WO2021079642A1 - 巻上機および巻上機の駆動制御方法 - Google Patents

巻上機および巻上機の駆動制御方法 Download PDF

Info

Publication number
WO2021079642A1
WO2021079642A1 PCT/JP2020/034316 JP2020034316W WO2021079642A1 WO 2021079642 A1 WO2021079642 A1 WO 2021079642A1 JP 2020034316 W JP2020034316 W JP 2020034316W WO 2021079642 A1 WO2021079642 A1 WO 2021079642A1
Authority
WO
WIPO (PCT)
Prior art keywords
load
balancer
torque
drive motor
hoisting
Prior art date
Application number
PCT/JP2020/034316
Other languages
English (en)
French (fr)
Inventor
和弘 西川
Original Assignee
株式会社キトー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社キトー filed Critical 株式会社キトー
Priority to US17/770,054 priority Critical patent/US12012316B2/en
Priority to CN202080085996.4A priority patent/CN114787071B/zh
Priority to JP2021554146A priority patent/JP7339718B2/ja
Publication of WO2021079642A1 publication Critical patent/WO2021079642A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66DCAPSTANS; WINCHES; TACKLES, e.g. PULLEY BLOCKS; HOISTS
    • B66D3/00Portable or mobile lifting or hauling appliances
    • B66D3/18Power-operated hoists
    • B66D3/20Power-operated hoists with driving motor, e.g. electric motor, and drum or barrel contained in a common housing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66DCAPSTANS; WINCHES; TACKLES, e.g. PULLEY BLOCKS; HOISTS
    • B66D1/00Rope, cable, or chain winding mechanisms; Capstans
    • B66D1/02Driving gear
    • B66D1/12Driving gear incorporating electric motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66DCAPSTANS; WINCHES; TACKLES, e.g. PULLEY BLOCKS; HOISTS
    • B66D1/00Rope, cable, or chain winding mechanisms; Capstans
    • B66D1/28Other constructional details
    • B66D1/40Control devices
    • B66D1/48Control devices automatic
    • B66D1/485Control devices automatic electrical
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66DCAPSTANS; WINCHES; TACKLES, e.g. PULLEY BLOCKS; HOISTS
    • B66D2700/00Capstans, winches or hoists
    • B66D2700/02Hoists or accessories for hoists
    • B66D2700/023Hoists
    • B66D2700/025Hoists motor operated

