WO2018139776A1 - 산화적 탈수소화 반응용 페라이트 촉매, 이의 제조방법 및 이를 이용한 부타디엔의 제조방법 - Google Patents

산화적 탈수소화 반응용 페라이트 촉매, 이의 제조방법 및 이를 이용한 부타디엔의 제조방법 Download PDF

Info

Publication number
WO2018139776A1
WO2018139776A1 PCT/KR2018/000160 KR2018000160W WO2018139776A1 WO 2018139776 A1 WO2018139776 A1 WO 2018139776A1 KR 2018000160 W KR2018000160 W KR 2018000160W WO 2018139776 A1 WO2018139776 A1 WO 2018139776A1
Authority
WO
WIPO (PCT)
Prior art keywords
oxidative dehydrogenation
catalyst
dehydrogenation reaction
preparing
ferrite catalyst
Prior art date
Application number
PCT/KR2018/000160
Other languages
English (en)
French (fr)
Inventor
황선환
고동현
강전한
차경용
이주혁
남현석
최대흥
서명지
황예슬
한준규
한상진
김성민
Original Assignee
(주) 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020170167295A external-priority patent/KR102079734B1/ko
Application filed by (주) 엘지화학 filed Critical (주) 엘지화학
Priority to US16/307,317 priority Critical patent/US10843173B2/en
Priority to JP2018563905A priority patent/JP6678922B2/ja
Priority to CN201880002321.1A priority patent/CN109475857B/zh
Priority to EP18744568.9A priority patent/EP3560589A4/en
Publication of WO2018139776A1 publication Critical patent/WO2018139776A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/80Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with zinc, cadmium or mercury
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/005Spinels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/391Physical properties of the active metal ingredient
    • B01J35/392Metal surface area
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/612Surface area less than 10 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/61310-100 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/031Precipitation
    • B01J37/033Using Hydrolysis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C11/00Aliphatic unsaturated hydrocarbons
    • C07C11/12Alkadienes
    • C07C11/16Alkadienes with four carbon atoms
    • C07C11/1671, 3-Butadiene
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/42Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by dehydrogenation with a hydrogen acceptor
    • C07C5/48Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by dehydrogenation with a hydrogen acceptor with oxygen as an acceptor

Definitions

  • the present invention relates to a ferrite catalyst for an oxidative dehydrogenation reaction, a method for preparing the same, and a method for preparing butadiene using the same, and more specifically, using an epoxide-based sol-gel method.
  • ⁇ -Fe 2 O 3 has a large surface area and macroporous structure
  • the present invention relates to a method for preparing a ferrite catalyst having excellent reactivity and an oxidative dehydrogenation reaction composed of a pure spinel phase structure containing no phase.
  • Butadiene is an important basic chemical and is used as an intermediate of many petrochemical products such as synthetic rubber and electronic materials, and as one of the most important basic oils in the petrochemical market, its demand and value are gradually increasing.
  • the method for preparing butadiene includes naphtha cracking, direct dehydrogenation of n-butente, and oxidative dehydrogenation of n-butene.
  • the oxidative dehydrogenation of butene is a reaction of butene and oxygen in the presence of a metal oxide catalyst to produce 1,3-butadiene and water, and thus has a thermodynamically advantageous advantage because stable water is produced.
  • a metal oxide catalyst to produce 1,3-butadiene and water
  • thermodynamically advantageous advantage because stable water is produced.
  • it is exothermic, so that a higher yield of 1,3-butadiene can be obtained at lower reaction temperatures than direct dehydrogenation, and 1,3-butadiene is not required because no additional heat supply is required. It can be an effective standalone production process that can meet demand.
  • the metal oxide catalyst is generally synthesized by a coprecipitation method, and the coprecipitation method undergoes precipitation, aging, filtration and washing, drying, firing, and the like, and the composites prepared by the coprecipitation method are composed of small particles, which are filtered. And it takes a lot of time in the washing process, it can be observed that the composites produced by the coprecipitation method is the ⁇ -Fe 2 O 3 phase is formed after firing.
  • the catalysts prepared by the coprecipitation method has a problem of low reactivity in the catalytic reaction because the composite is prepared in a bulk form.
  • Patent Document 1 JP 2015-167886 A
  • an object of the present invention is to provide a ferrite-based catalyst for oxidative dehydrogenation reaction having excellent reactivity by the epoxide-based sol-gel (sol-gel) method. do.
  • Another object of the present invention is to provide a method for preparing the ferrite catalyst for the oxidative dehydrogenation reaction and a method for preparing butadiene using the catalyst prepared as described above.
  • the present invention comprises the steps of (a) dissolving a trivalent cationic iron (Fe) precursor and a divalent cationic metal (A) precursor in an alcohol solvent to prepare a precursor solution; (b) mixing a epoxide compound with the precursor solution to obtain a gel; (C) aging the gel obtained; (D) drying the aged gel to obtain a composite; And (E) firing the composite; wherein the firing step (E) includes a first firing step of firing at 70 to 200 ° C .; And a second firing step of firing by heating to 200 to 250 ° C. at a temperature higher than 200 ° C. to 250 ° C., and providing a ferrite catalyst for oxidative dehydrogenation reaction.
  • the first firing step may be performed by heating up at 170 to 200 ° C. at 70 to 90 ° C., and then baking the same at 170 to 200 ° C. for 4 to 8 hours.
  • the temperature increase rate of the first firing step may be, for example, 0.1 to 1 °C / min.
  • the second firing step for example, after heating up to 630 to 900 °C in excess of 200 °C to 250 °C can be baked by maintaining at 630 to 900 °C for 4 to 8 hours.
  • the temperature increase rate of the second firing step may be, for example, 0.5 to 1.5 °C / min.
  • the divalent cation metal (A) is, for example, copper (Cu), radium (Ra), barium (Ba), strontium (Sr), calcium (Ca), beryllium (Be), zinc (Zn), magnesium (Mg) ), Manganese (Mn) and cobalt (Co) may be one or more selected from the group consisting of.
  • the molar ratio (based on the metal element) of the trivalent cationic iron (Fe) precursor and the divalent cationic metal (A) precursor may be, for example, 1.5: 1.0 to 3.0: 1.0.
  • the alcohol solvent may be, for example, one or more selected from methanol, ethanol, propanol, isopropanol, 1-butanol, and 2-butanol.
  • the epoxide compound may be, for example, at least one selected from the group consisting of propylene oxide, ethylene oxide, and 1,2-epoxybutane.
  • the step (C) of aging the gel may be performed at 10 to 40 ° C. for 12 to 48 hours.
  • the drying of the step D) may be carried out, for example, for 12 to 48 hours at 70 to 100 °C.
  • Step D) may include, for example, an alcohol exchange process.
  • Step D) may include, for example, a filtering process.
  • the present invention provides a ferrite catalyst represented by the following formula (1), for example, a carbon content of 0.3 to 0.4 wt%, the surface area of 10 to 12m 2 / g provides a ferrite catalyst for oxidative dehydrogenation reaction do.
