。より好ましくは1~50質量部である。
 また、本発明の組成物には、更に場合によっては、(G-3)成分としてトリフルオロプロピルトリメトキシシランを配合してもよい。また、その配合量は、(A)成分100質量部に対して、0.1質量部以上であれば組成物の粘度が所望の範囲となりやすく、100質量部より多いと、ウェッター効果が増大することがなく不経済であるため0.1~100質量部の範囲がよい。より好ましくは1~50質量部である。
 尚、(G-1)成分、(G-2)成分、(G-3)成分は、それぞれ単独で使用してもよいし、組み合わせてもよい。
<上記以外の任意成分>
 本発明の組成物には、本発明の目的・効果を損ねない範囲で、以下平均組成式(5)のオルガノポリシロキサンを配合することもできる。
 平均組成式(5):
  R7 gSiO(4-g)/2   (5)
(式(5)中、R7は独立に脂肪族系不飽和結合を有さない非置換又は置換の炭素原子数1~18の一価炭化水素基であり、gは1.8~2.2の数である。)
で表される25℃における動粘度が10~100,000mm2/sのオルガノポリシロキサンであり、1種単独で使用しても、2種以上を併用してもよい。
 上記R7は独立に非置換又は置換の炭素原子数1~18の一価炭化水素基である。R7としては、例えば、メチル基、エチル基、プロピル基、ヘキシル基、オクチル基、デシル基、ドデシル基、テトラデシル基、ヘキサデシル基、オクタデシル基等のアルキル基;シクロペンチル基、シクロヘキシル基等のシクロヘキシル基;ビニル基、アリル基等のアルケニル基;フェニル基、トリル基等のアリール基;2-フェニルエチル基、2-メチル-2-フェニルエチル基等のアラルキル基;3,3,3-トリフルオロプロピル基、2-(パーフルオロブチル)エチル基、2-(パーフルオロオクチル)エチル基、p-クロロフェニル基等のハロゲン化炭化水素基などが挙げられる。
 本発明の組成物には、更に、例えば、酸化鉄、酸化セリウム等の耐熱性向上剤;シリカ等の粘度調整剤;着色剤等を配合することができる。
<組成物の粘度>
 本発明の組成物は、後述のとおり、発熱性電子部品の表面に適用され、これに放熱部材を圧接した後、加熱処理することにより硬化して、熱伝導性層を形成する。この際、作業性を良好とするために、本発明の組成物はグリース状である必要がある。
 例えば、本発明の組成物はシリンジ内に収納され、該シリンジからCPU等の発熱性電子部品の表面に塗布されて被覆層が形成され、これに放熱部材が圧接される。従って、本発明の組成物の粘度は、通常、10~1,000Pa・s、特に30~400Pa・sであることが好ましい。前記粘度が低すぎると前記塗布時に液垂れが生じて、作業上問題となる場合がある。また、逆に、高すぎると、シリンジからの押し出しが困難となるため、塗布作業の効率が悪くなる場合がある。なお、この粘度はスパイラル粘度計PC-ITL(株式会社マルコム社製)により25℃で測定した値である。
[組成物の調製]
 本発明の硬化性オルガノポリシロキサン組成物は、
(i)前記(A)、前記(C)、前記(D)及び必要により前記(G-1)、並びに、含有する場合は、前記(G-2)成分及び(G-3)成分を、20~120℃の範囲内の温度であり、かつ、前記(C)成分の融点以上である温度で混練して均一な混合物(i)を得る工程;
(ii)混合物(i)の混練を停止して、混合物(i)の温度を前記(C)成分の融点未満にまで冷却し混合物(ii)を得る工程;及び
(iii)前記(B)成分と前記(E)成分と、含有する場合は前記(F)成分と、場合により他の成分とを、混合物(ii)に追加して、前記(C)成分の融点未満の温度で混練して均一な混合物(iii)を得る工程
を有する製造方法によって得ることができるが本記載に限るものではない。
 前記製造方法においては、加熱手段、及び必要に応じて冷却手段を備えたコンディショニングミキサー、プラネタリーミキサー等の攪拌・混練機を使用する。
 前記(i)工程において、(C)成分のガリウム及び/又はその合金の液状物と、(D)成分の熱伝導性充填剤は、(A)成分と、(G-1)と、(G-2)及び(G-3)成分のいずれか又はそれら2種以上とを組み合わせた混合液中に均一に分散される。