Definitions

  • the present invention relates to a hoisting machine and a drive control method for the hoisting machine.
  • the hoisting machine generally lifts and lowers the load by loading the hook and operating the operation switch or the like.
  • a hoisting machine for example, there is one shown in Patent Document 1.
  • the control unit controls the motor unit so as to balance the cargo handling object by detecting that the sum of the weights of the locking member and the cargo handling object is added to the weight detecting unit
  • the control unit Limits the feeding length of the locking member to or less than the first length that can be variably set in advance. As a result, even if a sudden external force is applied, the cargo handling object is prevented from colliding with the floor surface.
  • Patent Document 1 when the cargo handling object is located at a low position exceeding the first length L1, the cargo handling object is raised so as to fit in the first length L1.
  • Patent Document 1 does not disclose at all how to specifically limit the lower limit position of the cargo handling object in the control unit that controls the motor unit so as to balance.
  • the present invention has been made in view of the above circumstances, and in the balancer mode, it is possible to maintain a balanced state and assist according to an operating force, and at the balancer upper limit position and the balancer lower limit position, the torque of the drive motor. It is an object of the present invention to provide a hoisting machine and a method for controlling the hoisting machine, which can regulate the direction of hoisting and lowering without interrupting the control.
  • the hoisting machine is a hoisting machine that raises and lowers a load by hoisting and lowering a load chain or a rope from the hoisting machine main body.
  • a hoisting means that is placed on the main body of the upper machine and around which a load chain or rope is hung and winds and unwinds the load chain or rope according to rotation, and a drive motor that generates a driving force to rotate the hoisting means.
  • the motor control means that controls the drive of the drive motor, and the load detection that detects the load torque applied to the hoisting means by the load chain or rope that suspends the load and the operating force that the operator operates in the hoisting / unwinding direction of the load.
  • the motor control means can control the drive of the drive motor in the balancer mode in which the torque is controlled based on the load torque, and in the balancer mode, the assist torque for assisting the operating force is added. It has a first balancer mode that controls the drive of the drive motor based on one torque command value, and a second balancer mode that controls the drive of the drive motor based on the second torque command value that does not assist the operating force. Regardless of whether the direction of the operating force is the hoisting or lowering direction, the first position range controlled by the first balancer mode and the direction of the operating force are the first balancer mode according to the direction of the hoisting or lowering direction.
  • a hoisting machine characterized in that a second position range for selectively controlling whether to perform or a second balancer mode and an elevating position range are set in.
  • the first position range is the balance position range between the balancer upper limit position and the balancer lower limit position in the balancer mode
  • the second position range is the position range above the balancer upper limit position and / or the balancer lower limit. It is preferable that the position range is equal to or less than the position.
  • the first torque command value of the first balancer mode is set and registered as the load torque applied to the hoisting means based on the hoisting target load to be hoisted by the hoisting means, and the operating force is assisted by the set and registered load torque. It is preferable that the torque command value is the sum of the assist torque to be applied, and the second torque command value of the second balancer mode is the torque command value to which the cancel torque for canceling the operating force is added from the load torque set and registered.
  • the motor control means can set the balancer upper limit position and the balancer lower limit position to arbitrary height positions.
  • the motor control means includes an operation mode changeover switch and an operation means, and also includes an operation device for driving the drive motor in response to the operation of the operation means, and the motor control means is a switch operation of the operation mode changeover switch. It is preferable that the balancer mode and the switch operation mode can be switched according to the above, and in the switch operation mode, the motor control means controls the drive of the drive motor based on the operation of the operation means.
  • the drive motor is a servomotor including an encoder
  • the motor control means supplies a control unit that outputs a command value related to control and power controlled based on the command value to the drive motor.
  • a servo driver is provided
  • the switch means is provided with a slide means that slides within a slideable slide range
  • the motor control means performs speed control that controls the speed of the drive motor according to the slide amount of the slide means. Is preferable.
  • it is a drive control method of a hoisting machine that raises and lowers a load by hoisting and lowering a load chain or a rope from the hoisting machine main body. Is arranged in the main body of the hoisting machine, and the load chain or the rope is hung around it, and also generates a hoisting means for hoisting and lowering the load chain or the rope according to the rotation and a driving force for rotating the hoisting means.
  • a load torque detecting step for detecting a load torque by the load detecting means and a load torque detecting means for detecting the load torque by the load detecting means and an operating device having the switch means and driving the drive motor in response to the switch operation of the switch means.
  • a torque control step for controlling the drive of the drive motor by the motor control means in a preset elevating position range based on the load torque detected in the detection step is provided, and the torque control step includes torque based on the load torque.
  • the drive motor drive can be controlled in the control balancer mode, and the balancer mode controls the drive motor drive based on the first torque command value to which the assist torque for assisting the operating force is added. And a second balancer mode that controls the drive of the drive motor based on the second torque command value that does not assist the operating force.
  • the first balancer mode or the second balancer mode can be selectively selected depending on the first position range controlled in the first balancer mode and the direction of the operating force in the winding / winding direction.
  • the first balancer mode or the second balancer mode can be selectively selected.
  • a drive control method for a hoist characterized in that it has a second position range to be controlled.
  • the torque control of the drive motor is not interrupted. It is possible to regulate the direction of hoisting and lowering.
  • FIG. 1 It is a perspective view which shows the whole structure of the hoisting machine which concerns on one Embodiment of this invention. It is a figure which shows the control structure of the hoisting machine shown in FIG. It is a figure which shows the structure of the cylinder operation apparatus of the hoisting machine shown in FIG. It is a figure which shows a part of the control flow of the hoisting machine shown in FIG. 1, and is the figure which shows from step S01 to step S10. It is a figure which shows a part of the control flow of the hoisting machine shown in FIG. 1, and is the figure which shows from step S11 to step S15. It is a figure which shows a part of the control flow of the hoisting machine shown in FIG.
  • step S16 is the figure which shows from step S16 to step S23. It is a figure which shows a part of the control flow of the hoisting machine shown in FIG. 1, and is the figure which shows from step S30 to step S40. It is a figure which shows the upper limit length and the lower limit length in the hoisting machine shown in FIG.
  • FIG. 1 is a perspective view showing the overall configuration of the hoisting machine 10.
  • FIG. 2 is a diagram showing a controllable configuration of the hoisting machine 10.
  • the hoisting machine 10 mainly includes a hoisting machine main body 20, an upper hook 30, a cylinder operating device 150, and a chain bucket 170 for holding a wound load chain C1. It is supposed to be.
  • the hoisting machine main body 20 can be hung from a predetermined part such as the ceiling via the upper hook 30.
  • Various configurations of the hoisting machine main body 20 are housed inside the housing 21.
  • a sensor 90, a control unit 100, and a driver 110 are provided.
  • a hoisting machine main body including a rope and a take-up drum (not shown) can be used. In this case, since the wound rope is held by the winding drum, the chain bucket 170 becomes unnecessary.
  • the load sheave 70 and the take-up drum correspond to the winding means.
  • the drive motor 40 is a motor that gives a driving force to drive the load sheave 70.
  • the drive motor 40 is a servomotor including a detector (encoder 41) for detecting a position (rotational position of a rotor (not shown)), and among them, an AC servomotor is preferable.
  • the AC servomotor is preferably a synchronous motor, but may be an inductive motor.
  • the load sheave 70 is a portion for winding up and lowering the load chain C1, and a plurality of chain pockets into which the metal ring of the load chain C1 enters are provided along the outer circumference thereof.
  • the upper limit limit switch 80 is a switch for detecting the limit position (mechanically and structurally set upper limit position) in winding the load chain C1.
  • the lower limit limit switch 81 is a switch for detecting a limit position (mechanically and structurally set lower limit position) in winding down the load chain C1.
  • the load sensor 90 is a load sensor that measures the load applied to the upper hook 30. That is, the load sensor 90 measures and detects the total load of the load of the hoisting machine main body 20, the load of the load chain C1 (the portion not landing on the floor or the like), and the load of the load P. It is a sensor that does. By subtracting the weight of the main body and the like from the total load measured and detected using the load sensor 90, the load applied to the load sheave 70 via the load chain C1 can be detected (calculated).
  • the load sensor 90 is attached to, for example, an attachment shaft for attaching the upper hook 30 to the hoisting machine main body 20.
  • the load sensor 90 a load cell equipped with a strain gauge can be used.
  • the load sensor 90 is arranged at a load for suspending the load P, such as between the upper hook 30 and the crane trolley, between the lower hook 160 and the load P, and between the terminal of the load chain C1 and the lower hook 160. Any position may be used as long as the load applied to the load sheave 70 by the chain C1 can be detected and measured.
  • the load sensor 90 can be diverted from a crane scale or the like in addition to the load cell, but must have the accuracy and responsiveness that can be used for balancer control.
  • a part of the functions of the control unit 100 that calculates the load torque applied to the load sheave 70 from the signals from the load sensor 90 and the load sensor 90 correspond to the load detecting means.
  • the control unit 100 is a part that gives a command value such as a control mode (speed control mode, torque control mode), position, speed, torque, etc. to the driver 110.
  • the control unit 100 and the driver 110 correspond to the motor control means.
  • Examples of the control unit 100 include a computer having a CPU (Central Processing Unit), a memory 101 (RAM (Random Access Memory), ROM (Read Only Memory), internal storage, external storage device, etc.), an input / output interface, and the like. Be done.
  • the memory 101 stores a control program for operating in the switch operation mode and the balancer mode, which will be described later.
  • the operation mode changeover switch 151 (corresponding to the switch means) is a switch for switching the operation mode of the drive motor 40, and the switch signal of the operation mode changeover switch 151 is output to the control unit 100.
  • the control unit 100 outputs a speed control command or a torque control command to the driver 110 (servo driver) so as to control the drive motor 40 by speed control in the switch operation mode and torque control in the balancer mode.
  • the movable grip 152 is a part to be operated when operating in the switch operation mode.
  • the movable grip 152 is provided so as to be slidable in the vertical direction, is held in a neutral position by an urging means such as a spring, and the movable grip 152 is moved upward and downward from the neutral position against the urging means. Can be slid.
  • the displacement sensor 153 outputs a detection signal corresponding to the slide amount to the control unit 100.
  • the control unit 100 controls the speed of the drive motor 40 based on the above detection signal.
  • the cylinder operating device 150 corresponds to the operating device
  • the movable grip 152 corresponds to the operating means and the sliding means.
  • the chain bucket 170 is a portion that stores and holds the load chain C1 on the non-load side (winded up) existing on the side opposite to the lower hook 160 with the load sheave 70 in between.
  • the control unit 100 determines whether or not the upper limit switch 80 is operated (step S01).
  • the upper limit switch 80 is operated, the cylinder operating device 150, the lower hook 160, and the load P are in a state of being wound up to the upper limit position.
  • step S01 if it is determined in step S01 above that the upper limit switch 80 is not operating (No), it is assumed that the winding is possible, and the drive motor 40 can be driven in the winding direction. (Writing to a predetermined memory 101) is set to (step S02). On the other hand, when it is determined in step S01 that the upper limit switch 80 is operating (in the case of Yes), it is considered that further winding is impossible, and the drive motor 40 is "impossible" to be driven in the winding direction. (Write to the predetermined memory 101) (step S03).
  • the control unit 100 determines whether or not the lower limit limit switch 81 is operated (step S04).
  • the lower limit switch 81 is operated, the cylinder operating device 150, the lower hook 160, and the load P are in a state of being wound down to the lower limit position. Therefore, if it is determined in step S04 that the lower limit limit switch 81 is not operating (No), it is assumed that the winding is possible, and the drive motor 40 can be driven in the winding direction. (Writing to a predetermined memory 101) is set to (step S05).
  • step S04 when it is determined in step S04 that the lower limit limit switch 81 is operating (in the case of Yes), it is considered that further winding is impossible, and the drive motor 40 is driven in the winding direction.
  • Set to "impossible” write to the predetermined memory 101) (step S06).
  • the control unit 100 reads the load measured by the load sensor 90 (step S07).
  • the read load-load value is appropriately filtered and written in the predetermined memory 101.
  • the filter processing may not be performed by the control unit 100, but may be performed by an amplifier or the like provided in the load sensor 90, or may be performed by both.
  • this step S07 corresponds to the load torque detection step.
  • the control unit 100 reads the position information output from the driver 110 (servo driver) (step S08).
  • the position information is based on the information from the encoder 41 that detects the rotation of the drive motor 40 in order for the driver 110 (servo driver) to control the drive motor 40 in the speed control mode or the torque control mode. This is position information indicating the amount of extension of the load chain C1 output by.
  • the output of the encoder 41 may be directly input to the control unit 100 to calculate the feeding amount of the load chain C1.
  • the feeding amount corresponds to the elevating position, the direction in which the feeding amount is large is the winding direction, the direction in which the feeding amount is small is the winding direction, the lifting position is downward when the feeding amount is large, and the lifting position is when the feeding amount is small. Is upward.
  • step S09 determines whether or not the load read in step S07 is a preset overload. If it is determined by this determination that the read load is not an overload (range of rated load) (No), the process proceeds to step S11 described later. On the other hand, if it is determined in step S09 that the loaded load is overloaded (Yes), the overload (abnormal) processing is executed assuming that the load is overloaded (in the case of Yes). Step S10).
  • the overload (abnormal) process is a process for prohibiting the drive of the drive motor 40, and is a process for urgently stopping the drive motor 40 during operation. At the same time, a buzzer, display, or other means is used to warn or notify that the load is overloaded. After the process of step S10, the process proceeds to the determination of step S23, which will be described later.
  • step S11 If it is determined in step S09 that the loaded load is not an overload (range of rated load) (No), the operation mode changeover switch 151 is confirmed (step S11). In this step S11, the operation mode memory (memory 101) is rewritten into the "balancer mode” and the "switch operation mode” by the flip-flop method by the signal from the operation mode changeover switch 151.
  • the control unit 100 reads the operation mode memory (memory 101) to determine whether or not the balancer mode is set (step S12). In such a determination, if it is determined that the balancer mode is set (in the case of Yes), the process proceeds to the next step S13. On the other hand, if it is determined in step S12 that the switch operation mode is not the balancer mode (No), the process proceeds to step S30 described later.
  • step S12 When it is determined in step S12 that the balancer mode is set (in the case of Yes), the drive motor 40 can be driven in the winding direction with reference to the setting information (memory 101) in steps S02 and 03. Whether or not it is determined (step S13). In this determination, if it is determined that the drive motor 40 cannot be driven in the winding direction (No), the balancer mode (torque control) involving the winding and lowering of the drive motor 40 cannot be executed. Is performed (step S14). After this stop process, the process proceeds to step S23, which will be described later (see FIG. 7).
  • step S15 When it is determined in step S15 that the drive in the winding direction is "possible” (in the case of Yes), the control unit 100 outputs a torque control mode command to the driver 110 (servo driver) and in the balancer mode.
  • the drive control is executed (continued) (step S16).
  • this balancer mode In executing this balancer mode, the following values of motor torque Tm0, operator operating force Ws, and increase / decrease motor torque Th are calculated. This operation is performed based on the following formula.
  • the units in the following can be converted as appropriate.
  • steps S16 to S22 correspond to torque control steps, other steps related to drive control of the drive motor 40 may be included in the torque control steps. Further, step S16 also corresponds to a setting step.
  • the weight of the wound load chain C1 is wcm (kg)
  • the unit weight of the load chain C1 is wc0 (kg)
  • the extension length of the load chain C1 is L (m)
  • the total length of the load chain C1 is L0 (. m).
  • the winding target set load w0 is calculated as follows.
  • the step of writing the load load value (set value) Wl0 to the memory at the start of the balancer mode is the set load setting step, and when the signal from the operation mode changeover switch 151 is confirmed in the above-mentioned step S11, That is, the load load value (set value) WL0 may be written to the memory before switching to the balancer mode in step 16, and the set load setting step may also be the setting step.
  • w0 Wl0 / g- (wh + wcm) ... (Equation 3)
  • w0 of the set load to be wound varies according to the feeding length L of the load chain C1 from (Equation 1). Therefore, so that w0 of the set load to be wound does not fluctuate depending on the feeding length L of the load chain C1, (A) the portion where the load fluctuates, "the part of the load chain C1 corresponding to the feeding length L". (B) The remaining portion may be divided into two and stored in the memory 101. If the weight of (A) "the portion of the load chain C1 corresponding to the feeding length L" is small enough to be ignored as compared with the hoisting target load w0, the weight of (A) is ignored. You may try to do it.
  • the force by which the operator lifts or pushes down the load P, the cylinder operating device 150, or the lower hook 160 is defined as the operating force Ws (N).
  • the load load Wl measured by the load sensor 90 becomes smaller (lighter) than the set value WL0, so that the operating force Ws is positive.
  • the load load Wl measured by the load sensor 90 becomes larger (heavier) than WL0, so that the operating force Ws becomes negative.
  • the motor torque Tm0 (Nm) of the drive motor 40 that balances with the set load w0 (kg) to be wound has the reduction ratio of the reduction mechanism 50 i and the working radius of the road sheave 70 r. Assuming (m), it is calculated by the following formula.
  • the motor torque Tm0 corresponds to the balance torque.
  • Tm0 (1 / i) ⁇ r ⁇ g ⁇ w0 ... (Equation 5)
  • the motor torque is delivered from the load sheave 70 of the load chain C1. It is determined whether or not the length L is equal to or less than the balancer upper limit length UL (or more than the balancer upper limit position based on the elevating position reference) (step S17).
  • the length L and the balancer upper limit length UL delivered from the load sheave 70 of the load chain C1 are the upper limit position MT1 at which the upper limit switch 80 operates and the cylinder operating device 150 as shown in FIG.
  • step S17 when it is determined that the extension length L of the load chain C1 is equal to or less than the balancer upper limit length UL (in the case of Yes), then the worker obtained by (Equation 4) It is determined whether or not the operating force Ws is larger than 0 (plus) (step S18).
  • the lifting position range of the load P is set to a position range equal to or higher than the balancer upper limit position MT2, and in this set position range, it is determined whether or not to regulate and control according to the direction of the operating force Ws.