  • AFe 2 O 4 (where A is Cu, Ra, Ba, Sr, Ca, Be, Zn, Mg, Mn and Co)
  • the ferrite catalyst for the oxidative dehydrogenation reaction may be, for example, 99% by weight or more of the spinel phase ferrite.
  • the oxidative dehydrogenation reaction may be, for example, a reaction temperature of 300 to 600 ° C.
  • the reactant may include, for example, butene: oxygen: nitrogen: steam in a molar ratio of 1: 0.1 to 6: 1 to 10: 1 to 20.
  • a method for preparing a catalyst is simple and ⁇ -Fe 2 O 3 It is possible to obtain a pure spinel phase material that does not contain a phase, and has a large surface area and a macroporous structure, thereby providing a ferrite catalyst for oxidative dehydrogenation having a higher reactivity than a catalyst prepared in the prior art. There is.
  • Example 1 is an X-ray diffraction spectrum of the catalyst prepared according to Example 1 and Comparative Examples 1 to 5 of the present invention.
  • the present inventors confirmed that the catalyst prepared by the sol-gel method and the catalyst using the conventional coprecipitation method showed that the catalyst prepared by the epoxide-based sol-gel method showed lower reactivity than the catalyst prepared by the conventional coprecipitation method.
  • the sol-gel method is simpler than the conventional coprecipitation method, and ⁇ -Fe 2 O 3 There is an advantage that does not include the award, so I did not give up on this, I went to further research.
  • the catalyst prepared by the sol-gel method contained more carbon than the catalyst prepared by the conventional co-precipitation method, so that the catalyst exhibited low reactivity, thereby reducing the carbon content by adjusting the firing conditions.
  • a catalyst having a high reactivity was prepared, further research to complete the present invention.
  • the method for preparing a ferrite catalyst for oxidative dehydrogenation of the present invention comprises the steps of: (a) dissolving a trivalent cationic iron (Fe) precursor and a divalent cationic metal (A) precursor in an alcohol solvent to prepare a precursor solution; (b) mixing a epoxide compound with the precursor solution to obtain a gel; (C) aging the gel obtained; (D) drying the aged gel to obtain a composite; And (E) firing the composite; wherein the firing step (E) includes a first firing step of firing at 70 to 200 ° C .; And a second firing step of baking by raising the temperature from 200 ° C. to 250 ° C. to 600 to 900 ° C. and firing.
  • the first firing step is, for example, after heating up from 70 to 90 °C to 170 to 200 °C, and can be baked by holding at 170 to 200 °C for 4 to 8 hours, while having a low carbon content within the above range
  • the spinel phase ferrite is 99% by weight or more.
  • the first firing step is, for example, after heating up to 185 to 200 °C from 75 to 85 °C, can be carried out by maintaining at 185 to 200 °C for 5 to 7 hours, low carbon within the above range It has the effect of preparing a catalyst having a content and having a large surface area and having a spinel phase ferrite of 99% by weight or more.
  • the first firing step is, for example, after heating up from 80 to 85 °C to 195 to 200 °C, it can be baked by holding at 195 to 200 °C for 6 to 7 hours, the low within the range
  • the spinel phase ferrite is 99% by weight or more.
  • the temperature increase rate of the first firing step may be, for example, 0.1 to 1 °C / min, or 0.3 to 0.8 °C / min, preferably 0.4 to 0.6 °C / min, having a low carbon content within the above range, There is an effect that can produce a catalyst having a large surface area.
  • the firing can be carried out in an air atmosphere, for example, using a conventional firing furnace.
  • the second firing step is, for example, after heating up to 630 to 900 °C in excess of 200 °C to 250 °C, it can be carried out by maintaining at 630 to 900 °C for 4 to 8 hours, low carbon content within the above range While having, there is an effect that can produce a catalyst having a large surface area.
  • the second firing step may be carried out after heating up to 640 to 870 ° C from 200 ° C to 230 ° C for 5 to 7 hours, and having a low carbon content within the above range. While having the effect of producing a catalyst having a large surface area.
  • the second firing step may be carried out by increasing the temperature from 200 ° C to 220 ° C to 645 to 855 ° C, and then maintaining the temperature at 645 to 855 ° C for 6 to 7 hours. While having a content, there is an effect to prepare a catalyst having a large surface area.
  • the second firing step may be performed after the temperature is raised from 200 ° C. to 220 ° C. to 700 ° C. to less than 800 ° C., and then maintained for 6 to 7 hours.
  • the effect of conversion of butenes and 1,3-butadiene selectivity is excellent.
  • the temperature increase rate of the second firing step may be, for example, 0.5 to 1.5 °C / min or 0.7 to 1.3 °C / min, preferably 0.8 to 1.2 °C / min, having a low carbon content within the above range, There is an effect that can produce a catalyst having a surface area.
  • the divalent cation metal (A) is, for example, copper (Cu), radium (Ra), barium (Ba), strontium (Sr), calcium (Ca), beryllium (Be), zinc (Zn), magnesium (Mg) ), Manganese (Mn) and cobalt (Co) may be one or more selected from the group consisting of, preferably selected from zinc (Zn) or manganese (Mn) exhibiting a particularly high activity in the oxidative dehydrogenation of butene. And zinc (Zn) may be most preferred in terms of yield and selectivity of butadiene.
  • the trivalent cationic iron (Fe) precursor and the divalent cationic metal (A) precursor are, for example, one type independently selected from the group consisting of nitrate, ammonium salt, sulfate and chloride. It may be abnormal. Preferably it can be selected from nitrates or chlorides, in this case, butadiene yield and selectivity has an excellent effect.
  • the molar ratio (based on the metal element) of the trivalent cationic iron (Fe) precursor and the divalent cationic metal (A) precursor is, for example, 1.5: 1.0 to 3.0: 1.0 or 1.7: 1.0 to 2.8: 1.0, preferably 2.0: It can be 1.0 to 2.5: 1.0, while having a low carbon content within this range, there is an effect that can produce a catalyst having a large surface area.
  • the alcohol solvent is not particularly limited as long as it is an alcohol solvent used in a conventional sol-gel method.
  • the alcohol solvent may be at least one selected from methanol, ethanol, propanol, isopropanol, 1-butanol and 2-butanol.
  • it may be ethanol, in this case there is an effect to prepare a highly reactive catalyst.
  • the alcohol solvent may be 85 to 98% by weight, or 90 to 95% by weight, preferably 92 to 93% by weight or more, based on the total weight of the iron precursor and the alcohol solvent.
  • the iron precursor and the divalent cation metal (A) precursor can be completely dissolved and evenly dispersed, thereby achieving the desired effect of the present invention.
  • the epoxide-based compound is injected into the precursor solution of the step (a) to generate a hydroxyl group on the hydrated divalent cation metal, and at the same time, a gel is condensed between them. Can be obtained.
  • the epoxide compound may be, for example, at least one selected from the group consisting of propylene oxide, ethylene oxide, and 1,2-epoxybutane.