 前記工程(ii)における降温操作乃至冷却操作は速やかに行われることが好ましい。該工程(ii)において、(A)成分と、(G-1)と、(G-2)及び(G-3)成分のいずれか又はそれら2種以上とを組み合わせた混合液からなるマトリックス中に均一に分散された液状微粒子又は固体微粒子状態の(C)成分は、その平均粒径及び前記分散状態を保持する。
 前記工程(iii)もできるだけ短時間で終了させることが好ましい。該工程(iii)の終了時点において、(C)成分の微粒子の前記分散状態に、実質上、変化が生じることはない。そして、該工程(iii)の終了後は、生成した組成物を容器内に収容し、速やかに約-30~-10℃、好ましくは-25~-15℃の温度の冷凍庫、冷凍室等で保存するのがよい。また、その輸送等においても冷凍設備を備えた車両等を用いるのがよい。このように低温下で保管・輸送することにより、例えば長期間の保存によっても、本発明の組成物の組成及び分散状態を安定して保持することができる。
[半導体装置への適用]
 本発明の組成物を硬化させる場合は80~180℃の温度に30~240分程度保持することにより行うことができる。
 本発明の組成物の硬化物は、発熱性電子部品と放熱部材との間に介在させて熱伝導性層を形成するための熱伝導性硬化物として使用することができる。
 この場合、上記本発明の組成物を用いて放熱特性に優れた半導体装置、即ち、発熱性電子部品と、放熱部材と、上記本発明の組成物の硬化物からなる熱伝導性層とを有する半導体装置であって、前記発熱性電子部品と前記放熱部材とが前記熱伝導性層を介して接合されている半導体装置を得ることができる。
 本発明の組成物の硬化物は、25℃における貯蔵弾性率が3,000~300,000Paであることが好ましく、5,000~200,000Paであることがより好ましく、10,000~150,000Paであることがさらに好ましい。この貯蔵弾性率が3,000Paより小さいと、ボイドが出やすくなるし、所定の場所から流失しやすく信頼性が悪くなる場合がある。また、300,000Paより大きいとCPUなどの発熱部品の動作時に発生する反りに追随できず所望の放熱特性が得られなくなる場合がある。
 前記半導体装置は、
(a)発熱性電子部品の表面に、本発明の組成物を塗布して、前記表面に前記組成物からなる被覆層を形成させる工程、
(b)前記被覆層に放熱部材を圧接して固定させる工程、及び
(c)工程(b)後に得られた構造体を80~180℃で加熱して、前記被覆層を硬化させて熱伝導性層とする工程
を有する製造方法によって得ることができる。
 前記半導体装置及びその製造方法について、図1を参照しながら説明する。なお、図1に記載の装置は、本発明の組成物の半導体装置への適用の一例を示したものにすぎず、本発明に係る半導体装置を図1に記載のものに限定するとの趣旨ではない。
 先ず、冷凍保存状態の本発明の組成物を室温に放置して自然に解凍させてグリース状とする。次に、シリンジ等の塗工用具内に液状の本発明の組成物を収納させる。
 発熱性電子部品、例えば、図1に記載の基板3上に実装された発熱性電子部品であるCPU2等の表面に、シリンジ等から本発明の組成物を塗布(ディスペンス)して硬化性組成物層(被覆層)1を形成させる。また、同時に放熱部材4を固定するために接着剤5も塗布し、その上に、放熱部材4を、被覆層1を介してCPU2に圧接して固定させる。
 この際に、CPU2と放熱部材4とに挟まれて存在する被覆層1の厚さが、通常、5~100μm、特に好ましくは10~70μmとなるように、調整するのがよい。前記厚さが薄すぎると剥離が起きやすくなり信頼性が悪くなるし、逆に、厚すぎると熱抵抗が大きくなるので十分な放熱効果を得ることができない。
 次いで、上記のとおりに構成された装置を、加熱装置内にて、本発明の組成物からなる被覆層1を硬化させて熱伝導性層1とする。この硬化に要する温度条件は、80~180℃であり、特に好ましくは100~150℃である。前記温度が80℃未満であると硬化が不十分となり、逆に180℃を超える高温では、電子部品や基材が劣化するおそれがある。