  • the torque command Tm calculated by the equation (7) is output from the control unit 100 to the driver 110 (servo driver) to control the torque of the drive motor 40.
  • the control unit 100 outputs the created torque command Tm toward the driver 110, and the driver 110 drives the drive motor 40 with the electric power based on the torque command Tm.
  • the torque command Tm calculated by (Equation 7) corresponds to the second torque command value
  • the value of "-Kl x Th" in (Equation 7) corresponds to the cancel torque.
  • the value of "-Kl x Th" becomes a negative value when the operator applies a force in the direction of lifting the load P, and the operator loads the load.
  • Kl is a gain representing the amplification factor, but when the value of the gain Kl is less than the mechanical efficiency ( ⁇ ), a torque command generated by the drive motor 40 is given to the operating force Ws of the operator.
  • the value of the motor torque corresponding to the torque command in the portion of Tm of "-Kl x Th" becomes small and loses to the operating force Ws, which may be insufficient as a position regulation. Therefore, it is preferable and certain that the value of the gain Kl is, for example, “1” which is equal to or higher than the mechanical efficiency ( ⁇ ).
  • the value of "-Kl x Th" can be recognized on the upper limit side and the lower limit side that the operator has reached the balancer upper limit position MT2 or the balancer lower limit position MB2, that is, ,
  • Each fixed value may be set to a degree that makes the operation feeling heavier or more.
  • step S19 the control unit 100 makes a determination in step S23, which will be described later.
  • step S17 when it is determined that the extension length L of the load chain C1 is larger than the upper limit length UL (below the upper limit of the balancer in the elevating position reference) (No), then, It is determined whether or not the extension length L of the load chain C1 is equal to or greater than the balancer lower limit length LL (or less than the balancer lower limit in the elevating position reference) (step S20).
  • the balancer lower limit length LL is the length (distance) between the upper limit position MT1 in which the upper limit switch 80 operates and the balancer lower limit position MB2, which is the lower limit position in the balancer mode, as shown in FIG. Is.
  • the range between the balancer upper limit position MT2 and the balancer lower limit position MB2 corresponds to the first position range and the balancer intermediate position range. Further, the space between the upper limit position MT1 and the balancer upper limit position MT2 and the space between the lower limit position MB1 and the balancer lower limit position MB2 correspond to the second position range.
  • the balancer lower limit position MB2 is a soft lower limit position in the unwinding (feeding out of the load chain C1) of the cylinder operating device 150 (lower hook 160 and load P), similarly to the balancer upper limit position MT2.
  • the balancer lower limit position MB2 is located above the lower limit position MB1 in which the lower limit switch 81 operates.
  • the balancer lower limit position MB2 may be determined by the user's setting, or may be calculated by a predetermined arithmetic expression.
  • the signal of either the upper limit limit switch 80 or the lower limit limit switch 81 is a reset signal of the reference position of the extension length (elevation position) of the load chain C1, but the hoisting machine 10 Depending on the specifications of, neither the upper limit switch 80 nor the lower limit switch 81 is an indispensable component, and only one of the balancer upper limit position MT2 and the balancer lower limit position MB2 may be set.
  • step S20 when it is determined that the extension length L of the load chain C1 is equal to or greater than the balancer lower limit length LL (or less than the balancer lower limit position according to the elevating position reference) (in the case of Yes), then It is determined whether or not the operating force Ws of the operator is smaller than 0 (minus) (step S21).
  • step S21 when the operating force Ws is negative, it means that the operator is applying a force to the load P in the direction of pushing down the load. Therefore, if it is determined in step S21 that the operating force Ws of the operator is smaller than 0 (minus), the control unit 100 proceeds to step S19 described above. That is, the torque command Tm represented by (Equation 7) is created.
  • control unit 100 outputs the created torque command Tm toward the driver 110, and the driver 110 drives the drive motor 40 with the electric power based on the torque command Tm.
  • the elevating position range of the load P is set to the position range of the balancer upper limit position MT2 or more and the balancer lower limit position MB2 or less, respectively, or one of them, and it is determined in step S17 whether or not the load P is in the set position range.
  • step S20 (corresponding to the elevating position range confirmation step).
  • step S18 and step S21 it is determined whether or not to control the regulation according to the direction of the operating force Ws in the set position range, and if regulation is necessary, it is calculated by (Equation 7) in step S19.
  • the torque command Tm is output from the control unit 100 to the driver 110 (servo driver) to control the torque of the drive motor 40 (corresponding to the first and second balancer mode selection steps).
  • step S20 it is determined that the extension length L of the load chain C1 is smaller than the balancer lower limit length LL (above the balancer lower limit position MB2 in the elevating position reference) (in the case of No).
  • the control unit 100 creates a torque command Tm as shown in the following (Equation 8) and transmits it to the driver 110 (step S22).
  • the torque command Tm of the following (Equation 8) corresponds to the first torque command value.
  • this step S22 corresponds to the balance control step.
  • Tm Tm0 + Kh ⁇ Th ...
  • step S22 In the determination of step S21 described above, the process of step S22 described above is also executed when the operating force Ws is determined to be 0 or more (0 or a positive value) (in the case of No). Further, in the above (Equation 8), "Kh x Th" corresponds to the assist torque.
  • Kh is a gain representing the amplification factor, and is experimentally obtained in consideration of the mechanical efficiency, acceleration, etc. of the drive motor 40 and the like.
  • This gain Kh is set to a value sufficiently larger than 1, for example, the ratio of the value of Kh ⁇ Th to Tm0 is about 5 to 20% in order to improve the operability in the balancer mode. ..
  • Kh at the time of winding and Kh at the time of winding may be set to different values, for example, the winding Khu may be made smaller than the winding Khd.
  • the control unit 100 determines the motor torque Tm0 of the drive motor 40 that balances (balances) with the winding target set load w0 with respect to the motor torque Th corresponding to the operating force Ws.
  • the assist torque "Kh x Th" multiplied by the gain Kh is added to calculate the torque command Tm. Therefore, the load P can be moved in the vertical direction with a light force.
  • the torque command Tm is controlled in the first balancer mode calculated by (Equation 8) or (Equation 9) described later when assisting, and in the second balancer mode calculated by (Equation 7) when not assisting.
  • the torque command Tm is output from the unit 100 to the driver 110.
  • the torque control of the drive motor 40 is interrupted at the balancer upper limit position MT2 and / or the balancer lower limit position MB2. It is possible to regulate the direction of hoisting and lowering.
  • step S23 the control unit 100 receives an abnormal signal or a command (not shown) to input the drive motor 40 including the balancer mode and the switch operation mode. It is determined whether or not to stop the drive control (step S23). In this judgment, when it is determined to stop the drive control (in the case of Yes), the program shifts to a process (for example, maintenance mode) which is not shown based on each command or the like, and the drive control program is terminated. .. On the other hand, when it is determined in the determination in step S23 that the main drive control is not stopped (continued) (in the case of No), the determination in step S01 described above is returned and the drive control is continued.
  • a process for example, maintenance mode
  • step S30 the switch operation mode is executed (continued) (step S30). That is, the execution program of the switch operation mode is read from the memory 101, and the command of the speed control mode is output to the driver 110 (servo driver).
  • control unit 100 confirms the displacement sensor 153 included in the cylinder operating device 150 (step S31). That is, the displacement sensor 153 confirms the position of the movable grip 152. Then, the winding and lowering sets are set based on the slide position of the movable grip 152.
  • step S32 it is determined whether or not the drive motor 40 can be driven in the winding direction. That is, the same determination as in step S13 is made. If it is determined in step S32 that the drive motor 40 cannot be driven in the winding direction (No), the control unit 100 determines whether or not there is a command to perform winding (step S33). ). That is, it is determined from the confirmation result (memory 101) whether or not the movable grip 152 in step 31 is slid in the winding direction.
  • step S32 it has already been determined that the drive motor 40 on the winding side cannot be driven, which is "impossible". Therefore, if it is determined in step S33 above that there is a command to wind up (in the case of Yes), then the drive stop of the drive motor 40 in the winding direction and the process of operating the brake mechanism 60 are performed. (Step S34).
  • step S32 when it is determined in step S32 that the drive motor 40 can be driven in the winding direction (in the case of Yes), and in step S33 it is determined that there is no command to perform winding (in the case of No).
  • step S35 it is determined whether or not the drive motor 40 can be driven in the winding direction. That is, the same determination as in step S15 is made. If it is determined in step S35 that the drive motor 40 cannot be driven in the winding direction (No), the control unit 100 determines whether or not there is a command to perform winding. (Step S36). That is, in step S31, it is determined from the determination result (memory 101) of whether or not the movable grip 152 is slid in the winding direction.
  • step S35 it has already been determined that the drive motor 40 on the winding side cannot be driven, which is "impossible”. Therefore, if it is determined in step S36 above that there is a command to wind up (in the case of Yes), then the drive stop of the drive motor 40 in the winding direction and the process of operating the brake mechanism 60 are performed. (Step S37).
  • step S35 when it is determined in step S35 above that the drive motor 40 can be driven in the winding direction (in the case of Yes), the control unit 100 creates a speed command and outputs it to the driver 110 (step S38). ).
  • This speed command is created based on the value of the memory 101 that stores the detection signal from the displacement sensor 153 that detects the slide position of the movable grip 152 in step S31.
  • step S39 it is determined whether or not it is necessary (required) to set the upper limit length UL and the lower limit length LL as shown in FIG. 8 (step S39). That is, depending on the operating environment of the cylinder operating device 150, it may be preferable to change the soft upper limit position and lower limit position settings. Therefore, in step S39, whether or not to set the upper limit length UL and the lower limit length LL (there is a request to reset) is determined by, for example, the length of the ON signal from the changeover switch.
  • step S40 When it is determined in the determination of step S39 above that it is necessary to set the upper limit length UL and the lower limit length LL (in the case of Yes), the upper limit length UL and the lower limit length LL are set (step S40). ). That is, the operating range of the cylinder operating device 150 is determined by software. After the process of step S40, the control unit 100 determines whether or not to stop (continue) the drive control of the drive motor 40, as described in step S23 described above.
  • step S39 it is determined that it is not necessary to set the upper limit length UL and the lower limit length LL (in the case of No)
  • the control unit 100 also performs as described in step S23 described above. , It is determined whether or not to stop (continue) the drive control of the drive motor 40.
  • the above control flow is executed when driving the drive motor 40 of the hoisting machine 10.
  • the hoisting machine main body is used.
  • the load sheave 70 is arranged on the 20 and the load chain C1 is hung around, and the load chain C1 is wound up and down according to the rotation, and the load sheave 70 is arranged on the hoisting machine main body 20 to rotate the load sheave 70.
  • a drive motor 40 that generates a driving force
  • motor control means control unit 100 and driver 110
  • the load detecting means (a part of the load sensor 90 and the control unit 100) for detecting the load torque applied to the load sheave 70 and the operating force for the operator to operate the load in the hoisting / lowering direction is provided.
  • the motor control means drives the drive motor 40 in the balancer mode in which torque control is performed based on the load torque detected by the load detection means (load sensor 90 and a part of the control unit 100).
  • the first torque command value (torque command value (Tm) calculated by the above (Equation 8)) is added to the assist torque (Kh ⁇ Th) that assists the operating force Ws in the balancer mode.
  • the second torque command value (torque command value (Tm) calculated by the above (Equation 7)) that does not assist the operating force Ws. It has a second balancer mode that controls the motor 40, and regardless of whether the direction of the operating force Ws is the winding or winding direction, the first position range controlled in the first balance mode and the direction of the operating force Ws. It is characterized in that the ascending / descending position range is set in the second position range for selectively controlling whether the control is performed in the second position balancer mode or the second position balancer mode according to the above.
  • the first torque command value is calculated based on (Equation 8) in the balance position range. Therefore, within the balance position range of the load P, the control is performed only by the first torque command value regardless of the position of the load P, so that the control does not become complicated. Further, the torque control based on the first torque command value can optimally maintain the balanced state regardless of the position of the load P except for the balancer upper limit position MT2 and the balancer lower limit position MB2.
  • the second torque command value is calculated based on (Equation 7). Therefore, even at the balancer upper limit position MT2 and the balancer lower limit position MB2, the drive motor 40 is driven based on the torque command value including the torque component in the direction of canceling the operating force Ws, so that the control command of the drive motor 40 is complicated. It doesn't have to be turned into. Further, when the drive motor 40 stops at the balancer upper limit position MT2 and the balancer lower limit position MB2, a force equal to or greater than the torque command value is not applied, so that an extra impact is applied to the structural parts such as the hoisting machine main body 20 and the like. Can be prevented.
  • the first position range is the balance position range (balancer intermediate position) between the balancer upper limit position MT2 and the balancer lower limit position MB2 in the balancer mode
  • the second position range is the balancer upper limit position MT2.
  • the above position range and / or the position range below the balancer lower limit position MB2 can be set.
  • the winding operation can be performed by the torque command Tm to which the assist torque is applied only when the direction of the operating force Ws is the winding direction, and in the range of the balancer lower limit position MB2 or less.
  • the winding operation is possible by the torque command Tm to which the assist torque is added only when the direction of the operating force Ws is the winding direction. Therefore, in each case, when the operating force Ws is in the opposite direction, the hoisting / hoisting operation is regulated, so that the balancer upper limit / lower limit can be regulated without interruption even in the torque control.
  • the control that regulates the upper and lower limits of the balancer can be effective in both, but it is also possible to control only one of them, for example, the upper limit of the balancer.
  • the first torque command value Tm of the first balancer mode is the load applied to the hoisting means (road sheave 70) based on the hoisting target load (g ⁇ w0) to be hoisted by the hoisting means (road sheave 70).
  • the torque (Tm0) is set and registered, and the torque command (Tm) is obtained by adding the assist torque (Kh ⁇ Th) that assists the operating force to the set and registered load torque.
  • the second torque command value in the second balancer mode is It is possible to control the torque command value by adding the cancel torque ( ⁇ Kl ⁇ Th) that cancels the operating force Ws from the load torque (Tm0) registered in the setting.
  • the motor control means (control unit 100 and driver 110) can set the balancer upper limit position MT2 and the balancer lower limit position MB2 to arbitrary height positions. Therefore, the balance position range can be set to an appropriate range according to the environment in which the operator uses the hoisting machine 10. Therefore, for example, the load P may rise too much beyond the reach of the operator. The load P does not drop to the extent that the load P cannot be lifted unless the operator takes a bent posture. Therefore, work efficiency can be improved.
  • the hoisting machine 10 includes an operation device (cylinder operation device 150), and the cylinder operation device 150 has an operation mode changeover switch 151 and an operation means (movable grip 152).
  • the drive motor 40 is driven according to the operation of the operating means (movable grip 152).
  • the motor control means control unit 100 and driver 110
  • the motor control means controls the drive motor 40 based on the operation of the operation means (movable grip 152).
  • the operation mode of the drive motor 40 can be switched between the balancer mode and the switch operation mode by operating the operation mode changeover switch 151. That is, since the operator can switch the drive of the drive motor 40 to an appropriate operation mode according to the work content, the workability can be improved.
  • the switch operation mode is switched, the load P can be raised and lowered to a desired position by operating the operating means (movable grip 152).
  • the drive motor 40 is a servomotor including an encoder 41, and the motor control means drives a control unit 100 that outputs a command value related to control and a power controlled based on the command value.
  • a servo driver 110 to be supplied to the motor 40 is provided.
  • the operating means includes a sliding means (movable grip 152) that slides within the slidable slide range, and the motor control means (control unit 100 and servo driver 110) slides the slide means (movable grip 152). The speed is controlled to control the speed of the drive motor 40 according to the above.
  • the drive motor 40 can be adjusted to an appropriate drive speed according to the slide amount of the slide means (movable grip 152). As a result, workability when raising and lowering the load P can be improved.
  • the calculated values may be corrected as necessary.
  • the drive motor 40 when the drive motor 40 is used, heat is generated, but the characteristics of the conductors of the magnets and coils constituting the motor change depending on the temperature. Therefore, in consideration of these changes in characteristics due to temperature, predetermined corrections may be made to each of the above equations (Equation 1) to (Equation 8).
  • the control unit 100 obtains the motor torque Tm0 of the drive motor 40 that balances the winding target set load w0 based on (Equation 5).
  • the winding target set load w0 is a value calculated from the load (load) Wl0 of the load sensor 90 stored in the memory 101 at the start of the balancer mode, as described in (Equation 3). ..
  • the motor torque Tm0 may be obtained from the hoisting target load w calculated from the load (load) Wl measured by the load sensor 90, for example, at a predetermined measurement timing including the present, not at the start of the balancer mode. ..
  • the control unit 100 controls the drive of the drive motor 40 at the balancer upper limit position MT2 and the balancer lower limit position MB2 based on (Equation 7).
  • the gain Kl may be set to 0 in (Equation 7). In this way, even if the gain Kl is set to 0, the ascending / descending of the load P can be stopped due to the relationship of mechanical efficiency (transmission efficiency).
  • the torque command Tm is calculated by adding the assist torque "Kh ⁇ Th" to the motor torque Tm0, but the torque command is proportional to the operating force Ws and the motor torque Tm0.
  • the torque command Tm may be calculated (Equation 10) so that the torque command Tm increases or decreases.
  • Tm Khr ⁇ Ws ⁇ Tm0 ...
  • the torque command Tm of (Equation 10) is the sum of the motor torque Tm0 and the motor torque "(Khr x Ws-1) x Tm0", and the motor torque "(Khr x Ws-1) x Tm0" is the assist torque.
  • Khr is a gain representing the amplification factor, and is a coefficient predetermined by the specifications of the hoisting machine.
  • the load P is moved up and down at an acceleration proportional to the operating force Ws within the range allowed by the specifications of the drive motor 40, regardless of the magnitude of the load of the load P. Can be made to.
  • Drive control in the balancer mode may be performed by selecting or combining (Equation 8) or (Equation 10) according to the content of the lifting work of the load P or the load of the load P.
  • the maximum rotation speed (winding speed) of the drive motor 40 is set and registered in advance as a predetermined value.
  • the gain Khr may be set to different values for hoisting and hoisting, and may be increased or decreased depending on the magnitude of the load of the load P. It may be set according to the working environment in which the machine is used.
  • Chain bucket C1 ... load chain, LL ... lower limit length, MT1 ... upper limit position, MT2 ... balancer upper limit position, MB1 ... upper limit position, MB2 ... balancer lower limit position, P ... load, UL ... upper limit length