  • propylene oxide can be used, in which case it is possible to produce a highly reactive catalyst.
  • the epoxide-based compound is, for example, 67 to 82% by weight, or 72 to 79% by weight, preferably 75 to 77% by weight, based on the total weight of the iron precursor and the epoxide-based compound. It may be more than%, there is an effect that can produce a highly reactive catalyst within this range.
  • the step (C) of aging the gel is carried out to make the gel obtained in step (b) stronger and harder so that the network structure grows.
  • the C) aging step for example, may be carried out for 10 to 40 °C or 15 to 35 °C, preferably 20 to 30 °C 12 to 48 hours or 18 to 36 hours, preferably 20 to 26 hours, There is an effect that can produce a highly reactive catalyst within the above range.
  • the step (D) of drying the aged gel to obtain a composite is to remove the alcohol solvent after the maturing process of the gel.
  • the temperature at which the alcohol solvent can be evaporated is set as a lower limit, and the change due to heat of the sample
  • the temperature which can be suppressed can be made an upper limit, and drying time can also be limited within the time range anticipated that all alcohol solvent will be removed from a sample.
  • the drying of the step D) may be carried out at 70 to 100 °C for 12 to 48 hours.
  • step D) may be performed at 75 to 90 ° C., preferably at 75 to 85 ° C. for 18 to 36 hours, preferably 20 to 26 hours, and the aged gel within the above range. This can be sufficiently dried, there is an effect that can form a stable structure.
  • Step D) may include, for example, an alcohol exchange process.
  • the alcohol exchange process is to add an alcohol solvent to the aged gel obtained in step C), and then to remove the alcohol solvent, 1-chloro-2-propanol generated in the gel formation process and present in the network structure
  • the alcohol exchange process is to add an alcohol solvent to the aged gel obtained in step C), and then to remove the alcohol solvent, 1-chloro-2-propanol generated in the gel formation process and present in the network structure
  • the alcohol solvent may be added in an amount of 500 to 2,000 parts by weight or 700 to 1,500 parts by weight, preferably 700 to 1,000 parts by weight, based on 100 parts by weight of the aged gel obtained in step C). There is an effect that can produce a highly reactive catalyst.
  • an alcohol solvent for example, 2 to 10 hours, or 3 to 8 hours, preferably 5 to 6 hours, may be left to allow sufficient alcohol exchange to proceed.
  • the removal of the alcohol solvent is not particularly limited, but, for example, since the compound is in a state of maintaining a hard gel form and separated from the alcohol solvent, the alcohol solvent may be removed in a separate container. can do.
  • the alcohol exchange process may be repeated one or more times, or once to four times, preferably one to three times, and there is an effect of preparing a highly reactive catalyst within the above range.
  • Step D) may include, for example, a filtering process.
  • the filtering process is not particularly limited as long as it is a filtration method that is commonly used as a step of removing the solution in the composite as much as possible before drying, and, for example, a reduced pressure filtration method may be used.
  • the vacuum filtration method may be, for example, 100 to 300 mbar, or 130 to 270 mbar, preferably 160 to 250 mbar under reduced pressure to perform the filtration, it is possible to produce a highly reactive catalyst within the above range It has an effect.
  • the step D) may be dried after the gel aged in the step C) after the alcohol exchange process and the filtering process, in this case there is an effect that can produce a highly reactive catalyst. .
  • the present invention is a ferrite catalyst represented by the following formula (1),
  • A is Cu, Ra, Ba, Sr, Ca, Be, Zn, Mg, Mn and Co
  • it provides a ferrite catalyst for the oxidative dehydrogenation reaction characterized in that the carbon content is 0.2 to 0.8% by weight and the surface area is 5 to 15 m 2 / g.
  • the ferrite catalyst for example, may be 0.2 to 0.7% by weight, or 0.3 to 0.4% by weight, preferably 0.3 to 0.4% by weight or more, there is an effect having a high reactivity in the above range.
  • the ferrite catalyst for example, may have a surface area of 7 to 13 m 2 / g, or 10 to 12 m 2 / g preferably 10 m 2 / g or more to less than 12 m 2 / g, within the above range There is an effect having a high reactivity.
  • the ferrite catalyst for the oxidative dehydrogenation reaction may be, for example, 99% by weight or more of the spinel phase ferrite.
  • the ferrite catalyst may have a spinel phase ferrite of 99.5 wt% or more, preferably 99.9 to 100 wt%.
  • the present invention is ⁇ -Fe 2 O 3 Pure spinel phase without phase A catalyst can be obtained.
  • the present invention provides a method for producing butadiene, the ferrite catalyst for the oxidative dehydrogenation reaction in the production of butadiene by the oxidative dehydrogenation reaction from a reactant containing butene, oxygen, nitrogen and steam. to provide.
  • Butadiene production method of the present invention comprising the step of performing an oxidative dehydrogenation reaction while passing a reactant containing butene and oxygen to the reactor filled with the catalyst for oxidative dehydrogenation reaction according to the production method.
  • butadiene production method of the present invention comprises the steps of: i) filling the reactor with a catalyst for oxidative dehydrogenation reaction; And ii) performing an oxidative dehydrogenation reaction while continuously passing a reactant including butene and oxygen through the catalyst layer of the reactor filled with the catalyst.
  • the reactant may further include one or more selected from air, nitrogen, steam, and carbon dioxide.
  • the butenes in the reactants are, for example, 40 to 70 wt% of trans-2-butene and 30 to 60 wt% of cis-2-butene or 50 to 65 wt% of trans-2-butene and 35 to cis-2-butene 50 wt%, preferably 55 to 65 wt% of trans-2-butene and 35 to 55 wt% of cis-2-butene, and within this range, butene conversion, butadiene selectivity, yield, etc. are particularly excellent.
  • butadiene can be provided with high productivity.
  • the oxidative dehydrogenation reaction may be, for example, a reaction temperature of 300 to 600 ° C. or 350 to 550 ° C., preferably 375 to 500 ° C., and the conversion of butene, butadiene selectivity, yield, etc. within the above range is particularly It is excellent in that butadiene can be provided with high productivity.
  • the reactant may include, for example, butene: oxygen: nitrogen: steam in a molar ratio of 1: 0.1 to 6: 1 to 10: 1 to 20. Within this range, the reaction heat is easily controlled, and the yield of butadiene is increased. Excellent effect.
  • the reactants are butene: oxygen: nitrogen: steam 1: 0.1 to 4: 1 to 6: 3 to 15, or 1: 0.5 to 3: 2 to 5: 4 to 13, preferably 1: 0.5 to 2: 2 to 5: 4 to 6, there is an effect excellent in operating stability and selectivity within this range.
  • the oxidative dehydrogenation reaction may have a gas space velocity (GHSV) of, for example, 20 to 300 h ⁇ 1 or 100 to 300 h ⁇ 1 , preferably 250 to 300 h ⁇ 1 , based on butene, within the above range. It has the effect of high conversion and selectivity.
