WO2019107884A1 - 산화적 탈수소화 반응용 촉매 시스템, 이를 포함하는 부타디엔 제조용 반응기 및 1,3-부타디엔의 제조방법 - Google Patents

산화적 탈수소화 반응용 촉매 시스템, 이를 포함하는 부타디엔 제조용 반응기 및 1,3-부타디엔의 제조방법 Download PDF

Info

Publication number
WO2019107884A1
WO2019107884A1 PCT/KR2018/014736 KR2018014736W WO2019107884A1 WO 2019107884 A1 WO2019107884 A1 WO 2019107884A1 KR 2018014736 W KR2018014736 W KR 2018014736W WO 2019107884 A1 WO2019107884 A1 WO 2019107884A1
Authority
WO
WIPO (PCT)
Prior art keywords
oxidative dehydrogenation
dehydrogenation reaction
catalyst
reactor
stage
Prior art date
Application number
PCT/KR2018/014736
Other languages
English (en)
French (fr)
Inventor
서명지
고동현
차경용
Original Assignee
(주) 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주) 엘지화학 filed Critical (주) 엘지화학
Priority to JP2019536270A priority Critical patent/JP6812620B2/ja
Priority to EP18882714.1A priority patent/EP3556463A4/en
Priority to US16/477,866 priority patent/US10994265B2/en
Priority to CN201880005956.7A priority patent/CN110167669A/zh
Publication of WO2019107884A1 publication Critical patent/WO2019107884A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/80Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with zinc, cadmium or mercury
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/02Boron or aluminium; Oxides or hydroxides thereof
    • B01J21/04Alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/005Spinels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/745Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/75Cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/78Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with alkali- or alkaline earth metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/83Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with rare earths or actinides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/889Manganese, technetium or rhenium
    • B01J23/8892Manganese
    • B01J35/19
    • B01J35/31
    • B01J35/40
    • B01J35/51
    • B01J35/64
    • B01J35/657
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • B01J37/0221Coating of particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C11/00Aliphatic unsaturated hydrocarbons
    • C07C11/12Alkadienes
    • C07C11/16Alkadienes with four carbon atoms
    • C07C11/1671, 3-Butadiene
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/32Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by dehydrogenation with formation of free hydrogen
    • C07C5/327Formation of non-aromatic carbon-to-carbon double bonds only
    • C07C5/333Catalytic processes
    • C07C5/3332Catalytic processes with metal oxides or metal sulfides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/42Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by dehydrogenation with a hydrogen acceptor
    • C07C5/48Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by dehydrogenation with a hydrogen acceptor with oxygen as an acceptor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2521/00Catalysts comprising the elements, oxides or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium or hafnium
    • C07C2521/02Boron or aluminium; Oxides or hydroxides thereof
    • C07C2521/04Alumina
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper
    • C07C2523/74Iron group metals
    • C07C2523/745Iron
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper
    • C07C2523/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups C07C2523/02 - C07C2523/36
    • C07C2523/80Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups C07C2523/02 - C07C2523/36 with zinc, cadmium or mercury