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Control And Safety Of Cranes (AREA)
  • Control Of Electric Motors In General (AREA)

Abstract

バランサ上限位置およびバランサ下限位置では、操作力をキャンセルさせるように、駆動モータをトルク制御することが可能な巻上機および巻上機の駆動制御方法を提供する。 巻上機10のモータ制御手段は、負荷センサ90での荷重の測定に基づいてバランサモードで駆動モータ40の駆動を制御可能であると共に、当該バランサモードにおいて、以下の(1)および(2)の制御を行うことを特徴としている。(1)バランサ上限位置とバランサ下限位置との間のバランス位置範囲では、荷Pが釣り合うバランス状態のバランストルクに、操作力をアシストするアシストトルクを加減した第1トルク指令値に基づいて駆動モータ40の駆動を制御する。(2)バランサ上限位置およびバランサ下限位置では、バランストルクに、操作力をキャンセルする向きのキャンセルトルクを加減した第2トルク指令値に基づいて駆動モータ40の駆動を制御する。

Description

巻上機および巻上機の駆動制御方法
 本発明は、巻上機および巻上機の駆動制御方法に関する。
 巻上機は、一般的には、フックに荷を掛けて、操作スイッチ等を操作することで、荷の昇降を行っている。これに対し、巻上機の中には、操作スイッチではなく、荷に手を当てつつ、荷に対して少しの力を作用させることにより、あたかも自分の手で重い荷を軽く持ち上げたり降ろしたりする感覚で、重い荷を昇降させる操作を行えるものがある。このような巻上機としては、たとえば特許文献1に示すものがある。
 特許文献1には、制御部が重量検出部に係止部材と荷役物の重量の和が加わっていることを検出して荷役物をバランスするようにモータ部を制御しているとき、制御部は、係止部材の繰出し長さを予め可変設定可能な第1の長さ以下に制限している。それにより、急な外力が加わっても、荷役物が床面に衝突することを防止している。
特開2019-052007号公報
 ところで、特許文献1に示す構成では、第1の長さL1を超えるような低い位置に、荷役物が位置すると、第1の長さL1に収まるように、荷役物が上昇させられる。しかしながら、特許文献1では、バランスするようにモータ部を制御する制御部において、具体的にどのようにして荷役物の下限位置制限を行うのかが、一切開示されていない。
 本発明は上記の事情に鑑みなされたもので、バランサモードにおいて、釣り合い状態の維持、操作力に応じたアシストを行うことを可能とすると共に、バランサ上限位置およびバランサ下限位置で、駆動モータのトルク制御を中断することなく巻き上げ下げの向きを規制することが可能な巻上機および巻上機の制御方法を提供することを目的とする。
 上記課題を解決するために、本発明の第1の観点によると、巻上機本体からロードチェーンまたはロープの巻き上げおよび巻き下げを行うことで、荷の昇降を行う巻上機であって、巻上機本体に配置され、ロードチェーンまたはロープが掛け回されていると共に、回転に応じてロードチェーンまたはロープの巻き上げおよび巻き下げを行う巻き上げ手段と、巻き上げ手段を回転させる駆動力を生じさせる駆動モータと、駆動モータの駆動を制御するモータ制御手段と、荷を吊り下げるロードチェーンまたはロープにより巻き上げ手段に掛かる負荷トルク及び操作者が荷を巻き上げ・巻き下げ方向に操作する操作力を検知する負荷検知手段と、を備え、モータ制御手段は、負荷トルクに基づいてトルク制御を行うバランサモードで駆動モータの駆動を制御可能であると共に、当該バランサモードにおいて、操作力をアシストするアシストトルクを加えた第1トルク指令値に基づいて駆動モータの駆動を制御する第1バランサモードと、操作力をアシストしない第2トルク指令値に基づいて駆動モータの駆動を制御する第2バランサモードと、を有し、操作力の向きが巻き上げ・巻き下げ方向のいずれの向きでも、第1バランサモードで制御する第1位置範囲と、操作力の向きが巻き上げ・巻き下げ方向の向きに応じて、第1バランサモードとするか第2バランサモードとするかを選択的に制御する第2位置範囲と、に昇降位置範囲を設定する、ことを特徴とする巻上機が提供される。
 また、上述の発明において、第1位置範囲は、バランサモードにおけるバランサ上限位置とバランサ下限位置との間のバランス位置範囲とし、第2位置範囲は、バランサ上限位置以上の位置範囲及び、またはバランサ下限位置以下の位置範囲としている、ことが好ましい。
 また、上述の発明において、第1バランサモードの第1トルク指令値は、巻き上げ手段で巻き上げる巻き上げ対象負荷に基づき巻き上げ手段に掛かる負荷トルクを設定登録し、該設定登録した負荷トルクに操作力をアシストするアシストトルクを加えたトルク指令値とし、第2バランサモードの第2トルク指令値は、設定登録した負荷トルクから操作力をキャンセルするキャンセルトルクを加えたトルク指令値とする、ことが好ましい。
 また、上述の発明において、モータ制御手段は、バランサ上限位置およびバランサ下限位置を、任意の高さ位置に設定可能としている、ことが好ましい。
 また、上述の発明において、動作モード切替スイッチと、操作手段とを有すると共に、当該操作手段の操作に応じて駆動モータを駆動させる操作装置を備え、モータ制御手段は、動作モード切替スイッチのスイッチ操作に応じて、バランサモードと、スイッチ動作モードとを切り替え可能としていると共に、スイッチ動作モードでは、モータ制御手段は、操作手段の操作に基づいて駆動モータの駆動を制御する、ことが好ましい。
 また、上述の発明において、駆動モータは、エンコーダを備えるサーボモータであり、モータ制御手段は、制御に関する指令値を出力する制御部と、指令値に基づいて制御された電力を駆動モータに供給するサーボドライバを備え、スイッチ手段は、スライド可能なスライド範囲内でスライドするスライド手段を備えると共に、モータ制御手段は、スライド手段のスライド量に応じて、駆動モータの速度を制御する速度制御を行う、ことが好ましい。
 また、本発明の第2の観点によると、巻上機本体からロードチェーンまたはロープの巻き上げおよび巻き下げを行うことで、荷の昇降を行う巻上機の駆動制御方法であって、巻上機は、巻上機本体に配置され、ロードチェーンまたはロープが掛け回されていると共に、回転に応じてロードチェーンまたはロープの巻き上げおよび巻き下げを行う巻き上げ手段と、巻き上げ手段を回転させる駆動力を生じさせる駆動モータと、駆動モータの駆動を制御するモータ制御手段と、荷を吊り下げるロードチェーンまたはロープにより巻き上げ手段に掛かる負荷トルク及び操作者が荷を巻き上げ・巻き下げ方向に操作する操作力を検知する負荷検知手段と、スイッチ手段を有し、当該スイッチ手段のスイッチ操作に応じて駆動モータを駆動する操作装置と、を備え、負荷検知手段で負荷トルクを検知する負荷トルク検知ステップと、負荷トルク検知ステップで検知された負荷トルクに基づいて、予め設定された昇降位置範囲においてモータ制御手段で駆動モータの駆動を制御するトルク制御ステップと、を備え、トルク制御ステップでは、負荷トルクに基づいてトルク制御を行うバランサモードで駆動モータの駆動を制御可能であると共に、バランサモードは、操作力をアシストするアシストトルクを加えた第1トルク指令値に基づいて駆動モータの駆動を制御する第1バランサモードと、操作力をアシストしない第2トルク指令値に基づいて駆動モータの駆動を制御する第2バランサモードと、を有し、昇降位置範囲は、操作力の向きが巻き上げ・巻き下げ方向のいずれの向きでも、第1バランサモードで制御する第1位置範囲と、操作力の向きが巻き上げ・巻き下げ方向の向きに応じて、第1バランサモードとするか第2バランサモードとするかを選択的に制御する第2位置範囲と、を有している、ことを特徴とする巻上機の駆動制御方法が提供される。
 本発明によると、バランサモードにおいて、釣り合い状態の維持、操作力に応じたアシストを行うことを可能とすると共に、バランサ上限位置および/またはバランサ下限位置では、駆動モータのトルク制御を中断すること無く巻き上げ・巻き下げの向きを規制することが可能となる。
本発明の一実施の形態に係る巻上機の全体構成を示す斜視図である。 図1に示す巻上機の制御的な構成を示す図である。 図1に示す巻上機のシリンダ操作装置の構成を示す図である。 図1に示す巻上機の制御フローの一部を示す図であり、ステップS01からステップS10までを示す図である。 図1に示す巻上機の制御フローの一部を示す図であり、ステップS11からステップS15までを示す図である。 図1に示す巻上機の制御フローの一部を示す図であり、ステップS16からステップS23までを示す図である。 図1に示す巻上機の制御フローの一部を示す図であり、ステップS30からステップS40までを示す図である。 図1に示す巻上機において、上限長さおよび下限長さを示す図である。
 以下、本発明の一実施の形態に係る巻上機10および巻上機10の駆動制御方法について、図面に基づいて説明する。
<1.巻上機10の構成について>
 図1は、巻上機10の全体構成を示す斜視図である。図2は、巻上機10の制御的な構成を示す図である。図1に示すように、巻上機10は、巻上機本体部20と、上フック30と、シリンダ操作装置150と、巻き上げ済みのロードチェーンC1を保持するチェーンバケット170とを主要な構成要素としている。
 巻上機本体部20は、上フック30を介して、天井等の所定の部位に吊り下げることが可能となっている。この巻上機本体部20は、ハウジング21の内部に、各種の構成が収納されている。具体的には、ハウジング21の内部には、駆動モータ40と、減速機構50と、ブレーキ機構60と、ロードチェーンC1を巻き上げるロードシーブ70と、上限リミットスイッチ80と、下限リミットスイッチ81と、負荷センサ90と、制御部100と、ドライバ110とが設けられている。なお、ロードチェーンC1とロードシーブ70に代えて、図示しないロープと巻き取りドラムからなる巻上機本体とすることができる。この場合、巻き取り済みのロープは巻き取りドラムで保持するのでチェーンバケット170は不要となる。なお、ロードシーブ70および巻き取りドラムは、巻き上げ手段に対応する。
 駆動モータ40は、ロードシーブ70を駆動する駆動力を与えるモータである。本実施の形態では、駆動モータ40は、位置(図示しないロータの回転位置)を検出するための検出器(エンコーダ41)を備えるサーボモータであり、その中でも交流サーボモータであることが好ましい。なお、交流サーボモータとしては、同期モータが好ましいが、誘導形モータであっても良い。
 また、減速機構50は、駆動モータ40の回転を減速して、ロードシーブ70側に伝達する部分である。また、ブレーキ機構60は、駆動モータ40の作動時には、電磁力によりブレーキ力を解放可能な部分であるものの、駆動モータ40が作動していない状態でも、荷Pを保持するように、ブレーキ力を生じさせる部分である。
 ロードシーブ70は、ロードチェーンC1を巻き上げおよび巻き下げする部分であり、その外周に沿って、ロードチェーンC1の金属環が入り込むチェーンポケットが複数設けられている。
 上限リミットスイッチ80は、ロードチェーンC1の巻き上げにおける限界位置(機械的・構造的に設定された上限位置)を検出するためのスイッチである。また、下限リミットスイッチ81は、ロードチェーンC1の巻き下げにおける限界位置(機械的・構造的に設定された下限位置)を検出するためのスイッチである。
 負荷センサ90は、上フック30に掛かる荷重負荷を測定する負荷センサである。すなわち、負荷センサ90は、巻上機本体部20の荷重負荷と、ロードチェーンC1の荷重負荷(床等に着地していない部分)と、荷Pの荷重負荷との合計荷重負荷を測定・検知するセンサである。この負荷センサ90を用いて測定・検知された合計荷重負荷から、本体自重等を差し引くことで、ロードチェーンC1を介してロードシーブ70に掛かる荷重負荷を検知(算出)することができる。負荷センサ90は、たとえば上フック30を巻上機本体部20に取り付けるための取付軸に取り付けられている。
 なお、負荷センサ90としては、歪みゲージを備えるロードセルを用いることができる。負荷センサ90の配置位置は、上記の他に、上フック30とクレーントロリの間、下フック160と荷Pの間、ロードチェーンC1の端末と下フック160の間など、荷Pを吊り下げるロードチェーンC1によりロードシーブ70に掛かる負荷を検知・測定できる位置であればいずれでも良い。また負荷センサ90は、ロードセルの他、クレーンスケールなどを流用することが可能であるが、バランサ制御に利用可能な精度と応答性を有するものである必要がある。負荷センサ90と負荷センサ90からの信号からロードシーブ70に掛かる負荷トルクを演算する制御部100の一部の機能が、負荷検知手段に対応する。
 制御部100は、ドライバ110に対し、制御モード(速度制御モード、トルク制御モード)、位置、速度、トルク等の指令値を与える部分である。この制御部100とドライバ110とは、モータ制御手段に対応する。制御部100としては、たとえば、CPU(Central Processing Unit)、メモリ101(RAM(Random Access Memory)、ROM(Read Only Memory)、内部ストレージ、外部記憶装置等)、入出力インターフェース等を備えるコンピュータが挙げられる。メモリ101には、後述するようなスイッチ動作モードと、バランサモードとで動作させるための制御プログラムが記憶されている。
 また、ドライバ110は、駆動モータ40の電流値とエンコーダ41の出力及び制御部100から与えられるモータ駆動制御のための指令値などに基づいて、外部から供給される電源を適切な電力にコントロールし、その電力を駆動モータ40に与えて当該駆動モータ40を回転させる部分である。なお、本実施の形態では、駆動モータ40がサーボモータであるので、ドライバ110は、サーボドライバであり、少なくとも速度制御モードとトルク制御モードを有し、制御部100の指令に基づき、速度制御またはトルク制御を選択的に実行するようになっている。
 また、シリンダ操作装置150は、作業者が手で握った状態で操作を行うための操作装置であり、ロードチェーンC1の下端側に連結されている。また、シリンダ操作装置150には、荷Pを掛けるための下フック160が連結されている。図3は、シリンダ操作装置150の構成を示す図である。図3に示すように、シリンダ操作装置150は、動作モード切替スイッチ151と、可動グリップ152と、変位センサ153とを備えている。なお、操作装置としては、下フック160に連結された操作装置に限定されず、巻上機の本体部等からケーブルで吊り下げられた操作装置(ペンダントスイッチ)であっても良く、無線式リモコン装置であっても良い。
 動作モード切替スイッチ151(スイッチ手段に対応)は、駆動モータ40の動作モードを切り替えるためのスイッチであり、その動作モード切替スイッチ151のスイッチ信号が制御部100に出力される。本実施の形態では、動作モードには、スイッチ動作モードと、バランサモードの少なくとも2つが存在している。そして、動作モード切替スイッチ151を押すことで、制御部100は、駆動モータ40の動作モードを、スイッチ動作モードと、バランサモード、またはその他のモードに切り替えることが可能となっている。制御部100は、ドライバ110(サーボドライバ)に対し、スイッチ動作モードでは速度制御、バランサモードではトルク制御で駆動モータ40を制御するように速度制御指令またはトルク制御指令を出力する。
 また、可動グリップ152は、スイッチ動作モードで動作する際に操作する部分である。この可動グリップ152は、上下方向にスライド可能に設けられていて、中立位置にバネ等の付勢手段により保持されており、中立位置から上側および下側に可動グリップ152を付勢手段に抗してスライドさせることができる。変位センサ153は、そのスライド量に応じた検出信号を、制御部100に出力する。それにより、制御部100は、上記の検出信号に基づいて、駆動モータ40の速度を制御する。なお、シリンダ操作装置150は操作装置に対応すると共に、可動グリップ152は操作手段およびスライド手段に対応する。
 また、チェーンバケット170は、ロードシーブ70を挟んで下フック160とは反対側に存在する無負荷側(巻き取り済み)のロードチェーンC1を蓄え保持する部分である。
<2.駆動モータ40の制御フローについて>
 次に、上述した構成の巻上機10における、本実施の形態に係る駆動モータ40の制御フロー(駆動制御)について、図4から図7に基づいて説明する。なお、以下の各ステップは、制御部100が実行または判断する部分である。
 制御部100は、上限リミットスイッチ80が作動されているか否かを判断する(ステップS01)。ここで、上限リミットスイッチ80が作動されている場合、シリンダ操作装置150、下フック160および荷Pは、上限位置まで巻き上げられている状態となる。
 したがって、上記のステップS01の判断で、上限リミットスイッチ80が作動されていないと判断される場合(Noの場合)、巻き上げが可能であるとして、駆動モータ40の巻き上げ方向への駆動を「可」に設定(所定のメモリ101に書き込み)する(ステップS02)。一方、ステップS01の判断で、上限リミットスイッチ80が作動されていると判断される場合(Yesの場合)、これ以上の巻き上げが不可であるとして、駆動モータ40の巻き上げ方向への駆動を「不可」に設定(所定のメモリ101に書き込み)する(ステップS03)。
 ステップS02,S03の処理の後に、制御部100は、下限リミットスイッチ81が作動されているか否かを判断する(ステップS04)。ここで、下限リミットスイッチ81が作動されている場合、シリンダ操作装置150、下フック160および荷Pは、下限位置まで巻き下げられている状態となる。そこで、このステップS04の判断で、下限リミットスイッチ81が作動されていないと判断される場合(Noの場合)、巻き下げが可能であるとして、駆動モータ40の巻き下げ方向の駆動を「可」に設定(所定のメモリ101に書き込み)する(ステップS05)。一方、ステップS04の判断で、下限リミットスイッチ81が作動されていると判断される場合(Yesの場合)、これ以上の巻き下げが不可であるとして、駆動モータ40の巻き下げ方向への駆動を「不可」に設定(所定のメモリ101に書き込み)する(ステップS06)。