  • GHSV gas space velocity
  • firing was started at 80 ° C., heated to 200 ° C. at a rate of 0.5 ° C./min, and held at 200 ° C. for 6 hours.
  • the temperature was raised to 200 ° C. to 650 ° C. at a rate of 1 ° C./min, and then maintained at 650 ° C. for 6 hours.
  • the prepared ferrite catalyst was 100 wt% of spinel ferrite.
  • Example 1 except that the temperature was raised to 200 °C at 700 °C at a rate of 1 °C / min instead of the temperature was raised to 650 °C at a rate of 1 °C / min from Example 1 and The catalyst was prepared in the same manner. In this case, the prepared ferrite catalyst was 100 wt% of spinel ferrite.
  • Example 1 except that the temperature was raised to 750 °C at a rate of 1 °C / min at 200 °C to 1, 650 °C at a rate of 1 °C / min, except that Example 1 and The catalyst was prepared in the same manner.
  • the prepared ferrite catalyst was 100 wt% of spinel ferrite.
  • Example 1 In Example 1, except that the temperature was raised to 200 °C at 800 °C at a rate of 1 °C / min instead of the temperature was raised to 650 °C at 1 °C / min, Example 1 and The catalyst was prepared in the same manner. In this case, the prepared ferrite catalyst was 100 wt% of spinel ferrite.
  • Example 1 except that the temperature was raised to 850 °C at 200 °C 1 °C / min at a rate of 1 °C / min, instead of raising the temperature to 1 850 °C, Example 1 and The catalyst was prepared in the same manner. In this case, the prepared ferrite catalyst was 100 wt% of spinel ferrite.
  • the prepared ferrite catalyst was 100 wt% of spinel ferrite.
  • Firing in the preparation of the ferrite catalyst started at 80 ° C., increased to 200 ° C. at a rate of 0.5 ° C./min, and then maintained at 200 ° C. for 3 hours.
  • the temperature was raised to 300 ° C. at a rate of 0.5 ° C./min at 200 ° C., then maintained at 300 ° C. for 3 hours, and then heated up to 650 ° C. at 300 ° C. at 1 ° C./min, and then at 6 ° C. Time was maintained.
  • the prepared ferrite catalyst was 100 wt% of spinel ferrite.
  • Firing in the preparation of the ferrite catalyst started at 80 ° C., increased to 200 ° C. at a rate of 0.5 ° C./min, and then maintained at 200 ° C. for 3 hours.
  • the temperature was raised to 300 ° C. at a rate of 0.5 ° C./min at 200 ° C., then maintained at 300 ° C. for 3 hours, and then the temperature was raised to 300 ° C. at a rate of 1 ° C./min at 300 ° C., and then 6 at 550 ° C. Time was maintained.
  • the prepared ferrite catalyst was 100 wt% of spinel ferrite.
  • firing was started at 80 ° C., heated to 200 ° C. at a rate of 0.5 ° C./min, and held at 200 ° C. for 6 hours.
  • the temperature was raised to 200 ° C. to 550 ° C. at a rate of 1 ° C./min, and then maintained at 550 ° C. for 6 hours.
  • the prepared ferrite catalyst was 100 wt% of spinel ferrite.
  • Carbon content (% by weight): measured using a thermogravimetric analyzer (TGA) under oxygen atmosphere.
  • Example 1 80 ⁇ 200 °C, 0.5 °C / min, 6h hold; 200 ⁇ 650 °C, 1 °C / min, 6h hold 10.96 0.3 Comparative Example 1 80 ⁇ 650 °C, 1 °C / min, 6h hold 9.19 0.3 Comparative Example 2 80 ⁇ 200 ° C, 0.5 ° C / min, 3h hold; 200 ⁇ 300 ° C, 0.5 ° C / min, 3h hold; 300 ⁇ 650 ° C 1 ° C / min, 6h hold 11.16 0.4 Comparative Example 3 80 ⁇ 200 ° C, 0.5 ° C / min 3h hold; 200 ⁇ 300 ° C 0.5 ° C / min 3h hold; 300 ⁇ 550 ° C 1 ° C / min 6h hold 19.1 0.9 Comparative Example 4 80 ⁇ 200 °C, 0.5 °C / min, 6h maintenance; 200
  • the catalyst was prepared by the sol-gel method, the firing was heated to 80 °C to 200 °C, then maintained for 6 hours, the temperature was raised from 200 °C to 650 °C, Example 1 maintained for 6 hours In the case of, while maintaining the carbon content (%) equivalent to that of Comparative Example 5 prepared a catalyst through the coprecipitation method, it was confirmed that the surface area is wide.
  • Example 1 the catalyst is prepared by the sol-gel method, but compared to Comparative Examples 1 to 4 carried out only in the firing conditions different from Example 1, having a low carbon content and at the same time having a large surface area I could confirm it.
  • Example 1 and Comparative Examples 1 to 4 prepared by the sol-gel method ZnFe 2 O 4 Only phases were formed, and in Comparative Example 5 prepared through the coprecipitation method, it was confirmed that the ⁇ -Fe 2 O 3 phase and the ZnFe 2 O 4 phase existed at the same time.
  • Butadiene was prepared by the following method using the catalyst for oxidative dehydrogenation reaction prepared in Examples 1 to 5 and Comparative Example 5, the results are shown in Table 2 below.
  • reaction a mixture containing 60% by weight of trans-2-butene and 40% by weight of cis-2-butene and oxygen was used, and additionally nitrogen and steam were introduced together.
  • a metal tubular reactor was used as the reactor. Rate of reaction was set up in a molar ratio of oxygen / butene-1, a steam / nitrogen, and 5-butene / butene-4, GHSV (gas hourly spacevelocity) 262 h - was set to one.
  • the catalysts prepared in Examples and Comparative Examples were charged to a fixed bed reactor, and the volume of the catalyst layer contacted with the reactants was fixed at 0.1 cc. Steam was injected in the form of water, but vaporized with steam at 150 ° C.
  • a vaporizer to be mixed with reactant butene mixture and oxygen to enter the reactor.
  • the amount of butene mixture was controlled using a mass flow controller for liquids, oxygen and nitrogen were controlled using a mass flow controller for gas, and the amount of steam was controlled using a liquid pump.
  • the reaction temperature was maintained at 375 ° C., 400 ° C., 425 ° C., 450 ° C., 475 ° C. and 500 ° C., and after the reaction the product was analyzed using gas chromatography (GC), the conversion rate of the butene mixture, the conversion of each butene in the mixture Conversion rate, 1,3-butadiene selectivity was calculated according to the following equations (1) and (2) through the results measured by gas chromatography.
