WO2021075686A1 - 프탈레이트 화합물의 수소화 방법 - Google Patents

프탈레이트 화합물의 수소화 방법 Download PDF

Info

Publication number
WO2021075686A1
WO2021075686A1 PCT/KR2020/010583 KR2020010583W WO2021075686A1 WO 2021075686 A1 WO2021075686 A1 WO 2021075686A1 KR 2020010583 W KR2020010583 W KR 2020010583W WO 2021075686 A1 WO2021075686 A1 WO 2021075686A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydrogenation
raw material
phthalate
reaction
reactor
Prior art date
Application number
PCT/KR2020/010583
Other languages
English (en)
French (fr)
Inventor
김효석
정기택
박성민
이경일
Original Assignee
한화솔루션 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한화솔루션 주식회사 filed Critical 한화솔루션 주식회사
Publication of WO2021075686A1 publication Critical patent/WO2021075686A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/30Preparation of carboxylic acid esters by modifying the acid moiety of the ester, such modification not being an introduction of an ester group
    • C07C67/303Preparation of carboxylic acid esters by modifying the acid moiety of the ester, such modification not being an introduction of an ester group by hydrogenation of unsaturated carbon-to-carbon bonds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/18Stationary reactors having moving elements inside
    • B01J19/1806Stationary reactors having moving elements inside resulting in a turbulent flow of the reactants, such as in centrifugal-type reactors, or having a high Reynolds-number
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/24Stationary reactors without moving elements inside
    • B01J19/2405Stationary reactors without moving elements inside provoking a turbulent flow of the reactants, such as in cyclones, or having a high Reynolds-number
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/46Ruthenium, rhodium, osmium or iridium
    • B01J23/462Ruthenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/18Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
    • B01J8/24Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles according to "fluidised-bed" technique
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C69/00Esters of carboxylic acids; Esters of carbonic or haloformic acids
    • C07C69/74Esters of carboxylic acids having an esterified carboxyl group bound to a carbon atom of a ring other than a six-membered aromatic ring
    • C07C69/75Esters of carboxylic acids having an esterified carboxyl group bound to a carbon atom of a ring other than a six-membered aromatic ring of acids with a six-membered ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/10Esters; Ether-esters
    • C08K5/12Esters; Ether-esters of cyclic polycarboxylic acids