Definitions

  • the present invention relates to a catalyst system for an oxidative dehydrogenation reaction, a reactor for preparing butadiene containing the same, and a process for producing 1,3-butadiene. More particularly, the present invention relates to a process for diluting a specific porous support with a coating catalyst, The concentration of the active component of the catalyst for the oxidative dehydrogenation reaction gradually increases from the direction of the dilution filling or the introduction of the reactant together with the filler, thereby effectively controlling the heat generation inside the reactor, thereby greatly improving the conversion rate, selectivity and yield And a catalyst system for an oxidative dehydrogenation reaction which can improve the long-term stability of the catalyst.
  • 1,3-butadiene is one of the main raw materials of synthetic rubber, and it is one of the major basic oils that prices fluctuate rapidly in connection with the supply and demand situation of the petrochemical industry.
  • Examples of the method for producing 1,3-butadiene include naphtha cracking, direct dehydrogenation of n-butene, and oxidative dehydrogenation of n-butene.
  • the oxidative dehydrogenation reaction of n-butene is a reaction in which butene reacts with oxygen to produce 1,3-butadiene and water in the presence of a metal oxide catalyst, and is advantageous thermodynamically because stable water is produced. Since the oxidative dehydrogenation reaction of n-butene is an exothermic reaction unlike the direct dehydrogenation reaction, the reaction process is operated at a low temperature to obtain 1,3-butadiene with a high yield, while adding an oxidizing agent There is little generation of carbon deposits that shortens the catalyst life by poisoning the catalyst, and the removal thereof is easy, which is very suitable for the commercialization process.
  • Patent Literature (Patent Document 1) KR 10-1508776 B1
  • the present invention provides a catalyst for oxidative dehydrogenation in which a reactor filled with n (n is an integer of 2 or more) stages is diluted to satisfy the following equations (1) and And a catalyst system for an oxidative dehydrogenation reaction.
  • X is a content value of AB 2 O 4 of 3 to 30, and A is at least one element selected from the group consisting of copper (Cu), radium (Ra), barium (Ba), strontium (Sr), calcium (Ca) At least one selected from the group consisting of Fe, Be, Zn, Mg, Mn, Ce, Zr, La and Co; (Fe), Y is a content value of the porous support of 20 to 97, and Z is a content value of at least one diluting filler selected from alumina, silica, silicon carbide, zirconia, titania and cordierite is 0 to 77 .)
  • the present invention provides a catalyst system for an oxidative dehydrogenation reaction, characterized in that the catalyst for oxidative dehydrogenation reaction is charged in a reactor, and the catalyst is diluted and filled in the reactor so as to satisfy the following formula (6).
  • X is an amount of AB 2 O 4 of 5 to 25 and A is at least one element selected from the group consisting of copper (Cu), radium (Ra), barium (Ba), strontium (Sr), calcium (Ca) At least one selected from the group consisting of Fe, Be, Zn, Mg, Mn, Ce, Zr, La and Co; Iron (Fe), Y is a content value of the porous support of 25 to 85, and Z is a content value of at least one diluting filler selected from alumina, silica, silicon carbide, zirconia, titania and cordierite of 10 to 70 .)
  • the present invention provides a reactor for preparing butadiene, which comprises the catalyst system for the oxidative dehydrogenation reaction.
  • the present invention also includes an oxidative dehydrogenation reaction using the reactor for producing butadiene and continuously passing a reactant containing a C4 compound including n-butene to the catalyst bed of the reactor 1,3-butadiene.
  • a coating catalyst in which a porous support is uniformly and firmly coated with an active ingredient is subjected to an oxidative dehydrogenation reaction from a diluting filler and a diluting filler or from the direction in which a reactant is introduced,
  • concentration of the active component of the catalyst gradually increases to gradually increase the concentration of the active component of the catalyst, thereby effectively controlling the heat generation distribution in the reactor during the oxidative dehydrogenation reaction, thereby greatly improving the conversion, selectivity, yield, And the long-term stability of the catalyst is improved by reducing the development of the catalyst.
  • FIG. 1 shows the temperature distribution inside the catalyst layer during an oxidative dehydrogenation reaction using the catalyst system according to Example 1 of the present invention.
  • FIG. 2 shows the temperature distribution inside the catalyst layer during the oxidative dehydrogenation reaction using the catalyst system according to the further comparative example 3.
  • FIG. 2 shows the temperature distribution inside the catalyst layer during the oxidative dehydrogenation reaction using the catalyst system according to the further comparative example 3.
  • the oxidative dehydrogenation catalyst system of the present invention can be characterized in that the catalyst for oxidative dehydrogenation reaction is charged in a reactor, and the catalyst is diluted and filled in the reactor so as to satisfy the following formula (1).
  • X is a content value of AB 2 O 4 of 3 to 30, and A is at least one element selected from the group consisting of copper (Cu), radium (Ra), barium (Ba), strontium (Sr), calcium (Ca) At least one selected from the group consisting of Fe, Be, Zn, Mg, Mn, Ce, Zr, La and Co; Iron (Fe), Y is a content value of the porous support of 20 to 97, and Z is a content value of at least one diluting filler selected from alumina, silica, silicon carbide, zirconia, titania and cordierite, .)
  • AB 2 O 4 is an active component of the catalyst
  • the catalyst for oxidative dehydrogenation reaction is a coated catalyst in which AB 2 O 4 as an active ingredient is coated on a porous support.
  • the AB 2 O 4 may be, for example, zinc ferrite (ZnFe 2 O 4 ) wherein A is zinc and B is Fe, which exhibits excellent activity in oxidative dehydrogenation of n-butene,
  • the selectivity of 1,3-butadiene can be more advantageously provided.
  • the AB 2 O 4 may have an average particle size of, for example, 0.1 to 250 ⁇ m, 10 to 200 ⁇ m, 15 to 150 ⁇ m, 15 to 100 ⁇ m, 15 to 60 ⁇ m, or 25 to 60 ⁇ m, It is easy to coat the catalyst layer on the catalyst layer, and the catalyst activity is excellent, and the reaction efficiency is improved.
  • AB 2 O 4 having an average particle diameter within the above range can be selected by, for example, sieving method.
  • X may be, for example, from 3 to 30, from 3 to 27, from 3.5 to 20, from 3.5 to 18, or from 3.5 to 14.
  • the reaction efficiency is excellent within this range, Conversion rate and the like are improved.
  • the porous support may have an average particle diameter of 3 to 7 mm or 4 to 6 mm, for example, and the reaction efficiency is excellent within this range, thereby improving conversion and selectivity.
  • the porous support may have an average pore size of, for example, 50 to 200 ⁇ or 100 to 150 ⁇ . Within this range, the coating of AB 2 O 4 powder is easy and the powder is not desorbed.
  • the average particle size and the average pore size of the porous support can be measured by, for example, a method of calculating the surface area and average pore size through the adsorption isotherm of nitrogen by the BET method and the BET method (Barret-Joyner-Halenda) .
  • the packing density of the porous support may be 0.8 to 1.5 kg / m 3 or 0.9 to 1.3 kg / m 3 , and the coating ratio is determined based on the packing density.
  • the packing density of the porous support is within the above range, AB 2 O 4
  • the powder can be easily coated on the support without being separated or peeled, and furthermore, in the oxidative dehydrogenation reaction, it is more excellent in the conversion of butene and the yield of 1,3-butadiene, and the temperature in the catalyst layer does not rise excessively Providing a thermally stable advantage.
  • the packing density is a value calculated by dividing the mass capable of filling 100 cc into the tubular scalp cylinder by the volume value 100 cc.
  • the shape of the porous support may preferably be spherical, pellet or hollow. In this case, the reaction efficiency is excellent and the yield, selectivity and conversion rate are improved.
  • the spherical, pellet, and hollow shapes are not particularly limited as far as they are ordinarily acceptable to those skilled in the art of porous support technology, and the distinction is clear.
  • the porous support may be at least one member selected from the group consisting of alumina, silica, titania, zirconia, silicon carbide and cordierite, and preferably contains alumina or silica. In this case, The mechanical strength is satisfied and the side reaction is less effective.
  • the porous support may be alumina.
  • the mechanical strength can be secured, but yield and selectivity of butadiene can be kept high without lowering due to side reactions during the oxidative dehydrogenation reaction.
  • Y may be, for example, 20 to 97, 21 to 90, 21 to 86, 30 to 86 or 40 to 86. Within this range, there is an advantage in that the activity and the heat generation control effect of the catalyst are excellent.
  • the content of the binder may be in the range of from 30 parts by weight to 100 parts by weight of AB 2 O 4 , from 0.1 to 20 parts by weight, or from 0.1 to 10 parts by weight, And the effect of improving the abrasion resistance of the catalyst can be provided without significantly lowering the efficiency of the oxidative dehydrogenation reaction within this range.
  • the binder may include, for example, aluminum-silicate, methylcellulose, hydroxypropylmethylcellulose, or all of them.
  • the binder is contained in an appropriate amount, the abrasion resistance of the catalyst may be improved without significantly deteriorating the efficiency of the oxidative dehydrogenation reaction. There is an effect to be improved.
  • the coating catalyst of the present invention may be binder-free. In this case, side reactions by the binder are not caused, and the conversion of n-butene and the selectivity of butadiene are greatly improved. Omission of the introduction of the catalyst is advantageous in shortening the production process of the catalyst and reducing the cost.
  • binder-free means that the organic binder or the inorganic binder is omitted and / or manufactured from the binder.
  • the catalyst for the oxidative dehydrogenation reaction of the present invention is packed into a fixed-bed reactor in an amount of 2 to 8 (n is an integer of 2 to 8), 3 to 6 or 3 to 5, for example,
  • n is an integer of 2 to 8
  • 3 to 6 or 3 to 5 for example
  • the catalyst system of the present invention may be characterized by satisfying the following formula (3). In this case, it is possible to suppress an excessively elevated temperature of the catalyst layer during the reaction, and ultimately, , The yield and the like are improved, and the long-term stability of the catalyst is improved.
  • At least one of the n stages may be characterized in that Z is greater than 0.
  • the dilution filler may be at least one selected from alumina, silica, silicon carbide, zirconia, titania and cordierite, and may be at least one selected from among alumina or silica. In this case, It is possible to efficiently control excessive reaction heat, thereby greatly improving the efficiency of the oxidative dehydrogenation reaction.
  • the catalyst system of the present invention may be characterized in that at least one of the stages satisfies the following formula (4) when Z is not 0, in which case excessive increase in the temperature of the catalyst layer due to excessive heat can be prevented, Productivity, such as conversion rate, selectivity and yield, can be greatly improved.
  • the catalyst system of the present invention may be characterized by satisfying the following formula (5).
  • the catalyst system for the oxidative dehydrogenation reaction of the present invention is characterized in that in the reactor in which the catalyst for the oxidative dehydrogenation reaction is packed with n (n is an integer of 2 or more) stages, ,
  • the packing density of the porous support is 0.8 to 1.5 kg / m 3 or 0.9 to 1.2 kg / m 3 , wherein AB 2 O 4 It is possible to form a catalyst uniformly and firmly coated on the support without releasing or peeling of the powder from the porous support, and furthermore, in the oxidative dehydrogenation reaction, the heat generation in the catalyst layer is effectively controlled and the side reaction is suppressed, The yield and selectivity of butadiene can be improved.
  • the catalyst system for the oxidative dehydrogenation reaction of the present invention may be prepared by diluting a catalyst for oxidative dehydrogenation reaction in a three-stage reactor in such a manner that the respective stages satisfy the following equations (1) and (2)
  • the first stage is such that X is 3.5 to 7; Y is from 21.5 to 43; Z is 50 to 75, the second stage has X of 7 to 10.5; Y is 43 to 64.5; Z is 25 to 50, the third stage is X is 13 to 18; Y is 82 to 87; And Z is 0 to 5.
  • X is a content value of zinc ferrite powder wherein A is Zn and B is Fe, Y is a content value of the porous support, and Z is at least one diluent filler selected from alumina, silica, silicon carbide and zirconia , And the porous support is alumina having a packing density of 0.8 to 1.5 kg / m 3 )
  • the first step is a process wherein X is from 3 to 4.5; Y is from 20 to 35; Z is from 60.5 to 77, the second stage is X is from 5 to 8; Y is 40 to 50; Z is 45 to 55, the third stage is X is 10 to 16; Y is 60 to 90; Z is 0 to 30.
  • X is from 3 to 4.5; Y is from 20 to 35; Z is from 60.5 to 77, the second stage is X is from 5 to 8; Y is 40 to 50; Z is 45 to 55, the third stage is X is 10 to 16; Y is 60 to 90; Z is 0 to 30.
  • the catalyst for oxidative dehydrogenation reaction is charged into a reactor, and the catalyst is diluted and filled in the reactor so as to satisfy Equation (6).
  • X is an amount of AB 2 O 4 of 5 to 25 and A is at least one element selected from the group consisting of copper (Cu), radium (Ra), barium (Ba), strontium (Sr), calcium (Ca) At least one selected from the group consisting of Fe, Be, Zn, Mg, Mn, Ce, Zr, La and Co; Iron (Fe), Y is a content value of the porous support of 25 to 85, and Z is a content value of at least one diluting filler selected from alumina, silica, silicon carbide, zirconia, titania and cordierite of 10 to 70 .)
  • X may be, for example, preferably from 5 to 25, from 7 to 20, from 7 to 18, from 7 to 14, from 7 to 13.5, from 7 to 11, The degree of selectivity, the conversion rate, and the like are improved.
  • Y may be, for example, 25 to 85, 35 to 80, 36 to 75, 36.5 to 70, 36.5 to 60 or 40 to 50, The productivity of butadiene is improved.
  • Z may be, for example, 10 to 70, 20 to 70 or 40 to 60. Within this range, excessive heat generation due to the oxidative dehydrogenation reaction can be effectively controlled, This has the advantage of being further improved.
  • the porous support may be a packing density of 0.8 to 1.5 kg / m 3, or from 0.9 to 1.2 kg / m 3, within the range the mechanical strength is excellent, while AB 2 O 4 powder from a porous support of a coated catalyst.
  • the catalyst system may be an oxidative-dehydrogenation reaction catalyst system for producing 1,3-butadiene.
  • the present invention provides a reactor for producing butadiene containing the catalyst system and a process for producing 1,3-butadiene using the reactor
  • the process for preparing 1,3-butadiene according to the present invention is, for example, a process comprising the steps of: i) charging a catalyst for oxidative dehydrogenation reaction into a reactor in a stationary phase; And ii) continuously passing a reactant containing a C4 compound including n-butene to the catalyst bed of the reactor packed with the catalyst, wherein the reactor of step i) is oxidized (N is an integer of 2 or more), wherein each of the stages satisfies the above-mentioned equations (1) and (2).
  • a process for producing 1,3-butadiene comprising the steps of: i) filling a catalyst for an oxidative dehydrogenation reaction into a reactor in a stationary phase; And ii) continuously passing a reactant containing a C4 compound including n-butene to the catalyst bed of the reactor packed with the catalyst, wherein the reactor of step i) is oxidized And the catalyst for the dehydrogenation reaction is diluted and packed so as to satisfy Equation (6).
  • the oxidative dehydrogenation reaction is carried out by diluting or increasingly diluting a specific catalyst in the reactor, it is possible to effectively control the heat generation in the reactor, and in particular, to increase the specific oxidative dehydrogenation reaction catalyst in the fixed bed reactor
  • the effect of controlling the exothermic effect is further maximized in the case of diluting and filling, and not only the activity and stability of the catalyst are kept high for a long period of time, but also the conversion of butene, the selectivity and the yield of butadiene are greatly improved.
  • the C4 mixture includes at least one n-butene selected from, for example, 2-butene, 1-butene, 1-butene, -3. ≪ / RTI >
  • the reactant may further include at least one selected from air, nitrogen, steam, and carbon dioxide, and preferably further includes nitrogen and steam.
  • the reactant may include a C4 mixture, oxygen, steam, and nitrogen at a molar ratio of 1: 0.1-1.5: 1-15: 0.5-10 or 1: 0.5-1.2: 5-12: 0.5-5.
  • the butadiene production method according to the present invention is advantageous in that the reaction efficiency is excellent and the generation of wastewater is small even when a small amount of steam is used in a proportion of 1 to 10 or 5 to 10 mol based on 1 mol of the C4 mixture, and ultimately, Of course, it provides the effect of saving the energy consumed in the process.
  • the oxidative dehydrogenation reaction may be performed at a reaction temperature of 250 to 500 ° C, 300 to 450 ° C, 320 to 400 ° C, 330 to 380 ° C, or 350 to 370 ° C, But the reaction efficiency is excellent and 1,3-butadiene can be provided at a high productivity.
  • the oxidative dehydrogenation reaction may be carried out in such a manner that the ⁇ T value calculated by the following formula 7 is 105 ° C. or lower, 104 ° C. or lower, 90 ° C. or lower, 80 ° C. or lower, 70 ° or lower, 60 ° or lower, , 20 to 70 ° C, or 20 to 45 ° C.
  • ⁇ T (° C.) reaction temperature - maximum temperature in the catalyst layer
  • the highest temperature in the catalyst layer means the portion of the catalyst layer filled in the reactor with the highest temperature during the reaction.
  • the maximum temperature in the catalyst bed can be measured by, for example, connecting a thermocouple (TC) to a transfer device and then moving it from the upper end of the reactor to the lower end at a constant speed and scanning.
  • TC thermocouple
  • the oxidative dehydrogenation reaction is based on the normal butene in example 50 to 2000h -1, from 50 to 1500 h -1, or 50 to 1000 h -1 of the space velocity: can be performed on (GHSV Gas Hourly Space Velocity) and , The reaction efficiency is excellent within this range, and the conversion efficiency, selectivity and yield are excellent.
  • the reactor is not particularly limited as long as it comprises the catalyst system for the oxidative dehydrogenation reaction, but may be, for example, a multi-tube reactor or a plate reactor.
  • ZnFe 2 O 4 and the alumina balls, ZnFe, based on the total 100% by weight 2 O 4 is 14 wt% or 27 to have a ratio of weight percent of dispersing a metered ZnFe 2 O 4 powder in distilled water to a concentration of about 10 to 30wt% catalyst Slurry.
  • An alumina ball having a packing density of 0.9 to 1.2 kg / m 3 was placed in a rotary chamber of a vacuum atmosphere, and the catalyst slurry was sprayed while rotating at about 30 to 50 rpm to coat the alumina balls having an average particle size of 5 mm. The coating was carried out at a temperature in the rotary chamber of 50 to 80 ° C. After the coating was completed, the coated catalyst was prepared by drying in an oven at 90 to 120 DEG C so that the distilled water could be evaporated.
  • a coating catalyst having a ZnFe 2 O 4 ratio of 14 wt% as described above was mixed with alumina as a diluting filler as shown in the following Table 1 to gradually dilute the catalyst in three stages.
  • the conversion of butene, the content of 1,3-butadiene Selectivity, 1,3-butadiene yield and COx selectivity were measured.
  • a C4 mixture containing trans-2-butene and cis-2-butene as a reactant was mixed with oxygen, steam and nitrogen at a molar ratio of 1: 1: 8: 1, and the amount of C4 mixture, oxygen,
  • the feed rate of the steam was controlled using a liquid pump.
  • Infusion rate of the reaction of n-butene in the C4 mixture in the standard space velocity (GHSV) is the catalyst was set so that the amount 66h -1, and the reaction was carried out to a reaction temperature shown in Table 1.
  • Example 2 The same procedure and conditions as in Example 1 were carried out except that the catalyst composition was gradually diluted with the reactor in three stages as shown in Table 2 below and the reaction was carried out at the temperatures shown in Table 2 below.
  • a coating catalyst having a ZnFe 2 O 4 ratio of 14% by weight in a tubular reactor was diluted and packed with a diluting filler as shown in Table 3 below, and the reaction temperature was set to 365 ° C. .
  • a coating catalyst having a ZnFe 2 O 4 ratio of 27 wt% in a tubular reactor was diluted and packed with a diluting filler as shown in Table 3 below and the reaction temperature was set to 340 ° C. .
  • the ZnFe 2 O 4 powder prepared according to the above Preparation Example was kneaded with distilled water and alcohol and extruded into pellets having a size of 2 mm and a length of 2 mm and dried at 90 ° C for 4 hours to prepare a pellet type catalyst.
  • the same conditions and method as in Example 1 were carried out except that 6 volume% of the catalyst thus prepared was mixed with 94 volume% of alumina ball, diluted and charged in the reactor, and the reaction temperature was set to 365 ° C.
  • the ZnFe 2 O 4 powder prepared according to the above Preparation Example was kneaded with distilled water and alcohol and extruded into pellets having a size of 2 mm and a length of 2 mm and dried at 90 ° C for 4 hours to prepare a pellet type catalyst.
  • the prepared catalyst was subjected to the same conditions and method as in Example 1, except that the catalyst was gradually diluted and charged at 375 ° C as shown in Table 4 below.
  • a tubular reactor was charged with a coating catalyst having a ZnFe 2 O 4 ratio of 14 wt%, except that the diluting filler was not mixed and the reaction temperature was set to 343 ° C as shown in Table 5 below. And methods.
  • a tubular reactor was filled with a coating catalyst having a ZnFe 2 O 4 ratio of 27% by weight, except that the mixing of the diluting filler was omitted and the reaction temperature was set at 325 ° C. .
  • the maximum temperature in the catalyst bed was measured by using a thermocouple in the thermo-well at the center of the reactor from the reactor inlet to the reactor outlet At a constant speed of 4 mm / sec.
  • the catalyst system in which the catalyst coated with the porous support at a predetermined ratio of ZnFe 2 O 4 with the diluting filler and filled with increasing dilution greatly improved the activity of the oxidative dehydrogenation reaction, It can be judged that this is because the heat generation inside the reactor is controlled by the system to provide a reaction system with a stable temperature gradient. Further, from the experimental results of Example 1 and Example 2, it was found that the dilution ratio affects the reaction activity when the coating catalyst is gradually diluted and packed.
  • ⁇ T (° C.) the difference between the maximum temperature in the catalyst bed and the reaction temperature set in the reaction
  • Example 2 The same conditions and methods as in Example 1 were used, except that silicon carbide was used as a diluting filler.
  • Example 2 The same conditions and methods as in Example 1 were used except that zirconia was used as the diluting filler.
  • Example 1 Except that alumina balls having a packing density of 0.5 kg / m < 3 > were used in the preparation of the coating catalyst, the same conditions and methods as in Example 1 were used.
  • Example 1 The procedure of Example 1 was repeated except that alumina balls having a packing density of 2.0 kg / m < 3 > were used in the preparation of the coating catalyst.
  • the ZnFe 2 O 4 powder prepared according to the above Preparation Example was kneaded with distilled water and alcohol, extruded into pellets having a diameter of 5 mm and a length of 5 mm, and dried at 90 ° C for 4 hours to prepare a pellet-shaped catalyst.
  • the catalyst thus prepared was charged in the same manner as in Example 1, except that the mixing of the diluting filler was omitted and the reaction temperature was set at 291 ° C.
  • ⁇ T (° C.) the difference between the maximum temperature in the catalyst bed and the reaction temperature set in the reaction
  • FIG. 1 is a graph showing the temperature distribution of a catalyst layer in an oxidative dehydrogenation reaction using the catalyst system according to Example 1 of the present invention
  • FIG. 2 is a graph showing the temperature distribution of a catalyst system according to a further comparative example 3 Which is a graph showing the temperature distribution of the catalyst layer at the time of the complete dehydrogenation reaction.
  • the catalyst system according to the present invention When the catalyst system according to the present invention is used, it is possible to provide a reaction system with a stable temperature gradient by controlling the heat generation inside the reactor, thereby providing excellent reaction activity and stability even when the maximum temperature in the catalyst bed is low. And ultimately contribute to the increased efficiency of the oxidative dehydrogenation process.