 前記硬化時の温度条件に昇温する過程で、本発明の組成物中の(C)成分のガリウム及び/又はその合金の液状微粒子は上記(D)成分とも連結して連なった一種の経路を形成する。
 更に、前記(C)成分の液状粒子は、接するCPU2及び放熱部材4の表面にも融着する。従って、CPU2と放熱部材4とは、前記(C)成分の液状粒子及び前記(D)成分の熱伝導性充填剤が連結して連なった一種の経路を介して、実質上、一体的に連続している熱伝導性に富んだものとなる。また、前記経路状の構造は、(A)成分及び(B)成分の付加反応により形成される硬化物の3次元架橋網状体中に、固定・保持される。
 また、上記のとおりにして得られた半導体装置を稼動・使用する場合、CPU等の発熱性電子部品はその表面温度が、通常、60~120℃程度の高温となる。この発熱に対し、本発明の組成物の硬化物からなる熱伝導性層は、上記のとおり高い熱伝導性を示し、従来の熱伝導性シートや熱伝導性グリースに比較してより放熱特性に優れるという顕著に優れた作用・効果を奏するものである。そして、半導体装置の長期連続稼動・使用によっても、前記熱伝導性層に含まれ前記経路を形成している(C)成分のガリウム及び/又はその合金は、硬化物の3次元架橋網状体中に固定・保持されていることため、熱伝導性層から漏出することがない。
 更に、この熱伝導性層はタック性を有しており、放熱部材がずれた場合であっても、また、長期使用時においても安定した柔軟性を有し、発熱性電子部品及び放熱部材から剥がれたりすることがない。
 なお、予め本発明の組成物から所望の厚さのシート状硬化物を作製し、これを従来の熱伝導性シートと同様に発熱性電子部品と放熱部材との間に介在させることによっても、同様な効果を得ることができる。その他、熱伝導性及び耐熱性が必要とされる他の装置等の部品として、本発明の組成物の硬化物のシート等を適宜使用することもできる。
 以下、実施例を掲げて本発明を更に詳述するが、本発明はこれによって限定されるものではない。
 下記実施例及び比較例において用いられる(A)~(G)成分を下記に示す。なお、粘度はスパイラル粘度計PC-ITL(株式会社マルコム社製)を用いて25℃にて測定した値であり、動粘度はオストワルド粘度計を用いて25℃にて測定した値である。
(A)成分:
 25℃における粘度が下記のとおりである両末端がジメチルビニルシリル基で封鎖されたジメチルポリシロキサン;
(A-1-1)粘度:0.1Pa・s
(A-1-2)粘度:1.0Pa・s
(A-2-1)粘度:30Pa・s
(A-2-2)粘度:100Pa・s
(B)成分:
(B-1)下記構造式で表されるオルガノハイドロジェンポリシロキサン(α/β=0.35、25℃における動粘度113mm2/s)
Figure JPOXMLDOC01-appb-C000004
(式中、括弧内のシロキサン単位の配列順は不定である。)
(B-2)下記構造式で表されるオルガノハイドロジェンポリシロキサン(α/β=0.29、25℃における動粘度27mm2/s)
Figure JPOXMLDOC01-appb-C000005
(式中、括弧内のシロキサン単位の配列順は不定である。)
(C)成分:
(C-1)金属ガリウム〔融点=29.8℃〕
(C-2)Ga-In合金〔質量比=75.4:24.6、融点=15.7℃〕
(C-3)Ga-In-Sn合金[質量比=68.5:21.5:10、融点=-19℃]
(C-4)Ga-In-Sn合金[質量比=62:25:13、融点=5.0℃]
(D)成分:
(D-1):アルミナ粉末〔平均粒径:8.2μm〕
(D-2):酸化亜鉛粉末〔平均粒径:1.0μm〕
(E)成分:
(E-1):白金-ジビニルテトラメチルジシロキサン錯体のジメチルポリシロキサン(両末端がジメチルビニルシリル基で封鎖されたもの、粘度:0.6Pa・s)溶液〔白金原子含有量:1質量%〕
(F)成分:
(F-1)1-エチニル-1-シクロヘキサノール
(G)成分:
 (G-1)下記構造式で表される動粘度32mm2/sの片末端トリメトキシシリル基封鎖ジメチルポリシロキサン
Figure JPOXMLDOC01-appb-C000006