Definitions

  • the present invention relates to a method for hydrogenation of phthalate compounds.
  • Phthalate-based compounds are widely used as plasticizers for plastics, especially polyvinyl chloride (PVC).
  • PVC polyvinyl chloride
  • electrical and electronic products, pharmaceuticals, paint pigments, lubricants, binders, surfactants, adhesives, tiles, food containers, packaging materials, etc. indeed, their uses are very diverse.
  • phthalate compounds are known as substances that can cause environmental pollution and human endocrine system disorders, restrictions on use are being strengthened in developed countries such as Europe and the United States.
  • di(2-ethylhexyl) phthalate di(2-ethylhexyl) phthalate, DEHP)
  • di-n-butyl phthalate di-n-butyl
  • DBP di-n-butyl phthalate
  • the trickle flow reactor is a reactor that has a reaction region filled with a catalyst (i.e., a catalyst layer), and a liquid raw material supplied to the reaction region moves downward by gravity, and a gaseous raw material moves downward or upward. .
  • the high molecular weight of the phthalate compound and the low solubility of hydrogen therein reduce the reactivity at the upper end of the reaction region, hinder the overall process efficiency and economy, and lower the reaction conversion rate of the phthalate compound. It becomes a factor.
  • the present invention is to solve the reduction in reactivity occurring at the upper end of the reaction region in hydrogenating a phthalate compound using a trickle flow reactor, to improve overall process efficiency and economy, and to increase the reaction conversion rate of the phthalate compound.
  • the mixed raw material is supplied to the reaction zone of the trickle flow reactor to react. do.
  • a liquid phthalate compound and gaseous hydrogen are mixed in advance to secure a sufficient amount of dissolved hydrogen, and then the mixed raw material may be supplied to a reaction region in a trickle flow reactor to react.
  • FIG. 1 is a schematic diagram of a hydrogenation reaction apparatus used in the hydrogenation method of the present invention.
  • the present invention is intended to illustrate and describe specific embodiments, as various transformations may be applied and various embodiments may be provided. However, this is not intended to limit the present invention to a specific embodiment, it should be understood to include all conversions, equivalents, and substitutes included in the spirit and scope of the present invention. In describing the present invention, when it is determined that a detailed description of a related known technology may obscure the subject matter of the present invention, a detailed description thereof will be omitted.
  • first and second to be used hereinafter may be used to describe various elements, but the elements are not limited by the terms. The above terms are used only for the purpose of distinguishing one component from another component. For example, without departing from the scope of the present invention, a first element may be referred to as a second element, and similarly, a second element may be referred to as a first element.
  • the solubility of hydrogen in a phthalate compound having a large molecular weight ie, the amount of hydrogen that can be dissolved to a saturation state
  • a phthalate compound having a large molecular weight exhibits low fluidity in a trickle bed reactor (TBR), and the dissolution of hydrogen proceeds slowly in it, and it inevitably takes a long time until the hydrogen is dissolved to a saturation state.
  • TBR trickle bed reactor
  • the high molecular weight of the phthalate compound and the low solubility of hydrogen therein reduce the reactivity at the upper end of the reaction region, hinder the overall process efficiency and economy, and lower the reaction conversion rate of the phthalate compound. It becomes a factor.
  • improving the reactivity at the upper end of the reaction zone in the trickle flow reactor is, when a liquid phthalate compound and gaseous hydrogen are not premixed and each independently supplied to the reaction zone in the trickle flow reactor.
  • it is a method capable of improving the overall process efficiency and economic efficiency of the hydrogenation reaction and increasing the reaction conversion rate of the phthalate compound.
  • the mixing means is not limited.
  • any method such as using a mixing device independent from the trickle flow reactor or using a mixing region formed in the trickle flow reactor, is not limited to obtaining a mixed raw material having a high dissolved hydrogen content.
  • the raw materials are mixed under a condition of 1 to 300 Reynolds number.
  • N RE Reynold's number
  • N RE is a term generally used to quantify the fluidity of a fluid, and it means that the higher the Reynolds number, the higher the fluidity.
  • N RE ) is a ratio of "force by inertia” and “force by viscosity” of a fluid, and can be calculated by the following Equation 1 generally known in the art.
  • a laminar flow is formed, which is a flow in which the atoms of the fluid move in parallel in the flow direction, and turbulence in which the atoms of the fluid move randomly with respect to the flow direction as the force of inertia increases.
  • the Reynolds number is a value used to determine whether the flow state in the pipe is laminar or turbulent. When the Reynolds number is about 2000 or less, it is determined as laminar flow, and when it exceeds 2000, it is determined as turbulent flow. In other words, the lower the Reynolds number of the fluid, the more constant the flow is.
  • the Reynolds number is 1 or more, or 5 or more, or 10 or more, or 20 or more, 300 or less, 100 or less, or 90 or less, or 80 or less, or 70 It can be changed to the following conditions, or 65 or less.
  • the mixing time of the raw materials may vary depending on the mixing method, apparatus, etc., and a detailed description thereof will be described later.
  • the mixing means is not limited.
  • the step of preparing the mixed raw material may be performed by using a mixing device independent from the trickle flow reactor, or by using a region filled with an inert bead on a reaction region filled with a hydrogenation catalyst in the trickle flow reactor. And, no matter what method is used, there is no restriction on obtaining a mixed raw material with a high dissolved hydrogen content.
  • a mixing device independent from the trickle flow reactor a generally known fluid mixing device, a line mixer, may be used.
  • the mixed raw material may be supplied to the reaction zone of the trickle flow reactor.
  • a region filled with an inert bead may be formed on a reaction region filled with a hydrogenation catalyst in the trickle flow reactor, and the raw materials may be mixed in the mixing region.
  • the raw materials are supplied onto the mixing region filled with the inert bead, the raw materials are mixed in the process of moving from the upper end of the mixing region to the lower end of the mixing region by gravity, and then continuously to the reaction region physically connected to the mixing region. Can be supplied.
  • the inert bead for forming the mixing region in the trickle flow reactor is not particularly limited as long as it is made of an inert material that does not affect the mixing and subsequent hydrogenation reactions.
  • the inert bead is a metal ceramic group including ZrO 2 , SiO 2 , Al 2 O 3 , Na 2 O, MgO, CaO, K 2 O, Fe 2 O 3 , and TiO 2; Li 2 O-Al 2 O 3 -SiO 2 system, MgO-Al 2 O 3 -SiO 2 system, and ZnO-Al 2 O 3 -SiO 2 crystalline glass ceramics (glass-ceramic) group including the system; And SiO 2 -Na 2 O-based amorphous glass (glass) group; may be made of any one selected from an inert (ineart) material including.
  • the residence time of the raw materials in the mixing region may be the mixing time of the raw materials.
  • the residence time of the raw materials in the mixing region is a time required for the raw materials to flow into the mixing region and completely flow out to the reaction region, and the region filled with the inert bead (i.e., the mixing region) is It can be influenced by the length.
  • the residence time of the raw materials in the mixing region may be adjustable within a range of 1 to 500 seconds.
  • the lower limit may be 1 second or more, 1.3 seconds or more, 1.5 seconds or more, 1.7 seconds or more, 1.9 seconds or more, 2.0 seconds or more, or 2.1 seconds or more
  • the upper limit is 500 seconds or less, 400 seconds or less, 300 seconds or less, It may be 200 seconds or less, 100 seconds or less, 50 seconds or less, 40 seconds or less, 35 seconds or less, or 33 seconds or less.
  • a mixed raw material having a sufficient amount of dissolved hydrogen and fluidity in an appropriate range can be prepared, and by supplying this to the reaction region, reactivity and reaction efficiency at the upper end of the reaction region are improved, The overall process efficiency and economy are improved, and the reaction conversion rate of the phthalate compound can be improved.
  • the amount of dissolved hydrogen in the mixed raw material is a concentration value of gaseous hydrogen dissolved in a liquid phthalate
  • the saturation concentration may be a calculated value according to Equation 1 below, and Equation 1 follows Henry's Law:
  • Equation 1 K is the gas constant of the hydrogen at the temperature during the measurement, and P G is the partial pressure of hydrogen in the mixed raw material.
  • the mixed raw material in the step of supplying the mixed raw material to a reaction zone filled with the hydrogenation catalyst and reacting the phthalate compound in the mixed raw material with hydrogen, the mixed raw material is supplied to the upper end of the reaction zone. And reacting in the presence of the hydrogenation catalyst while the mixed raw material moves from the upper end to the lower end of the reaction region.
  • the temperature and pressure conditions of the mixed raw material are not particularly limited, but generally the input raw material has the same pressure as the hydrogenation reaction conditions, and in the case of the temperature condition, the temperature is the same as the hydrogenation reaction conditions. According to this, in order to control the degree of heat generation in the reactor, the temperature may be lower than that of the hydrogenation reaction conditions.
  • the hydrogenation conversion rate is defined as the mol% of the phthalate compound converted into a hydrogenation reaction product through the raw material mixing step and the hydrogenation reaction step of the phthalate compound (100 mol%) of the liquid raw material.
  • a hydrogenation conversion rate of at least 43% or more such as 43.5% or more, 43.7% or more, 43.7% or more, or 44.0% or more, may be ensured.
  • the hydrogenation conversion rate may also increase, and the maximum conversion rate may be 99% or less, 95% or less, or 90% or less.
  • the liquid raw material supplied to the mixing region of the reactor may further include an alcohol having 2 to 12 carbon atoms.
  • the alcohol is an alcohol having 2 or more carbon atoms, for example, ethanol, n-propanol, isopropanol, n-butanol, isobutanol, pentanol, hexanol, heptane, which are aliphatic alcohols having 2 to 12 carbon atoms, preferably 2 to 10 carbon atoms.
  • One selected from ol, octanol (n-octanol, 2-ethylhexanol), nonanol, decanol, undecanol, dodecanol, or a mixture thereof may be used.
  • the usable alcohol may be selected differently depending on the specific type of the phthalate compound to be reacted. For example, when performing a hydrogenation reaction on dioctyl terephthalate, when an alcohol having 2 to 8 carbon atoms such as ethanol, butanol, or octanol is used among the alcohols, the reactivity improvement and life extension effect of the catalyst may be further increased. .
  • the viscosity of the mixture is lowered to improve the flow of the liquid mixture.
  • the reaction heat is absorbed during the hydrogenation reaction of the phthalate compound after it is supplied to the above-described reactor and reaches the reaction region, thereby suppressing the occurrence of high temperature due to the reaction heat.
  • the reactivity of the catalyst is improved, and metal ions, metal salt compounds, or other impurity components contained in the raw material phthalate compound are inhibited from physically and chemically adsorbing to the catalyst. Life can be extended.
  • the alcohol is about 5 to about 60 parts by weight, preferably about 10 to about 50 parts by weight, more preferably about 10 to about 40 parts by weight, more preferably about 10 parts by weight based on 100 parts by weight of the phthalate compound as a reactant. It may be included in to 30 parts by weight. If the alcohol is contained as little as less than 5 parts by weight, the effect of improving catalyst performance hardly appears, and if it is included too much in excess of 60 parts by weight, it is necessary to increase the size of the reactor, and a lot of energy is consumed in the separation process. Can be lowered.
  • a hydrogenation reaction may be performed by further mixing a cyclohexane dicarboxylate compound, which is a reaction product of a hydrogenation reaction.
  • a reaction is carried out by further mixing the reaction products as described above, violent reactions in the reactor can be suppressed, so that the reaction temperature can be controlled and the phenomenon of local degradation of the catalyst performance on the catalyst can be reduced.
  • the phthalate compound and alcohol may be further subjected to a step of mixing so as to have a uniform concentration before being introduced into the above-described reactor.
  • the phthalate compound and alcohol are mixed before being introduced into the reactor, and a mixture including the phthalate compound and alcohol may be increased in pressure and temperature to be introduced into the reactor.
  • the step of increasing the pressure and temperature of the mixture containing the phthalate compound and the alcohol may be performed simultaneously or sequentially, and by increasing the pressure and temperature several times at once or in a plurality of steps, the desired pressure and temperature can be reached. May be.
  • the pressure of a mixture containing a phthalate compound and an alcohol is increased, and then the elevated mixture is heated to be introduced into the reactor in a liquid state having an appropriate viscosity.
  • the viscosity of the mixture may be about 0.5 to about 20.0 cps in the range of pressure and temperature conditions when flowing into the reactor. When the viscosity of the mixture is within the above range, it may exhibit appropriate flowability and reactivity in the reactor described above.
  • the target pressure raised to be introduced into the above-described reactor may be about 50 to about 500 bar, preferably about 100 to about 300 bar. If the pressure is less than 50 bar, the reactivity decreases and it is difficult to obtain a desired level of conversion. If the pressure is too high beyond 500 bar, it may be difficult to manufacture the reactor, or the manufacturing cost may increase significantly.
  • the target temperature raised to be introduced into the above-described reactor may be in the range of about 50 to about 500°C, preferably about 100 to about 300°C. If the temperature is less than 50°C, the catalyst is deactivated due to the low temperature, the flow in the reactor is deteriorated due to the high viscosity of the mixture, and the permeability of hydrogen to the phthalate compound and alcohol in the liquid state decreases, so that the reaction does not occur properly even in the reactor. If the temperature exceeds 500°C and is too high, decomposition of the reactants occurs a lot, there is difficulty in manufacturing the reactor, and heat removal may be difficult due to a rapid reaction.
  • the mixture containing the phthalate compound and alcohol, which has been elevated and heated by the above-described process, is introduced into the reactor.
  • gaseous hydrogen (H 2 ) is introduced into the reactor through a separate supply line to perform a hydrogenation reaction.
  • the pressure and temperature conditions of hydrogen are the same as the temperature and pressure conditions of the mixture containing the phthalate compound and alcohol, about 50 to about 500 bar, preferably about 100 to about 300 bar, and about 50 to about It can be adjusted to be in the range of 500 °C, preferably about 100 to about 300 °C.
  • the reactor by controlling the reactor so that the temperature deviation per unit length (m) of the reactor is maintained at 3° C. or less, for example, 2° C. or less, it can be operated to avoid local heat generation.
  • the maximum reaction amount per actual reaction volume (m 3 ) of the catalyst-filled reactor during the hydrogenation reaction is maintained at 25 kmol/h or less, for example, 23 kmol/hr or less, so that local heat generation in the reactor does not occur. can do.
  • the reaction amount can be calculated through the concentration change value by sampling each product according to the height of the reactor.
  • the flow rate or concentration of the reactant is adjusted as described above, or for this purpose, an inert gas or an inert liquid is added together with the reactant, and the amount is adjusted.
  • a method of adjusting and the like can be used.
  • the mass flow rate of the phthalate compound introduced into the reactor may be 10,000 to 30,000 kg*hr -1 *m -2 , Specifically, it may be 10,000 to 15,000 kg*hr -1 *m -2.
  • the mass flow rate of the phthalate compound is less than 10,000 kg*hr -1 *m -2 per unit area (m 2 ), the amount of raw material input is insufficient, resulting in a problem of lowering productivity, and 30,000 kg*hr -1 *m -2 If it exceeds, the amount of liquid raw material injected into the reactor at one time becomes too large, resulting in an increase in the film thickness of the liquid raw material on the surface of the catalyst, thereby making it difficult for hydrogen to penetrate, making hydrogenation difficult to occur, and side reactions increase. , Local heat generation occurs, causing a problem that the temperature deviation of the reactor is deepened.
  • the amount of hydrogen introduced into the reactor is 3 mol or more, or 4 mol or more, 300 mol or less, or 100 per mol of the phthalate compound. It may be mol or less, or 50 mol or less, or 30 mol or less.
  • the amount of hydrogen is too small, less than 3 moles per 1 mole of the phthalate compound, the reaction conversion rate is lowered to obtain a conversion rate of 95% or more, and if it exceeds 300 moles, the residence time of the droplets of the liquid raw material in the reactor is reduced. Shortening may result in a lower conversion rate, an increase in by-products, or a rapid decrease in catalyst life. From this point of view, the amount of hydrogen can be controlled within the above-described range.
  • a method for controlling temperature variation and reaction amount in the reactor a method of dispersing reaction heat by installing a cooling member through which a refrigerant circulates inside or outside the reactor may be used.
  • the refrigerant a refrigerant known in the art such as cooling water, a methane-based refrigerant, a mixed refrigerant of a lower alkane having 1 to 5 carbon atoms and an ether substituted or unsubstituted with fluorine may be used without limitation.
  • the type of the cooling member is not particularly limited, but an indirect cooling method such as a heat exchanger and a cooling jacket, and a direct cooling method such as an inert gas or an inert liquid may be used.
  • the reaction occurs uniformly in the reactor, so that the aromaticity of the hydrogenation reaction product is controlled, and the catalyst life is increased evenly because the load is evenly applied to the upper/lower end of the reactor. It can be improved.
  • the hydrogenation target is a phthalate compound, and hydrogen is added to the benzene ring of the phthalate compound by hydrogenation to convert the corresponding cyclohexane dicarboxylate compound.
  • the phthalate compound may be at least one selected from phthalate, terephthalate, isophthalate, and a carboxylic acid corresponding thereto.
  • the phthalate compound may be represented by Formula 1 as follows.
  • R1 and R1' are each independently different or the same, and hydrogen, 1 to 20 carbon atoms, preferably 4 to 20 carbon atoms, more preferably 5 to 20 carbon atoms, even more preferably 5 to 10 carbon atoms It is a straight-chain or branched-chain alkyl group of.
  • the phthalate compound examples include dibutyl phthalate (DBP), dihexyl phthalate (DHP), dioctyl phthalate (DOP), di-n-octyl phthalate (DnOP; di-n- octyl phthalate), diisononyl phthalate, or diisodecyl phthalate (DIDP), but are not limited thereto. These compounds may be used alone or in combination.
  • the terephthalate compound may be represented by Formula 2 as follows.
  • R2 and R2' are each independently different or the same, and hydrogen, 1 to 20 carbon atoms, preferably 4 to 20 carbon atoms, more preferably 5 to 20 carbon atoms, even more preferably 5 to 10 carbon atoms It is a straight-chain or branched-chain alkyl group of.
  • terephthalate compound examples include dibutyl terephthalate (DBTP), dioctyl terephthalate (DOTP), diisononyl terephthalate (DINTP), or diisodecyl terephthalate (DIDTP). ; diisodecyl terephthalate), but is not limited thereto. These compounds may be used alone or in combination.
  • the isophthalate compound may be represented by Chemical Formula 3 as follows.
  • R3 and R3' are each independently different or the same, and hydrogen, 1 to 20 carbon atoms, preferably 4 to 20 carbon atoms, more preferably 5 to 20 carbon atoms, even more preferably 5 to 10 carbon atoms It is a straight-chain or branched-chain alkyl group of.
  • isophthalate compound examples include dibutyl isophthalalate (DBIP), dioctyl isophthalate (DOIP), diisononyl isophthalate (DINIP), or diisodecyl isophthalate (DIDIP). ; diisodecyl isophthalate) and the like, but are not limited thereto. These compounds may be used alone or in combination.
  • dioctyl terephthalate may be used as the phthalate compound.
  • the purity of the phthalate compound may be about 99% or more, preferably about 99.5% or more, more preferably about 98% or more, but is not limited thereto, and commercially available phthalate compounds of all quality and purity may be used. .
  • the hydrogenation process of the phthalate compound can be carried out in a liquid or gaseous phase.
  • a hydrogenation reaction may proceed in a liquid state of the phthalate compound and a gaseous state of hydrogen.
  • the temperature and pressure conditions of the gaseous raw material and liquid raw material introduced into the reactor are not particularly limited, but the gaseous raw material is about 100 to about 200 bar, preferably about 130 to about 160 bar, and about 100 to about 200 °C , Preferably it can be adjusted to be in the range of about 130 to about 180 °C, the liquid raw material is about 100 to about 200 bar, preferably about 130 to about 160 bar pressure and about 100 to about 200 °C, preferably It can be adjusted to be in the range of about 130 to about 180 °C.
  • the step of increasing the pressure and temperature of the liquid phthalate compound before the reaction further including, supplying the elevated and elevated liquid phthalate compound and gaseous hydrogen to the reactor filled with the hydrogenation catalyst, and the reactor Within the hydrogenation catalyst, the elevated pressure and temperature of the liquid phthalate compound and gaseous hydrogen may be reacted.
  • the average temperature and the maximum-minimum temperature deviation inside the reactor must be adjusted as described above.
  • the hydrogenation catalyst may include a transition metal as an active ingredient, and preferably include at least one selected from the group consisting of ruthenium (Ru), palladium (Pd), rhodium (Rh), and platinum (Pt). have.
  • ruthenium Ru
  • Pd palladium
  • Rh rhodium
  • Pt platinum
  • Such a hydrogenation catalyst may be used by being supported on a carrier, and in this case, a carrier known in the art may be used without limitation. Specifically, carriers such as zirconia (ZrO 2 ), titania (TiO 2 ), alumina (Al 2 O 3 ), and silica (SiO 2 ) may be used.
  • a carrier known in the art may be used without limitation.
  • carriers such as zirconia (ZrO 2 ), titania (TiO 2 ), alumina (Al 2 O 3 ), and silica (SiO 2 ) may be used.
  • the amount of the active ingredient of the hydrogenation catalyst is preferably 3 parts by weight or less, 2 parts by weight or less, or 1 part by weight or less, and 0.1 parts by weight or more, or 0.3 It may be greater than or equal to parts by weight. If the amount of the hydrogenation catalyst exceeds 3 parts by weight based on 100 parts by weight of the carrier, the reaction proceeds rapidly on the surface of the catalyst, and in this process, side reactions may also increase, causing a problem that the amount of by-products rapidly increases, and 0.1 parts by weight If it is less than, the above range is preferable because the amount of catalyst may be insufficient and the yield of the hydrogenation reaction may decrease.
  • the hydrogenation reaction conditions are not particularly limited, but for example, the reaction pressure may be 50 bar or more, or 100 bar or more, or 130 bar or more, and 220 bar or less, or 200 bar or less, or 180 bar or less. If the reaction pressure is less than 50 bar, the reaction does not occur well, an excessive amount of catalyst is consumed, and there may be various problems such as an increase in by-products due to too long residence time. If the reaction pressure exceeds 200 bar, the process is operated. In this case, energy such as excessive power is required, and there may be a problem of greatly increasing the manufacturing cost of equipment such as a reactor, so the above range is preferable.
  • the produced liquid hydrogenation reaction product and the unreacted gaseous raw material are separated.
  • the separated gaseous raw material may be recycled to the hydrogenation process.
  • the recovered hydrogenation reaction product can be finally separated through a depressurization and cooling process.
  • the hydrogenation reaction device may include a heat exchanger (a, b), a reactor (c), and a gas-liquid separator (d).
  • the heat exchangers (a, b) serve to raise the temperature of the gaseous raw material 1 and the liquid raw material 3 before being introduced into the reactor c, and may be omitted if necessary.
  • the gaseous raw material 2 and the liquid raw material 4 are introduced into a tube-shaped reactor c filled with a hydrogenation catalyst therein, and a hydrogenation reaction proceeds.
  • the reactor may further include an outer jacket for heat removal in order to control the reaction heat.
  • the gaseous raw material 2 may be supplied from the upper end or the lower end of the reactor, and the liquid raw material 4 may be supplied from the upper end of the reactor.
  • reaction mixture (5) from the reactor (c) is transferred to a gas-liquid separator (d), where a liquid reaction product (7) and an unreacted product (6) in a gas phase are separated.
  • the separated reaction product 7 can be recovered and subjected to further purification, and the gaseous unreacted product 6 is circulated for discharge or reuse.
  • the hydrogenation method of the present invention is not limited to the apparatus and process sequence shown in FIG. .
  • a product whose aromaticity is controlled according to the hydrogenation method of one embodiment has low viscosity and surface mobility, and relatively little leaching to the product surface even when used for a long period of time, thus exhibiting excellent properties as a plastic plasticizer.
  • the hydrogenated phthalate or terephthalate compound thus prepared can be usefully used as a plasticizer.
  • the plasticizer containing the phthalate or terephthalate compound may be suitably used as a plasticizer of a resin selected from polystyrene, polyurethane, polybutadiene, silicone, thermoplastic elastomer, or copolymers thereof.
  • the resin composition containing the resin can be used in a variety of products.
  • it can be used in products such as stabilizers, paints, inks, liquid foaming agents (Masterbatch), and adhesives.
  • food packaging film e.g., wrap
  • industrial film compound, decor sheet, decor tile, soft sheet, hard sheet, wire and cable, wallpaper, foam mat, leather, flooring, tarpaulin, gloves, sealant, refrigerator Gaskets, hoses, medical devices, geogrids, mesh tarpaulins, toys, stationery, insulation tapes, clothing coatings, PVC labels used for clothing or stationery, bottle cap liners, industrial or other use caps, artificial baits, etc.
  • It may be used in the manufacture of parts (eg, sleeves) in electronic devices, automobile interior materials, adhesives, coatings, etc., but is not limited thereto.
  • a ruthenium (Ru) catalyst was used as a hydrogenation catalyst, and a reaction zone was formed by filling the hydrogenation catalyst in a single tube reactor, and the length of the reaction zone was unified to 1.5 m.
  • the ruthenium (Ru) catalyst the ruthenium content is 0.5 parts by weight relative to 100 parts by weight of the alumina (Al 2 O 3 ) carrier, and the size of the cylinder type is 3 mm in diameter and 3 mm in height, Examples 1 to 5 Used in common.
  • an inert bead made of an alumina material was filled to form a mixed region.
  • the inner diameter of the mixed region formed in Examples 1 to 5 was the same as 0.02646 m, but the length was 0.1 m (Example 1), 0.3 m (Example 2), and 0.5 m (Example 3) according to Table 1 below. ), 1 m (Example 4), and 1.5 m (Example 5).
  • a cooling fluid (Therminol 55) was flowed into the outer jacket of the reactor, and the temperature of the reactor during the reaction was controlled to satisfy 150°C, while the raw material was used as the mixing zone. Were supplied.
  • the flow rate of the liquid raw material was 9.6 kg/hr
  • the flow rate of hydrogen was 2757 NLPH.
  • a ruthenium (Ru) catalyst was used as a hydrogenation catalyst, and a reaction zone was formed by filling the hydrogenation catalyst in a single tube reactor, but the length of the reaction zone was unified to 1.5 m.
  • the ruthenium (Ru) catalyst the ruthenium content is 0.5 parts by weight relative to 100 parts by weight of the alumina (Al 2 O 3 ) carrier, and the size of the cylinder type is 3 mm in diameter and 3 mm in height, Examples 1 to 5 Used in common.
  • reaction zone On the reaction zone, a separate mixing zone was not formed, and each liquid raw material and gaseous raw material were independently supplied directly to the reaction zone.
  • DOP dioctyl terephthalate
  • 2-EH 2-ethyl hexanol
  • the liquid raw material and hydrogen mixed in a volume ratio of 2-EH) were respectively injected into the reactor, and hydrogenation was performed at a reaction pressure of 150 barg and a temperature of 150°C.
  • the flow rate of the liquid raw material was 9.6 kg/hr
  • the flow rate of hydrogen was 2757 NLPH.
  • the axial linear velocity of raw materials moving through the mixing region (m/s): This is the total volume flow rate (m 3 /hr) of the liquid raw material and the gaseous raw material divided by the inner diameter of the mixing region.
  • the Reynolds number of the mixed raw material as the ratio of the "force by inertia” and the “force by viscosity” of the fluid, and is a value calculated by the following equation:
  • the time for the raw material to stay in the region increases, and the amount of the gaseous hydrogen dissolved in the liquid phthalate may increase by the increased time.
  • a reaction zone was formed by filling the hydrogenation catalyst in a single tube reactor, and the length of the reaction zone was 1.5 m.
  • the length was the same as 2 m, but according to Table 2 below, the inner diameter was different.
  • Example 6 2 0.03704 0.0032 15.2 1.1 46 0.001186
  • Example 7 2 0.03440 0.0037 17.2 1.1 40 0.001022
  • Example 8 2 0.03175 0.0043 19.8 1.1 34 0.000871
  • Example 9 2 0.02911 0.0051 22.9 1.2 31 0.000798
  • Example 10 2 0.02646 0.0053 26.9 1.3 28 0.000715
  • Example 11 2 0.02117 0.0097 39.1 1.5 21 0.000528
  • Example 12 2 0.01852 0.0127 48.8 1.6 17 0.000431
  • Example 13 2 0.01588 0.0172 63.1 1.7 13 0.000337