Abstract

본 발명은 산화적 탈수소화 반응용 촉매 시스템, 이를 포함하는 부타디엔 제조용 반응기 및 1,3-부타디엔 제조방법에 관한 것으로, 보다 상세하게는 반응기에 코팅 촉매를 특정한 희석 충진재와 함께 희석 충진 또는 반응물이 투입되는 방향으로부터 산화적 탈수소화 반응용 촉매의 활성성분의 농도가 점진적으로 증가하도록 점증 충진함으로써 반응기 내부의 발열이 효과적으로 제어되어 전환율, 선택도, 수율 등이 크게 개선되고, 촉매의 장기 안정성을 향상시킬 수 있는 산화적 탈수소화 반응용 촉매 시스템 등에 관한 것이다.

Description

산화적 탈수소화 반응용 촉매 시스템, 이를 포함하는 부타디엔 제조용 반응기 및 1,3-부타디엔의 제조방법
본 발명은 산화적 탈수소화 반응용 촉매 시스템, 이를 포함하는 부타디엔 제조용 반응기 및 1,3-부타디엔의 제조방법에 관한 것으로, 보다 상세하게는 반응기에 특정 다공성 지지체에 활성성분이 코팅된 코팅 촉매를 희석 충진재와 함께 희석 충진 또는 반응물이 투입되는 방향으로부터 산화적 탈수소화 반응용 촉매의 활성성분의 농도가 점진적으로 증가하도록 점증 충진함으로써 반응기 내부의 발열이 효과적으로 제어되어 전환율, 선택도, 수율 등이 크게 개선되고, 촉매의 장기 안정성을 향상시킬 수 있는 산화적 탈수소화 반응용 촉매 시스템 등에 관한 것이다.
1,3-부타디엔은 합성고무의 대표적인 원재료로서 석유화학 산업의 수급상황과 연계되어 가격이 급격히 변동하는 주요 기초유분 중 하나이다. 1,3-부타디엔을 제조하는 방법으로는 납사 크래킹, 노르말 부텐의 직접 탈수소화 반응, 노르말 부텐의 산화적 탈수소화 반응 등이 있다.
노르말 부텐의 산화적 탈수소화 반응은 금속산화물 촉매의 존재 하에 부텐과 산소가 반응하여 1,3-부타디엔과 물을 생성하는 반응으로, 안정한 물이 생성되므로 열역학적으로 매우 유리한 이점이 있다. 또한, 노르말 부텐의 산화적 탈수소화 반응은 직접 탈수소화 반응과 달리 발열 반응이므로, 낮은 온도에서 반응공정이 운전되어 에너지가 절감되면서도 높은 수율의 1,3-부타디엔을 얻을 수 있고, 산화제를 첨가함으로써 촉매를 피독시켜 촉매수명을 단축시키는 탄소 침적물의 생성이 적고, 이의 제거가 용이하여 상용화 공정으로 매우 적합한 이점이 있다.
그러나, 산화적 탈수소화 반응 시 발생된 열이 촉매층에 축적되어 촉매가 열화됨에 따라 촉매수명이 저하되는 문제점이 있었으며, 과잉 열에 의해 부반응이 촉진되어 반응 효율이 감소하고, 궁극적으로는 부타디엔의 수율, 선택도, 전환율 등이 떨어지는 문제를 야기하였다.
이러한 문제점을 해소하기 위해 반응기에 공급하는 가스(feed gas)의 양을 제어하여 공간속도를 조절하는 기술 등이 제안되었으나, 생산성이나 수율 면에서 만족스럽지 못하였으며, 생산성이 높으면서도 반응기 내부의 발열을 효과적으로 제어할 수 있는 부타디엔의 산화적 탈수소화 반응 시스템에 관한 기술개발이 여전히 요구되고 있다.
〔선행기술문헌〕
〔특허문헌〕(특허문헌 1) KR 10-1508776 B1
상기와 같은 종래기술의 문제점을 해결하고자, 본 발명은 반응기 내부의 발열을 효과적으로 제어하여 촉매의 열화를 방지하고, 궁극적으로는 전환율, 선택도, 수율 등을 향상시킬 수 있는 산화적 탈수소화 반응용 촉매 시스템을 제공하는 것을 목적으로 한다.
또한 본 발명은 상기 산화적 탈수소화 반응용 촉매 시스템을 포함하는 부타디엔 제조용 반응기 및 이를 사용하는 1,3-부타디엔의 제조방법을 제공하는 것을 목적으로 한다.
본 발명의 상기 목적 및 기타 목적들은 하기 설명된 본 발명에 의하여 모두 달성될 수 있다.
상기의 목적을 달성하기 위하여, 본 발명은 산화적 탈수소화 반응용 촉매가 n개(n은 2 이상의 정수)의 단으로 충진된 반응기에서 각각의 단이 하기 수학식 1 및 2를 만족하도록 희석 충진시키는 것을 특징으로 하는 산화적 탈수소화 반응용 촉매 시스템을 제공한다.
[수학식 1]
X wt% + Y wt% + Z wt% = 100 wt%
(상기 수학식 1에서 X는 AB2O4의 함량값으로 3 내지 30이고, A는 구리(Cu), 라듐(Ra), 바륨(Ba), 스트론튬(Sr), 칼슘(Ca), 베릴륨(Be), 아연(Zn), 마그네슘(Mg), 망간(Mn), 세륨(Ce), 지르코늄(Zr), 란타넘(La) 및 코발트(Co)로 이루어진 군으로부터 선택된 1종 이상이고, B는 철(Fe)이며, Y는 다공성 지지체의 함량값으로 20 내지 97이고, Z는 알루미나, 실리카, 실리콘 카바이드, 지르코니아, 타이타니아 및 코디어라이트 중에서 선택된 1종 이상의 희석 충진재의 함량값으로 0 내지 77이다.)
[수학식 2]
Xn > Xn-1
(상기 수학식 2에서 Xn은 반응물이 투입되는 방향을 기준으로 n번째 단의 X이고, Xn-1은 n-1번째 단의 X이다.)
또한, 본 발명은 산화적 탈수소화 반응용 촉매를 반응기에 충진시키되, 상기 촉매가 하기 수학식 6을 만족하도록 반응기에 희석 충진시키는 것을 특징으로 하는 산화적 탈수소화 반응용 촉매 시스템을 제공한다.
[수학식 6]
X wt% + Y wt% + Z wt% = 100 wt%
(상기 수학식 1에서 X는 AB2O4의 함량값으로 5 내지 25이고, A는 구리(Cu), 라듐(Ra), 바륨(Ba), 스트론튬(Sr), 칼슘(Ca), 베릴륨(Be), 아연(Zn), 마그네슘(Mg), 망간(Mn), 세륨(Ce), 지르코늄(Zr), 란타넘(La) 및 코발트(Co)로 이루어진 군으로부터 선택된 1종 이상이고, B는 철(Fe)이며, Y는 다공성 지지체의 함량값으로 25 내지 85이고, Z는 알루미나, 실리카, 실리콘 카바이드, 지르코니아, 타이타니아 및 코디어라이트 중에서 선택된 1종 이상의 희석 충진재의 함량값으로 10 내지 70이다.)
또한, 본 발명은 상기 산화적 탈수소화 반응용 촉매 시스템을 포함하는 것을 특징으로 하는 부타디엔 제조용 반응기를 제공한다.
또한, 본 발명은 상기 부타디엔 제조용 반응기를 사용하고, 노르말 부텐을 포함하는 C4 화합물을 함유하는 반응물을 상기 반응기의 촉매층에 연속적으로 통과시키면서 산화적 탈수소화 반응을 수행하는 단계를 포함하는 것을 특징으로 하는 1,3-부타디엔의 제조방법을 제공한다.
본 발명에 따르면 별도의 장치를 추가하거나 종래 제조설비를 변경하지 않고, 다공성 지지체에 활성성분이 균일하고 견고하게 코팅된 코팅 촉매를 희석 충진재와 희석 충진 또는 반응물이 투입되는 방향으로부터 산화적 탈수소화 반응용 촉매의 활성성분의 농도가 점진적으로 증가하도록 점증 충진함으로써 산화적 탈수소화 반응 시 반응기 내부 발열 분포가 효과적으로 제어되어 전환율, 선택도, 수율 등이 크게 개선되는 효과를 제공할 수 있으며, 촉매의 열화 현상 저감으로 촉매의 장기 안정성이 향상되는 효과를 제공한다.
도 1은 본 발명의 실시예 1에 따른 촉매 시스템을 적용하여 산화적 탈수소화 반응 시, 촉매층 내부의 온도 분포를 도시한 것이다.
도 2는 추가 비교예 3에 따른 촉매 시스템을 적용하여 산화적 탈수소화 반응 시, 촉매층 내부의 온도 분포를 도시한 것이다.
이하 본 발명의 산화적 탈수소화 반응용 촉매 시스템을 상세하게 설명한다.
본 발명의 산화적 탈수소화 촉매 시스템은 산화적 탈수소화 반응용 촉매를 반응기에 충진시키되, 상기 촉매가 하기 수학식 1을 만족하도록 반응기에 희석 충진시키는 것을 특징으로 할 수 있다.
[수학식 1]
X wt% + Y wt% + Z wt% = 100 wt%
(상기 수학식 1에서 X는 AB2O4의 함량값으로 3 내지 30이고, A는 구리(Cu), 라듐(Ra), 바륨(Ba), 스트론튬(Sr), 칼슘(Ca), 베릴륨(Be), 아연(Zn), 마그네슘(Mg), 망간(Mn), 세륨(Ce), 지르코늄(Zr), 란타넘(La) 및 코발트(Co)로 이루어진 군으로부터 선택된 1종 이상이고, B는 철(Fe)이며, Y는 다공성 지지체의 함량값으로 20 내지 97이고, Z는 알루미나, 실리카, 실리콘 카바이드, 지르코니아, 타이타니아, 코디어라이트 중에서 선택된 1종 이상의 희석 충진재의 함량값으로 0 내지 77이다.)
[수학식 2]
Xn > Xn-1
(상기 수학식 2에서 Xn은 반응물이 투입되는 방향을 기준으로 n번째 단의 X이고, Xn-1은 n-1번째 단의 X이다.)
본 발명에서 AB2O4는 촉매의 활성성분으로, 산화적 탈수소화 반응용 촉매는 활성성분인 AB2O4가 다공성 지지체에 코팅된 코팅 촉매이다.
상기 AB2O4는 일례로 A가 아연(Zn)이고, B가 철(Fe)인 아연 페라이트(ZnFe2O4)일 수 있으며, 이는 노르말 부텐의 산화적 탈수소화 반응에 뛰어난 활성을 나타내고, 1,3-부타디엔의 선택도가 더욱 우수한 이점을 제공할 수 있다.
상기 AB2O4는 평균입경이 일례로 0.1 내지 250㎛, 10 내지 200㎛, 15 내지 150㎛, 15 내지 100㎛, 15 내지 60㎛ 또는 25 내지 60㎛일 수 있으며, 이 범위 내에서 다공성 지지체에 코팅하는 것이 용이하면서도 촉매의 활성이 우수하여 반응 효율이 향상되는 효과가 있다.
본 발명에서 평균입경이 상기 범위 내인 AB2O4는 일례로 체거름법을 통해 선별될 수 있다.
상기 수학식 1에서 X는 일례로, 3 내지 30, 3 내지 27, 3.5 내지 20, 3.5 내지 18 또는 3.5 내지 14인 것이 바람직할 수 있으며, 이 범위 내에서 반응효율이 우수하여 수율, 선택도, 전환율 등이 향상되는 이점이 있다.
상기 다공성 지지체는 평균입경이 일례로 3 내지 7mm 또는 4 내지 6mm일 수 있으며, 이 범위 내에서 반응효율이 우수하여 전환율, 선택도 등이 향상되는 효과가 있다.
상기 다공성 지지체는 평균기공크기가 일례로 50 내지 200㎛ 또는 100 내지 150㎛일 수 있으며, 이 범위 내에서 AB2O4 분말의 코팅이 용이하며 분말이 탈착되지 않는 효과가 있다.
본 발명에서 다공성 지지체의 평균입경 및 평균기공크기는 일례로 질소의 흡착등온선을 통해 표면적 및 평균 기공크기를 각각 BET식 및 BJH(Barret- Joyner-Halenda)법으로 계산하는 방법 또는 수은 함침법으로 측정될 수 있다.