  • GC gas chromatography
  • Example 1 650 68.7 86.4 52.4 76.9 40.7 67.8
  • Example 2 700 80.5 92.5 71.8 87.3 68.8 86.1
  • Example 3 750 87.6 92.2 83.4 92.1 76.0 88.5
  • Example 4 800 78.7 89.9 69.4 85.9 63.2 82.7
  • Example 5 850 77.7 90.4 71.6 86.5 71.8 85.4 Comparative Example 5 650 70.0 88.5 71.0 88.6 72.6 87.8
  • Example 1 650 38.9 68.3 32.8 62.1 29.5 56.6
  • Example 2 700 64.8 84.0 61.3 82.1 59.3 80.9
  • Example 3 750 73.2 86.7 68.8 82.2 65.5 79.9
  • Example 4 800 59.1 81.5 56.1 78.6 53.2 76.3
  • the final firing temperature is 750 °C, it was confirmed that the conversion and selectivity higher than the comparative example 5 in the entire reaction temperature.
  • Example 1 of the present invention a catalyst having a different firing temperature was prepared, and as a result of XRD analysis, the crystallinity of the catalyst increased as the firing temperature was changed, and the catalyst was determined. It was confirmed that the structure did not change.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Catalysts (AREA)

Abstract

본 발명은 산화적 탈수소화 반응용 페라이트 촉매 및 이의 제조방법에 관한 것으로, 보다 상세하게는 에폭사이드(epoxide)기반의 졸-겔(sol-gel)법에 있어서, 소성하는 단계가 70 내지 200℃에서 소성하는 제1 소성단계; 및 200℃ 초과 내지 250℃에서 600 내지 900℃까지 승온하여 소성하는 제2 소성단계;를 포함하는 것을 특징으로 하는 산화적 탈수소화 반응용 페라이트 촉매의 제조방법 등에 관한 것이다. 본 발명에 따르면, 에폭사이드(epoxide)기반의 졸-겔(sol-gel)법을 이용하여, 촉매의 제조방법이 간단하고 α-Fe2O3상이 포함되지 않은 순수한 스피넬상 구조로 이루어진 물질을 얻을 수 있으며, 넓은 표면적과 매크로포로스(macroporouse) 구조를 갖게 되어, 종래기술로 제조한 촉매보다 높은 반응성을 갖는 촉매 등을 제공하는 효과가 있다. 〔대표도〕도 2

Description

산화적 탈수소화 반응용 페라이트 촉매, 이의 제조방법 및 이를 이용한 부타디엔의 제조방법
〔출원(들)과의 상호 인용〕
본 출원은 2017년 01월 26일자 한국특허출원 제10-2017-0012545호 및 상기 특허를 우선권으로 하여 2017년 12월 07일자로 재출원된 한국특허출원 제10-2017-0167295호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
본 발명은 산화적 탈수소화 반응용 페라이트 촉매, 이의 제조방법 및 이를 이용한 부타디엔의 제조방법에 관한 것으로, 보다 상세하게는 에폭사이드(epoxide) 기반의 졸-겔(sol-gel)법을 이용하여, 넓은 표면적과 매크로포로스(macroporouse) 구조를 갖고, α-Fe2O3 상이 포함되지 않은 순수한 스피넬상 구조로 이루어진, 반응성이 뛰어난 산화적 탈수소화 반응용 페라이트 촉매의 제조방법에 관한 것이다.
부타디엔(Butadiene)은 중요한 기본 화학물질이고, 합성고무와 전자재료 등 수많은 석유화학 제품의 중간체로 이용되며, 현재 석유화학 시장에서 가장 중요한 기초유분 중 하나로서 그 수요와 가치가 점차 증가하고 있으며, 상기 부타디엔을 제조하는 방법으로는 납사 크래킹, 노르말-부텐(n-butente)의 직접 탈수소화 반응, 노르말-부텐(n-butene)의 산화적 탈수소화(oxidative dehydrogenation) 반응을 통한 방법 등이 있다.
이 중 부텐의 산화적 탈수소화 반응은 금속산화물 촉매의 존재하에 부텐과 산소가 반응하여 1,3-부타디엔과 물을 생성하는 반응으로, 안정한 물이 생성되므로 열역학적으로 매우 유리한 이점을 갖는다. 또한, 부텐의 직접 탈수소화 반응과 달리 발열 반응이므로, 직접 탈수소화 반응에 비해 낮은 반응온도에서도 높은 수율의 1,3-부타디엔을 얻을 수 있고, 추가적인 열 공급을 필요로 하지 않아 1,3-부타디엔 수요를 충족시킬 수 있는 효과적인 단독 생산 공정이 될 수 있다.
상기 금속산화물 촉매는 일반적으로 공침법에 의해 합성되고, 상기 공침법에서는 침전, 숙성, 여과 및 세척, 건조, 소성 등의 단계를 거치게 되며, 공침법을 통해 제조된 합성물들은 작은 입자로 이루어져 있어 여과 및 세척과정에서 많은 시간을 소요하게 되며, 공침법을 통해 제조된 합성물들은 소성 후 α-Fe2O3 상이 형성되는 것을 관찰할 수 있다. 또한, 공침법으로 제조된 촉매들은 벌크(bulk) 형태로 합성물이 제조되기 때문에 촉매 반응에서 낮은 반응성을 갖는 문제점이 있다.
〔선행기술문헌〕
〔특허문헌〕(특허문헌 1) JP 2015-167886 A
상기와 같은 종래기술의 문제점을 해결하고자, 본 발명은 에폭사이드(epoxide) 기반의 졸-겔(sol-gel)법으로, 반응성이 뛰어난 산화적 탈수소화 반응용 페라이트계 촉매를 제공하는 것을 목적으로 한다.
또한 본 발명은 상기 산화적 탈수소화 반응용 페라이트계 촉매를 제조하는 방법과 이렇게 제조된 촉매를 이용한 부타디엔의 제조방법을 제공하는 것을 목적으로 한다.
본 발명의 상기 목적 및 기타 목적들은 하기 설명된 본 발명에 의하여 모두 달성될 수 있다.
상기의 목적을 달성하기 위하여, 본 발명은 (a) 3가 양이온 철(Fe) 전구체 및 2가 양이온 금속(A) 전구체를 알코올 용매에 용해시켜 전구체 용액을 준비하는 단계; (b) 상기 전구체 용액에 에폭사이드계 화합물을 혼합하여 겔을 수득하는 단계; (C) 상기 수득된 겔을 숙성시키는 단계; (D) 상기 숙성된 겔을 건조하여 합성물을 수득하는 단계; 및 (E) 상기 합성물을 소성하는 단계;를 포함하되, 상기 소성하는 단계(E)는 70 내지 200℃에서 소성하는 제1 소성단계; 및 200℃ 초과 내지 250℃에서 600 내지 900℃까지 승온하여 소성하는 제2 소성단계;를 포함하는 것을 특징으로 하는 산화적 탈수소화 반응용 페라이트 촉매의 제조방법을 제공한다.
상기 제1 소성단계는 일례로, 70 내지 90℃에서 170 내지 200℃까지 승온한 후, 4 내지 8시간 동안 170 내지 200℃로 유지하여 소성할 수 있다.
상기 제1 소성단계의 승온 속도는 일례로, 0.1 내지 1℃/분일 수 있다.