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Combustion & Propulsion (AREA)
  • Materials Engineering (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

본 발명은 프탈레이트 화합물의 수소화 방법에 관한 것이다. 구체적으로, 본 발명의 일 구현예에서는, 액상의 프탈레이트 화합물 및 기상의 수소를 미리 혼합(pre-mixing)한 뒤, 그 혼합 원료를 트리클 유동 반응기의 반응 영역에 공급하여 반응하도록 한다.

Description

프탈레이트 화합물의 수소화 방법
관련 출원(들)과의 상호 인용
본 출원은 2019년 10월 14일자 한국 특허 출원 제10-2019-0126748호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
본 발명은 프탈레이트 화합물의 수소화 방법에 관한 것이다.
프탈레이트(phthalate)계 화합물은 플라스틱, 특히 폴리염화비닐(PVC)의 가소제로 널리 사용되는 물질이다. 예를 들면 전기전자제품, 의약품, 페인트 안료, 윤활제, 바인더, 계면활성제, 접착제, 타일, 식품용기, 포장재 등 실로 그 사용 용도가 매우 다양하다.
그러나 몇몇 프탈레이트 화합물이 환경오염 및 인간의 내분비계 장애 문제를 초래할 수 있는 물질로 알려지면서 유럽, 미국 등 선진국을 중심으로 사용 규제가 강화되고 있다.
특히, 프탈레이트계 가소제 중 디(2-에틸헥실)프탈레이트 (di(2-ethylhexyl) phthalate, DEHP)), 부틸 벤질 프탈레이트(butyl benzyl phthalate, BBP), 디-n-부틸 프탈레이트 (di-n-butyl phthalate, DBP)와 같은 일부 제품은 사람의 호르몬 작용을 방해하거나 혼란시키는 내분비계 교란물질(endocrine disrupter)로서 환경 호르몬으로 의심받고 있어 이를 규제하는 움직임이 있다.
이에, 종래의 가소제와 동등한 성능을 나타내면서도 환경 호르몬 논쟁에서 자유로운 친환경 가소제가 연구 개발되고 있고, 그 일환으로 프탈레이트 화합물에 포함되어 있는 벤젠 고리를 수소화한(hydrogenation) 화합물을 이용하는 방안이 알려졌다.
구체적으로, 트리클 유동 반응기(Trickle Bed Reactor, TBR)를 이용하여 액상의 프탈레이트 화합물과 기상의 수소를 반응시키는 방법이 제시된 바 있다. 여기서 트리클 유동 반응기는, 촉매가 충진된 반응 영역(즉, 촉매층)을 구비하여, 그 반응 영역에 공급된 액상 원료가 중력에 의해 하향 이동하고, 기상 원료가 하향 또는 상향 이동하는 거동을 이용한 반응기이다.
다만, 트리클 유동 반응기를 이용함에 있어서, 프탈레이트 화합물의 높은 분자량 및 이에 대한 수소의 낮은 용해도는, 반응 영역 상단부에서의 반응성을 저하시키고, 전체적인 공정 효율 및 경제성을 저해하며, 프탈레이트 화합물의 반응 전환율을 낮추는 요인이 된다.
본 발명은 트리클 유동 반응기를 이용하여 프탈레이트 화합물을 수소화함에 있어서, 그 반응 영역 상단부에서 나타나는 반응성 저하 현상을 해결하고, 전체적인 공정 효율 및 경제성을 개선하며, 프탈레이트 화합물의 반응 전환율을 높이기 위한 것이다.
본 발명의 일 구현예에서는, 위와 같은 과제를 해결하기 위해, 액상의 프탈레이트 화합물 및 기상의 수소를 미리 혼합(pre-mixing)한 뒤, 그 혼합 원료를 트리클 유동 반응기의 반응 영역에 공급하여 반응하도록 한다.
상기 일 구현예에 따르면, 액상의 프탈레이트 화합물 및 기상의 수소를 미리 혼합하여 충분한 용존 수소량을 확보한 뒤, 그 혼합 원료를 트리클 유동 반응기 내의 반응 영역에 공급하여 반응하도록 할 수 있다.
이로써, 트리클 유동 반응기 내 반응 영역 상단부에서의 반응성을 향상시키고, 수소화 반응의 전체적인 공정 효율 및 경제성을 개선하며, 프탈레이트 화합물의 반응 전환율을 높일 수 있다.
도 1은 본 발명의 수소화 방법에 사용되는 수소화 반응 장치를 간략히 도시한 도면이다.
본 발명은 다양한 변환을 가할 수 있고 여러 가지 실시예를 가질 수 있는 바, 특정 실시예들을 예시하고 상세하게 설명하고자 한다. 그러나, 이는 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변환, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. 본 발명을 설명함에 있어서 관련된 공지 기술에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다.
또한, 이하에서 사용될 제 1, 제 2 등과 같이 서수를 포함하는 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되지는 않는다. 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다. 예를 들어, 본 발명의 권리 범위를 벗어나지 않으면서 제 1 구성요소는 제2 구성요소로 명명될 수 있고, 유사하게 제 2 구성요소도 제 1 구성요소로 명명될 수 있다.
단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 출원에서, "포함하다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
이하, 도면을 참조하여 본 발명의 프탈레이트 화합물의 수소화 방법을 상세히 설명하도록 한다.
앞서 지적한 바와 같이, 특정 온도와 압력에서, 분자량이 큰 프탈레이트 화합물에 대한 수소의 용해도(즉, 포화 상태까지 용해될 수 있는 수소의 양) 자체가 낮다.
더욱이, 분자량이 큰 프탈레이트 화합물은 트리클 유동 반응기(Trickle Bed Reactor, TBR) 내에서 낮은 유동성을 나타내고, 이에 대한 수소의 용해가 느리게 진행되어, 실제로 수소가 포화 상태까지 용해될 때까지 장시간 소요될 수밖에 없다.
이에, 트리클 유동 반응기를 이용함에 있어서, 프탈레이트 화합물의 높은 분자량 및 이에 대한 수소의 낮은 용해도는, 반응 영역 상단부에서의 반응성을 저하시키고, 전체적인 공정 효율 및 경제성을 저해하며, 프탈레이트 화합물의 반응 전환율을 낮추는 요인이 된다.
본 발명의 일 구현예에서는, 위와 같은 문제를 해결하기 위해,
레이놀즈 수가 1 내지 300인 조건 하에서, 수소를 포함하는 기상 원료; 및 프탈레이트 화합물을 포함하는 액상 원료;의 혼합 원료를 제조하는 단계, 그리고
트리클 유동 반응기 내의 수소화 촉매가 충진된 반응 영역에서, 상기 혼합 원료를 반응시키는 단계를 포함하는,
프탈레이트 화합물의 수소화 방법을 제공한다.
상기 일 구현예는, 수소를 포함하는 기상 원료; 및 프탈레이트 화합물을 포함하는 액상 원료;를 미리 혼합(pre-mixing)하여 충분한 용존 수소량을 확보한 뒤 그 혼합 원료를 트리클 유동 반응기 내의 반응 영역에 공급하여 반응하게 함으로써, 그 반응 영역 상단부에서의 반응성을 향상시키는 방법에 해당된다.
나아가, 상기 일 구현예에 따라 트리클 유동 반응기 내 반응 영역 상단부에서의 반응성을 향상시키는 것은, 액상의 프탈레이트 화합물 및 기상의 수소를 미리 혼합하지 않고 각각 독립적으로 상기 트리클 유동 반응기 내의 반응 영역에 공급하는 경우와 대비하여, 수소화 반응의 전체적인 공정 효율 및 경제성을 개선하며, 프탈레이트 화합물의 반응 전환율을 높일 수 있는 방법이 된다.
이하, 상기 일 구현예를 보다 상세히 설명한다.
혼합 원료의 레이놀즈 수
상기 혼합 원료를 제조하는 단계에서, 혼합 수단을 제한하지는 않는다.
구체적으로, 상기 트리클 유동 반응기와 독립적인 혼합 장치를 사용하거나, 상기 트리클 유동 반응기 내 형성된 혼합 영역을 사용하는 등, 어떠한 방법을 이용하더라도 용존 수소량이 높은 혼합 원료를 얻는 데 제약이 되지 않는다.
다만, 용존 수소량이 높은 혼합 원료를 얻는 데 지나치게 긴 시간이 소요된다면, 공정 효율은 낮아지고 비용은 증가하기 때문이다.
다만, 상기 일 구현예에서, 상기 원료들을 미리 혼합하는 시간을 단축시키기 위해, 레이놀즈 수가 1 내지 300인 조건 하에서 상기 원료들을 혼합한다.
여기서 ""레이놀즈 수(Reynold's number, N RE)"는 일반적으로 유체의 유동성을 수치화하기 위해 사용되는 용어이며, 레이놀즈 수가 클수록 유동성이 높음을 의미한다. 구체적으로, 본 명세서에서 "레이놀즈 수(Reynold's number, N RE)"는 유체의"관성에 의한 힘"과 "점성에 의한 힘"의 비로서, 당업계에 일반적으로 알려진 하기 수학식 1로 계산될 수 있다.
[수학식 1]
Figure PCTKR2020010583-appb-img-000001
μ: 점도 ρ: 밀도 u z: 축방향의 선속도 D p: 유로의 직경
구체적으로, 유체의 흐름에서 점성에 의한 힘이 클수록 유체의 원자가 흐름 방향으로 각각 평행하는 이동 상태에 있는 흐름인 층류를 형성하고, 관성에 의한 힘이 클수록 유체의 원자가 흐름 방향에 대해 무작위로 움직이는 난류를 형성한다. 레이놀즈 수는 관 내의 흐름 상태가 층류인지 난류인지를 판정할 때 사용되는 값으로서, 레이놀즈 수가 약 2000 이하인 경우 층류, 2000을 초과할 경우 난류로 판정한다. 즉, 유체의 레이놀즈 수가 낮을수록 흐름이 흐트러지지 않고 일정함을 의미한다.
이와 관련하여, 레이놀즈 수 1 미만으로 유동성이 낮은 조건에서 상기 원료들을 혼합하면, 혼합 원료 내 용존 수소량이 포화 농도(즉 수소의 용해도)에 도달할 때까지 장시간 소요되어 비효율적이며, 설비 크기 등이 문제되어 공정 비용이 증가될 수 있다.
한편, 레이놀즈 수 300를 초과하는 범위에서는 혼합 원료 내 용존 수소량이 포화 농도에 도달할 때까지 소요되는 시간의 차이가 미미한 반면, 높은 유동성을 형성하기 위한 공정 비용이 증가하므로, 이와 같은 조건은 지양하는 바이다.
그에 반면, 레이놀즈 수 1 내지 300인 조건에서 상기 원료들을 혼합할 때에는 적정 수준의 유동성이 형성되어, 혼합 원료 내 용존 수소량이 포화 농도에 도달할 때까지 소요되는 시간이 감소할 수 있다.
또한, 이 범위 내에서 레이놀즈 수가 증가할수록, 용존 수소량이 포화 농도에 도달하는 시간을 줄여, 이 공정을 위해 소비되는 시간을 줄이는 이점을 취할 수 있다.
다만, 상기 범위는 예시일 뿐이며, 상기 원료들의 혼합할 때, 레이놀즈 수 1 이상, 또는 5 이상, 또는 10 이상, 또는 20 이상이면서, 300 이하, 100 이하, 또는 90 이하, 또는 80 이하, 또는 70 이하, 또는 65 이하인 조건으로 변경할 수 있다.
원료의 혼합 시간
상기 일 구현예에서는, 레이놀즈 수가 1 내지 300인 조건 하에서 상기 원료들을 혼합함으로써, 이들을 1 내지 500 초의 단시간 내 혼합하더라도 충분한 용존 수소량을 확보할 수 있다.
상기 원료들의 혼합할 때, 1 내지 300의 범위 내에서 레이놀즈 수를 변경함으로써 혼합 시간을 제어하는 것도 가능하다.
다만, 상기 원료들의 혼합 시간은 혼합 방법, 장치 등에 따라 달라질 수 있고, 이에 대한 상세한 설명은 후술하기로 한다.
원료의 혼합 방법
상기 혼합 원료를 제조하는 단계에서, 혼합 수단을 제한하지는 않음을 앞서 설명한 바 있다.
구체적으로, 상기 혼합 원료를 제조하는 단계는, 상기 트리클 유동 반응기와 독립적인 혼합 장치를 이용하거나, 상기 트리클 유동 반응기 내의 수소화 촉매가 충진된 반응 영역 상에 비활성 비드가 충진된 영역을 이용하여 수행될 수 있고, 그 어떠한 방법을 이용하더라도 용존 수소량이 높은 혼합 원료를 얻는 데 제약이 되지 않는 것이다.