상기 다공성 지지체의 패킹밀도(packing density)는 0.8 내지 1.5 kg/m3 또는 0.9 내지 1.3 kg/m3일 수 있고, 상기 패킹밀도를 기준으로 코팅비율을 결정한다. 상기 다공성 지지체의 패킹밀도가 상기 범위 내인 경우, AB2O4 분말이 이탈하거나 박리되지 않고, 지지체에 용이하게 코팅될 수 있으며, 나아가 산화적 탈수소화 반응 시 부텐의 전환율이나 1,3-부타디엔의 수율 면에서 더욱 우수하며, 촉매층 내부 온도가 과도하게 상승하지 않아 열적으로 안정한 이점을 제공한다.
본 발명에서 패킹밀도는 튜브형 메스실린더에 100cc를 충진할 수 있는 질량을 그 부피값 100cc으로 나누어 계산한 값이다.
상기 다공성 지지체의 형상은 바람직하게는 구형, 펠렛 또는 중공형일 수 있고, 이 경우 반응효율이 우수하여 수율, 선택도, 전환율 등이 향상되는 효과를 제공한다.
본 발명에서 구형, 펠렛 및 중공형은 각각 다공성 지지체 기술분야에서 당업자에게 통상적으로 인정되는 범위인 경우 특별히 제한되지 않으며, 이들에 대한 구별은 명확하다.
상기 다공성 지지체는 일례로 알루미나, 실리카, 타이타니아, 지르코티아, 실리콘카바이드 및 코디어라이트로 이루어진 군으로부터 선택된 1종 이상일 수 있으며, 바람직하게는 알루미나 또는 실리카를 포함하는 것이고, 이 경우 반응기에의 충진을 위한 기계적 강도가 만족되며 부반응이 적은 효과가 있다.
더욱 바람직하게 상기 다공성 지지체는 알루미나일 수 있으며, 이 경우 기계적 강도를 확보할 수 있으면서도 산화적 탈수소화 반응 시 부반응 등에 의해 부타디엔의 수율이나 선택도 등이 저하되지 않고 높게 유지될 수 있다.
상기 수학식 1에서 Y는 일례로 20 내지 97, 21 내지 90, 21 내지 86, 30 내지 86 또는 40 내지 86일 수 있으며, 이 범위 내에서 촉매의 활성 및 발열 제어 효과가 우수한 이점이 있다.
본 발명의 코팅 촉매는 필요에 따라 선택적으로 유무기 바인더를 더 포함할 수 있으며, 이 경우 바인더의 함량은 AB2O4 100 중량부 기준 30 중량부 이하, 0.1 내지 20 중량부 또는 0.1 내지 10 중량부일 수 있으며, 이 범위 내에서 산화적 탈수소화 반응의 효율을 크게 저하시키지 않으면서도 촉매의 내마모성이 향상되는 효과를 제공할 수 있다.
상기 바인더는 일례로 알루미늄-실리케이트, 메틸셀롤로오스, 하이드록시프로필메틸셀룰로오스 또는 이들 모두를 포함할 수 있으며, 이를 적정량 포함하는 경우 산화적 탈수소화 반응의 효율을 크게 저하시키지 않으면서도 촉매의 내마모성이 향상되는 효과가 있다.
다른 일례로 본 발명의 코팅 촉매는 바인더-프리(free)일 수 있으며, 이 경우 바인더에 의한 부반응을 야기하지 않아 노르말 부텐의 전환율, 부타디엔의 선택도 등이 크게 개선되는 효과를 제공하고, 일부 성분의 투입을 생략함에 따라 촉매 제조 공정의 단축이나 비용을 절감하는 효과가 있다.
본 발명에서 바인더-프리(free)는 촉매 제조 시 유기 바인더나 무기 바인더를 생략하는 것 및/또는 이로부터 제조된 것을 의미한다.
본 발명의 산화적 탈수소화 반응용 촉매는 일례로 2 내지 8개(n이 2 내지 8의 정수), 3 내지 6개 또는 3 내지 5개의 단으로 고정층 반응기에 충진되며, 이 범위 내에서 공정비용을 크게 증가시키지 않으면서 반응기 내부의 발열 분포가 효과적으로 제어되어 부타디엔 제조 시 전환율, 선택도, 수율 등이 크게 개선되고, 촉매의 장기 안정성이 향상되는 효과가 있다.
본 발명의 촉매 시스템은 일례로 하기 수학식 3을 만족하는 것을 특징으로 할 수 있으며, 이 경우 반응 시 촉매층의 온도가 과도하게 상승되는 것을 억제할 수 있으며, 궁극적으로는 부타디엔 제조 시 전환율, 선택도, 수율 등이 향상되면서 촉매의 장기 안정성이 향상되는 효과를 제공한다.
[수학식 3]
(Xn - Xn-1) ≥ 2
(상기 수학식 3에서 Xn은 n번째 단의 X이고, Xn-1은 n-1번째 단의 X이다)
본 발명에서 상기 n개의 단 중에서 적어도 하나의 단은 Z가 0 보다 큰 것을 특징으로 할 수 있으며, 이와 같이 코팅 촉매를 희석 충진재와 혼합하여 점증 희석 충진시키는 경우, 반응 중 발열 제어 효과가 더욱 우수하여 반응 효율이 더욱 향상되는 이점이 있다.
본 발명에서 희석 충진재는 일례로 알루미나, 실리카, 실리콘 카바이드, 지르코니아, 타이타니아 및 코디어라이트 중에서 선택된 1종 이상일 수 있으며, 바람직하게는 알루미나 또는 실리카 중에서 선택된 1종 이상일 수 있고, 이 경우 부반응을 최소화하면서 효율적으로 과도한 반응열을 제어할 수 있으며, 이로 인해 산화적 탈수소화 반응 효율을 크게 개선되는 효과가 있다.
본 발명의 촉매 시스템은 최소한 하나의 단이 Z가 0 아닐 때 하기 수학식 4를 만족하는 것을 특징으로 할 수 있으며, 이 경우 과도한 열에 의해 촉매층의 온도가 과도하게 상승하는 것을 억제할 수 있으며, 부타디엔 제조 시 전환율, 선택도, 수율 등 생산성이 크게 향상되는 효과를 제공한다.
[수학식 4]
(Yn-1 - Yn) ≥ 15
(상기 수학식 4에서 Yn은 n번째 단의 Y이고, Yn-1은 n-1번째 단의 Y이다)
또한, 본 발명의 촉매 시스템은 하기 수학식 5를 만족하는 것을 특징으로 할 수 있으며, 이 경우 산화적 탈수소화 반응에 의한 발열을 효과적으로 제어하여 촉매의 활성이나 안정성을 지속적으로 높게 유지할 수 있고, 반응 효율이 개선되는 효과가 있다.
상기 촉매 시스템은 하기 수학식 5
[수학식 5]
(Zn-1 - Zn) ≥ 20
(상기 수학식 5에서 Zn은 n번째 단의 Z이고, Zn-1은 n-1번째 단의 Z이다)
다른 일례로, 본 발명의 산화적 탈수소화 반응용 촉매 시스템은 산화적 탈수소화 반응용 촉매가 n개(n은 2 이상의 정수)의 단으로 충진된 반응기에서 각각의 단이 상기 수학식 1 및 2를 만족하도록 희석 충진시키되, 다공성 지지체의 패킹밀도가 0.8 내지 1.5 kg/m3 또는 0.9 내지 1.2 kg/m3 인 것을 특징으로 할 수 있으며, 이 경우 AB2O4 분말이 다공성 지지체로부터 이탈하거나 박리되지 않고, 상기 지지체에 균일하고 견고하게 코팅된 촉매를 형성할 수 있으며, 나아가 산화적 탈수소화 반응 시 촉매층 내 발열이 효과적으로 제어되고, 부반응이 억제되어 부텐의 전환율, 부타디엔의 수율이나 선택도가 개선되는 이점을 제공할 수 있다.
구체적인 일례로, 본 발명의 산화적 탈수소화 반응용 촉매 시스템은 산화적 탈수소화 반응용 촉매가 3개의 단으로 충진된 반응기에서 각각의 단이 하기 수학식 1 및 2를 만족하도록 희석 충진시키되, 반응물이 투입되는 방향을 기준으로 첫번째 단은 X가 3.5 내지 7; Y가 21.5 내지 43; Z가 50 내지 75이고, 두번째 단은 X가 7 내지 10.5; Y가 43 내지 64.5; Z가 25 내지 50이고, 세번째 단은 X가 13 내지 18; Y가 82 내지 87; Z가 0 내지 5인 것을 특징으로 할 수 있으며, 이 경우 촉매층 내부 온도가 과도하게 상승하는 것을 효과적으로 제어할 수 있으며, 궁극적으로 종래 촉매 시스템 대비 부텐의 전환율, 1,3-부타디엔의 선택도나 수율 등이 개선되는 이점을 제공할 수 있다.
[수학식 1]
X wt% + Y wt% + Z wt% = 100 wt%
(상기 수학식 1에서 X는 A가 Zn이고 B가 Fe인 아연 페라이트 분말의 함량값이고, Y는 다공성 지지체의 함량값이며, Z는 알루미나, 실리카, 실리콘 카바이드 및 지르코니아 중에서 선택된 1종 이상의 희석 충진재의 함량값을 나타내며, 상기 다공성 지지체는 패킹밀도가 0.8 내지 1.5 kg/m3 인 알루미나이다)
[수학식 2]
Xn > Xn-1
(상기 수학식 2에서 Xn은 반응물이 투입되는 방향을 기준으로 n번째 단의 X이고, Xn-1은 n-1번째 단의 X이며, n은 단의 총 개수로 3이다)
보다 바람직한 일례로, 상기 첫번째 단은 X가 3 내지 4.5; Y가 20 내지 35; Z가 60.5 내지 77이고, 두번째 단은 X가 5 내지 8; Y가 40 내지 50; Z가 45 내지 55이고, 세번째 단은 X가 10 내지 16; Y가 60 내지 90; Z가 0 내지 30인 것을 특징으로 할 수 있으며, 이 경우 촉매층 내부 온도가 상승하는 것을 보다 효과적으로 제어할 수 있으며, 이러한 촉매 시스템을 산화적 탈수소화 반응에 적용할 시 부반응을 억제할 수 있고, 부텐의 전환율, 부타디엔의 선택도나 수율 등이 더욱 개선될 수 있다.
또한, 본 발명의 촉매 시스템을 다른 일례로, 산화적 탈수소화 반응용 촉매를 반응기에 충진시키되, 상기 촉매가 하기 수학식 6을 만족하도록 반응기에 희석 충진시키는 것을 특징으로 할 수 있다.
[수학식 6]
X wt% + Y wt% + Z wt% = 100 wt%
(상기 수학식 1에서 X는 AB2O4의 함량값으로 5 내지 25이고, A는 구리(Cu), 라듐(Ra), 바륨(Ba), 스트론튬(Sr), 칼슘(Ca), 베릴륨(Be), 아연(Zn), 마그네슘(Mg), 망간(Mn), 세륨(Ce), 지르코늄(Zr), 란타넘(La) 및 코발트(Co)로 이루어진 군으로부터 선택된 1종 이상이고, B는 철(Fe)이며, Y는 다공성 지지체의 함량값으로 25 내지 85이고, Z는 알루미나, 실리카, 실리콘 카바이드, 지르코니아, 타이타니아 및 코디어라이트 중에서 선택된 1종 이상의 희석 충진재의 함량값으로 10 내지 70이다.)
이하, 산화적 탈수소화 반응기를 수학식 6을 만족하도록 희석 충진시킨 본원의 또 다른 산화적 탈수소화 반응용 촉매 시스템을 설명하며, 이를 설명함에 있어서 상술한 산화적 탈수소화 반응용 촉매의 점증 희석 충진 시스템과 중첩되는 설명은 생략하기로 한다.
상기 수학식 6에서 X는 일례로 5 내지 25, 7 내지 20, 7 내지 18, 7 내지 14, 7 내지 13.5, 7 내지 11인 것이 바람직할 수 있으며, 이 범위 내에서 반응효율이 우수하여 수율, 선택도, 전환율 등이 향상되는 이점이 있다.