(G-2)構造式:C1021Si(OCH33で表されるオルガノシラン
(G-3)トリフルオロプロピルトリメトキシシラン
 なお、組成物の調製の手順において、「(G)成分」とは、表1に記載されたそれぞれの例において使用される(G-1)、(G-2)及び(G-3)をまとめたものを表す。
[実施例1~6、比較例1~5]
<組成物の調製>
 表1に記載の組成比で各成分を採取し、次のとおりにして、組成物を調製した。
 内容積250ミリリットルのコンディショニングミキサー(株式会社シンキー製、商品名:あわとり練太郎)容器に、(A)成分、(C)成分、(D)成分及び(G)成分を加え、70℃に昇温し該温度を維持し、5分間混練した。次いで、混練を停止し、15℃になるまで冷却した。
 次に、(A)成分、(C)成分、(D)成分及び(G)成分の混合物に、(B)成分、(E)成分及び(F)成分を加え、25℃で均一になるように混練して各組成物を調製した。
<粘度の測定>
 組成物の絶対粘度の測定は、株式会社マルコム社製の型番PC-1TL(10rpm)で、いずれも25℃にて行った。
<(C)成分の粒径測定>
 上記で得られた各組成物を2枚のスライドガラスで挟み込み、株式会社キーエンス社製のVR-3000で撮影した画像の中から、ランダムに30個の粒子を選び、それぞれの粒径を計測し、それらの平均値を算出した。
<(C)成分の凝固点測定>
 上記で得られた各組成物を、株式会社日立ハイテクサイエンス社製の示差走査熱量計(DSC)のモデルDSC7000Xにて測定した。25℃から-80℃まで3℃/分で冷却したときに得られる発熱曲線の最大ピーク位置の温度とした。
<硬化物の調製>
 上記で得られた各組成物を、直径1.26mmで厚さ1mmのアルミニウムプレート(以下、「標準アルミプレート」という)の全面に塗布し、他の標準アルミプレートを重ねて、約175.5kPa(1.80kgf/cm2)の圧力をかけて3層構造体を得た。次いで、該3層構造体を電気炉内で150℃にまで昇温し該温度を1時間保持して各組成物を硬化させ、その後室温になるまで放置して冷却し、熱抵抗測用試料を調製した。
 得られた各試料の厚さを測定し、標準アルミプレートの既知の厚さを差し引くことによって、硬化した各組成物の厚さを算出した。なお、上記各試料の厚さの測定に際しては、マイクロメーター(株式会社ミツトヨ、型式;M820-25VA)を用いた。硬化した各組成物の厚さを表1に示す。
<初期熱抵抗の測定>
 上記各試料を用いて、硬化した各組成物の熱抵抗(mm2・K/W)を、熱抵抗測定器(NETZSCH社製モデル:LFA447)を用いて測定した。初期測定結果を表1~3に示す。
<熱衝撃試験後の熱抵抗の測定>
 初期熱抵抗を測定した後、株式会社カトー社製急速昇降型低温高温器(モデルSP-61NX-A)に投入し、-55℃/30分と、125℃/30分との条件を1サイクルとして、1000サイクル後の熱抵抗を測定した。測定結果を表1に示す。