예컨대, 상기 트리클 유동 반응기와 독립적인 혼합 장치로는, 일반적으로 알려진 유체의 혼합 장치인 라인 믹서(line mixer)를 사용할 수 있다.
이는 상기 반응 영역과 물리적으로 독립된 것으로, 이러한 혼합 장치를 이용하여 제조된 혼합 원료를 회수하여 상기 반응 영역으로 공급하거나, 상기 혼합 장치와 상기 반응기를 물리적으로 연결하는 관을 설치하여 상기 혼합 장치로부터 배출된 혼합 원료를 상기 트리클 유동 반응기의 반응 영역으로 공급할 수도 있다.
한편 상기 트리클 유동 반응기 내의 수소화 촉매가 충진된 반응 영역 상에 비활성 비드가 충진된 영역을 형성하고, 이와 같은 혼합 영역 내에서 상기 원료들을 혼합할 수 있도 있다.
상기 비활성 비드가 충진된 혼합 영역 상으로 상기 원료들을 공급하면, 상기 원료들이 중력에 의해 상기 혼합 영역 상단부로부터 하단부로 이동하는 과정에서 혼합된 후, 상기 혼합 영역과 물리적으로 연결된 상기 반응 영역으로 연속적으로 공급될 수 있다.
공정 효율 및 비용 측면에서, 상기 반응 영역과 물리적으로 독립된 혼합 장치보다는, 상기 반응 영역과 물리적으로 연결되며 비활성 비드가 충진된 혼합 영역을 이용하여 상기 원료들을 혼합하는 것이 유리할 수 있다.
이하, 상기 트리클 유동 반응기 내 형성된 혼합 영역을 더 상세히 설명한다.
비활성 비드(inert bead)
상기 트리클 유동 반응기 내 혼합 영역을 형성하기 위한 비활성 비드는, 이에 의한 혼합 및 이후의 수소화 반응에 영향을 미치지 않는 불활성 물질로 이루어진 것이라면, 특별히 제한되지 않는다.
비제한적인 예로, 상기 비활성 비드는 ZrO 2, SiO 2, Al 2O 3, Na 2O, MgO, CaO, K 2O, Fe 2O 3, 및 TiO 2를 포함하는 금속 세라믹 군; Li 2O-Al 2O 3-SiO 2 계, MgO-Al 2O 3-SiO 2 계, 및 ZnO-Al 2O 3-SiO 2 계를 포함하는 결정질 유리 세라믹 (glass-ceramic) 군; 및 SiO 2-Na 2O계를 포함하는 비정질 유리(glass) 군;을 포함하는 비활성(ineart) 물질 중에서 선택되는 어느 하나로 이루어진 것일 수 있다.
원료 혼합 시간 (혼합 영역 내 체류 시간)
상기 비활성 비드로 충진된 혼합 영역을 활용하여 혼합하는 경우, 상기 원료들이 상기 혼합 영역에 체류하는 시간(residence time)이 곧 상기 원료들의 혼합 시간이 될 수 있다.
보다 구체적으로, 상기 혼합 영역 내 원료들의 체류 시간은, 상기 원료들이 상기 혼합 영역으로 유입되어 상기 반응 영역으로 완전히 유출되는 데 소요되는 시간으로, 상기 비활성 비드가 충진된 영역(즉, 혼합 영역)이 길이에 의해 영향을 받을 수 있다.
상기 일 구현예에서는 이를 특별히 제한하지 않지만, 상기 혼합 영역 내 원료들의 체류 시간, 즉 상기 원료들의 혼합 시간을 1 내지 500 초 범위 내에서 조절 가능할 수 있다. 예컨대, 그 하한은 1초 이상, 1.3초 이상, 1.5초 이상, 1.7초 이상, 1.9초 이상, 2.0초 이상, 또는 2.1 초 이상일 수 있고, 상한은 500초 이하, 400초 이하, 300초 이하, 200초 이하, 100초 이하, 50초 이하, 40초 이하, 35초 이하, 또는 33초 이하일 수 있다.
상기 원료들의 혼합 시간을 상기 범위로 할 때, 충분한 용존 수소량과 적정 범위의 유동성을 가지는 혼합 원료가 제조될 수 있고, 이를 반응 영역에 공급함으로써 반응 영역 상단부에서의 반응성 및 반응 효율을 향상시키고, 전체적인 공정 효율 및 경제성을 개선하며, 프탈레이트 화합물의 반응 전환율을 향상시킬 수 있다.
여기서, 상기 혼합 원료 내 용존 수소량은 액상의 프탈레이트에 용해된 기상의 수소의 농도 값이고, 상기 포화 농도는 하기 식 1에 의한 계산 값일 수 있으며, 하기 식 1은 헨리의 법칙을 따른다:
[식 1] G (aq)=K · P G
상기 식 1에서, K는 상기 측정 시 온도에서 상기 수소의 기체 상수이고, 상기 P G는 상기 혼합 원료 내 수소의 부분압이다.
수소화 반응
상기 원료의 혼합 방법과 무관하게, 상기 수소화 촉매가 충진된 반응 영역에 상기 혼합 원료를 공급하여, 상기 혼합 원료 중의 프탈레이트 화합물을 수소와 반응시키는 단계는, 상기 반응 영역의 상단부로 상기 혼합 원료가 공급되는 단계, 및 상기 혼합 원료가 상기 반응 영역의 상단부로부터 하단부로 이동하면서, 상기 수소화 촉매의 존재 하에 반응하는 단계를 포함할 수 있다.
상기 반응 영역 투입 시 혼합 원료의 온도 및 압력 조건은 특별히 제한되는 것은 아니나, 일반적으로 투입되는 원료는 수소화 반응조건과 동일한 압력을 가지며, 온도 조건의 경우 수소화 반응 조건과 동일한 온도를 가지도록 하며, 상황에 따라 반응기 내 발열 정도를 제어하기 위하여 수소화 반응 조건보다 낮은 온도를 가지도록 할 수 있다.
한편, 본 명세서에서, 수소화 반응 전환율은, 상기 액상 원료의 프탈레이트 화합물 (100 몰%) 중, 상기 원료 혼합 단계 및 상기 수소화 반응 단계를 거쳐 수소화 반응 생성물로 전환되는 프탈레이트 화합물의 몰%로 정의된다.
상기 일 구현예에 따르는 한, 적어도 43 % 이상, 예컨대 43.5% 이상, 43.7% 이상, 43.7% 이상, 또는 44.0% 이상의 수소화 반응 전환율은 확보될 수 있다. 상기 혼합 영역의 상대적 길이가 상기 범위 내에서 증가되면, 수소화 반응 전환율도 증가할 수 있고, 최대 전환율은 99% 이하, 95% 이하, 90% 이하일 수 있다.
액상 원료에 더 포함되는 물질
상기 원료 공급 단계에서 상기 반응기의 혼합 영역으로 공급되는 액상 원료는, 탄소수 2 내지 12의 알코올을 더 포함하는 것일 수 있다.
상기 알코올은 탄소수 2개 이상의 알코올, 예를 들어 탄소수 2 내지 12, 바람직하게는 탄소수 2 내지 10의 지방족 알코올인 에탄올, n-프로판올, 이소프로판올, n-부탄올, 이소부탄올, 펜탄올, 헥사놀, 헵탄올, 옥탄올(n-octanol, 2-ethylhexanol), 노나놀, 데칸올, 운데칸올, 도데칸올 등에서 선택되는 1종 또는 이의 혼합물을 사용할 수 있다.
사용 가능한 알코올은 반응 대상물인 프탈레이트 화합물의 구체적인 종류에 따라 다르게 선택할 수 있다. 예를 들어, 디옥틸 테레프탈레이트를 대상으로 수소화 반응을 진행할 때, 상기 알코올 중 에탄올, 부탄올 또는 옥탄올과 같은 탄소수 2 내지 8의 알코올을 사용할 때 촉매의 반응성 향상 및 수명 연장 효과가 더욱 높아질 수 있다.
본 발명에 따르면 상기 알코올은 상기 프탈레이트 화합물과 혼합되어 반응기에 공급되기 전의 액상 상태에서는 혼합물의 점도를 낮추어 액상 상태의 혼합물의 흐름을 좋게 한다. 또한, 전술한 반응기에 공급되어 반응 영역에 이른 후 상기 프탈레이트 화합물의 수소화 반응이 진행되는 동안 반응열을 흡수하여, 상기 반응열에 의한 고온 발생을 억제하는 역할을 한다. 더하여, 수소화 촉매 표면에 얇은 막을 형성하게 함으로써, 촉매의 반응성을 향상시키고, 원료인 프탈레이트 화합물 내에 함유되어 있는 금속 이온, 금속염 화합물 또는 기타 불순물 성분이 촉매에 물리적, 화학적으로 흡착하는 것을 억제하여 촉매의 수명을 연장시킬 수 있다.
상기 알코올은 반응물인 상기 프탈레이트 화합물 100 중량부에 대하여 약 5 내지 약 60 중량부, 바람직하게는 약 10 내지 약 50 중량부, 보다 바람직하게는 약 10 내지 약 40 중량부로, 더욱 바람직하게는 약 10 내지 30 중량부로 포함될 수 있다. 상기 알코올이 5 중량부 미만으로 적게 포함되면, 촉매 성능 향상 효과가 거의 나타나지 않고, 60 중량부를 초과하여 너무 많이 포함될 경우에는, 반응기 사이즈를 증가시킬 필요가 있고, 분리 공정에서 많은 에너지가 소모되어 경제성이 낮아질 수 있다.
본 발명의 일 실시예에 따르면, 상기 알코올에 더하여, 수소화 반응의 반응 생성물인 사이클로헥산 디카르복실레이트 화합물을 더 혼합하여 수소화 반응을 진행할 수도 있다. 이와 같이 반응 생성물을 더 혼합하여 반응을 진행할 경우, 반응기 내 격렬한 반응을 억제하여, 반응 온도 제어 및 촉매 상의 국부적인 촉매 성능 저하가 발생하는 현상을 줄일 수 있다.
상기 프탈레이트 화합물과 알코올은 전술한 반응기에 투입하기 전, 균일한 농도가 되도록 혼합하는 단계를 더 거칠 수 있다.
본 발명의 일 실시에 따르면, 상기 프탈레이트 화합물과 알코올은 반응기에 투입하기 전에는 혼합되며, 상기 프탈레이트 화합물과 알코올을 포함하는 혼합물을 승압 및 승온하여 반응기 내에 투입할 수 있다.
보다 구체적으로, 상기 프탈레이트 화합물과 알코올을 포함하는 혼합물을 승압 및 승온하는 단계는 동시에 또는 순서대로 수행될 수 있으며, 한번에 또는 복수의 단계로 여러 번에 걸쳐 승압 및 승온함으로써 원하는 압력과 온도에 도달할 수도 있다. 예를 들어, 먼저 프탈레이트 화합물과 알코올을 포함하는 혼합물의 압력을 높이고, 승압된 혼합물을 승온시켜 적절한 점도를 갖는 액상 상태로 반응기에 유입할 수 있다. 본 발명의 일 실시예에 따르면, 상기 혼합물의 점도는 상기 반응기로 유입될 때의 압력 및 온도 조건 범위에서 약 0.5 내지 약 20.0 cps일 수 있다. 혼합물의 점도가 상기 범위 내에 있을 때, 전술한 반응기 내에서 적절한 흐름성 및 반응성을 나타낼 수 있다.
전술한 반응기 내로 유입되기 위해 승압하는 목표 압력은 약 50 내지 약 500 bar, 바람직하게는 약 100 내지 약 300 bar일 수 있다. 압력이 50 bar 미만이면 반응성이 떨어지게 되어 원하는 수준의 전환율을 얻기 어려우며, 500 bar를 초과하여 너무 높을 경우 반응기 제작이 어렵거나, 제작 비용이 크게 증가 할 수 있다.
또한, 전술한 반응기 내로 유입되기 위해 승온하는 목표 온도는 약 50 내지 약 500℃, 바람직하게는 약 100 내지 약 300℃의 범위일 수 있다. 온도가 50℃ 미만이면, 낮은 온도로 인해 촉매가 미활성화되고, 혼합물의 점도가 높아 반응기 내 흐름이 나빠지고, 액상 상태에 있는 프탈레이트 화합물과 알코올에 대한 수소의 침투성이 낮아져서 반응기 내에서도 반응이 제대로 일어나지 않게 되며, 온도가 500℃를 초과하여 너무 높을 경우 반응물의 분해가 많이 발생하고, 반응기 제작에 어려움이 있으며, 급격한 반응으로 제열 등이 어려워질 수 있다.
상술한 과정에 의해 승압 및 승온된 프탈레이트 화합물과 알코올을 포함하는 혼합물은 전술한 반응기 내로 유입된다. 또한, 별도의 공급 라인을 통해 기체 상태의 수소(H 2)가 반응기 내로 유입되어 수소화 반응이 수행된다.
이때, 수소의 압력 및 온도 조건은 상기 프탈레이트 화합물과 알코올을 포함하는 혼합물의 온도 및 압력 조건과 동일하게, 약 50 내지 약 500 bar, 바람직하게는 약 100 내지 약 300 bar의 압력 및 약 50 내지 약 500℃, 바람직하게는 약 100 내지 약 300℃의 범위가 되도록 조절할 수 있다.
반응기 내 온도 편차 및 반응량의 제어
수소화 반응 중 반응기의 단위 길이(m) 당 온도 편차가 3 ℃이하, 예컨대 2 ℃이하로 유지되도록 반응기를 제어함으로써, 국부적인 발열을 회피할 수 있도록 운전할 수 있다. 상기 반응기의 단위 길이 당 온도 편차 값은 낮을수록 좋으므로 그 하한값은 제한되지 않으나, 일례로 1 ℃이상일 수 있으며, 바람직하게는 0 ℃일 수 있다. 이러한 온도 편차는 반응기의 높이에 따라 설치된 다수의 온도 센서로부터 측정될 수 있다.
또한, 상기 수소화 반응 중 촉매가 충진된 반응기의 실제 반응 부피(m 3) 당 최대 반응량을 25 kmol/h 이하, 예컨대 23 kmol/hr 이하로 유지되도록 함으로써, 반응기 내 국부적인 발열이 발생하지 않도록 할 수 있다. 여기서, 반응량은 반응기 높이에 따른 생성물을 각각 샘플링 하여 농도 변화 값을 통해 계산할 수 있다.