상기 수학식 6에서 Y는 일례로 25 내지 85, 35 내지 80, 36 내지75, 36.5 내지 70, 36.5 내지 60 또는 40 내지 50일 수 있으며, 이 범위 내에서 촉매의 활성 및 안정성이 높게 유지되고, 부타디엔의 생산성이 향상되는 효과가 있다.
상기 수학식 6에서 Z는 일례로 10 내지 70, 20 내지 70 또는 40 내지 60일 수 있으며, 이 범위 내에서 산화적 탈수소화 반응에 의한 과도한 발열을 효과적으로 제어할 수 있어 촉매의 안정성을 물론 반응 효율이 더욱 개선되는 이점이 있다.
바람직한 일례로 상기 다공성 지지체는 패킹밀도가 0.8 내지 1.5 kg/m3 또는 0.9 내지 1.2 kg/m3일 수 있으며, 이 범위 내에서 코팅촉매의 기계적 강도가 우수하면서도 다공성 지지체로부터 AB2O4 분말이 이탈하거나 박리되는 문제점을 야기하지 않으며, 산화적 탈수소화 반응 시 촉매층의 발열이 효과적으로 제어될 수 있고, 부타디엔 수율이나 선택도가 개선되는 이점이 있다.
상기 촉매 시스템은 1,3-부타디엔 제조용 산화적-탈수소화 반응 촉매 시스템일 수 있다.
나아가 본 발명은 상기 촉매 시스템을 포함하는 부타디엔 제조용 반응기 및 상기 반응기를 사용하는 1,3-부타디엔의 제조방법을 제공한다
본 발명의 1,3-부타디엔 제조방법은 일례로, i) 산화적 탈수소화 반응용 촉매를 반응기에 고정상으로 충진시키는 단계; 및 ii) 노르말 부텐을 포함하는 C4 화합물을 함유하는 반응물을 상기 촉매가 충진된 반응기의 촉매층에 연속적으로 통과시키면서 산화적 탈수소화 반응을 수행하는 단계;를 포함하고, 상기 i) 단계의 반응기는 산화적 탈수소화 반응용 촉매가 n개(n은 2 이상의 정수)의 단으로 점증 희석 충진된 고정층 반응기로 각각의 단은 상기 수학식 1 및 2를 만족하는 것을 특징으로 할 수 있다.
본 발명의 1,3-부타디엔 제조방법은 다른 일례로, i) 산화적 탈수소화 반응용 촉매를 반응기에 고정상으로 충진시키는 단계; 및 ii) 노르말 부텐을 포함하는 C4 화합물을 함유하는 반응물을 상기 촉매가 충진된 반응기의 촉매층에 연속적으로 통과시키면서 산화적 탈수소화 반응을 수행하는 단계;를 포함하고, 상기 i) 단계의 반응기는 산화적 탈수소화 반응용 촉매가 상기 수학식 6을 만족하도록 희석 충진된 고정층 반응기인 것을 특징으로 할 수 있다.
상기와 같이 특정 촉매를 반응기에 희석 충진 또는 점증 희석 충진시켜 산화적 탈수소화 반응을 수행하는 경우, 반응기 내 발열을 효과적으로 제어할 수 있으며, 특히, 특정한 산화적 탈수소화 반응용 촉매를 고정층 반응기에 점증 희석 충진시키는 경우 발열 제어 효과가 더욱 극대화되어 촉매의 활성 및 안정성이 장기적으로 높게 유지될 뿐만 아니라, 부텐의 전환율, 부타디엔의 선택도 및 수율 등이 크게 개선되는 효과가 있다.
상기 C4 혼합물은 일례로 2-부텐(trans-2-Butene, cis-2-Butene), 1-부텐(1-Butene) 중에서 선택된 1종 이상의 노르말 부텐을 포함하며, 선택적으로 노르말 부탄이나 C4 라피네이트-3을 더 포함할 수 있다.
상기 반응물은 일례로 공기, 질소, 스팀 및 이산화탄소 중에서 선택된 1종 이상을 더 포함할 수 있으며, 바람직하게는 질소 및 스팀을 더 포함하는 것이다.
구체적인 일례로 상기 반응물은 C4 혼합물, 산소, 스팀 및 질소를 1:0.1~1.5:1~15:0.5~10 또는 1:0.5~1.2:5~12:0.5~5의 몰비로 포함할 수 있다. 또한, 본 기재에 따른 부타디엔 제조방법은 C4 혼합물 1몰 대비 1 내지 10 또는 5 내지 10몰로 소량의 스팀을 사용함에도 반응효율이 우수하고, 폐수발생이 적은 이점이 있으며, 궁극적으로는 폐수처리 비용은 물론 공정에 소모되는 에너지를 절감하는 효과를 제공한다.
상기 산화적 탈수소화 반응은 일례로 250 내지 500℃, 300 내지 450℃, 320 내지 400℃, 330 내지 380℃ 또는 350 내지 370℃의 반응온도에서 수행할 수 있으며, 이 범위 내에서 에너지 비용을 크게 증가시키지 않으면서 반응효율이 우수하여 1,3-부타디엔을 생산성 높게 제공할 수 있다.
또한, 상기 산화적 탈수소화 반응은 하기 수학식 7로 계산된 △T 값이 105℃ 이하, 104℃ 이하, 90℃ 이하, 80℃ 이하, 70℃ 이하, 60℃ 이하, 50℃ 이하 40℃ 이하, 20 내지 70℃ 또는 20 내지 45℃일 수 있다.
[수학식 7]
△T(℃) = 반응온도 - 촉매층 내부 최고온도
본 발명에서 촉매층 내부 최고온도는 반응기 내에 충진된 촉매층에서 반응 시 온도가 가장 높은 부분을 의미한다.
또한, 촉매층 내부 최고온도는 일례로 열전대(Thermo-Couple; TC)를 이송장치에 연결한 뒤, 반응기 상단부터 하단까지 등속으로 이동시키며 주사(scan)하여 측정할 수 있다.
상기 산화적 탈수소화 반응은 일례로 상기 노르말 부텐을 기준으로 50 내지 2000h-1, 50 내지 1500 h-1 또는 50 내지 1000 h-1의 공간속도(GHSV: Gas Hourly Space Velocity)에서 수행할 수 있으며, 이 범위 내에서 반응효율이 우수하여 전환율, 선택도, 수율 등이 우수한 효과가 있다.
본 기재에서 반응기는 상기 산화적 탈수소화 반응용 촉매 시스템을 포함하는 경우 특별히 제한되지는 않으나, 일례로 다관식 반응기나 플레이트식 반응기 등일 수 있다.
이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시하나, 하기 실시예는 본 발명을 예시하는 것일 뿐 본 발명의 범주 및 기술사상 범위 내에서 다양한 변경 및 수정이 가능함은 당업자에게 있어서 명백한 것이며, 이러한 변형 및 수정이 첨부된 특허청구범위에 속하는 것도 당연한 것이다.
[제조예]
1. ZnFe2O4 분말 제조
pH가 8로 조절된 암모니아수 2L를 준비하고, 별도의 용기에 증류수 2L, 염화아연(ZnCl2) 288.456g 및 염화철(FeCl3) 1132.219g을 포함하는 금속 전구체 용액을 준비하였다. 준비된 암모니아수에 준비된 금속 전구체 용액을 적가하면서 pH를 8로 유지시키기 위해 농도 9wt% 암모니아수를 함께 첨가하였다. 균일한 조성의 시료를 얻기 위해 교반기를 사용하여 1시간 동안 교반하며 금속 전구체 용액을 모두 첨가한 뒤, 1시간 동안 숙성시킨 다음 침전물이 형성된 용액을 증류수 4L를 사용하여 세척하는 동시에 여과하여 침전물을 분리하였다. 분리된 침전물을 16시간 동안 건조시킨 뒤, 650℃에서 소성하여 ZnFe2O4 분말을 수득하였다. 수득된 분말을 분쇄하고 45㎛ 이하의 크기를 갖도록 체거름법으로 선별하였다.
2. 코팅 촉매 제조
ZnFe2O4 와 알루미나 볼 총 100 중량%에 대하여 ZnFe2O4 가 14 중량% 또는 27 중량%의 비율을 갖도록 계량된 ZnFe2O4 분말을 증류수에 분산시켜 농도가 약 10 내지 30wt%인 촉매 슬러리를 제조하였다. 진공분위기의 회전형 챔버에 패킹밀도가 0.9 내지 1.2 kg/m3인 알루미나 볼을 넣고 약 30 내지 50 rpm으로 회전시키면서 촉매 슬러리를 분무하여 평균입경 5mm의 알루미나 볼에 코팅시켰다. 코팅은 회전형 챔버의 온도가 50 내지 80℃인 범위 내에서 실시하였다. 코팅이 완료된 후, 증류수가 증발될 수 있도록 90 내지 120℃의 오븐에서 건조시켜 코팅 촉매를 제조하였다.
[실시예]
실시예 1
관형 반응기에 반응기에 상기 ZnFe2O4 비율이 14중량%인 코팅 촉매를 하기 표 1과 같이 희석 충진재로서 알루미나와 혼합하여 3단으로 점증 희석 충진한 뒤, 부텐의 전환율, 1,3-부타디엔의 선택도, 1,3-부타디엔 수율 및 COx 선택도를 측정하였다.
반응물로 트랜스-2-부텐과 시스-2-부텐을 포함하는 C4 혼합물과 산소, 스팀 및 질소를 1 : 1 : 8 : 1의 몰비로 혼합하여 사용하였으며, C4 혼합물과 산소, 질소의 양은 질량유속조절기를 사용하여 제어하였고, 스팀의 주입 속도는 액체 펌프를 사용하여 조절되었다. 반응물의 주입 속도는 C4 혼합물 내의 노르말 부텐을 기준으로 공간속도(GHSV)가 66h-1이 되도록 촉매 양을 설정하였으며, 하기 표 1에 기재된 반응온도로 반응을 수행하였다.
구분 GHSV / 부텐:산소:스팀:질소 몰비 = 66h-1 / 1:1:8:1, 355℃
X [ZnFe2O4 함량, wt%] Y[다공성 지지체 함량, wt%] Z[희석 충진재 함량, wt%]
3단 14 86 0
2단 10.5 64.5 25
1단 7 43 50
*상기 표에서 X, Y 및 Z는 각각 이들의 총합 100 중량% 기준임
실시예 2
촉매 조성물을 하기 표 2와 같이 3단으로 반응기에 점증 희석 충진하고, 하기 표 2에 기재된 온도로 반응을 수행하는 것을 제외하고는 상기 실시예 1과 동일한 조건 및 방법으로 실시하였다.
구분 GHSV / 부텐:산소:스팀:질소 몰비 = 66h-1 / 1:1:8:1, 360℃
X [ZnFe2O4 함량, wt%] Y[다공성 지지체 함량, wt%] Z[희석 충진재 함량, wt%]
3단 14 86 0
2단 7 43 50
1단 3.5 21.5 75
*상기 표에서 X, Y 및 Z는 각각 이들의 총합 100 중량% 기준임
실시예 3
관형 반응기에 ZnFe2O4 비율이 14중량%인 코팅 촉매를 하기 표 3과 같이 희석 충진재와 혼합하여 희석 충진하고, 반응온도를 365℃로 설정한 것을 제외하고는 상기 실시예 1과 동일한 조건 및 방법으로 실시하였다.
실시예 4
관형 반응기에 ZnFe2O4 비율이 27중량%인 코팅 촉매를 하기 표 3과 같이 희석 충진재와 혼합하여 희석 충진하고, 반응온도를 340℃로 설정한 것을 제외하고는 상기 실시예 1과 동일한 조건 및 방법으로 실시하였다.
구분 반응온도(℃) GHSV / 부텐:산소:스팀:질소 몰비 = 66h-1 / 1:1:8:1
X [ZnFe2O4 함량, wt%] Y[다공성 지지체 함량, wt%] Z[희석 충진재 함량, wt%]
실시예 3 365 7 43 50
실시예 4 340 13.5 36.5 50
*상기 표에서 X, Y 및 Z는 각각 이들의 총합 100 중량% 기준임
비교예 1