상기 제2 소성단계는 일례로, 200℃ 초과 내지 250℃에서 630 내지 900℃까지 승온한 후, 4 내지 8시간 동안 630 내지 900℃로 유지하여 소성할 수 있다.
상기 제2 소성단계의 승온 속도는 일례로, 0.5 내지 1.5℃/분일 수 있다.
상기 2가 양이온 금속(A)은 일례로, 구리(Cu), 라듐(Ra), 바륨(Ba), 스트론튬(Sr), 칼슘(Ca), 베릴륨(Be), 아연(Zn), 마그네슘(Mg), 망간(Mn) 및 코발트(Co)로 이루어진 군으로부터 선택된 1종 이상일 수 있다.
상기 3가 양이온 철(Fe) 전구체와 2가 양이온 금속(A) 전구체의 몰비(금속원소기준)는 일례로, 1.5: 1.0 내지 3.0: 1.0일 수 있다.
상기 알코올 용매는 일례로, 메탄올, 에탄올, 프로판올, 이소프로판올, 1-부탄올 및 2-부탄올로부터 선택되는 1종 이상일 수 있다.
상기 에폭사이드계 화합물은 일례로, 프로필렌 옥사이드, 에틸렌 옥사이드 및 1,2-에폭시부탄으로 이루어진 군으로부터 선택되는 1종 이상일 수 있다.
상기 겔을 숙성시키는 단계(C)는 일례로, 10 내지 40℃에서 12 내지 48시간 동안 수행될 수 있다.
상기 D) 단계의 건조는 일례로, 70 내지 100℃에서 12 내지 48시간 동안 실시할 수 있다.
상기 D) 단계는 일례로, 알코올 교환 과정(alcohol exchange)을 포함할 수 있다.
상기 D) 단계는 일례로, 필터링(filtering) 과정을 포함할 수 있다.
또한 본 발명은 하기 화학식 1로 표시되는 페라이트 촉매로서, 일례로, 탄소함량이 0.3 내지 0.4 중량%이고, 표면적이 10 내지 12m2/g인 것을 특징으로 하는 산화적 탈수소화 반응용 페라이트 촉매를 제공한다.
[화학식 1]
AFe2O4 (상기 A는 Cu, Ra, Ba, Sr, Ca, Be, Zn, Mg, Mn 및 Co 이다)
상기 산화적 탈수소화 반응용 페라이트 촉매는 일례로, 스피넬상(phase) 페라이트가 99 중량% 이상일 수 있다.
또한, 부텐, 산소, 질소 및 스팀을 포함하는 반응물로부터 산화적 탈수소화 반응에 의해 부타디엔을 제조함에 있어서, 상기 산화적 탈수소화 반응용 페라이트 촉매를 이용하는 것을 특징으로 하는 부타디엔의 제조방법을 제공한다.
상기 산화적 탈수소화 반응은 일례로, 반응온도가 300 내지 600℃일 수 있다.
상기 반응물은 일례로, 부텐: 산소: 질소: 스팀이 1: 0.1 내지 6: 1 내지 10: 1 내지 20의 몰비로 포함될 수 있다.
본 발명에 따르면 에폭사이드(epoxide) 기반의 졸-겔(sol-gel)법을 이용하여, 촉매의 제조방법이 간단하고 α-Fe2O3 상이 포함되지 않은 순수 스피넬상 물질을 얻을 수 있으며, 넓은 표면적과 매크로포로스(macroporouse) 구조를 갖게 되어, 종래기술로 제조한 촉매보다 높은 반응성을 갖는 산화적 탈수소화 반응용 페라이트계 촉매를 제공하는 효과가 있다.
도 1은 본 발명의 실시예 1 및 비교예 1 내지 5에 따라 제조된 촉매의 X선 회절 스펙트럼이다.
도 2는 본 발명의 실시예 1 내지 5에 따라 제조된 촉매의 X선 회절 스펙트럼이다.
이하 본 기재의 산화적 탈수소화 반응용 페라이트 촉매의 제조방법을 상세하게 설명한다.
본 발명자들은 졸-겔법으로 제조한 촉매와 종래의 공침법을 이용한 촉매의 반응실험 결과, 에폭사이드 기반의 졸-겔법으로 제조한 촉매가 종래의 공침법으로 제조한 촉매보다 낮은 반응성을 보이는 것을 확인하였으나, 졸-겔법은 종래의 공침법 대비 제조방법이 간단하고, α-Fe2O3 상이 포함되지 않는 이점이 있어 이에 포기하지 않고 더욱 연구에 매진하였다.
그 결과, 상기 졸-겔법으로 제조한 촉매가 종래의 공침법으로 제조한 촉매보다 많은 탄소를 함유하고 있어, 촉매가 낮은 반응성을 보이는 것을 알아내었고, 이에 소성조건을 조절하여 탄소 함유량을 감소시키는 경우 높은 반응성을 갖는 촉매가 제조되는 것을 확인하였고, 더욱 연구에 박차를 가하여 본 발명을 완성하였다.
본 발명의 산화적 탈수소화 반응용 페라이트 촉매의 제조방법은 (a) 3가 양이온 철(Fe) 전구체 및 2가 양이온 금속(A) 전구체를 알코올 용매에 용해시켜 전구체 용액을 준비하는 단계; (b) 상기 전구체 용액에 에폭사이드계 화합물을 혼합하여 겔을 수득하는 단계; (C) 상기 수득된 겔을 숙성시키는 단계; (D) 상기 숙성된 겔을 건조하여 합성물을 수득하는 단계; 및 (E) 상기 합성물을 소성하는 단계;를 포함하되, 상기 소성하는 단계(E)는 70 내지 200℃에서 소성하는 제1 소성단계; 및 200℃ 초과 내지 250℃에서 600 내지 900℃까지 승온하여 소성하는 제2 소성단계;를 포함하는 것을 특징으로 한다.
상기 제1 소성단계는 일례로, 70 내지 90℃에서 170 내지 200℃까지 승온한 후, 4 내지 8시간 동안 170 내지 200℃로 유지하여 소성할 수 있으며, 상기 범위 내에서 낮은 탄소함량을 가지면서, 넓은 표면적을 가지는, 스피넬상(phase) 페라이트가 99 중량% 이상인 촉매를 제조할 수 있는 효과가 있다.
다른 일례로, 상기 제1 소성단계는 일례로, 75 내지 85℃에서 185 내지 200℃까지 승온한 후, 5 내지 7시간 동안 185 내지 200℃로 유지하여 실시할 수 있으며, 상기 범위 내에서 낮은 탄소함량을 가지면서, 넓은 표면적을 가지는, 스피넬상(phase) 페라이트가 99 중량% 이상인 촉매를 제조할 수 있는 효과가 있다.