이와 같이 반응기 내 반응량을 조절하기 위해서는, 상술한 바와 같이 반응물의 유량이나 농도를 조절하거나, 또는 이를 위하여 반응물과 함께 불활성 기체 (Inert Gas) 또는 불활성 액체(Inert Liquid) 를 첨가하고, 그 양을 조절하는 방법 등이 사용될 수 있다.
예컨대, 상기 반응기에 투입되는 프탈레이트 화합물의 질량 유량, 즉, 촉매가 충진된 반응기의 단위 면적(m 2)당 유량(mass flux)은 10,000 내지 30,000 kg*hr -1*m -2 일 수 있고, 구체적으로 10,000 내지 15,000 kg*hr -1*m -2 일 수 있다.
만일 프탈레이트 화합물의 질량 유량이 단위 면적(m 2)당 10,000 kg*hr -1*m -2 미만이면 원료 투입량이 충분치 않아 생산성이 저하되는 문제가 발생하며, 30,000 kg*hr -1*m -2 를 초과하면 일시에 반응기에 투입되는 액상 원료의 양이 지나치게 많아져 촉매 표면에 액상 원료의 막 두께가 증가하게 되고, 이에 따라 수소의 침투가 어려워져 수소 첨가 반응이 일어나기 어렵게 되며, 부반응이 증가하고, 국부적인 발열이 일어나 반응기 온도 편차가 심화되는 문제가 발생한다.
한편, 부반응을 최소화 하고, 반응 물질 간 비율을 최적화하여 공정 생산성을 향상시키기 위하여, 반응기에 투입되는 수소의 양은 프탈레이트 화합물 1몰에 대하여 3 몰 이상, 또는 4 몰 이상이면서, 300 몰 이하, 또는 100몰 이하, 또는 50 몰 이하, 또는 30 몰 이하일 수 있다.
수소의 양이 프탈레이트 화합물 1 몰에 대하여 3 몰 미만으로 너무 적으면 반응 전환율이 낮아져 95 % 이상의 전환율을 얻을 수가 없고, 300 몰을 초과하여 너무 많으면 수소에 의해 액상 원료의 액적들의 반응기 내 체류시간이 짧아져서 전환율이 낮아지거나, 혹은 부생성물이 증가하거나, 촉매 수명이 급격히 낮아 질 수가 있다. 이러한 관점에서, 상기 수소의 양은 상술한 범위로 제어할 수 있다.
이 외, 상기 반응기 내 온도 편차 및 반응량을 제어하기 위한 방법으로, 상기 반응기 내부 또는 외부에 냉매가 순환되는 냉각부재를 설치하여 반응열을 분산시키는 방법을 사용할 수 있다.
이때, 상기 냉매로는 냉각수, 메탄계 냉매, 불소로 치환 또는 비치환된 탄소수 1 내지 5의 저급 알칸과 에테르의 혼합 냉매 등, 당 업계에 공지된 냉매가 제한 없이 사용될 수 있다. 상기 냉각부재의 종류는 특별히 제한되는 것은 아니나, 열 교환기, 쿨링 자켓 등 간접 냉각 방식과, 불활성 기체, 불활성 액체 등 직접 냉각 방식이 사용될 수 있다.
이처럼 반응기 내 온도 편차를 제어하여 수소화 반응을 수행할 경우, 반응기 내에서 균일하게 반응이 일어나게 되어 수소화 반응 생성물의 방향족성이 제어될 뿐만 아니라, 반응기 상/하단부 촉매에 골고루 부하가 일어나므로 촉매 수명이 향상될 수 있다.
수소화 반응 대상물(프탈레이트 화합물)
상기 수소화 반응 대상물은 프탈레이트 화합물이며, 수소화 반응(hydrogenation)에 의해 상기 프탈레이트 화합물의 벤젠 고리에 수소가 첨가되어 이에 상응하는 사이클로헥산 디카르복실레이트 화합물로 전환되는 반응이다.
상기 프탈레이트 화합물은 프탈레이트(phthalate), 테레프탈레이트(terephthalate), 이소프탈레이트(isophthalate) 및 이에 상응하는 카르복실산 화합물(carboxylic acid) 중 선택되는 1종 이상일 수 있다.
먼저, 상기 프탈레이트 화합물은 하기와 같은 화학식 1로 표시될 수 있다.
[화학식 1]
Figure PCTKR2020010583-appb-img-000002
상기 화학식 1에서, R1 및 R1'는 각각 독립적으로 상이하거나 동일하며, 수소, 탄소수 1 내지 20, 바람직하게는 탄소수 4 내지 20, 보다 바람직하게는 탄소수 5 내지 20, 더욱 바람직하게는 탄소수 5 내지 10의 직쇄 또는 분지쇄 알킬기이다.
상기 프탈레이트 화합물의 구체적인 예로는 디부틸 프탈레이트(DBP; dibutyl phthalate), 디헥실 프탈레이트(DHP; dihexyl phthalate), 디옥틸 프탈레이트(DOP; dioctyl phthalate), 디-n-옥틸 프탈레이트(DnOP; di-n-octyl phthalate), 디이소노닐 프탈레이트(diisononyl phthalate), 또는 디이소데실 프탈레이트(DIDP; diisodecyl phthalate) 등을 들 수 있으나, 이에 제한되는 것은 아니다. 이들 화합물은 단독으로 또는 혼합하여 사용할 수 있다.
상기 테레프탈레이트 화합물은 하기와 같은 화학식 2로 표시될 수 있다.
[화학식 2]
Figure PCTKR2020010583-appb-img-000003
상기 화학식 2에서, R2 및 R2'는 각각 독립적으로 상이하거나 동일하며, 수소, 탄소수 1 내지 20, 바람직하게는 탄소수 4 내지 20, 보다 바람직하게는 탄소수 5 내지 20, 더욱 바람직하게는 탄소수 5 내지 10의 직쇄 또는 분지쇄 알킬기이다.
상기 테레프탈레이트 화합물의 구체적인 예로는 디부틸 테레프탈레이트(DBTP; dibutyl terephthalate), 디옥틸 테레프탈레이트(DOTP; dioctyl terephthalate), 디이소노닐 테레프탈레이트(DINTP; diisononyl terephthalate), 또는 디이소데실 테레프탈레이트(DIDTP; diisodecyl terephthalate) 있으나, 이에 제한되는 것은 아니다. 이들 화합물은 단독으로 또는 혼합하여 사용할 수 있다.
상기 이소프탈레이트 화합물은 하기와 같은 화학식 3로 표시될 수 있다.
[화학식 3]
Figure PCTKR2020010583-appb-img-000004
상기 화학식 3에서, R3 및 R3'는 각각 독립적으로 상이하거나 동일하며, 수소, 탄소수 1 내지 20, 바람직하게는 탄소수 4 내지 20, 보다 바람직하게는 탄소수 5 내지 20, 더욱 바람직하게는 탄소수 5 내지 10의 직쇄 또는 분지쇄 알킬기이다.
상기 이소프탈레이트 화합물의 구체적인 예로는 디부틸 이소프탈레이트(DBIP; dibutyl isophthalalate), 디옥틸 이소프탈레이트(DOIP; dioctyl isophthalate), 디이소노닐 이소프탈레이트(DINIP; diisononyl isophthalate), 또는 디이소데실 이소프탈레이트(DIDIP; diisodecyl isophthalate) 등을 들 수 있으나, 이에 제한되는 것은 아니다. 이들 화합물은 단독으로 또는 혼합하여 사용할 수 있다.
바람직하게는, 상기 프탈레이트 화합물로 디옥틸 테레프탈레이트(dioctyl terephthalate, DOTP)를 사용할 수 있다.
상기 프탈레이트 화합물의 순도는 약 99% 이상, 바람직하게는 약 99.5% 이상, 보다 바람직하게는 약 98% 이상일 수 있으나, 이에 한정되는 것은 아니며 상업적으로 이용 가능한 모든 품질 및 순도의 프탈레이트 화합물을 사용할 수 있다.
프탈레이트 화합물의 수소화 공정은 액체상 또는 기체상에서 수행될 수 있다. 본 발명의 일 실시예에 따르면, 상기 프탈레이트 화합물은 액체 상태로, 수소는 기체 상태로 수소화 반응이 진행될 수 있다.
상기 반응기에 투입되는 기상 원료 및 액상 원료의 온도 및 압력 조건은 특별히 제한되는 것은 아니나, 기상 원료는 약 100 내지 약 200 bar, 바람직하게는 약 130 내지 약 160 bar의 압력 및 약 100 내지 약 200 ℃, 바람직하게는 약 130 내지 약 180 ℃의 범위가 되도록 조절할 수 있으며, 액상 원료는 약 100 내지 약 200 bar, 바람직하게는 약 130 내지 약 160 bar의 압력 및 약 100 내지 약 200 ℃, 바람직하게는 약 130 내지 약 180 ℃의 범위가 되도록 조절할 수 있다.
이와 관련하여, 상기 반응 전 액상의 프탈레이트 화합물을 승압 및 승온하는 단계;를 더 포함하여, 상기 승압 및 승온된 액상의 프탈레이트 화합물 및 기상의 수소를 상기 수소화 촉매가 충진된 반응기에 공급하고, 상기 반응기 내에서 상기 수소화 촉매 하에 상기 승압 및 승온된 액상의 프탈레이트 화합물 및 기상의 수소를 반응시킬 수 있다. 물론 여기서 반응기 내부의 평균 온도 및 최대-최소 온도 편차는 전술한 바와 같이 조절되어야 한다.
수소화 촉매
상기 수소화 촉매는 활성 성분으로써 전이금속을 포함할 수 있으며, 바람직하게는 루테늄(Ru), 팔라듐(Pd), 로듐(Rh) 및 백금(Pt)으로 이루어진 군으로부터 선택되는 1종 이상을 포함할 수 있다.
이러한 수소화 촉매는 담체에 담지시켜 사용할 수 있으며, 이때 담체로는 당 업계에 알려져 있는 담체가 제한 없이 사용될 수 있다. 구체적으로 지르코니아(ZrO 2), 타이타니아(TiO 2), 알루미나(Al 2O 3), 실리카(SiO 2) 등의 담체가 사용될 수 있다.
상기 수소화 촉매가 담체에 담지된 경우, 수소화 촉매의 활성 성분의 양은 담체 100 중량부에 대하여 3 중량부 이하인 것이 바람직하며, 2 중량부 이하, 또는 1 중량부 이하이면서, 0.1 중량부 이상, 또는 0.3 중량부 이상일 수 있다. 만일 수소화 촉매의 양이 담체 100 중량부에 대해 3 중량부를 초과하면, 촉매 표면에서 반응이 급격하게 진행되며, 이 과정에서 부반응 또한 증가하여 부생성물량이 급증하는 문제가 발생할 수 있고, 0.1 중량부 미만이면 촉매량이 부족하여 수소화 반응의 수율이 떨어질 수 있으므로 상기 범위가 바람직하다.
본 발명에서 수소화 반응 조건은 특별히 제한되는 것은 아니나, 일례로 반응압력은 50 bar 이상, 또는 100 bar 이상, 또는 130 bar 이상이면서, 220 bar 이하, 또는 200 bar이하, 또는 180 bar 이하일 수 있다. 만일 반응압력이 50 bar 미만이면 반응이 잘 일어나지 않아, 과도한 양의 촉매가 소모되고, 체류시간이 너무 길이져서 부생성물이 증가하는 등의 여러 가지 문제가 있을 수 있고, 200 bar를 초과하면 공정 운전 시 과도한 전력 등의 에너지가 필요로 하며, 또한 반응기 등의 설비 제작비용이 크게 증가하는 문제가 있을 수 있으므로, 상기 범위가 바람직하다.
이러한 수소화 반응에 의해, 상기 프탈레이트 화합물의 방향족 고리가 수소화되어 이에 상응하는 사이클로헥산 디카르복실레이트 화합물로 전환된다.
반응이 종료된 후, 생성된 액상의 수소화 반응 생성물과, 미반응된 기상의 원료를 분리한다. 상기 분리된 기상의 원료는 수소화 공정으로 재순환 될 수 있다. 또한, 회수된 수소화 반응 생성물은 감압 및 냉각 과정을 거쳐 최종적으로 분리할 수 있다.
수소화 반응기
도 1은 본 발명의 수소화 방법에 사용되는 수소화 반응 장치를 예시한 도면이다. 도 1에 따르면, 상기 수소화 반응 장치는 열 교환기(a, b), 반응기(c) 및 기상-액상 분리기(d) 등으로 이루어질 수 있다.
상기 열 교환기(a, b)는 기상 원료(1) 및 액상 원료(3)를 반응기(c)에 투입하기 전 승온시키는 역할을 하는 것으로서, 필요에 따라 생략 가능하다.
기상 원료(2) 및 액상 원료(4)는 내부에 수소화 촉매가 충진된 관 형태의 반응기(c)로 투입되어, 수소화 반응이 진행된다. 상기 반응기는 반응열을 제어하기 위하여 제열용 외부 자켓을 더 포함할 수 있다. 이때, 상기 기상 원료(2)는 반응기의 상단부 또는 하단부에서 공급될 수 있으며, 액상 원료(4)는 반응기의 상단부에서 공급될 수 있다.