 上記のステップS05、S06の後に、制御部100は、負荷センサ90で測定された荷重負荷を読み込む(ステップS07)。このステップS07では、読み込んだ荷重負荷の値を、適宜フィルタ処理などをして所定のメモリ101に書き込むようにしている。フィルタ処理は、制御部100で行わず、負荷センサ90に備えられたアンプ等で行うようにしても良く、または、両者で行うようにしても良い。なお、このステップS07は、負荷トルク検知ステップに対応する。次に、制御部100は、ドライバ110(サーボドライバ)から出力される位置情報を読み込む(ステップS08)。なお、この位置情報は、ドライバ110(サーボドライバ)が駆動モータ40を、速度制御モードまたはトルク制御モードで制御するために駆動モータ40の回転を検知するエンコーダ41からの情報を基に、ドライバ110が出力するロードチェーンC1の繰り出し量を示す位置情報である。エンコーダ41の出力を直接制御部100に入力し、ロードチェーンC1の繰り出し量を演算するようにしても良い。
 繰り出し量は昇降位置に対応し、繰り出し量が多くなる方向は巻き下げ方向で、繰り出し量が少なくなる方向が巻き上げ方向となり、繰り出し量が多いと昇降位置は下方となり、繰り出し量が少ないと昇降位置は上方となる。
 次に、制御部100は、ステップS07で読み込まれた荷重負荷が、予め設定されている過負荷であるか否かを判断する(ステップS09)。この判断で、上記の読み込まれた荷重負荷が、過負荷ではない(定格負荷の範囲)と判断される場合(Noの場合)、後述するステップS11に移行する。一方、ステップS09の判断で、上記の読み込まれた荷重負荷が、過負荷であると判断される場合(Yesの場合)、過負荷の状態であるとして、過負荷(異常)処理を実行する(ステップS10)。なお、過負荷(異常)処理とは、駆動モータ40の駆動を禁止する処理であり、動作中においては緊急停止させる処理である。また、同時に過負荷であることをブザー、表示またはその他の手段により警告・報知する。ステップS10の処理の後に、後述するステップS23の判断へと移行する。
 ステップS09で、上記の読み込まれた荷重負荷が、過負荷ではない(定格荷重の範囲)と判断される場合(Noの場合)、動作モード切替スイッチ151の確認処理を行う(ステップS11)。このステップS11では、動作モード切替スイッチ151からの信号により、動作モードメモリ(メモリ101)を「バランサモード」「スイッチ動作モード」にフリップフロップ方式で書き換える。この確認処理を行う状態となった後に、制御部100は、バランサモードであるか否かを、動作モードメモリ(メモリ101)を読み込み判断する(ステップS12)。かかる判断において、バランサモードであると判断される場合(Yesの場合)、次のステップS13に進行する。一方、ステップS12の判断で、バランサモードでなくスイッチ動作モードであると判断される場合(Noの場合)、後述するステップS30へと移行する。
 ステップS12で、バランサモードであると判断される場合(Yesの場合)、ステップS02,03における設定情報(メモリ101)を参照して、駆動モータ40の巻き上げ方向への駆動が「可」であるか否かを判断する(ステップS13)。この判断において、駆動モータ40の巻き上げ方向への駆動が行えないと判断される場合(Noの場合)、駆動モータ40の巻き上げおよび巻き下げを伴うバランサモード(トルク制御)は実行できないので、バランサモードを停止させる停止処理を行う(ステップS14)。なお、この停止処理の後に、後述するステップS23へと進行する(図7参照)。
 一方、ステップS13の判断において、駆動モータ40の巻き上げ方向への駆動が行えると判断される場合(Yesの場合)、ステップS05,06における設定情報(メモリ101)を参照して、駆動モータ40の巻き下げ方向への駆動が「可」であるか否かを判断する(ステップS15)。この判断において、駆動モータ40の巻き下げ方向への駆動が行えないと判断される場合(Noの場合)、駆動モータ40の巻き上げおよび巻き下げを伴うバランサモード(トルク制御)は実行できないので、ステップS14の停止処理を行う。この停止処理には、動作モードメモリを「バランサモード」から「スイッチ動作モード」に切り換える処理が含まれる。
 ステップS15で巻き下げ方向への駆動が「可」であると判断される場合(Yesの場合)、制御部100はドライバ110(サーボドライバ)にトルク制御モードの指令を出力すると共に、バランサモードで駆動制御を実行(継続)する(ステップS16)。このバランサモードの実行に当たっては、下記のようなモータトルクTm0、作業者による操作力Wsおよび増減モータトルクThの各値を演算する。この演算は、下記のような式に基づいてなされる。なお、下記における単位は、適宜、変換可能である。なお、ステップS16~ステップS22は、トルク制御ステップに対応するが、これら以外の駆動モータ40の駆動制御に関するステップがトルク制御ステップに含まれても良い。また、ステップS16は、設定ステップにも対応する。
 まず、巻取済みのロードチェーンC1の重量をwcm(kg)、ロードチェーンC1の単位重量をwc0(kg)、ロードチェーンC1の繰り出し長さをL(m)、ロードチェーンC1の全長をL0(m)とする。すると、wcmは、以下のようにして算出される。
  wcm=wc0×(L0-L) …(式1)
 また、巻上機本体部20の重量をwh(kg)とする。なお、このwhには、ロードチェーンC1の重量は含まれていない。また、負荷センサ90(ロードセル)で測定された荷重負荷をWl(N)、重力加速度をgとする。すると、式1を用いて、巻き上げ対象荷重wは、次のように算出される。
  w=Wl/g-(wh+wcm) …(式2)
 バランサモード開始時にメモリ101に記憶させる負荷センサ90の荷重負荷の値(セット値)をWl0(N)とすると、巻き上げ対象セット荷重w0は、次のように算出される。設定ステップのうち、荷重負荷の値(セット値)Wl0をバランサモード開始時にメモリに書き込むステップが、セット荷重設定ステップであり、前述のステップS11において動作モード切替スイッチ151からの信号を確認した時に、すなわちステップ16でバランサモードに切り換える前に、荷重負荷の値(セット値)WL0をメモリに書き込むようにしても良く、セット荷重設定ステップも設定ステップとしても良い。
  w0=Wl0/g-(wh+wcm) …(式3)
 ここで、巻き上げ対象セット荷重のw0は、(式1)より、ロードチェーンC1の繰り出し長さLに応じて変動してしまう。そこで、巻き上げ対象セット荷重のw0が、ロードチェーンC1の繰り出し長さLによって変動しないように、(A)荷重が変動する部分である「ロードチェーンC1のうち繰り出し長さLに対応する部分」と(B)残りの部分の2つに分けてメモリ101に記憶するようにしても良い。なお、(A)「ロードチェーンC1のうち繰り出し長さLに対応する部分」の重量が、巻き上げ対象荷重のw0と比較して無視できる程度に小さい場合には、この(A)の重量を無視するようにしても良い。
 ここで、作業者が荷P、シリンダ操作装置150または下フック160に対し、持ち上げたり、押し下げたりする力を操作力Ws(N)とする。この操作力のWsは、次のようにして算出される。
  Ws=Wl0-Wl …(式4)
 なお、(式4)では、操作者が荷Pなどを持ち上げようとすることで、負荷センサ90で測定された荷重負荷Wlはセット値WL0より小さく(軽く)なるので、操作力Wsはプラスとなる。一方、操作者が荷Pなどを押し下げようとすることで、負荷センサ90で測定された荷重負荷WlはWL0より大きく(重く)なるので、操作力Wsはマイナスとなる。
 ここで、バランサモードでは、巻き上げ対象セット荷重w0(kg)と釣り合う(バランスする)駆動モータ40のモータトルクTm0(Nm)は、減速機構50の減速比をi、ロードシーブ70の作用半径をr(m)とすると、以下の式により算出される。なお、モータトルクTm0は、バランストルクに対応する。
  Tm0=(1/i)×r×g×w0…(式5)
 また、操作力Wsから駆動モータ40の増減モータトルクTh(Nm)を求める式は、以下のようになる。
  Th=(1/i)×r×Ws…(式6)
 以上のように、バランスモードを開始した時点で設定登録した巻き上げ対象セット荷重w0とバランスするモータトルクTm0、操作力Wsおよび増減モータトルクThを求めた後に、ロードチェーンC1のロードシーブ70から繰り出された長さLが、バランサ上限長さUL以下(昇降位置基準では、バランサ上限位置以上)であるか否かを判断する(ステップS17)。ここで、ロードチェーンC1のロードシーブ70から繰り出された長さLおよびバランサ上限長さULとは、図8に示すように、上限リミットスイッチ80が作動する上限位置MT1と、シリンダ操作装置150の上端までの長さ(距離)をL、同じく上限位置MT1と、バランサモードの上限位置であるバランサ上限位置MT2との間の長さ(距離)がULである。なお、バランサ上限位置MT2は、シリンダ操作装置150(下フック160および荷P)の上昇における、ソフト的な上限位置である。かかるバランサ上限位置MT2は、ユーザの設定によって定められても良く、所定の演算式によって算出されても良い。ユーザ設定によって都度定める場合は、後述するスイッチ動作モードで設定可能としている。
 上記のステップS17の判断において、ロードチェーンC1の繰り出し長さLが、バランサ上限長さUL以下であると判断される場合(Yesの場合)、次に(式4)により求められた作業者の操作力Wsが0よりも大きい(プラスである)か否かを判断する(ステップS18)。
 すなわち、上記の(式4)で述べたように、操作力Wsがプラスの場合、荷Pに対し、作業者が荷Pを持ち上げる向き(巻き上げ方向)に力を加えていることになる。そのため、ステップS18で、作業者の操作力Wsが0よりも大きい(プラスである)と判断される場合には、制御部100は、次の式(7)で示すトルク指令Tmを作成する(ステップS19)。
  Tm=Tm0-Kl×Th…(式7)
 このように、荷Pの昇降位置範囲を、バランサ上限位置MT2以上の位置範囲を設定し、この設定した位置範囲においては操作力Wsの向きに応じて、規制制御するか否かを判断し、規制が必要な場合には、式(7)により算出したトルク指令Tmを制御部100からドライバ110(サーボドライバ)に出力し駆動モータ40をトルク制御するようにしている。
 そして、制御部100は、作成されたトルク指令Tmをドライバ110に向けて出力し、ドライバ110は、かかるトルク指令Tmに基づく電力にて駆動モータ40を駆動させる。なお、(式7)で算出されるトルク指令Tmは第2トルク指令値に対応し、(式7)における「-Kl×Th」の値は、キャンセルトルクに対応する。ここで、上記の(式4)においても述べたように、「-Kl×Th」の値は、作業者が荷Pを持ち上げる向きの力を加えたときにマイナスの値となり、作業者が荷Pを押し下げる向きの力を加えたときにプラスの値となり、巻き上げ対象セット荷重w0とバランスするモータトルクTm0にキャンセルトルク「-Kl×Th」を加えることにより、荷Pの昇降を規制することができる。
 上記の式では、Klは増幅率を表すゲインであるが、ゲインKlの値が機械効率(η)未満となる場合には、作業者の操作力Wsに対し、駆動モータ40が生じさせるトルク指令Tmのうち「-Kl×Th」の部分のトルク指令に対応したモータトルクの値が小さくなり操作力Wsに負けてしまい、位置規制として不十分となる虞がある。そのため、ゲインKlの値は機械効率(η)以上の例えば「1」とすることが好ましく確実である。
 なお、(式7)においては、バランス状態にある、駆動モータ40のモータトルクTm0から、作業者の操作力Wsに対応した増減モータトルクThを減算している。そのため、作業者が操作力Wsで荷Pを持ち上げようとしても、駆動モータ40には、その操作力Wsをキャンセルした状態のトルク指令Tmで駆動される。したがって、荷Pは、作業者が持ち上げようとしているにも拘わらず、持ち上げ方向には移動しない状態となる。
 なお、巻上機10の仕様によっては、「-Kl×Th」の値を、上限側および下限側で、作業者がバランサ上限位置MT2またはバランサ下限位置MB2に到達したことを認識できる程度、すなわち、操作感が重くなる程度或いはそれ以上のそれぞれ固定値としても良い。
 なお、ステップS19の後に、制御部100は、後述するステップS23の判断を行う。
 また、ステップS17の判断において、ロードチェーンC1の繰り出し長さLが、上限長さULよりも大きい(昇降位置基準では、バランサ上限より下)と判断される場合(Noの場合)、次に、ロードチェーンC1の繰り出し長さLが、バランサ下限長さLL以上(昇降位置基準では、バランサ下限以下)であるか否かを判断する(ステップS20)。ここで、バランサ下限長さLLとは、図8に示すように、上限リミットスイッチ80が作動する上限位置MT1と、バランサモードの下限位置であるバランサ下限位置MB2との間の長さ(距離)である。なお、バランサ上限位置MT2とバランサ下限位置MB2の間の範囲は、第1位置範囲およびバランサ中間位置範囲に対応する。また、上限位置MT1とバランサ上限位置MT2の間、および下限位置MB1とバランサ下限位置MB2の間は、第2位置範囲に対応する。
 上記のバランサ下限位置MB2は、バランサ上限位置MT2と同様に、シリンダ操作装置150(下フック160および荷P)の巻き下げ(ロードチェーンC1の繰り出し)における、ソフト的な下限位置である。かかるバランサ下限位置MB2は、下限リミットスイッチ81が作動する下限位置MB1よりも上方に位置している。このバランサ下限位置MB2は、ユーザの設定によって定められても良く、所定の演算式によって算出されても良い。また、上限リミットスイッチ80または下限リミットスイッチ81のいずれか一方の信号を、ロードチェーンC1の繰り出し長さ(昇降位置)の基準位置のリセット信号とするようにすることが好ましいが、巻上機10の仕様によっては、上限リミットスイッチ80および下限リミットスイッチ81のいずれも必須の構成要素ではなく、バランサ上限位置MT2またはバランサ下限位置MB2のいずれか一方のみを設定するようにしても良い。
 上記のステップS20の判断において、ロードチェーンC1の繰り出し長さLが、バランサ下限長さLL以上(昇降位置基準では、バランサ下限位置以下)であると判断される場合(Yesの場合)、次に作業者の操作力Wsが0よりも小さい(マイナスである)か否かを判断する(ステップS21)。
 すなわち、上記の(式4)で述べたように、操作力Wsがマイナスの場合、荷Pに対し、作業者が荷を押し下げる向きに力を加えていることになる。そのため、ステップS21で、作業者の操作力Wsが0よりも小さい(マイナスである)と判断される場合には、制御部100は、上述したステップS19に進行する。すなわち、(式7)で示すトルク指令Tmを作成する。
 そして、制御部100は、作成されたトルク指令Tmをドライバ110に向けて出力し、ドライバ110は、かかるトルク指令Tmに基づく電力にて駆動モータ40を駆動させる。
 なお、荷を押し下げる場合には、Thの符号は、荷を持ち上げる場合とは反対となる。そのため、(式7)において、バランス状態にある、駆動モータ40のモータトルクTm0に、作業者の操作力Wsに対応した「-Kl×Th」を加算したとき、その荷を押し下げる操作力Wsをキャンセルした状態のトルク指令Tmにて、駆動モータ40が駆動される。したがって、荷Pは、作業者が押し下げようと(荷を巻き下げようと)しているにも拘わらず、押し下げ方向には移動しない状態となる。
 このように、荷Pの昇降位置範囲を、バランサ上限位置MT2以上またはバランサ下限位置MB2以下の位置範囲をそれぞれ、またはいずれか一方を設定し、この設定した位置範囲にあるか無きかをステップS17およびステップS20で判断する(昇降位置範囲確認ステップに対応)。そして、この設定した位置範囲において操作力Wsの向きに応じて、規制制御するか否かをステップS18およびステップS21で判断し、規制が必要な場合には、ステップS19で(式7)により算出したトルク指令Tmを制御部100からドライバ110(サーボドライバ)に出力し駆動モータ40をトルク制御するようにしている(第1、第2バランサモード選択ステップに対応)。
 また、巻上機10の仕様によっては、「-Kl×Th」の値を、上限側および下限側で、作業者がバランサ上限位置MT2またはバランサ下限位置MB2に到達したことを認識できる程度、すなわち、操作感が重くなる程度にそれぞれ固定値とするようにしても良い。
 また、上記のステップS20の判断において、ロードチェーンC1の繰り出し長さLが、バランサ下限長さLLよりも小さい(昇降位置基準ではバランサ下限位置MB2より上)と判断される場合(Noの場合)、制御部100は、次の(式8)で示すようなトルク指令Tmを作成し、ドライバ110に送信する(ステップS22)。なお、下記の(式8)のトルク指令Tmは、第1トルク指令値に対応する。また、このステップS22は、バランス制御ステップに対応する。
  Tm=Tm0+Kh×Th…(式8)
 なお、上述したステップS21の判断において、操作力Wsが、0以上(0またはプラスの値)と判断される場合(Noの場合)にも、上記のステップS22の処理が実行される。また、上記の(式8)において、「Kh×Th」は、アシストトルクに対応する。
 また、上記の式では、Khは、増幅率を表すゲインであり、駆動モータ40等の機械効率、加速度等を考慮し、実験的に求められる。このゲインKhは、バランサモードでの操作性を良好とするために、1よりも十分に大きな値、例えばTm0に対するKh×Thの値の比が5~20%程度となるように設定されている。なお、巻き上げ時のKhと、巻き下げ時のKhとを異なる値、例えば、巻き上げKhuを巻き下げKhdより小さくするようにしても良い。