상기 제조예에 따라 제조된 ZnFe2O4 분말을 증류수 및 알코올과 반죽하여 지름 2mm 및 길이 2mm 크기의 펠렛으로 압출 성형하고, 90℃에서 4시간 동안 건조하여 펠렛 형태의 촉매를 제조하였다. 이렇게 제조된 촉매 6 부피%를 알루미나 볼 94 부피%와 혼합하여 반응기에 희석 충진하고, 반응온도를 365℃로 설정한 것을 제외하고는 실시예 1과 동일한 조건 및 방법으로 실시하였다.
비교예 2
상기 제조예에 따라 제조된 ZnFe2O4 분말을 증류수 및 알코올과 반죽하여 지름 2mm 및 길이 2mm 크기의 펠렛으로 압출 성형하고, 90℃에서 4시간 동안 건조하여 펠렛 형태의 촉매를 제조하였다. 이렇게 제조된 촉매를 하기 표 4에서와 같이, 점증 희석 충진하고 반응온도를 375℃로 설정한 것을 제외하고는 실시예 1과 동일한 조건 및 방법으로 실시하였다.
구분 GHSV / 부텐:산소:스팀:질소 몰비 = 66h-1 / 1:1:8:1, 365℃
X [ZnFe2O4 함량, wt%] Y[다공성 지지체 함량, wt%] Z[희석 충진재 함량, wt%]
3단 9 - 91
2단 6 - 94
1단 3 - 97
*상기 표에서 X 및 Z는 각각 이들의 총합 100 중량% 기준임
비교예 3
관형 반응기에 ZnFe2O4 비율이 14중량%인 코팅 촉매를 충진하되, 하기 표 5와 같이 희석 충진재의 혼합을 생략하고 반응온도를 343℃로 설정한 것을 제외하고는 상기 실시예 3과 동일한 조건 및 방법으로 실시하였다.
비교예 4
관형 반응기에 ZnFe2O4 비율이 27중량%인 코팅 촉매를 충진하되, 희석 충진재의 혼합을 생략하고 반응온도를 325℃로 설정한 것을 제외하고는 상기 실시예 4와 동일한 조건 및 방법으로 실시하였다.
[시험예]
상기 실시예 및 비교예에 따른 생성물을 가스 크로마토그래피를 이용하여 분석하였다. 부텐의 전환율, 1,3-부타디엔의 선택도, 1,3-부타디엔의 수율, COx 선택도는 하기 수학식 8, 9 및 10에 따라 각각 산출되었다. 생성물의 분석 결과는 하기 표 5 및 6에 나타내었다.
또한, 촉매층 내부 최고온도는 상기 실시예 및 비교예에 따른 촉매 시스템을 적용하여 산화적 탈수소화 반응을 수행하는 중에 반응기 중앙의 열전대관(thermo-well) 안에서 열전대(thermocouple)를 반응기 입구부터 반응기 출구까지 초당 4mm의 등속으로 이동시키며 주사(scan)하여 측정하였다.
[수학식 8]
전환율(%) = [(반응한 부텐의 몰수)/(공급된 부텐의 몰수)]*100
[수학식 9]
선택도(%) = [(생성된 1,3-부타디엔 또는 COX의 몰수)/(반응한 부텐의 몰수)]*100
[수학식 10]
수율(%) = [(생성된 1,3-부타디엔의 몰수)/(공급된 부텐의 몰수)]*100
부텐 전환율(%) 1,3-부타디엔 선택도(%) 1,3-부타디엔 수율(%) COx 선택도(%) Hot spot (℃) △T(℃)
실시예1 89.8 88.8 79.7 9.8 400 65
실시예2 91.2 91.7 83.6 7.1 397 37
비교예1 79.6 89.3 71.1 9.1 400 35
비교예2 83.9 88.4 74.2 10.2 415 40
△T(℃): 촉매층 내부 최고온도와 반응 시 설정한 반응 온도의 차이
상기 표 5에서 보는 바와 같이, 본 발명에 따른 촉매 시스템을 이용한 실시예 1 및 2의 경우, 그렇지 않은 비교예 1 및 2 대비 상대적으로 낮은 반응온도에서 산화적 탈수소화 반응을 수행하였음에도 불구하고, 부텐의 전환율, 1,3-부타디엔의 선택도 및 수율이 더욱 우수한 것을 확인할 수 있었다. 특히, 실시예 2에 따른 촉매 시스템을 이용하는 경우에는 산화적 탈수소화 반응 효율 및 활성이 더욱 우수하면서도, 촉매층 내부 최고온도와 반응온도 차이가 작은 것으로 보아 반응기 내부의 발열 제어 효과가 더욱 우수한 것을 확인할 수 있었다.
반면에, ZnFe2O4 분말로 제조된 펠렛 형태의 촉매를 희석 충진재와 혼합하여 희석 충진시킨 비교예 1의 촉매 시스템은 보다 높은 반응온도 조건에서 반응을 수행하였음에도 불구하고 반응 활성이 실시예 대비 상당히 열악한 것을 확인할 수 있다. 또한, 비교예 2의 경우, ZnFe2O4 분말로 제조된 펠렛 형태의 촉매를 희석 충진재와 혼합하여 점증 희석 충진함에도 실시예 대비 반응 활성이 낮은 것으로 확인되었다.
위 실험 결과로부터 ZnFe2O4이 소정 비율로 다공성 지지체에 코팅된 촉매를 희석 충진재와 혼합하여 점증 희석 충진시킨 촉매 시스템은 산화적 탈수소화 반응 활성을 크게 개선시키며, 이는 본 기재에 따른 신규한 촉매 시스템에 의해 반응기 내부의 발열이 제어됨으로써 안정적인 온도구배의 반응시스템을 제공하기 때문인 것으로 판단할 수 있다. 또한, 실시예 1 및 실시예 2의 실험 결과로부터 코팅 촉매를 점증 희석 충진 할 시에 희석 비율은 반응 활성에 영향을 미치는 것을 알 수 있었다.
부텐 전환율(%) 1,3-부타디엔 선택도(%) 1,3-부타디엔 수율(%) COx 선택도(%) Hot spot (℃) △T(℃)
실시예3 90.4 89.0 80.5 9.8 453 88
비교예3 88.3 88.5 78.1 10.1 443 100
실시예4 86.1 85.8 73.9 11.3 444 104
비교예4 82.7 86.6 71.6 12.0 471 146
△T(℃): 촉매층 내부 최고온도와 반응 시 설정한 반응 온도의 차
상기 표 6에서 보는 바와 같이, 동일한 코팅 촉매를 사용하되, 코팅 촉매를 희석 충진재와 함께 균일 희석 충진시킨 촉매 시스템(실시예 3 및 실시예 4)은 그렇지 않은 비교예 3 및 4의 촉매 시스템 대비 부텐의 전환율, 1,3-부타디엔의 선택도 및 수율이 더욱 우수하면서 부반응 물질인 COx 선택도와 촉매층 내부 최고온도는 더욱 낮은 것을 확인할 수 있었다. 또한 이러한 개선 효과는 코팅 비율이 14wt%인 코팅 촉매를 사용하는 경우에 더욱 우수한 것을 확인할 수 있었다.
반면에, 비교예 3은 동일한 농도의 코팅 촉매를 사용한 실시예 3 대비 22℃ 가량 낮은 반응온도로 설정하였음에도 불구하고, 촉매층 내부 최고온도가 10℃ 더 높고, 반응 활성은 더욱 낮은 것을 확인할 수 있었으며, 비교예 4의 경우 촉매층 내부 최고온도가 가장 높은 값을 나타냄에도 불구하고 반응 활성은 상당히 떨어지는 것을 확인할 수 있었다.
[추가 실시예 및 비교예]
추가 실시예 1
희석 충진재로서 실리콘카바이드를 사용하는 것을 제외하고는 실시예 1과 동일한 조건 및 방법으로 실시하였다.
추가 실시예 2
희석 충진재로서 지르코니아를 사용하는 것을 제외하고는 실시예 1과 동일한 조건 및 방법으로 실시하였다.
추가 비교예 1
코팅 촉매 제조 시 패킹밀도가 0.5 kg/m3인 알루미나 볼을 사용하는 것을 제외하고는 실시예 1과 동일한 조건 및 방법으로 실시하였다.
추가 비교예 2
코팅 촉매 제조 시 패킹밀도가 2.0 kg/m3인 알루미나 볼을 사용하는 것을 제외하고는 실시예 1과 동일한 조건 및 방법으로 실시하였다.
추가 비교예 3
상기 제조예에 따라 제조된 ZnFe2O4 분말을 증류수 및 알코올과 반죽하여 지름 5mm 및 길이 5mm 크기의 펠렛으로 압출 성형하고, 90℃에서 4시간 동안 건조하여 펠렛 형태의 촉매를 제조하였다. 이렇게 제조된 촉매를 충진하되, 희석 충진재의 혼합을 생략하고 반응온도를 291℃로 설정한 것을 제외하고는 상기 실시예 1과 동일한 조건 및 방법으로 실시하였다.
상기와 동일한 방법으로 추가 실시예 및 추가 비교예에 따른 생성물을 분석하여 하기 표 7로 정리하였다.
부텐전환율(%) 1,3-부타디엔 선택도(%) 1,3-부타디엔수율(%) COx 선택도(%) 촉매층내부최고온도 (℃) △T(℃)
추가 실시예1 89.2 87.4 78.0 10.5 401 46
추가실시예2 86.7 87.5 75.9 11.1 407 52
추가비교예1 57.2 91.5 52.3 6.9 407 52
추가비교예2 80.1 87.0 69.7 11.0 419 64
추가비교예3 79.4 83.9 66.6 13.7 474 183
△T(℃): 촉매층 내부 최고온도와 반응 시 설정한 반응 온도의 차
상기 표 7에서 보는 바와 같이, 희석 충진재의 종류를 각각 실리콘 카바이드 및 지르코니아로 달리하여 실험한 실시예 1 및 2의 경우, 촉매층 내부 최고온도가 비교예 1 및 2와 동등 수준 혹은 더 낮은 값을 가지며, 부텐의 전환율이나 1,3-부타디엔의 선택도 및 수율이 더욱 우수한 것을 확인할 수 있었다.
한편, 다공성 지지체로 패킹밀도가 본 발명의 범위를 벗어난 알루미나를 사용할 경우, 본 발명의 수학식 1 및 2를 만족하도록 촉매를 희석 충진하였음에도 촉매층의 과열을 억제하는 효과가 미비한 것을 확인하였으며, 부텐의 전환율, 부타디엔 수율 등이 상당히 떨어지는 것을 확인할 수 있었다. 특히, 패킹밀도가 본 발명의 하한값에 못미치는 경우(추가 비교예 1)에는 부텐의 전환율 및 부타디엔의 수율이 현격히 떨어지는 것을 확인할 수 있다.
또한, 다공성 지지체 및 희석 충진재의 배합을 생략하는 경우에는 상기 표 7에서 보는 바와 같이, 발열이 제어되지 못해 촉매층 내부 온도가 상당히 높은 것을 확인할 수 있으며, 이로 인해 부반응 생성물인 COx 선택도가 상당히 증가된 것으로 확인되고, 나아가 촉매의 수명이 상당히 낮을 것으로 예측할 수 있다.
도 1은 본 발명의 실시예 1에 따른 촉매 시스템을 적용한 산화적 탈수소화 반응 시, 촉매층의 온도 분포를 도시한 그래프이며, 도 2는 추가 비교예 3(종래 기술)에 따른 촉매 시스템을 적용한 산화적 탈수소화 반응 시, 촉매층의 온도 분포를 도시한 그래프이다.
이를 참조하면, 본 발명에 따른 촉매 시스템을 적용한 경우 발열이 효과적으로 제어되어 촉매층 내부 온도가 비교적 안정적인 반면에, 추가 비교예 3과 같이 실험한 경우에는 초반에 촉매층 내부 온도가 급격하게 상승한 뒤, 급격하게 하강하는 것을 확인할 수 있다.
상기 실험 결과를 종합하면, 본 발명에 따른 촉매 시스템을 이용하는 경우 반응기 내부의 발열이 제어되어 안정적인 온도구배의 반응 시스템을 제공할 수 있으며, 이에 의해 촉매층 내부 최고온도가 낮음에도 우수한 반응 활성 및 안정성을 제공하고, 궁극적으로는 산화적 탈수소화 반응 공정의 효율 증대에 기여할 수 있다.