또 다른 일례로, 상기 제1 소성단계는 일례로, 80 내지 85℃에서 195 내지 200℃까지 승온한 후, 6 내지 7시간 동안 195 내지 200℃로 유지하여 소성할 수 있으며, 상기 범위 내에서 낮은 탄소함량을 가지면서, 넓은 표면적을 가지는, 스피넬상(phase) 페라이트가 99 중량% 이상인 촉매를 제조할 수 있는 효과가 있다.
상기 제1 소성단계의 승온 속도는 일례로, 0.1 내지 1℃/분, 또는 0.3 내지 0.8℃/분, 바람직하게는 0.4 내지 0.6℃/분일 수 있으며, 상기 범위 내에서 낮은 탄소함량을 가지면서, 넓은 표면적을 갖는 촉매를 제조할 수 있는 효과가 있다.
상기 소성은 일례로, 통상의 소성로를 사용하여, 공기분위기에서 실시할 수 있다.
상기 제2 소성단계는 일례로, 200℃ 초과 내지 250℃에서 630 내지 900℃까지 승온한 후, 4 내지 8시간 동안 630 내지 900℃로 유지하여 실시할 수 있으며, 상기 범위 내에서 낮은 탄소함량을 가지면서, 넓은 표면적을 갖는 촉매를 제조할 수 있는 효과가 있다.
다른 일례로, 상기 제2 소성단계는 200℃ 초과 내지 230℃에서 640 내지 870℃까지 승온한 후, 5 내지 7시간 동안 640 내지 870℃로 유지하여 실시할 수 있으며, 상기 범위 내에서 낮은 탄소함량을 가지면서, 넓은 표면적을 갖는 촉매를 제조할 수 있는 효과가 있다.
또 다른 일례로, 상기 제2 소성단계는 200℃ 초과 내지 220℃에서 645 내지 855℃까지 승온한 후, 6 내지 7시간 동안 645 내지 855℃로 유지하여 실시할 수 있으며, 상기 범위 내에서 낮은 탄소함량을 가지면서, 넓은 표면적을 갖는 촉매를 제조할 수 있는 효과가 있다.
바람직하게는 상기 제2 소성단계를 200℃ 초과 내지 220℃에서 700℃ 초과 내지 800℃ 미만까지 승온한 후, 6 내지 7시간 동안 유지하여 실시할 수 있으며, 이를 통해 제조된 촉매를 이용하여 부타디엔을 제조할 경우, 부텐의 전환율 및 1,3-부타디엔 선택도가 우수한 효과가 있다.
상기 제2 소성단계의 승온 속도는 일례로, 0.5 내지 1.5℃/분 또는 0.7 내지 1.3℃/분, 바람직하게는 0.8 내지 1.2℃/분일 수 있으며, 상기 범위 내에서 낮은 탄소함량을 가지면서, 넓은 표면적을 갖는 촉매를 제조할 수 있는 효과가 있다.
상기 2가 양이온 금속(A)은 일례로, 구리(Cu), 라듐(Ra), 바륨(Ba), 스트론튬(Sr), 칼슘(Ca), 베릴륨(Be), 아연(Zn), 마그네슘(Mg), 망간(Mn) 및 코발트(Co)로 이루어진 군으로부터 선택된 1종 이상일 수 있으며, 바람직하게는 부텐의 산화적 탈수소화 반응에 특히 높은 활성을 나타내는 아연(Zn)이나 망간(Mn) 중에서 선택될 수 있고, 부타디엔의 수율이나 선택도 측면에서 아연(Zn)을 포함하는 것이 가장 바람직할 수 있다.
상기 3가 양이온 철(Fe) 전구체 및 2가 양이온 금속(A) 전구체는 일례로 질산염(nitrate), 암모늄염(ammonium salt), 황산염(sulfate) 및 염화물(chloride)으로 이루어지는 군으로부터 독립적으로 선택된 1종 이상일 수 있다. 바람직하게는 질산염이나 염화물 중에서 선택될 수 있으며, 이 경우 부타디엔의 수율 및 선택도가 우수한 효과가 있다.
상기 3가 양이온 철(Fe) 전구체와 2가 양이온 금속(A) 전구체의 몰비(금속원소기준)는 일례로, 1.5: 1.0 내지 3.0: 1.0 또는 1.7: 1.0 내지 2.8: 1.0, 바람직하게는 2.0: 1.0 내지 2.5: 1.0일 수 있고, 이 범위 내에서 낮은 탄소함량을 가지면서, 넓은 표면적을 갖는 촉매를 제조할 수 있는 효과가 있다.
상기 알코올 용매는 통상적인 졸-겔법에 사용되는 알코올 용매이면 그 종류에 특별한 제한이 없으며 일례로, 메탄올, 에탄올, 프로판올, 이소프로판올, 1-부탄올 및 2-부탄올로부터 선택되는 1종 이상일 수 있다. 바람직하게는 에탄올일 수 있으며, 이 경우 반응성이 높은 촉매를 제조할 수 있는 효과가 있다.
또한, 상기 알코올 용매는 철 전구체와 알코올 용매의 합계 중량을 기준으로 알코올 용매의 함량이 일례로, 85 내지 98 중량%, 또는 90 내지 95 중량%, 바람직하게는 92 내지 93 중량% 이상일 수 있고, 이 범위 내에서 철 전구체와 2가 양이온 금속(A) 전구체를 완전히 용해시키고, 골고루 분산시킬 수 있어 본 발명이 목적하는 효과를 발휘할 수 있다.
상기 (b) 단계는 상기 (a) 단계의 전구체 용액에 에폭사이드(Epoxide)계 화합물을 주입하여 수화된 2가 양이온 금속에 수산화기(Hydroxyl Group)가 생성되게 함과 동시에 이들 간의 축합반응을 통해 겔을 수득할 수 있다.
상기 에폭사이드계 화합물은 일례로, 프로필렌 옥사이드, 에틸렌 옥사이드 및 1,2-에폭시부탄으로 이루어진 군으로부터 선택되는 1종 이상일 수 있다. 바람직하게는 프로필렌 옥사이드를 사용할 수 있으며, 이 경우 반응성이 높은 촉매 제조가 가능하다.
또한, 상기 에폭사이드계 화합물은 철 전구체와 에폭사이드계 화합물의 합계 중량을 기준으로 에폭사이드계 화합물의 함량이 일례로, 67 내지 82 중량%, 또는 72 내지 79 중량% 바람직하게는 75 내지 77 중량% 이상일 수 있고, 이 범위 내에서 반응성이 높은 촉매를 제조할 수 있는 효과가 있다.
상기 겔을 숙성시키는 단계(C)는 상기 (b) 단계에서 수득된 겔을 더욱 강하고, 단단하게 하여 망상구조가 성장하도록 하기 위해 실시된다.
상기 C) 숙성단계는 일례로, 10 내지 40℃ 또는 15 내지 35℃, 바람직하게는 20 내지 30℃에서 12 내지 48시간 또는 18 내지 36시간, 바람직하게는 20 내지 26시간 동안 수행될 수 있으며, 상기 범위 내에서 반응성이 높은 촉매를 제조할 수 있는 효과가 있다.