 かかる(式8)から明らかなように、制御部100は、巻き上げ対象セット荷重w0と釣り合う(バランスする)駆動モータ40のモータトルクTm0に、操作力Wsに対応したモータトルクThに対して所定のゲインKhを乗算したアシストトルク「Kh×Th」を加算し、トルク指令Tmを算出している。そのため、荷Pは、軽い力で上下方向に移動させることが可能となっている。
 このように、トルク指令Tmは、アシストする場合は(式8)あるいは後述する(式9)により算出する第1バランサモードと、アシストしない場合は(式7)により算出する第2バランサモードで制御部100からドライバ110にトルク指令Tmを出力するようにしている。また、第1バランサモードと第2バランサモードで制御する昇降位置範囲を設定登録できるようにしているので、バランサ上限位置MT2および/またはバランサ下限位置MB2で、駆動モータ40のトルク制御を中断すること無く、巻き上げ下げの向きを規制することが可能となる。
 そして、上記のステップS14、ステップS22、および上述したステップS19の処理を実行した後に、制御部100は、異常信号、または図示しない指令の入力により、バランサモード、スイッチ動作モードからなる駆動モータ40の駆動制御を停止させるか否かを判断する(ステップS23)。この判断において、駆動制御を停止させると判断される場合(Yesの場合)には、各指令等に基づく図示しない、例えばメンテナンスモードなどの処理に移行させると共に、駆動制御である本プログラムを終了する。一方、ステップS23の判断において、本駆動制御を停止させない(継続する)と判断される場合(Noの場合)には、上述したステップS01の判断に戻り駆動制御を継続する。
 次に、スイッチ動作モードについて説明する。上記のステップS12において、バランサモードではないと判断される場合(Noの場合)、スイッチ動作モードを実行(継続)する(ステップS30)。すなわち、メモリ101からスイッチ動作モードの実行プログラムが読み込まれ、ドライバ110(サーボドライバ)に速度制御モードの指令を出力する。
 次に、制御部100は、シリンダ操作装置150が備える変位センサ153の確認を行う(ステップS31)。すなわち、可動グリップ152が、どの位置に位置しているのかを、変位センサ153にて確認する。そして、可動グリップ152のスライド位置に基づく、巻き上げおよび巻き下げのセット状態となる。
 次に、ステップS02,03における設定情報(メモリ101)を参照して、駆動モータ40の巻き上げ方向への駆動が「可」であるか否かを判断する(ステップS32)。すなわち、ステップS13と同様の判断を行う。このステップS32の判断で、駆動モータ40の巻き上げ方向への駆動が行えないと判断される場合(Noの場合)、制御部100は、巻き上げを行う指令があるか否かを判断する(ステップS33)。すなわち、ステップ31の可動グリップ152が、巻き上げ方向にスライドさせられているか否かの確認結果(メモリ101)から判断する。
 ここで、既にステップS32にて、巻き上げ側の駆動モータ40の駆動が行えない「不可」と判断されている。このため、上記のステップS33の判断で、巻き上げを行う指令があると判断される場合(Yesの場合)、次に、駆動モータ40の巻き上げ方向への駆動停止と、ブレーキ機構60を作動させる処理を行う(ステップS34)。
 一方、上記のステップS32で駆動モータ40の巻き上げ方向への駆動が行えると判断される場合(Yesの場合)、およびステップS33で巻き上げを行う指令がないと判断される場合(Noの場合)、次に、ステップS05,06における設定情報(メモリ101)を参照して、駆動モータ40の巻き上げ方向への駆動が「可」であるか否かを判断する(ステップS35)。すなわち、ステップS15と同様の判断を行う。このステップS35の判断で、駆動モータ40の巻き上げ方向への駆動が行えない「不可」と判断される場合(Noの場合)、制御部100は、巻き上げを行う指令があるか否かを判断する(ステップS36)。すなわち、ステップS31で可動グリップ152が、巻き上げ方向にスライドさせられているか否かの判断結果(メモリ101)から判断する。
 ここで、既にステップS35にて、巻き上げ側の駆動モータ40の駆動が行えない「不可」と判断されている。このため、上記のステップS36の判断で、巻き上げを行う指令があると判断される場合(Yesの場合)、次に、駆動モータ40の巻き上げ方向への駆動停止と、ブレーキ機構60を作動させる処理を行う(ステップS37)。
 一方、上記のステップS35で、駆動モータ40の巻き上げ方向への駆動が行えると判断される場合(Yesの場合)、制御部100は、速度指令を作成して、ドライバ110に出力する(ステップS38)。この速度指令は、ステップS31で可動グリップ152のスライド位置を検出する変位センサ153からの検出信号を記憶したメモリ101の値に基づいて、作成される。
 次に、駆動モータ40の駆動範囲に関して、図8に示すような、上限長さULおよび下限長さLLをセットする必要(要求)があるか否かを判断する(ステップS39)。すなわち、シリンダ操作装置150の操作環境によっては、ソフト的な上限位置、下限位置の設定を変更した方が好ましい場合がある。そこで、ステップS39にて、上限長さULおよび下限長さLLをセットする(再設定する要求がある)か否かを、例えば切換スイッチからのON信号の長さによって判断している。
 上記のステップS39の判断で、上限長さULおよび下限長さLLをセットする必要があると判断される場合(Yesの場合)、上限長さULおよび下限長さLLのセットを行う(ステップS40)。すなわち、シリンダ操作装置150の作動範囲がソフト的に定められる。なお、このステップS40の処理の後に、制御部100は、上述したステップS23で説明したように、駆動モータ40の駆動制御を停止させるか否か(継続するか)を判断する。
 また、ステップS39の判断で、上限長さULおよび下限長さLLをセットする必要がないと判断される場合(Noの場合)にも、制御部100は、上述したステップS23で説明したように、駆動モータ40の駆動制御を停止させるか否か(継続するか)を判断する。
 以上のような制御フローが、巻上機10の駆動モータ40を駆動させる際に、実行される。
<3.効果について>
 以上のように、巻上機本体部20からロードチェーンC1の巻き上げおよび巻き下げを行うことで、荷Pの昇降を行う巻上機10および巻上機10の制御方法では、巻上機本体部20に配置され、ロードチェーンC1が掛け回されていると共に、回転に応じてロードチェーンC1を巻き上げおよび巻き下げするロードシーブ70と、巻上機本体部20に配置され、ロードシーブ70を回転させる駆動力を生じさせる駆動モータ40と、巻上機本体部20に配置され、駆動モータ40の駆動を制御するモータ制御手段(制御部100およびドライバ110)と、荷Pを吊り下げるロードチェーンC1によりロードシーブ70に掛かる負荷トルクおよび操作者が荷を巻き上げ・巻き下げ方向に操作する操作力を検知する負荷検知手段(負荷センサ90および制御部100の一部)とを備える。そして、モータ制御手段(制御部100およびドライバ110)は、負荷検知手段(負荷センサ90および制御部100の一部)で検知した負荷トルクに基づいてトルク制御を行うバランサモードで駆動モータ40の駆動を制御可能であると共に、当該バランサモードにおいて、操作力Wsをアシストするアシストトルク(Kh×Th)を加えた第1トルク指令値(上記の(式8)により算出されるトルク指令値(Tm))に基づいて駆動モータ40の駆動を制御する第1バランサモードと、操作力Wsをアシストしない第2トルク指令値(上記(式7)により算出されるトルク指令値(Tm))に基づいて駆動モータ40を制御する第2バランサモードとを、有し、操作力Wsの向きが巻き上げ・巻き下げ方向のいずれの向きでも、第1バランスモードで制御する第1位置範囲と、操作力Wsの向きに応じて、第位置バランサモードで制御するか、第2バランサモードで制御をするかを選択的に制御する第2位置範囲に、昇降位置範囲を設定することを特徴としている。
 このため、駆動モータ40に対するトルク制御により、バランサモードにおいて、釣り合い状態の維持、操作力に応じたアシストを行うことを可能となる。また、トルク制御を行うバランサモードで駆動モータ40を制御していても、トルク制御を中断することなく、昇降位置によって巻き上げ・巻き下げを規制することが可能となる。
 また、駆動モータ40のトルク制御では、バランス位置範囲においては、第1トルク指令値は、(式8)に基づいて算出している。このため、荷Pのバランス位置範囲内において、荷Pの位置を問わずに第1トルク指令値のみで制御するので、制御が複雑化せずに済む。また、かかる第1トルク指令値に基づくトルク制御は、バランサ上限位置MT2およびバランサ下限位置MB2以外は、荷Pの位置を問わないバランス状態を最適に維持することが可能となる。
 また、バランサ上限位置MT2およびバランサ下限位置MB2においては、第2トルク指令値は、(式7)に基づいて算出している。このため、バランサ上限位置MT2およびバランサ下限位置MB2においても、操作力Wsをキャンセルする向きのトルク成分を含んだトルク指令値に基づいて駆動モータ40を駆動するので、駆動モータ40の制御指令が複雑化せずに済む。また、駆動モータ40がバランサ上限位置MT2およびバランサ下限位置MB2で停止する際に、トルク指令値以上の力が掛からないので、巻上機本体部20等の構造部位に、余分な衝撃が加わるのを防止することが可能となる。
 また、本実施の形態では、第1位置範囲は、バランサモードにおけるバランサ上限位置MT2とバランサ下限位置MB2との間のバランス位置範囲(バランサ中間位置)とし、第2位置範囲は、バランサ上限位置MT2以上の位置範囲および/またはバランサ下限位置MB2以下の位置範囲に設定可能としている。これによって、バランサ上限位置MT2以上の範囲では、操作力Wsの向きが巻き下げ方向の場合にのみアシストトルクを加えたトルク指令Tmにより巻き下げ運転が可能となり、バランサ下限位置MB2以下の範囲では、操作力Wsの向きが巻き上げ方向の場合にのみアシストトルクを加えたトルク指令Tmにより巻き上げ運転が可能となる。したがって、それぞれの場合において、操作力Wsが逆向きの場合には巻き上げ・巻き下げ運転がそれぞれ規制されるので、トルク制御においても中断することなくバランサ上限・下限を規制する制御が可能となる。なお、バランサ上限・下限を規制する制御は、両方で有効とすることが可能であるが、いずれか一方、例えば、バランサ上限でのみ規制する制御を行うことも可能である。
 また、本実施の形態では、第1バランサモードの第1トルク指令値Tmは、巻き上げ手段(ロードシーブ70)で巻き上げる巻き上げ対象負荷(g×w0)に基づき巻き上げ手段(ロードシーブ70)に掛かる負荷トルク(Tm0)を設定登録し、該設定登録した負荷トルクに操作力をアシストするアシストトルク(Kh×Th)を加えたトルク指令(Tm)とし、第2バランサモードの第2トルク指令値は、設定登録した負荷トルク(Tm0)から操作力Wsをキャンセルするキャンセルトルク(-Kl×Th)を加えたトルク指令値とする制御を行うことが可能である。
 このため、バランサモードにおいて、釣り合い状態の維持、操作力に応じたアシストを行うことを可能となる。また、トルク制御を行うバランサモードで駆動モータ40を制御していても、トルク制御を中断することなく、昇降位置によって巻き上げ・巻き下げを規制することが可能となる。
 また、本実施の形態では、モータ制御手段(制御部100およびドライバ110)は、バランサ上限位置MT2およびバランサ下限位置MB2を、任意の高さ位置に設定可能としている。このため、作業者が巻上機10を用いる環境に応じて、バランス位置範囲を適切な範囲に設定することができるので、たとえば荷Pが作業者の手が届く範囲を超えて上昇し過ぎたり、作業者が屈んだ姿勢を取らないと荷Pを持ち上げられない範囲まで荷Pが降下せずに済む。そのため、作業の効率を向上させることができる。
 また、本実施の形態では、巻上機10は、操作装置(シリンダ操作装置150)を備えるが、このシリンダ操作装置150は、動作モード切替スイッチ151と、操作手段(可動グリップ152)とを有すると共に、操作手段(可動グリップ152)の操作に応じて駆動モータ40を駆動させる。また、モータ制御手段(制御部100およびドライバ110)は、動作モード切替スイッチ151のスイッチ操作に応じて、バランサモードと、スイッチ動作モードとを切り替え可能としている。また、スイッチ動作モードでは、モータ制御手段(制御部100およびドライバ110)は、操作手段(可動グリップ152)の操作に基づいて駆動モータ40を制御している。
 このため、動作モード切替スイッチ151のスイッチ操作により、駆動モータ40の動作モードを、バランサモードとスイッチ動作モードとの間で切り替えることができる。すなわち、作業者が、作業内容に応じて、駆動モータ40の駆動を適切な動作モードに切り替えられるので、作業性を向上させることが可能となる。なお、スイッチ動作モードに切り替えた場合には、操作手段(可動グリップ152)の操作によって、荷Pを所望の位置に昇降させることが可能となる。
 また、本実施の形態では、駆動モータ40は、エンコーダ41を備えるサーボモータであり、モータ制御手段は、制御に関する指令値を出力する制御部100と、指令値に基づいて制御された電力を駆動モータ40に供給するサーボドライバ110を備える。また、操作手段は、スライド可能なスライド範囲内でスライドするスライド手段(可動グリップ152)を備えると共に、モータ制御手段(制御部100およびサーボドライバ110)は、スライド手段(可動グリップ152)のスライド量に応じて、駆動モータ40の速度を制御する速度制御を行う。
 このため、スライド手段(可動グリップ152)のスライド量に応じて、駆動モータ40を適切な駆動速度に調整することができる。それにより、荷Pを昇降させる際の作業性を向上させることが可能となる。
<変形例>
 以上、本発明の各実施の形態について説明したが、本発明はこれ以外にも種々変形可能となっている。以下、それについて述べる。
 上述の実施の形態では、(式1)から(式8)の各式において、必要に応じて、算出される各値の補正を行うようにしても良い。たとえば、駆動モータ40を使用すると発熱するが、モータを構成する磁石やコイルの導線は、温度によって特性が変化する。そこで、これら温度による特性の変化を加味して、上記の(式1)から(式8)の各式に対し、所定の補正を行うようにしても良い。
 また、上述の実施の形態においては、制御部100は、(式5)に基づいて、巻き上げ対象セット荷重w0と釣り合う駆動モータ40のモータトルクTm0を求めている。なお、上記のように、巻き上げ対象セット荷重w0は、(式3)において説明したように、バランサモード開始時にメモリ101に記憶させる負荷センサ90の荷重(負荷)Wl0から算出した値となっている。しかしながら、バランサモード開始時ではなく、たとえば現在を含む所定の測定タイミングにおいて、負荷センサ90で測定される荷重(負荷)Wlから算出した巻き上げ対象荷重wにより、モータトルクTm0を求めるようにしても良い。
 かかる巻き上げ対象荷重wを用いる場合、モータトルクTm0を求める式は、以下のようになる。
  Tm0=(1/i)×r×g×w…(式9)
 この(式9)で算出したモータトルクTm0を、前述の(式7)(式8)に代入してトルク指令Tmを算出するようにしても良い。
 また、上述の実施の形態では、制御部100は、(式7)に基づいて、バランサ上限位置MT2およびバランサ下限位置MB2での駆動モータ40の駆動を制御している。しかしながら、巻き上げ対象荷重wを基に(式9)により算出したモータトルクTm0は、操作力Wsを含めてバランスさせているので、(式7)において、ゲインKlを0としても良い。このようにゲインKlを0としても、機械効率(伝達効率)の関係により、荷Pの昇降を停止させることができる。
 また、前述の(式8)では、モータトルクTm0にアシストトルク「Kh×Th」を加算してトルク指令Tmを算出するようにしているが、操作力WsとモータトルクTm0に比例してトルク指令が増減するようにトルク指令Tmを算出(式10)するようにしても良い。
  Tm=Khr×Ws×Tm0…(式10)
 (式10)のトルク指令Tmは、モータトルクTm0にモータトルク「(Khr×Ws-1)×Tm0」を加算したものであり、モータトルク「(Khr×Ws-1)×Tm0」はアシストトルクに対応する。Khrは増幅率を表すゲインであり、巻上機の仕様により予め決められる係数である。
 トルク指令Tmを、(式10)を用いて算出することにより、荷Pの荷重の大きさに係わらず、駆動モータ40の仕様が許す範囲で、操作力Wsに比例した加速度で荷Pを昇降させることができる。荷Pの昇降作業の内容、または荷Pの荷重に応じて、(式8)または(式10)を選択または組み合わせてバランサモードによる駆動制御を行えば良い。なお、駆動モータ40の最大回転数(巻き上げ速度)は、予め所定の値に設定登録されている。ゲインKhrもゲインKhと同様に巻き上げと巻き下げで異なる値に設定してもよく、荷Pの荷重の大小によっても増減、例えば荷重が所定以上の場合の加速度の伸びを小さくするなど、巻上機が使用される作業環境に応じて設定するようにしても良い。
 10…巻上機、20…巻上機本体部、21…ハウジング、30…上フック、40…駆動モータ、41…エンコーダ、50…減速機構、60…ブレーキ機構、70…ロードシーブ、80…上限リミットスイッチ、81…下限リミットスイッチ、90…負荷センサ、100…制御部(モータ制御手段の一部に対応)、101…メモリ、110…ドライバ(モータ制御手段の一部に対応)、150…シリンダ操作装置(操作装置に対応)、151…動作モード切替スイッチ(スイッチ手段に対応)、152…可動グリップ(操作手段およびスライド手段に対応)、153…変位センサ、160…下フック、170…チェーンバケット、C1…ロードチェーン、LL…下限長さ、MT1…上限位置、MT2…バランサ上限位置、MB1…上限位置、MB2…バランサ下限位置、P…荷、UL…上限長さ