Claims (16)

  1. 산화적 탈수소화 반응용 촉매가 n개(n은 2 이상의 정수)의 단으로 충진된 반응기에서 각각의 단이 하기 수학식 1 및 2를 만족하도록 희석 충진시키는 것을 특징으로 하는
    산화적 탈수소화 반응용 촉매 시스템.
    [수학식 1]
    X wt% + Y wt% + Z wt% = 100 wt%
    (상기 수학식 1에서 X는 AB2O4의 함량값으로 3 내지 30이고, A는 구리(Cu), 라듐(Ra), 바륨(Ba), 스트론튬(Sr), 칼슘(Ca), 베릴륨(Be), 아연(Zn), 마그네슘(Mg), 망간(Mn), 세륨(Ce), 지르코늄(Zr), 란타넘(La) 및 코발트(Co)로 이루어진 군으로부터 선택된 1종 이상이고, B는 철(Fe)이며, Y는 다공성 지지체의 함량값으로 20 내지 97이고, Z는 알루미나, 실리카, 실리콘 카바이드, 지르코니아, 타이타니아 및 코디어라이트 중에서 선택된 1종 이상의 희석 충진재의 함량값으로 0 내지 77이다.)
    [수학식 2]
    Xn > Xn -1
    (상기 수학식 2에서 Xn은 반응물이 투입되는 방향을 기준으로 n번째 단의 X이고, Xn -1은 n-1번째 단의 X이다.)
  2. 제 1항에 있어서,
    상기 n은 2 내지 8의 정수인 것을 특징으로 하는
    산화적 탈수소화 반응용 촉매 시스템.
  3. 제 1항에 있어서,
    상기 촉매 시스템은 하기 수학식 3
    [수학식 3]
    (Xn - X n-1) ≥ 2
    (상기 수학식 3에서 Xn은 n번째 단의 X이고, Xn -1은 n-1번째 단의 X이다)를 만족하는 것을 특징으로 하는
    산화적 탈수소화 반응용 촉매 시스템.
  4. 제 1항에 있어서,
    상기 n개의 단 중에서 적어도 하나의 단은 Z가 0 보다 큰 것을 특징으로 하는
    산화적 탈수소화 반응용 촉매 시스템.
  5. 제 1항에 있어서,
    상기 촉매 시스템은 최소한 하나의 단이 Z가 0 아닐 때 하기 수학식 4
    [수학식 4]
    (Yn - Yn -1) ≥ 15
    (상기 수학식 4에서 Yn은 n번째 단의 Y이고, Yn -1은 n-1번째 단의 Y이다)를 만족하는 것을 특징으로 하는
    산화적 탈수소화 반응용 촉매 시스템.
  6. 제 1항에 있어서,
    상기 촉매 시스템은 하기 수학식 5
    [수학식 5]
    (Zn-1 - Zn) ≥ 20
    (상기 수학식 5에서 Zn은 n번째 단의 Z이고, Zn-1은 n-1번째 단의 Z이다)를 만족하는 것을 특징으로 하는
    산화적 탈수소화 반응용 촉매 시스템.
  7. 제 1항에 있어서,
    상기 AB2O4는 상기 다공성 지지체에 코팅된 코팅 촉매인 것을 특징으로 하는
    산화적 탈수소화 반응용 촉매 시스템.
  8. 제 7항에 있어서,
    상기 코팅 촉매는 바인더-프리(free)인 것을 특징으로 하는
    산화적 탈수소화 반응용 촉매 시스템.
  9. 제 1항에 있어서,
    상기 AB2O4는 A가 Zn이고 B가 Fe인 아연 페라이트인 것을 특징으로 하는
    산화적 탈수소화 반응용 촉매 시스템.
  10. 제 1항에 있어서,
    상기 다공성 지지체는 알루미나, 실리카, 타이타니아, 지르코니아, 실리콘 카바이드 및 코디어라이트로 이루어진 군으로부터 선택된 1종 이상인 것을 특징으로 하는
    산화적 탈수소화 반응용 촉매 시스템.
  11. 제 1항에 있어서,
    상기 다공성 지지체는 평균기공크기가 50 내지 200㎛인 것을 특징으로 하는
    산화적 탈수소화 반응용 촉매 시스템.
  12. 제 1항에 있어서,
    상기 다공성 지지체는 패킹밀도(packing density)가 0.8 내지 1.5 kg/m3인 것을 특징으로 하는
    산화적 탈수소화 반응용 촉매 시스템.
  13. 산화적 탈수소화 반응용 촉매를 반응기에 충진시키되, 상기 촉매가 하기 수학식 6을 만족하도록 반응기에 희석 충진시키는 것을 특징으로 하는
    산화적 탈수소화 반응용 촉매 시스템.
    [수학식 6]
    X wt% + Y wt% + Z wt% = 100 wt%
    (상기 수학식 1에서 X는 AB2O4의 함량값으로 5 내지 25이고, A는 구리(Cu), 라듐(Ra), 바륨(Ba), 스트론튬(Sr), 칼슘(Ca), 베릴륨(Be), 아연(Zn), 마그네슘(Mg), 망간(Mn) 및 코발트(Co)로 이루어진 군으로부터 선택된 1종 이상이고, B는 철(Fe)이며, Y는 다공성 지지체의 함량값으로 25 내지 85이고, Z는 알루미나, 실리카, 실리콘 카바이드, 지르코니아, 타이타니아 및 코디어라이트 중에서 선택된 1종 이상의 희석 충진재의 함량값으로 10 내지 70이다.)
  14. 산화적 탈수소화 반응용 촉매가 n개(n은 2 이상의 정수)의 단으로 충진된 반응기에서 각각의 단이 하기 수학식 1 및 2를 만족하도록 희석 충진시키는 것을 특징으로 하는
    산화적 탈수소화 반응용 촉매 시스템.
    [수학식 1]
    X wt% + Y wt% + Z wt% = 100 wt%
    (상기 수학식 1에서 X는 AB2O4의 함량값으로 3 내지 30이고, A는 구리(Cu), 라듐(Ra), 바륨(Ba), 스트론튬(Sr), 칼슘(Ca), 베릴륨(Be), 아연(Zn), 마그네슘(Mg), 망간(Mn), 세륨(Ce), 지르코늄(Zr), 란타넘(La) 및 코발트(Co)로 이루어진 군으로부터 선택된 1종 이상이고, B는 철(Fe)이며, Y는 패킹밀도가 0.8 내지 1.5 kg/m3인 다공성 지지체의 함량값으로 20 내지 97이고, Z는 알루미나, 실리카, 실리콘 카바이드, 지르코니아, 타이타니아 및 코디어라이트 중에서 선택된 1종 이상의 희석 충진재의 함량값으로 0 내지 77이다.)
    [수학식 2]
    Xn > Xn -1
    (상기 수학식 2에서 Xn은 반응물이 투입되는 방향을 기준으로 n번째 단의 X이고, Xn -1은 n-1번째 단의 X이다.)
  15. 제 1항 내지 제 14항 중 어느 한 항에 따른 산화적 탈수소화 반응용 촉매 시스템을 포함하는 것을 특징으로 하는
    부타디엔 제조용 반응기.
  16. 제 15항에 따른 반응기를 사용하고, 노르말 부텐을 포함하는 C4 화합물을 함유하는 반응물을 상기 반응기의 촉매층에 연속적으로 통과시키면서 산화적 탈수소화 반응을 수행하는 단계를 포함하는 것을 특징으로 하는
    1,3-부타디엔의 제조방법.
PCT/KR2018/014736 2017-11-30 2018-11-27 산화적 탈수소화 반응용 촉매 시스템, 이를 포함하는 부타디엔 제조용 반응기 및 1,3-부타디엔의 제조방법 WO2019107884A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2019536270A JP6812620B2 (ja) 2017-11-30 2018-11-27 酸化的脱水素化反応用触媒システム、それを含むブタジエン製造用反応器及び1,3−ブタジエンの製造方法
EP18882714.1A EP3556463A4 (en) 2017-11-30 2018-11-27 CATALYST SYSTEM FOR OXIDATIVE DEHYDRATION REACTION, REACTOR FOR PRODUCING BUTADIENE THEREFORE AND METHOD FOR PRODUCING 1,3-BUTADIENE
US16/477,866 US10994265B2 (en) 2017-11-30 2018-11-27 Catalyst system for oxidative dehydrogenation, reactor for preparing butadiene including catalyst system, and method of preparing 1,3-butadiene
CN201880005956.7A CN110167669A (zh) 2017-11-30 2018-11-27 用于氧化脱氢的催化剂体系、包括其的用于制备丁二烯的反应器、以及1,3-丁二烯的制备方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020170162431A KR102262896B1 (ko) 2017-11-30 2017-11-30 산화적 탈수소화 반응용 촉매 시스템, 이를 포함하는 부타디엔 제조용 반응기 및 1,3-부타디엔의 제조방법
KR10-2017-0162431 2017-11-30

Publications (1)

Publication Number Publication Date
WO2019107884A1 true WO2019107884A1 (ko) 2019-06-06

Family

ID=66664165

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/014736 WO2019107884A1 (ko) 2017-11-30 2018-11-27 산화적 탈수소화 반응용 촉매 시스템, 이를 포함하는 부타디엔 제조용 반응기 및 1,3-부타디엔의 제조방법

Country Status (6)