<ボイド試験>
 5×7cmの2枚のスライドガラスに各組成物0.2gを挟み込み、その上に1kgの重りを載せ、室温にて15分放置した。その後その重りを外し、その試験片を150℃のオーブンに1時間放置してから取り出した。スライドガラスに挟まれた硬化物を目視及びマイクロスコープ(株式会社キーエンス社製:モデルVR-3200)にて観察を行った。
[評価]
・目視で、ひび割れが観察された:×
・マイクロスコープにて、直径1.0mm以上の円形状のボイド(空隙)が1個以上観察された:×
・目視及びマイクロスコープの観察でひび割れ及び直径1.0mm以上の円形状のボイド(空隙)が全く観察されない:○
<貯蔵弾性率の測定>
 粘弾性測定装置(ティー・エイ・インスツルメント社製、タイプARES-G2使用)を使用し、直径2.5cmの2枚のパラレルプレートを用いた(硬化性オルガノポリシロキサン組成物の厚みは2mmに設定)。
 測定は、まず室温から10℃/分で125℃まで昇温し、125℃から150℃までは2℃/分で昇温、150℃になってから2時間その温度を保持し、組成物を完全に硬化させた。その後、25℃まで冷却し、組成物の硬化物の貯蔵弾性率を測定した(周波数:1.0Rad/sec、ストレイン(変位):1%に設定)。
<熱伝導率の測定>
 上記各試料の熱伝導率は、京都電子工業株式会社製のTPS-2500Sにより、いずれも25℃において測定した。
<(D)成分の粒径測定>
 熱伝導性充填剤の粒径測定は、日機装株式会社製の粒度分析計であるマイクロトラックMT3300EXにより測定した体積基準の累積平均径である。
<半導体装置への適用>
 上記各実施例1~6で得られた組成物の0.2gを、2cm×2cmのCPUの表面に塗布し被覆層を形成させた。該被覆層に放熱部材を重ね硬化させて、10~70μmの厚さの熱伝導性層を介して前記CPUと放熱部材が接合されている半導体装置を得た。これらの各装置をホストコンピューター、パーソナルコンピュータ等に組み込み、稼動させたところ、CPUの発熱温度は約100℃であったが、いずれの装置の場合も長時間にわたって安定した熱伝導及び放熱が可能であり、過熱蓄積によるCPUの性能低下、破損等が防止できた。よって、本発明の組成物の硬化物の採用により、半導体装置の信頼性が向上することが確認できた。
Figure JPOXMLDOC01-appb-T000007
*(A)成分中のケイ素原子結合アルケニル基1個に対する(B)成分中のケイ素原子結合水素原子の個数の比率をSiH/Viと表記する
 (C)成分の凝固点が所望される温度より高いと熱衝撃試験に耐えられず、熱抵抗が悪化することが明らかとなった。
1:硬化性組成物層(被覆層)(熱伝導性層)
2:CPU(セントラル プロセッシング ユニット)
3:基板
4:放熱部材
5:接着剤