Claims (7)

  1.  巻上機本体からロードチェーンまたはロープの巻き上げおよび巻き下げを行うことで、荷の昇降を行う巻上機であって、
     前記巻上機本体に配置され、前記ロードチェーンまたは前記ロープが掛け回されていると共に、回転に応じて前記ロードチェーンまたは前記ロープの巻き上げおよび巻き下げを行う巻き上げ手段と、
     前記巻き上げ手段を回転させる駆動力を生じさせる駆動モータと、
     前記駆動モータの駆動を制御するモータ制御手段と、
     前記荷を吊り下げる前記ロードチェーンまたは前記ロープにより前記巻き上げ手段に掛かる負荷トルク及び操作者が前記荷を巻き上げ・巻き下げ方向に操作する操作力を検知する負荷検知手段と、
     を備え、
     前記モータ制御手段は、前記負荷トルクに基づいてトルク制御を行うバランサモードで前記駆動モータの駆動を制御可能であると共に、当該バランサモードにおいて、
     前記操作力をアシストするアシストトルクを加えた第1トルク指令値に基づいて前記駆動モータの駆動を制御する第1バランサモードと、
     前記操作力をアシストしない第2トルク指令値に基づいて前記駆動モータの駆動を制御する第2バランサモードと、を有し、
     前記操作力の向きが巻き上げ・巻き下げ方向のいずれの向きでも、前記第1バランサモードで制御する第1位置範囲と、
     前記操作力の向きが巻き上げ・巻き下げ方向の向きに応じて、前記第1バランサモードとするか前記第2バランサモードとするかを選択的に制御する第2位置範囲と、
     に昇降位置範囲を設定する、
     ことを特徴とする巻上機
  2.  請求項1記載の巻上機であって、
     前記第1位置範囲は、前記バランサモードにおけるバランサ上限位置とバランサ下限位置との間のバランス位置範囲とし、
     前記第2位置範囲は、前記バランサ上限位置以上の位置範囲及び、または前記バランサ下限位置以下の位置範囲としている、
     ことを特徴とする巻上機。
  3.  請求項1または2記載の巻上機であって
     前記第1バランサモードの前記第1トルク指令値は、前記巻き上げ手段で巻き上げる巻き上げ対象負荷に基づき前記巻き上げ手段に掛かる負荷トルクを設定登録し、該設定登録した負荷トルクに前記操作力をアシストするアシストトルクを加えたトルク指令値とし、
     前記第2バランサモードの第2トルク指令値は、前記設定登録した負荷トルクから前記操作力をキャンセルするキャンセルトルクを加えたトルク指令値とする、
     ことを特徴とする巻上機。
  4.  請求項2記載の巻上機であって、
     前記モータ制御手段は、前記バランサ上限位置および前記バランサ下限位置を、任意の高さ位置に設定可能としている、
     ことを特徴とする巻上機。
  5.  請求項1から4のいずれか1項に記載の巻上機であって、
     動作モード切替スイッチと、操作手段とを有すると共に、当該操作手段の操作に応じて前記駆動モータを駆動させる操作装置を備え、
     前記モータ制御手段は、前記動作モード切替スイッチのスイッチ操作に応じて、前記バランサモードと、スイッチ動作モードとを切り替え可能としていると共に、
     前記スイッチ動作モードでは、前記モータ制御手段は、前記操作手段の操作に基づいて前記駆動モータの駆動を制御する、
     ことを特徴とする巻上機。
  6.  請求項5記載の巻上機であって、
     前記駆動モータは、エンコーダを備えるサーボモータであり、
     前記モータ制御手段は、制御に関する指令値を出力する制御部と、前記指令値に基づいて制御された電力を前記駆動モータに供給するサーボドライバを備え、
     前記操作手段は、スライド可能なスライド範囲内でスライドするスライド手段を備えると共に、
     前記モータ制御手段は、前記スライド手段のスライド量に応じて、前記駆動モータの速度を制御する速度制御を行う、
     ことを特徴とする巻上機。
  7.  巻上機本体からロードチェーンまたはロープの巻き上げおよび巻き下げを行うことで、荷の昇降を行う巻上機の駆動制御方法であって、
     前記巻上機は、
     前記巻上機本体に配置され、前記ロードチェーンまたは前記ロープが掛け回されていると共に、回転に応じて前記ロードチェーンまたは前記ロープの巻き上げおよび巻き下げを行う巻き上げ手段と、
     前記巻き上げ手段を回転させる駆動力を生じさせる駆動モータと、
     前記駆動モータの駆動を制御するモータ制御手段と、
     前記荷を吊り下げる前記ロードチェーンまたは前記ロープにより前記巻き上げ手段に掛かる負荷トルク及び操作者が前記荷を巻き上げ・巻き下げ方向に操作する操作力を検知する負荷検知手段と、
     スイッチ手段を有し、当該スイッチ手段のスイッチ操作に応じて前記駆動モータを駆動する操作装置と、
     を備え、
     前記負荷検知手段で負荷トルクを検知する負荷トルク検知ステップと、
     前記負荷トルク検知ステップで検知された前記負荷トルクに基づいて、予め設定された昇降位置範囲において前記モータ制御手段で前記駆動モータの駆動を制御するトルク制御ステップと、
     を備え、前記トルク制御ステップでは、前記負荷トルクに基づいてトルク制御を行うバランサモードで前記駆動モータの駆動を制御可能であると共に、
     前記バランサモードは、
     前記操作力をアシストするアシストトルクを加えた第1トルク指令値に基づいて前記駆動モータの駆動を制御する第1バランサモードと、
     前記操作力をアシストしない第2トルク指令値に基づいて前記駆動モータの駆動を制御する第2バランサモードと、を有し、
     前記昇降位置範囲は、
     前記操作力の向きが巻き上げ・巻き下げ方向のいずれの向きでも、前記第1バランサモードで制御する第1位置範囲と、
     前記操作力の向きが巻き上げ・巻き下げ方向の向きに応じて、前記第1バランサモードとするか前記第2バランサモードとするかを選択的に制御する第2位置範囲と、
     を有している、
     ことを特徴とする巻上機の駆動制御方法。