Country Link
US (1) US10994265B2 (ko)
EP (1) EP3556463A4 (ko)
JP (1) JP6812620B2 (ko)
KR (1) KR102262896B1 (ko)
CN (1) CN110167669A (ko)
WO (1) WO2019107884A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3766576A4 (en) * 2018-03-13 2021-04-14 Lg Chem, Ltd. METHOD OF MANUFACTURING A FERRITE-BASED CATALYST AND METHOD OF MANUFACTURING BUTADIENE USING THEME

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112387288B (zh) * 2019-08-15 2024-01-30 中国石油化工股份有限公司 一种中温型环己醇脱氢催化剂及其制备方法和应用
CN111825515B (zh) * 2020-08-11 2022-11-04 中南林业科技大学 一种由双戊烯制备对伞花烃的方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3998760A (en) * 1974-09-03 1976-12-21 Petro-Tex Chemical Corporation Modified zinc ferrite oxidative dehydrogenation catalysts
KR100847206B1 (ko) * 2007-05-10 2008-07-17 에스케이에너지 주식회사 아연 페라이트 촉매, 이의 제조방법 및 이를 이용한1,3-부타디엔의 제조방법
KR20120009687A (ko) * 2010-07-20 2012-02-02 에스케이이노베이션 주식회사 혼성 망간 페라이트가 코팅된 촉매, 이의 제조방법 및 이를 이용한 1,3-부타디엔의 제조방법
KR20130046458A (ko) * 2011-10-28 2013-05-08 주식회사 엘지화학 연속 반응기를 이용한 1,3-부타디엔의 제조방법
KR101508776B1 (ko) 2008-03-28 2015-04-10 에스케이이노베이션 주식회사 연속 흐름식 2중 촉매 반응 장치를 이용하여노르말-부텐으로부터 1,3-부타디엔을 제조하는 방법
KR20170068351A (ko) * 2015-12-09 2017-06-19 주식회사 엘지화학 산화적 탈수소화 반응용 촉매 및 이의 제조방법

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3284536A (en) * 1964-01-02 1966-11-08 Petro Tex Chem Corp Dehydrogenation with magnesium ferrite
US3303234A (en) * 1964-01-02 1967-02-07 Petro Tex Chem Corp Unsaturated hydrocarbons by oxidative dehydrogenation over ferrite catalyst
US3953370A (en) * 1974-10-16 1976-04-27 Petro-Tex Chemical Corporation Method of activating zinc ferrite oxidative dehydrogenation catalysts
JPS5761085A (en) * 1980-07-29 1982-04-13 Atlantic Richfield Co Conversion of hydrocarbon
JP3943284B2 (ja) 1999-05-27 2007-07-11 株式会社日本触媒 アクリル酸の製造方法
US7592483B2 (en) * 2004-07-01 2009-09-22 Basf Aktiengesellschaft Preparation of acrolein or acrylic acid or a mixture thereof by heterogeneously catalyzed partial gas phase oxidation of propylene
ATE520640T1 (de) 2004-07-01 2011-09-15 Basf Se Verfahren zur herstellung von acrylsäure durch heterogen katalysierte partielle gasphasen oxidation von propylen
MY147753A (en) 2006-07-14 2013-01-15 Shell Int Research Fischer-tropsch catalyst
BRPI0906766A2 (pt) 2008-01-17 2015-07-14 Lg Chemical Ltd Sistema do catalisador, reator de oxidação contendo o mesmo, e método de preparação para acroleíne e ácido acrílico empregando o mesmo
CA2763317C (en) 2009-05-29 2016-12-20 Mitsubishi Chemical Corporation Production process of conjugated diene
JP5780069B2 (ja) 2010-09-07 2015-09-16 三菱化学株式会社 共役ジエンの製造方法
CA2870209A1 (en) * 2012-03-29 2013-10-03 Tpc Group Llc Improved controllability oxidative dehydrogenation process for producing butadiene
CN103657659B (zh) * 2012-09-05 2015-06-10 中国石油化工股份有限公司 丁烯氧化脱氢制丁二烯的催化剂及其制备方法
US9399606B2 (en) * 2012-12-06 2016-07-26 Basf Se Catalyst and process for the oxidative dehydrogenation of N-butenes to butadiene
KR101953919B1 (ko) 2012-12-18 2019-03-04 에스케이이노베이션 주식회사 혼성 망간 페라이트 허니컴형 촉매, 이의 제조방법 및 이를 이용한 1,3-부타디엔의 제조방법
CN103962062B (zh) * 2013-01-30 2016-08-24 中国石油化工股份有限公司 等温反应器催化剂的装填方法
WO2014138520A2 (en) 2013-03-07 2014-09-12 Tpc Group Llc Multi-stage oxidative dehydrogenation process with inter-stage cooling
JP6187334B2 (ja) 2013-03-13 2017-08-30 三菱ケミカル株式会社 共役ジエンの製造方法
CN103785450B (zh) * 2014-01-28 2016-04-27 富德(北京)能源化工有限公司 用于烯烃氧化脱氢的双功能催化剂
JP6543972B2 (ja) 2015-03-12 2019-07-17 東ソー株式会社 均一な触媒混合物を用いた1,2−ジクロロエタンの製造方法
CA2904477A1 (en) * 2015-09-14 2017-03-14 Nova Chemicals Corporation Heat dissipating diluent in fixed bed reactors
KR102001144B1 (ko) * 2016-03-04 2019-07-17 주식회사 엘지화학 페라이트계 촉매 복합체, 제조방법 및 부타디엔의 제조방법
KR102003479B1 (ko) 2016-04-18 2019-10-17 주식회사 엘지화학 세공체 표면 코팅 촉매 및 세공체의 표면처리 방법
EP3551599A1 (en) * 2016-12-07 2019-10-16 SABIC Global Technologies B.V. A method for the production of high purity butadiene and n-butene from n-butane using an oxidative dehydrogenation process in a continuous-flow multi-layer-catalyst fixed-bed reactor
KR102239677B1 (ko) * 2017-04-12 2021-04-13 주식회사 엘지화학 산화적 탈수소화 반응용 촉매, 이의 제조방법 및 이를 이용한 산화적 탈수소화방법
KR102224278B1 (ko) * 2017-04-12 2021-03-08 주식회사 엘지화학 산화적 탈수소화 반응용 촉매 시스템, 이를 포함하는 산화적 탈수소화용 반응기 및 산화적 탈수소화 방법
WO2018190642A2 (ko) * 2017-04-12 2018-10-18 (주) 엘지화학 산화적 탈수소화 반응용 촉매 시스템, 이를 포함하는 산화적 탈수소화용 반응기 및 산화적 탈수소화 방법
KR101854434B1 (ko) 2017-07-13 2018-05-03 금호석유화학 주식회사 금속 산화물이 코팅된 촉매 성형체와 그의 제조방법 및 이를 이용한 1,3-부타디엔 제조방법

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3998760A (en) * 1974-09-03 1976-12-21 Petro-Tex Chemical Corporation Modified zinc ferrite oxidative dehydrogenation catalysts
KR100847206B1 (ko) * 2007-05-10 2008-07-17 에스케이에너지 주식회사 아연 페라이트 촉매, 이의 제조방법 및 이를 이용한1,3-부타디엔의 제조방법
KR101508776B1 (ko) 2008-03-28 2015-04-10 에스케이이노베이션 주식회사 연속 흐름식 2중 촉매 반응 장치를 이용하여노르말-부텐으로부터 1,3-부타디엔을 제조하는 방법
KR20120009687A (ko) * 2010-07-20 2012-02-02 에스케이이노베이션 주식회사 혼성 망간 페라이트가 코팅된 촉매, 이의 제조방법 및 이를 이용한 1,3-부타디엔의 제조방법
KR20130046458A (ko) * 2011-10-28 2013-05-08 주식회사 엘지화학 연속 반응기를 이용한 1,3-부타디엔의 제조방법
KR20170068351A (ko) * 2015-12-09 2017-06-19 주식회사 엘지화학 산화적 탈수소화 반응용 촉매 및 이의 제조방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3556463A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3766576A4 (en) * 2018-03-13 2021-04-14 Lg Chem, Ltd. METHOD OF MANUFACTURING A FERRITE-BASED CATALYST AND METHOD OF MANUFACTURING BUTADIENE USING THEME
US11167271B2 (en) 2018-03-13 2021-11-09 Lg Chem, Ltd. Method for producing ferrite-based coated catalyst and method for producing butadiene by using same

Also Published As

Publication number Publication date
KR102262896B1 (ko) 2021-06-09
KR20190063551A (ko) 2019-06-10
US20200122126A1 (en) 2020-04-23
JP6812620B2 (ja) 2021-01-13
EP3556463A1 (en) 2019-10-23
JP2020505219A (ja) 2020-02-20
EP3556463A4 (en) 2019-12-25
CN110167669A (zh) 2019-08-23
US10994265B2 (en) 2021-05-04

Similar Documents

Publication Publication Date Title
WO2019107884A1 (ko) 산화적 탈수소화 반응용 촉매 시스템, 이를 포함하는 부타디엔 제조용 반응기 및 1,3-부타디엔의 제조방법
WO2013105779A1 (ko) 카본나노튜브 및 그 제조방법
WO2017183829A2 (ko) 세공체 표면 코팅 촉매 및 세공체의 표면처리 방법
WO2018124782A1 (ko) 올레핀 제조용 촉매 및 이를 이용한 연속 반응-재생 올레핀 제조방법
WO2013002459A1 (ko) 1,3-부타디엔의 고수율 제조방법
WO2013105784A1 (ko) 카본나노튜브 및 그 제조방법
WO2014182018A1 (ko) 메조포러스 복합 산화물 촉매, 그 제조방법 및 이를 이용한 1,3-부타디엔 합성방법
WO2015190754A1 (ko) 다성분계 복합금속산화물 촉매의 제조방법
WO2017150830A1 (ko) 페라이트계 촉매 복합체, 제조방법 및 부타디엔의 제조방법
WO2019004777A1 (ko) 하이드록시메틸푸르푸랄로부터 2,5-퓨란디메틸카르복실레이트의 제조방법
WO2018074652A1 (en) Catalyst and continuous process for mass production of multi-walled carbon nanotube
WO2019132392A1 (ko) 아연 페라이트 촉매의 제조방법 및 이에 의해 제조된 아연 페라이트 촉매
WO2018190642A2 (ko) 산화적 탈수소화 반응용 촉매 시스템, 이를 포함하는 산화적 탈수소화용 반응기 및 산화적 탈수소화 방법
WO2018139776A1 (ko) 산화적 탈수소화 반응용 페라이트 촉매, 이의 제조방법 및 이를 이용한 부타디엔의 제조방법
WO2017003014A1 (ko) 환원가스 전처리 후 연속 반응-재생 및 유동식 올레핀 제조방법
WO2021133138A1 (ko) 1,4-사이클로헥산디메탄올의 제조방법
WO2021066285A1 (ko) 세륨팔라듐 고용체에 담지된 팔라듐을 포함하는 메탄의 산화이량화 반응용 촉매 및 이를 이용한 산화이량화 방법
WO2018088736A1 (ko) 합성 가스로부터 디메틸에테르를 제조하기 위한 촉매 및 이의 제조방법
WO2019245157A1 (ko) 경질올레핀 제조용 촉매, 이의 제조방법, 및 이를 이용하여 경질올레핀을 제조하는 방법
WO2018190641A1 (ko) 산화적 탈수소화 반응용 촉매, 이의 제조방법 및 이를 이용한 산화적 탈수소화방법
WO2017179805A1 (ko) 아크릴산의 제조방법
WO2021066411A1 (ko) 프로필렌의 암모산화용 촉매, 이의 제조 방법, 및 이를 이용한 프로필렌의 암모산화 방법
WO2023219408A1 (ko) 오르토-알킬화 반응 촉매, 오르토-알킬화 반응 압출 성형 촉매, 이를 사용한 오르토-알킬화 반응 생성물 제조 방법
WO2021066410A1 (ko) 프로필렌의 암모산화용 촉매, 이의 제조 방법, 이를 이용한 프로필렌의 암모산화 방법
WO2020138748A1 (ko) 순환유동층 공정을 이용한 올레핀의 제조방법

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019536270

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18882714

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018882714

Country of ref document: EP

Effective date: 20190711

NENP Non-entry into the national phase

Ref country code: DE