프탈레이트 화합물의 수소화 반응은 기상의 반응원료와 액상의 반응원료가 고상의 촉매 표면에서 반응을 일으키기 때문에 액상의 고상의 촉매 표면에 필름을 형성할 수 있는 정도의 유량을 흘려주어야 한다. 때문에 액상원료를 상단에서 중력에 의해 조금씩 흘려주는 방식의 운전형태가 적절하다. 반면 하단부로 액상을 투입 시 고상의 촉매가 액상의 반응물에 의해 잠기기 때문에 기상의 반응물이 고상의 촉매에 침투하기 어려워져 적절하지 못할 수 있다.
상기 반응기(c)로부터 나온 반응 혼합물(5)는 기상-액상 분리기(d)로 전달되며, 여기서 액상의 반응 생성물(7)과 기상의 미반응물(6)이 분리된다. 분리된 반응 생성물(7)은 회수되어 추가의 정제 작업을 거칠 수 있으며, 기상의 미반응물(6)은 배출 또는 재사용을 위하여 순환된다.
단, 상기 도 1에서 각 장치의 위치는 변경 가능하며 필요에 따라 도 1에 도시되지 않은 다른 장치도 포함 가능하므로, 본 발명의 수소화 방법이 도 1에 도시한 장치 및 공정 순서로 한정되는 것은 아니다.
수소화 반응 생성물
상기 일 구현예의 수소화 방법에 따라 방향족성이 제어된 생성물은 점도 및 표면이동도가 낮고, 장기간 사용에도 제품 표면으로의 침출 발생이 비교적 적어 플라스틱 가소제로서 우수한 특성을 나타낸다.
이와 같이 제조된 수소화된 프탈레이트 혹은 테레프탈레이트 화합물은 가소제로서 유용하게 사용될 수 있다. 구체적으로, 상기 프탈레이트 혹은 테레프탈레이트 화합물을 포함하는 가소제는 폴리스타이렌, 폴리우레탄, 폴리부타디엔, 실리콘, 열가소성 엘라스토머 또는 이들의 공중합체 중에서 선택된 수지의 가소제로서 적합하게 사용될 수 있다.
상기 수지를 포함하는 수지 조성물은 다양한 제품에 사용될 수 있다. 예컨대, 안정제, 도료, 잉크, 액상 발포제(Masterbatch 류), 접착제 등의 제품에 사용될 수 있다. 또한, 식품 포장용 필름(예를 들어, 랩), 공업용 필름, 컴파운드, 데코시트, 데코타일, 연질시트, 경질시트, 전선 및 케이블, 벽지, 발포매트, 레자, 바닥재, 타포린, 장갑, 실란트, 냉장고 등의 가스켓, 호스, 의료기기, 지오그리드, 메쉬타포린, 완구용품, 문구용품, 절연테이프, 의류 코팅제, 의류 또는 문구용 등으로 사용되는 PVC 라벨, 병마개 라이너, 공업용 또는 기타 용도의 마개, 인조 미끼, 전자기기 내 부품(예를 들어, sleeve), 자동차 내장재, 접착제, 코팅제 등의 제조에 사용될 수 있으나, 이에 제한되는 것은 아니다.
이하, 발명의 구체적인 실시예를 통해, 발명의 작용 및 효과를 보다 상술하기로 한다. 다만, 이러한 실시예는 발명의 예시로 제시된 것에 불과하며, 이에 의해 발명의 권리범위가 정해지는 것은 아니다.
이하에서는, 트리클 유동 반응기 내 혼합 영역을 형성하여 원료들을 미리 혼합하는 데 사용하는 경우를 예로 들어, 다양한 결과들을 살펴보았다.
실시예 1 내지 5
실시예 1 내지 5에서, 루테늄(Ru) 촉매를 수소화 촉매로 사용하여, 단일관 형태의 반응기에 상기 수소화 촉매를 충진하여 반응 영역을 형성하되, 그 반응 영역의 길이는 1.5 m로 통일하였다.
이때, 루테늄(Ru) 촉매로는, 알루미나(Al 2O 3) 담체 100 중량부 대비 루테늄 함량이 0.5 중량부이며, 실린더형으로 직경 3 mm, 높이 3 mm의 사이즈인 것을, 실시예 1 내지 5에서 공통적으로 사용하였다.
상기 반응 영역 상에, 알루미나(aluminum oxide) 소재의 비활성 비드를 충진하여 혼합 영역을 형성하였다.
실시예 1 내지 5에서 형성한 혼합 영역의 내경은 0.02646 m로 동일하지만, 그 길이는 하기 표 1에 따라, 0.1 m(실시예 1), 0.3 m (실시예 2), 0.5 m (실시예 3), 1 m (실시예 4), 및 1.5 m (실시예 5)로 달리 하였다.
실시예 1 내지 5에서 각각 반응 영역 및 혼합 영역을 형성한 뒤, 반응기의 외부 자켓에 냉각 유체(Therminol 55)를 흘려주어, 반응 중 반응기 온도는 150 ℃ 를 만족하도록 제어하면서, 혼합 영역으로 상기 원료들을 공급하였다.
구체적으로, 상기 실시예 1 내지 5의 각 반응기에, 순도 99 %인 디옥틸 테레프탈레이트(dioctyl terephthalate, DOTP) 및 2-에틸헥사놀(2-ethyl hexanol, 2-EH)이 8:2(=DOTP:2-EH)의 부피비로 혼합된 액상 원료 및 수소를 각각 반응기에 주입하여, 반응 압력 150 barg 및 온도 150 ℃에서 수소화 반응을 수행하였다. 여기서 액상 원료의 유량은 9.6 kg/hr, 수소의 유량은 2757 NLPH로 하였다.
비교예 1
비교예 1 에서, 루테늄(Ru) 촉매를 수소화 촉매로 사용하여, 단일관 형태의 반응기에 상기 수소화 촉매를 충진하여 반응 영역을 형성하되, 그 반응 영역의 길이는 1.5 m로 통일하였다.
이때, 루테늄(Ru) 촉매로는, 알루미나(Al 2O 3) 담체 100 중량부 대비 루테늄 함량이 0.5 중량부이며, 실린더형으로 직경 3 mm, 높이 3 mm의 사이즈인 것을, 실시예 1 내지 5에서 공통적으로 사용하였다.
상기 반응 영역 상에, 별도의 혼합 영역은 형성하지 않고 각각의 액상원료 및 기상원료는 독립적으로 바로 반응영역으로 공급하였다.
구체적으로, 상기 비교예 1의 각 반응기에, 순도 99 %인 디옥틸 테레프탈레이트(dioctyl terephthalate, DOTP) 및 2-에틸헥사놀(2-ethyl hexanol, 2-EH)이 8:2(=DOTP:2-EH)의 부피비로 혼합된 액상 원료 및 수소를 각각 반응기에 주입하여, 반응 압력 150 barg 및 온도 150 ℃에서 수소화 반응을 수행하였다. 여기서 액상 원료의 유량은 9.6 kg/hr, 수소의 유량은 2757 NLPH로 하였다.
실험예 1
상기 실시예 1 내지 5 및 비교예 1로부터 각각, 수소화 반응 생성물을 수득한 뒤, 가스 크로마토그래피(Gas Chromatography, GS)로 정량 분석하였다.
참고로, 각 실시예에서 사용된 혼합 영역의 길이, 원료의 혼합 시간, 축 방향 선속도(U L), 레이놀즈 수, 포화 농도 도달 시간, 및 수소화 반응 전환율을 각각 평가하여, 하기 표 1에 기록하였다:
혼합 영역을 이동하는 원료들의 축 방향 선속도 (m/s): 액상 원료 및 기상 원료의 총 부피 유량(m 3/hr)을 혼합 영역의 내경으로 나눈 값이다.
혼합 원료의 레이놀즈 수: 유체의"관성에 의한 힘"과 "점성에 의한 힘"의 비로서, 하기 수학식 1로 계산된 값이다:
[수학식 1]
Figure PCTKR2020010583-appb-img-000005
μ: 점도 ρ: 밀도 u z: 축방향의 선속도 D p: 유로의 직경
혼합 영역 길이 (m) 혼합 시간(초) 혼합 영역의 내경(m) 혼합 영역의 단면적(m 2) 혼합 영역 내 원료들의 축 방향 선속도 (m/s) 혼합 원료의 레이놀즈 수 수소화 반응 전환율 (%)
비교예 1 - - - - - - 42.7
실시예 1 0.1 2.1 0.02646 0.000550 0.006304 41.8 44.20
실시예 2 0.3 6.4 0.02646 0.000550 0.006304 41.8 47.01
실시예 3 0.5 10.7 0.02646 0.000550 0.006304 41.8 47.97
실시예 4 1 21.4 0.02646 0.000550 0.006304 41.8 48.33
실시예 5 1.5 32.1 0.02646 0.000550 0.006304 41.8 48.35
상기 표 1에 따르면, 실시예 1 내지 5는, 비교예 1에 대비하여 향상된 전환율을 나타내는 것으로 확인된다.
이를 통해, 수소를 포함하는 기상 원료; 및 프탈레이트 화합물을 포함하는 액상 원료;를 미리 혼합(pre-mixing)하여 충분한 용존 수소량을 확보한 뒤 그 혼합 원료를 트리클 유동 반응기 내의 반응 영역에 공급하여 반응하게 함으로써(실시예 1 내지 5), 상기 원료들을 미리 혼합하지 않고 각각 독립적으로 상기 트리클 유동 반응기 내의 반응 영역에 공급하는 경우(비교예 1)에 대비하여, 그 반응 영역 상단부에서의 반응성을 향상시키고, 수소화 반응의 전체적인 공정 효율 및 경제성을 개선하며, 프탈레이트 화합물의 반응 전환율을 높일 수 있음을 알 수 있다.
한편, 실시예 1 내지 5에서, 상기 혼합 영역의 길이가 길어질수록, 원료의 혼합 시간이 늘어나고, 액상 원료 내 수소의 용해도가 증가함에 따라 이에 따라 최종적인 수소화 반응 전환율도 49% 수준까지 상대적으로 증가함을 알 수 있다. 단, 상기예에서 1m 구간 이상에서는 수소 포화 용해도에 근접하면서 더 이상 혼합 길이를 늘려도 전환율 증가가 거의 이루어지지 않는 것을 알 수 있다.
보다 구체적으로, 상기 혼합 영역의 길이가 길어질수록 원료가 해당 영역에 체류하는 시간이 늘어나며, 그 증가된 시간만큼 상기 액상의 프탈레이트에 상기 기상의 수소가 용해되는 양도 증가할 수 있다. 이는 곧 상기 혼합 영역으로부터 배출된 혼합 원료 내 용존 수소량 증가로 이어지며, 상기 반응 영역의 상단부로부터 반응성이 높아져, 높은 전환률의 수소화 반응 생성물을 수득할 수 있는 것이다.
상기 표 1에서는 44% 이상의 전환율이 확인되었으나, 상기 혼합 영역의 길이 및/또는 단면적을 증가시킴으로써 전환율을 더 개선하는 것도 가능하며, 상기 혼합 영역에서 사용된 비활성 비드의 내경, 상기 혼합 영역으로부터 배출된 혼합 원료의 레이놀즈 수, 용존 수소량 등에 의해 전환율을 더욱 증가시키는 것도 가능할 것이다.
실시예 6 내지 13
실시예 6 내지 13에서도, 실시예 1 내지 5와 동일하게 단일관 형태의 반응기에 상기 수소화 촉매를 충진하여 반응 영역을 형성하고, 그 반응 영역의 길이는 1.5 m가 되도록 하였다.
비활성 비드가 충진된 혼합 영역의 경우, 길이는 2m로 동일하게 하되, 하기 표 2에 따라, 내경을 달리 하였다.
실험예 2
실시예 6 내지 13으로부터 각각, 수소화 반응 생성물을 수득한 뒤, 혼합 영역의 길이, 원료의 혼합 시간, 혼합 영역을 이동하는 원료들의 축 방향 선속도(U L), 레이놀즈 수, 및 포화 농도 도달 시간을 실험예 1과 동일한 방법으로 평가하여 하기 표 2에 기록하였다.
혼합 영역 길이(m) 혼합 영역의 내경 (m) 혼합 영역 내 원료들의 축 방향 선속도 (m/s) 혼합 원료의 레이놀즈 수 포화 농도 도달 길이(m) 포화 농도 도달 혼합시간 (초) 포화농도 도달 혼합영역 부피(m 3)
실시예 6 2 0.03704 0.0032 15.2 1.1 46 0.001186
실시예 7 2 0.03440 0.0037 17.2 1.1 40 0.001022
실시예 8 2 0.03175 0.0043 19.8 1.1 34 0.000871
실시예 9 2 0.02911 0.0051 22.9 1.2 31 0.000798
실시예 10 2 0.02646 0.0053 26.9 1.3 28 0.000715
실시예 11 2 0.02117 0.0097 39.1 1.5 21 0.000528
실시예 12 2 0.01852 0.0127 48.8 1.6 17 0.000431
실시예 13 2 0.01588 0.0172 63.1 1.7 13 0.000337
상기 표 2에 따르면, 상기 비활성 비드(inert bead)가 충진된 혼합 영역의 내경이 작을 수록, 그 작은 단면적을 통과하는 원료들의 유속이 증가하고, 혼합 원료의 유동성 및 흐름성이 증가하며, 액상의 프탈레이트에 기상의 수소가 용해되는 속도 또한 증가됨을 알 수 있다. 이에 따라, 상기 용존 수소량이 포화 농도에 도달하는 시간이 단축되거나 포화 농도 도달에 요구되는 혼합영역 부피가 줄어드는 개선효과를 확인할 수 있다.
[부호의 설명]
a, b: 열교환기
c: 반응기
d: 기상-액상 분리기
1, 2: 기상 원료
3, 4: 액상 원료
5: 반응 혼합물
6: 기상의 미반응물
7: 액상의 반응 생성물