     
PCT/JP2020/034316 2019-10-21 2020-09-10 巻上機および巻上機の駆動制御方法 WO2021079642A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/770,054 US12012316B2 (en) 2019-10-21 2020-09-10 Winding machine and method of controlling driving of winding machine
CN202080085996.4A CN114787071B (zh) 2019-10-21 2020-09-10 卷扬机及卷扬机的驱动控制方法
JP2021554146A JP7339718B2 (ja) 2019-10-21 2020-09-10 巻上機および巻上機の駆動制御方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019192225 2019-10-21
JP2019-192225 2019-10-21

Publications (1)

Publication Number Publication Date
WO2021079642A1 true WO2021079642A1 (ja) 2021-04-29

Family

ID=75619788

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/034316 WO2021079642A1 (ja) 2019-10-21 2020-09-10 巻上機および巻上機の駆動制御方法

Country Status (4)

Country Link
US (1) US12012316B2 (ja)
JP (1) JP7339718B2 (ja)
CN (1) CN114787071B (ja)
WO (1) WO2021079642A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113979344A (zh) * 2021-12-28 2022-01-28 成都久和建设设备有限责任公司 塔机四联动超大起重量的起升驱动系统及方法
JP7506452B2 (ja) 2021-06-30 2024-06-26 株式会社キトー 搬送システムおよび搬送システムの制御方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115506429B (zh) * 2022-09-27 2023-08-25 四川鼎鸿智电装备科技有限公司 一种工程机械称重方法及装置、电子设备、介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5127259A (ja) * 1974-08-29 1976-03-06 Mitsubishi Electric Corp Heikoseigyodenkihoisuto
JPS5434980B2 (ja) * 1972-01-19 1979-10-30
JPH0829920B2 (ja) * 1988-01-30 1996-03-27 株式会社小松製作所 平衡荷役装置の制御回路
JP2019052007A (ja) * 2017-09-14 2019-04-04 株式会社ロボテック 荷役助力装置及び荷役助力装置の制御方法
JP2019119550A (ja) * 2017-12-29 2019-07-22 ユニパルス株式会社 荷役助力装置

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6073496A (en) * 1996-03-14 2000-06-13 Mannesmann Ag Load hoisting apparatus
US5865426A (en) * 1996-03-27 1999-02-02 Kazerooni; Homayoon Human power amplifier for vertical maneuvers
DE29919136U1 (de) * 1999-10-30 2001-03-08 Muennekehoff Gerd System zum Steuern der Bewegungen einer Lasthebevorrichtung
US6547220B2 (en) * 2000-01-31 2003-04-15 Wilmington Research And Development Corporation Open loop control with velocity threshold for pneumatic hoist
DE10013231A1 (de) * 2000-03-13 2001-09-27 Mannesmann Ag Einrichtung zum Steuern eines motorangetriebenen Hebezeugs
CN2423264Y (zh) 2000-05-10 2001-03-14 潘颖聪 双绳卷扬机钢丝绳平衡器
US7028856B2 (en) * 2001-02-09 2006-04-18 Gorbel, Inc. Crane control apparatus and method
US6634621B2 (en) * 2001-08-03 2003-10-21 Malcolm E. Keith Lifting device and a method for lifting by using the same
US6554252B2 (en) * 2001-09-28 2003-04-29 Homayoon Kazerooni Device and method for wireless lifting assist devices
US7222839B2 (en) * 2004-02-12 2007-05-29 Gorbel, Inc. Cable slack and guide monitoring apparatus and method for a lift device
US7559533B2 (en) * 2006-01-17 2009-07-14 Gorbel, Inc. Lift actuator
CA2629828A1 (en) * 2008-04-25 2009-10-25 Micanan Systems Inc. Sensing mechanism for an assisted garage door
DE102012103515A1 (de) * 2012-04-20 2013-10-24 Demag Cranes & Components Gmbh Steuerverfahren für ein Balancier-Hebezeug und Balancier-Hebezeug hiermit
KR200468048Y1 (ko) 2012-09-17 2013-07-19 주식회사 대산이노텍 리미트스위치가 구비된 클러치타입의 전기체인호이스트
CN202880741U (zh) 2012-10-31 2013-04-17 河北联合大学 实现卷扬机吊钩极限位置控制的电气装置
SE539083C2 (sv) * 2014-09-12 2017-04-04 Binar Quick-Lift Systems Ab Manöverdon för manuell styrning av en i manöverdonet upphängd last
US9824841B2 (en) * 2015-11-17 2017-11-21 Rockwell Automation Technologies, Inc. Safety switch and associated methods
CN105947911A (zh) * 2016-06-01 2016-09-21 石娟 智能提升系统
JP6796977B2 (ja) 2016-09-23 2020-12-09 コベルコ建機株式会社 電動ウインチ装置
DE102017001238A1 (de) * 2017-02-09 2018-08-09 Liebherr-Components Biberach Gmbh Hebezeug und Verfahren zum Anfahren des Hubwerks eines solchen Hebezeugs
FI127713B (fi) * 2017-03-30 2018-12-31 Konecranes Global Oy Nostoköyden pystysuuntaisen liikkeen ohjaus
CN110316661B (zh) 2018-03-31 2020-09-25 Abb瑞士股份有限公司 用于在载荷滑动情况中控制升降机的控制单元及其方法
CN108946547B (zh) 2018-07-31 2023-05-30 63921部队 通过智能卷扬装置提升与释放下降机构的方法
KR20210088972A (ko) * 2020-01-07 2021-07-15 이상진 Bldc 모터 밸런스 리프트 시스템
US11377330B2 (en) * 2020-04-02 2022-07-05 Charles Jackson Remote controlled lift assembly

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5434980B2 (ja) * 1972-01-19 1979-10-30
JPS5127259A (ja) * 1974-08-29 1976-03-06 Mitsubishi Electric Corp Heikoseigyodenkihoisuto
JPH0829920B2 (ja) * 1988-01-30 1996-03-27 株式会社小松製作所 平衡荷役装置の制御回路
JP2019052007A (ja) * 2017-09-14 2019-04-04 株式会社ロボテック 荷役助力装置及び荷役助力装置の制御方法
JP2019119550A (ja) * 2017-12-29 2019-07-22 ユニパルス株式会社 荷役助力装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7506452B2 (ja) 2021-06-30 2024-06-26 株式会社キトー 搬送システムおよび搬送システムの制御方法
CN113979344A (zh) * 2021-12-28 2022-01-28 成都久和建设设备有限责任公司 塔机四联动超大起重量的起升驱动系统及方法
CN113979344B (zh) * 2021-12-28 2022-03-11 成都久和建设设备有限责任公司 塔机四联动超大起重量的起升驱动系统及方法

Also Published As

Publication number Publication date
US20220396457A1 (en) 2022-12-15
JP7339718B2 (ja) 2023-09-06
CN114787071B (zh) 2024-05-28
JPWO2021079642A1 (ja) 2021-04-29
CN114787071A (zh) 2022-07-22
US12012316B2 (en) 2024-06-18

Similar Documents

Publication Publication Date Title
WO2021079642A1 (ja) 巻上機および巻上機の駆動制御方法
JP6714237B2 (ja) 荷役助力装置及び荷役助力装置の制御方法
US9643322B2 (en) Control method for a balancing lifting gear and balancing lifting gear
US11027951B2 (en) Lifting device and method for starting up the hoisting gear of such a lifting device
CN109715547B (zh) 电动卷扬机装置
KR20120079635A (ko) 호이스트 장치 및 그 제어 방법
KR101379841B1 (ko) 와이어로프 이탈 방지 장치를 구비한 권취장치
CN111542485B (zh) 高度调节辅助装置、具备该装置的起重机以及高度调节方法
CN111847202B (zh) 施工用电梯
JP5442314B2 (ja) クレーン吊具給電用ケーブルリールのトルク可変制御方法
US11542126B2 (en) Crane and method for acquiring length of slinging tool
JPWO2021186680A5 (ja)
KR20020021634A (ko) 인상 케이블의 슬랙 방지 장치를 포함하는 하물 인상용인력 증폭기
JP3110424B1 (ja) コンテナ多段積用スプレッダの制御方法およびコンテナ多段積用スプレッダ
JP2024000750A (ja) 電動式荷役装置、サーボモータの駆動制御方法
CN114684733B (zh) 卷扬机
CN113382947B (zh) 吊离地面判定装置、吊离地面控制装置、移动式起重机及吊离地面判定方法
US20240002197A1 (en) Crane, and control method of crane
JP4107128B2 (ja) 昇降装置
CN115417308A (zh) 吊钩倾角控制方法、系统以及多卷扬起重机
JP2024058710A (ja) 荷役助力装置
CN115924764A (zh) 塔式起重机及其控制方法、装置及处理器
JP2021020771A (ja) ジブクレーンの起伏巻上制御システム
JP2021187653A (ja) 地切り制御装置、及び、移動式クレーン
JP2021155200A (ja) 昇降移動補助装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20879844

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021554146

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20879844

Country of ref document: EP

Kind code of ref document: A1