Claims (12)

  1.  (A)25℃で液状であり、ケイ素原子に結合したアルケニル基を1分子中に2個以上有するオルガノポリシリオキサン、(B)ケイ素原子に結合した水素原子を有するオルガノハイドロジェンポリシロキサン、(C)融点が-20~70℃のガリウム及びガリウム合金からなる群より選択される一種以上、(D)平均粒径が0.1~30μmの熱伝導性充填剤、及び、(E)白金族金属触媒を含み、(C)のガリウム及び/又はガリウム合金が粒子状にオルガノポリシロキサン中に分散することで、ガリウム及び/又はガリウム合金の凝固点が-40℃以下となる硬化性オルガノポリシロキサン組成物。
  2.  (A)~(G-1)を含む請求項1に記載の硬化性オルガノポリシロキサン組成物。
    (A)下記(A-1)及び(A-2)からなり、且つ(A-1)と(A-2)との合計に対する(A-1)の割合が10~90質量%であるオルガノポリシロキサン:100質量部、
     (A-1)25℃における粘度が0.01~10Pa・sのケイ素原子に結合したアルケニル基を1分子中に2個以上有するオルガノポリシロキサン
     (A-2)25℃における粘度が11~1,000Pa・sのケイ素原子に結合したアルケニル基を1分子中に2個以上有するオルガノポリシロキサン
    (B)ケイ素原子に結合した水素原子を1分子中に2個以上有するオルガノハイドロジェンポリシロキサン:前記(A)成分中のアルケニル基1個に対して、当該成分中のケイ素原子に結合した水素原子の個数が0.1~5.0個となる量、
    (C)融点が-20~70℃の、ガリウム及びガリウム合金からなる群より選択される1種以上:300~20,000質量部、
    (D)平均粒径が0.1~30μmの熱伝導性充填剤:10~1,000質量部、
    (E)白金族金属触媒:(A)成分の質量に対して白金族金属の質量換算で0.1~500ppm
    並びに、
    (G-1)下記一般式(1)で表されるオルガノポリシロキサン:10~500質量部
    Figure JPOXMLDOC01-appb-C000001
    (式(1)中、R1は同一もしくは異種のアルキル基であり、R2はアルキル基、アルケニル基又はアシル基であり、aは5~100の整数であり、bは1~3の整数である。)
  3.  更に、(G-2)下記一般式(2):
      R3 c4 dSi(OR54-c-d   (2)
    (式(2)中、R3は独立に炭素原子数6~16のアルキル基であり、R4は独立に非置換又は置換の炭素原子数1~8の1価炭化水素基であり、R5は独立に炭素原子数1~6のアルキル基であり、cは1~3の整数、dは0~2の整数であり、c+dの和は1~3の整数である。)
    で表されるアルコキシシラン化合物を、(A)成分100質量部に対し0.1~100質量部含む、請求項2に記載の硬化性オルガノポリシロキサン組成物。
  4.  更に、(G-3)トリフルオロプロピルトリメトキシシランを(A)成分100質量部に対し0.1~100質量部含む、請求項2又は3に記載の硬化性オルガノポリシロキサン組成物。
  5.  (B)成分が、分子鎖非末端にケイ素原子に結合した水素原子を1分子中に5個以上有し、且つ、下記式(3):
      0.1<α/β   (3)
    (式(3)中、αは分子鎖非末端のケイ素原子に結合した水素原子の数を表し、βは(B)成分中の全ケイ素原子数を表す。)
    を満たすオルガノハイドロジェンポリシロキサンである請求項1に記載の硬化性オルガノポリシロキサン組成物。
  6.  (C)成分が、組成物中に1~200μmの粒子状に分散している請求項1に記載の硬化性オルガノポリシロキサン組成物。
  7.  請求項1に記載の硬化性オルガノポリシロキサン組成物からなる熱伝導性シリコーングリース組成物。
  8.  請求項1に記載の硬化性オルガノポリシロキサン組成物の硬化物。
  9.  25℃における貯蔵弾性率が3,000~300,000Paとなる、請求項8に記載の硬化性オルガノポリシロキサン組成物の硬化物。
  10.  請求項8に記載の硬化物の、発熱性電子部品と放熱部材との間に挟まれて配置される熱伝導性層としての使用。
  11.  発熱性電子部品と、放熱部材と、請求項8に記載の硬化物からなる熱伝導性層とを有する半導体装置であって、前記発熱性電子部品と前記放熱部材とが前記熱伝導性層を介して接合されている半導体装置。
  12.  請求項11に記載の半導体装置の製造方法であって、
    (a)発熱性電子部品の表面に、請求項1に記載の硬化性オルガノポリシロキサン組成物を塗布して、前記表面に前記組成物からなる被覆層を形成させる工程、
    (b)前記被覆層に放熱部材を圧接して固定させる工程、及び
    (c)工程(b)後に得られた構造体を80~180℃で加熱して、前記被覆層を硬化させて熱伝導性層とする工程
    を有する半導体装置の製造方法。
PCT/JP2023/034513 2022-10-19 2023-09-22 硬化性オルガノポリシロキサン組成物及び半導体装置 WO2024084897A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-167551 2022-10-19
JP2022167551A JP2024060273A (ja) 2022-10-19 2022-10-19 硬化性オルガノポリシロキサン組成物及び半導体装置