Claims (13)

  1. 레이놀즈 수가 1 내지 300인 조건 하에서, 수소를 포함하는 기상 원료; 및 프탈레이트 화합물을 포함하는 액상 원료;의 혼합 원료를 제조하는 단계, 그리고
    트리클 유동 반응기 내의 수소화 촉매가 충진된 반응 영역에서, 상기 혼합 원료를 반응시키는 단계를 포함하는,
    프탈레이트 화합물의 수소화 방법.
  2. 제1항에 있어서,
    상기 혼합 원료를 제조하는 단계는,
    1 내지 500 초 동안 수행되는 것인,
    프탈레이트 화합물의 수소화 방법.
  3. 제1항에 있어서,
    상기 혼합 원료를 제조하는 단계는,
    상기 트리클 유동 반응기와 독립적인 라인 믹서(line mixer)를 이용하거나,
    상기 트리클 유동 반응기 내의 수소화 촉매가 충진된 반응 영역 상에 비활성 비드가 충진된 영역을 이용하여 수행되는 것인,
    프탈레이트 화합물의 수소화 방법.
  4. 제3항에 있어서,
    상기 비활성 비드는,
    ZrO 2, SiO 2, Al 2O 3, Na 2O, MgO, CaO, K 2O, Fe 2O 3, 및 TiO 2를 포함하는 금속 세라믹 군;
    Li 2O-Al 2O 3-SiO 2 계, MgO-Al 2O 3-SiO 2 계, 및 ZnO-Al 2O 3-SiO 2 계를 포함하는 결정질 유리 세라믹 (glass-ceramic) 군; 및
    SiO 2-Na 2O계를 포함하는 비정질 유리(glass) 군;
    을 포함하는 비활성(ineart) 물질 중에서 선택되는 어느 하나로 이루어진 것인,
    프탈레이트 화합물의 수소화 방법.
  5. 제1항에 있어서,
    상기 혼합 원료를 반응시키는 단계는,
    상기 트리클 유동 반응기 내의 수소화 촉매가 충진된 반응 영역 위로, 상기 혼합 원료를 공급하는 단계,
    상기 공급된 혼합 원료가 상기 반응 영역의 상단부에서 하단부로 이동하면서, 수소화 촉매의 존재 하에 반응하는 단계를 포함하는 것인,
    프탈레이트 화합물의 수소화 방법.
  6. 제1항에 있어서,
    상기 액상 원료는,
    탄소수 2 내지 12의 알코올을 더 포함하는 것인,
    프탈레이트 화합물의 수소화 방법.
  7. 제6항에 있어서,
    상기 탄소수 2 내지 12의 알코올은,
    에탄올, n-프로판올, 이소프로판올, n-부탄올, 이소부탄올, 펜탄올, 헥사놀, 헵탄올, 옥탄올(n-octanol, 2-ethylhexanol), 노나놀, 데칸올, 운데칸올, 도데칸올 등에서 선택되는 1종 또는 이의 혼합물인 것 인,
    프탈레이트 화합물의 수소화 방법.
  8. 제1항에 있어서,
    상기 원료 공급 단계에서 공급되는 수소의 양은,
    프탈레이트 화합물 1몰부에 대하여 3 내지 300몰부인,
    프탈레이트 화합물의 수소화 방법.
  9. 제1항에 있어서,
    상기 프탈레이트 화합물은,
    프탈레이트, 테레프탈레이트, 이소프탈레이트 및 이들의 카르복실산 화합물로 이루어진 군에서 선택되는 1종 이상인 것인,
    프탈레이트 화합물의 수소화 방법.
  10. 제1항에 있어서,
    상기 수소화 촉매는,
    루테늄(Ru), 로듐(Rh), 팔라듐(Pd) 및 백금(Pt)으로 이루어진 군으로부터 선택되는 1종 이상인 것인,
    프탈레이트 화합물의 수소화 방법.
  11. 제1항 내지 제10항 중 어느 한 항의 방법에 의하여 제조된, 수소화된 프탈레이트 혹은 테레프탈레이트 화합물.
  12. 제11항의 수소화된 프탈레이트 혹은 테레프탈레이트 화합물을 포함하는, 가소제.
  13. 제12항의 가소제; 및 에틸렌 초산 비닐, 폴리에틸렌, 폴리프로필렌, 폴리염화비닐, 폴리스타이렌, 폴리우레탄, 폴리부타디엔, 실리콘, 열가소성 엘라스토머 또는 이들의 공중합체 중에서 선택된 수지;를 포함하는, 수지 조성물.
PCT/KR2020/010583 2019-10-14 2020-08-11 프탈레이트 화합물의 수소화 방법 WO2021075686A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2019-0126748 2019-10-14
KR1020190126748A KR102490098B1 (ko) 2019-10-14 2019-10-14 프탈레이트 화합물의 수소화 방법