Publications (1)

Publication Number Publication Date
WO2024084897A1 true WO2024084897A1 (ja) 2024-04-25

Family

ID=90737557

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/034513 WO2024084897A1 (ja) 2022-10-19 2023-09-22 硬化性オルガノポリシロキサン組成物及び半導体装置

Country Status (2)

Country Link
JP (1) JP2024060273A (ja)
WO (1) WO2024084897A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005112961A (ja) * 2003-10-07 2005-04-28 Shin Etsu Chem Co Ltd 硬化性オルガノポリシロキサン組成物および半導体装置
JP2010018662A (ja) * 2008-07-09 2010-01-28 Shin-Etsu Chemical Co Ltd 光導波板用液状シリコーンゴム組成物
JP2011144234A (ja) * 2010-01-13 2011-07-28 Denki Kagaku Kogyo Kk 熱伝導性樹脂組成物
JP2013010862A (ja) * 2011-06-29 2013-01-17 Shin-Etsu Chemical Co Ltd 硬化性でグリース状の熱伝導性シリコーン組成物および半導体装置
JP2015078296A (ja) * 2013-10-16 2015-04-23 信越化学工業株式会社 硬化性熱伝導性樹脂組成物、該組成物の製造方法、該組成物の硬化物、該硬化物の使用方法、該組成物の硬化物を有する半導体装置、及び該半導体装置の製造方法
WO2020129555A1 (ja) * 2018-12-21 2020-06-25 信越化学工業株式会社 熱伝導性シリコーン組成物及び半導体装置
WO2020203299A1 (ja) * 2019-03-29 2020-10-08 ダウ・東レ株式会社 多成分型熱伝導性シリコーンゲル組成物、熱伝導性部材および放熱構造体

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005112961A (ja) * 2003-10-07 2005-04-28 Shin Etsu Chem Co Ltd 硬化性オルガノポリシロキサン組成物および半導体装置
JP2010018662A (ja) * 2008-07-09 2010-01-28 Shin-Etsu Chemical Co Ltd 光導波板用液状シリコーンゴム組成物
JP2011144234A (ja) * 2010-01-13 2011-07-28 Denki Kagaku Kogyo Kk 熱伝導性樹脂組成物
JP2013010862A (ja) * 2011-06-29 2013-01-17 Shin-Etsu Chemical Co Ltd 硬化性でグリース状の熱伝導性シリコーン組成物および半導体装置
JP2015078296A (ja) * 2013-10-16 2015-04-23 信越化学工業株式会社 硬化性熱伝導性樹脂組成物、該組成物の製造方法、該組成物の硬化物、該硬化物の使用方法、該組成物の硬化物を有する半導体装置、及び該半導体装置の製造方法
WO2020129555A1 (ja) * 2018-12-21 2020-06-25 信越化学工業株式会社 熱伝導性シリコーン組成物及び半導体装置
WO2020203299A1 (ja) * 2019-03-29 2020-10-08 ダウ・東レ株式会社 多成分型熱伝導性シリコーンゲル組成物、熱伝導性部材および放熱構造体

Also Published As

Publication number Publication date
JP2024060273A (ja) 2024-05-02

Similar Documents

Publication Publication Date Title
JP4551074B2 (ja) 硬化性オルガノポリシロキサン組成物および半導体装置
JP5565758B2 (ja) 硬化性でグリース状の熱伝導性シリコーン組成物および半導体装置
JP5640945B2 (ja) 硬化性オルガノポリシロキサン組成物及び半導体装置
JP4913874B2 (ja) 硬化性オルガノポリシロキサン組成物および半導体装置
JP4634891B2 (ja) 熱伝導性シリコーングリース組成物およびその硬化物
US20080213578A1 (en) Heat conductive silicone grease composition and cured product thereof
JP2008038137A (ja) 熱伝導性シリコーングリース組成物およびその硬化物
JP5898139B2 (ja) 熱伝導性シリコーン組成物
JP6042307B2 (ja) 硬化性熱伝導性樹脂組成物、該組成物の製造方法、該組成物の硬化物、該硬化物の使用方法、該組成物の硬化物を有する半導体装置、及び該半導体装置の製造方法
WO2022230600A1 (ja) 硬化性オルガノポリシロキサン組成物及び半導体装置
WO2016056286A1 (ja) 熱伝導性シリコーングリースを用いた半導体装置
JP7467017B2 (ja) 熱伝導性シリコーン組成物及びその硬化物
CN115667407A (zh) 高导热性有机硅组合物
WO2024084897A1 (ja) 硬化性オルガノポリシロキサン組成物及び半導体装置
WO2023149175A1 (ja) 熱伝導性シリコーン組成物及びその製造方法
WO2024048335A1 (ja) 熱伝導性シリコーン組成物
WO2023132192A1 (ja) 高熱伝導性シリコーン組成物
JP2023153695A (ja) 熱伝導性シリコーン組成物及びその硬化物