Publications (1)

Publication Number Publication Date
WO2021075686A1 true WO2021075686A1 (ko) 2021-04-22

Family

ID=75538158

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/010583 WO2021075686A1 (ko) 2019-10-14 2020-08-11 프탈레이트 화합물의 수소화 방법

Country Status (3)

Country Link
KR (1) KR102490098B1 (ko)
TW (1) TWI747441B (ko)
WO (1) WO2021075686A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130132686A (ko) * 2012-10-29 2013-12-05 주식회사 엘지화학 알데히드의 수소화 처리방법
JP2014524932A (ja) * 2011-07-29 2014-09-25 イーストマン ケミカル カンパニー テレフタル酸からの1,4−シクロヘキサンジメタノールの調製方法
KR20160076320A (ko) * 2014-12-22 2016-06-30 한화케미칼 주식회사 프탈레이트 화합물의 수소화 방법 및 장치
KR20190063104A (ko) * 2017-11-29 2019-06-07 한화케미칼 주식회사 프탈레이트 화합물의 수소화 방법
KR20190063105A (ko) * 2017-11-29 2019-06-07 한화케미칼 주식회사 프탈레이트 화합물의 수소화 방법

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101833077B1 (ko) * 2009-12-15 2018-02-27 바스프 에스이 방향족 화합물의 수소화를 위한 촉매 및 방법
US8946467B2 (en) * 2010-09-20 2015-02-03 Exxonmobil Chemical Patents Inc. Process for liquid phase hydrogenation of phthalates
CN105793228B (zh) * 2013-12-19 2021-09-10 韩华化学株式会社 苯二甲酸酯化合物的氢化方法
KR101550765B1 (ko) * 2014-09-03 2015-09-18 한화케미칼 주식회사 프탈레이트 화합물의 수소화 방법
KR101556340B1 (ko) * 2013-12-19 2015-09-30 한화케미칼 주식회사 프탈레이트 화합물의 수소화 방법
JP6451358B2 (ja) * 2015-02-02 2019-01-16 新日本理化株式会社 シクロヘキサンジカルボン酸ジエステルからなる塩化ビニル系樹脂用可塑剤
JP6461542B2 (ja) * 2014-10-01 2019-01-30 リケンテクノス株式会社 塩化ビニル系樹脂組成物
KR101905165B1 (ko) * 2015-04-01 2018-10-05 한화케미칼 주식회사 프탈레이트 화합물의 수소화 촉매의 재생 방법
KR101797220B1 (ko) * 2015-08-27 2017-11-13 한화케미칼 주식회사 프탈레이트 화합물의 수소화 방법
CN109675453B (zh) * 2017-10-19 2021-05-04 中国石油化工股份有限公司 一种气液混合设备及应用
KR102506281B1 (ko) * 2017-11-29 2023-03-06 한화솔루션 주식회사 프탈레이트 화합물의 수소화 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014524932A (ja) * 2011-07-29 2014-09-25 イーストマン ケミカル カンパニー テレフタル酸からの1,4−シクロヘキサンジメタノールの調製方法
KR20130132686A (ko) * 2012-10-29 2013-12-05 주식회사 엘지화학 알데히드의 수소화 처리방법
KR20160076320A (ko) * 2014-12-22 2016-06-30 한화케미칼 주식회사 프탈레이트 화합물의 수소화 방법 및 장치
KR20190063104A (ko) * 2017-11-29 2019-06-07 한화케미칼 주식회사 프탈레이트 화합물의 수소화 방법
KR20190063105A (ko) * 2017-11-29 2019-06-07 한화케미칼 주식회사 프탈레이트 화합물의 수소화 방법

Also Published As

Publication number Publication date
KR102490098B1 (ko) 2023-01-18
KR20210043880A (ko) 2021-04-22
TW202114978A (zh) 2021-04-16
TWI747441B (zh) 2021-11-21

Similar Documents

Publication Publication Date Title
WO2014182083A1 (ko) 에스테르계 가소제의 제조방법 및 이로부터 제조된 에스테르계 가소제
WO2018110923A1 (ko) 가소제 조성물 및 이를 포함하는 수지 조성물
WO2014181922A1 (ko) 에스테르계 조성물, 이의 제조방법, 및 이를 포함하는 수지 조성물
WO2014058122A1 (ko) 가소제, 가소제 조성물, 내열수지 조성물 및 이들의 제조 방법
WO2018147689A1 (ko) 가소제 조성물 및 이를 포함하는 수지 조성물
WO2020222536A1 (ko) 사이클로헥산 트리에스터계 가소제 조성물 및 이를 포함하는 수지 조성물
WO2020122591A1 (ko) 가소제 조성물 및 이를 포함하는 수지 조성물
WO2019240405A1 (ko) 가소제 조성물 및 이를 포함하는 수지 조성물
WO2021075686A1 (ko) 프탈레이트 화합물의 수소화 방법
WO2019240418A1 (ko) 가소제 조성물 및 이를 포함하는 수지 조성물
WO2019107884A1 (ko) 산화적 탈수소화 반응용 촉매 시스템, 이를 포함하는 부타디엔 제조용 반응기 및 1,3-부타디엔의 제조방법
WO2021054606A1 (ko) 프탈레이트 화합물의 수소화 방법
WO2021133138A1 (ko) 1,4-사이클로헥산디메탄올의 제조방법
WO2016153235A1 (ko) 가소제 조성물, 수지 조성물 및 이들의 제조 방법
WO2017183877A1 (ko) 가소제 조성물 및 이를 포함하는 수지 조성물
WO2021137375A1 (ko) 에스테르계 화합물 및 이의 용도
WO2022146093A1 (ko) 이소시아네이트 화합물의 제조 방법
WO2021096103A1 (ko) 프탈레이트계 화합물의 수소화 방법
WO2015119443A1 (ko) 에스테르계 화합물, 이를 포함하는 가소제 조성물, 이의 제조방법, 및 이를 포함하는 수지 조성물
WO2017183876A1 (ko) 가소제 조성물 및 이를 포함하는 수지 조성물
WO2022220612A1 (ko) 스핑고신-1-인산 수용체 효능제 합성을 위한 중간체의 제조방법
WO2021015541A1 (en) Method of recovering unreacted ethylene in ethylene oligomerization process
WO2020091361A1 (ko) 사이클로헥산 트리에스터계 가소제 조성물 및 이를 포함하는 수지 조성물
WO2020045901A1 (ko) 가소제 조성물 및 이를 포함하는 수지 조성물
WO2021137376A1 (ko) 에스테르계 화합물 및 이의 용도

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20876536

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20876536

Country of ref document: EP

Kind code of ref document: A1