상기 숙성된 겔을 건조하여 합성물을 수득하는 단계(D)는 겔의 숙성 과정 이후 알코올 용매를 제거하기 위한 것으로, 일반적으로 알코올 용매를 증발시킬 수 있는 온도를 하한으로 정하고, 시료의 열에 의한 변화가 억제될 수 있는 온도를 상한으로 할 수 있으며, 건조 시간 또한 시료에서 알코올 용매를 전부 제거될 것으로 예상되는 시간 범위 내에서 한정할 수 있다.
일례로, 상기 D) 단계의 건조는 70 내지 100℃에서 12 내지 48시간 동안 실시할 수 있다.
다른 일례로, 상기 D) 단계의 건조는 75 내지 90℃, 바람직하게는 75 내지 85℃에서 18 내지 36시간, 바람직하게는 20 내지 26시간 동안 실시할 수 있으며, 상기 범위 내에서 상기 숙성된 겔이 충분히 건조될 수 있으며, 안정적인 구조를 형성할 수 있는 효과가 있다.
상기 D) 단계는 일례로, 알코올 교환 과정(alcohol exchange)을 포함할 수 있다.
상기 알코올 교환 과정은 상기 C) 단계에서 수득된 숙성된 겔에 알코올 용매를 추가 투입한 후, 알코올 용매를 제거하는 과정으로, 겔 형성과정에서 생성되어 망상구조 내에 존재하는 1-클로로-2-프로판올(1-chloro-2-propanol) 등을 제거하고 구조 내부를 알코올 용매로 치환하여, 건조 단계에서 망상구조가 붕괴되는 것을 최소화 시킴으로써, 반응성이 높은 촉매를 제조할 수 있는 효과가 있다.
상기 알코올 용매는 상기 C) 단계에서 수득된 숙성된 겔 100 중량부를 기준으로, 500 내지 2,000 중량부 또는 700 내지 1,500 중량부, 바람직하게는 700 내지 1,000 중량부로 추가 투입할 수 있으며, 상기 범위 내에서 반응성이 높은 촉매를 제조할 수 있는 효과가 있다.
또한, 충분한 알코올 교환이 진행될 수 있도록, 일례로 알코올 용매를 추가 투입 한 후, 2 내지 10시간, 또는 3 내지 8시간, 바람직하게는 5 내지 6시간 정도, 정치하여 둘 수 있다.
상기 알코올 용매의 제거는 특별히 제한되지는 않으나, 일례로 상기 정치후, 합성물은 단단한 겔 형태를 유지하고 알코올 용매와 분리된 상태에 있으므로, 상기 알코올 용매를 별도의 용기에 따라내어 제거하는 방법으로 실시할 수 있다.
상기 알코올 교환 과정은 1회 이상, 또는 1회 내지 4회, 바람직하게는 1회 내지 3회를 반복할 수 있으며, 상기 범위 내에서 반응성이 높은 촉매를 제조할 수 있는 효과가 있다.
상기 D) 단계는 일례로, 필터링(filtering) 과정을 포함할 수 있다.
상기 필터링(filtering) 과정은 건조 전, 합성물 내의 용액을 최대한 제거해 주는 단계로 통상적으로 사용되는 여과 방법이라면 특별히 제한되지 않으며, 일례로, 감압 여과방법을 사용할 수 있다.
상기 감압 여과방법은 일례로, 100 내지 300 mbar, 또는 130 내지 270 mbar, 바람직하게는 160 내지 250 mbar의 압력으로 감압하여 여과를 실시할 수 있으며, 상기 범위 내에서 반응성이 높은 촉매를 제조할 수 있는 효과가 있다.
구체적인 일례로, 상기 D) 단계는 상기 C)단계에서 숙성된 겔을 상기 알코올 교환 과정과, 상기 필터링 과정을 거친 후, 건조시킬 수 있고, 이 경우 반응성이 높은 촉매를 제조할 수 있는 효과가 있다.
또한 본 발명은 하기 화학식 1로 표시되는 페라이트 촉매로서,
[화학식 1]
AFe2O4
(상기 A는 Cu, Ra, Ba, Sr, Ca, Be, Zn, Mg, Mn 및 Co 이다)
일례로, 탄소함량이 0.2 내지 0.8 중량%이고, 표면적이 5 내지 15 m2/g인 것을 특징으로 하는 산화적 탈수소화 반응용 페라이트 촉매를 제공한다.
상기 페라이트 촉매는 일례로, 탄소함량이 0.2 내지 0.7 중량%, 또는 0.3 내지 0.4 중량%, 바람직하게는 0.3 중량% 이상 내지 0.4 중량% 미만일 수 있으며, 상기 범위 내에서 높은 반응성을 갖은 효과가 있다.
또한, 상기 페라이트 촉매는 일례로, 표면적이 7 내지 13 m2/g, 또는 10 내지 12 m2/g 바람직하게는 10 m2/g 이상 내지 12 m2/g 미만일 수 있으며, 상기 범위 내에서 높은 반응성을 갖은 효과가 있다.
상기 산화적 탈수소화 반응용 페라이트 촉매는 일례로, 스피넬상(phase) 페라이트가 99 중량% 이상일 수 있다.
다른 일례로, 상기 페라이트 촉매는 스피넬상(phase) 페라이트가 99.5 중량% 이상, 바람직하게는 99.9 내지 100 중량%일 수 있다.
따라서, 본 발명은 α-Fe2O3 상이 포함되지 않은 순수한 스피넬상(phase) 촉매를 얻을 수 있다.
본 기재에서 스피넬상 페라이트 및 α-Fe2O3 함량은 X-선회절분석법으로 측정할 수 있다.
또한, 본 발명은 부텐, 산소, 질소 및 스팀을 포함하는 반응물로부터 산화적 탈수소화 반응에 의해 부타디엔을 제조함에 있어서, 상기 산화적 탈수소화 반응용 페라이트 촉매를 이용하는 것을 특징으로 하는 부타디엔의 제조방법을 제공한다.
본 기재의 부타디엔 제조방법은 일례로 상기 제조방법에 따른 산화적 탈수소화 반응용 촉매가 충진된 반응기에 부텐 및 산소를 포함하는 반응물을 통과시키면서 산화적 탈수소화 반응을 수행하는 단계를 포함하는 것을 특징으로 할 수 있다.
구체적인 일례로, 본 기재의 부타디엔 제조방법은 i) 산화적 탈수소화 반응용 촉매를 반응기에 충진시키는 단계; 및 ii) 부텐 및 산소를 포함하는 반응물을 상기 촉매가 충진된 반응기의 촉매층에 연속적으로 통과시키면서 산화적 탈수소화 반응을 수행하는 단계;를 포함할 수 있다.
상기 반응물은 공기, 질소, 스팀 및 이산화탄소 중에서 선택된 1종 이상을 더 포함할 수 있다.
또한, 상기 반응물 중 부텐은 일례로, 트랜스-2-부텐 40 내지 70 중량% 및 시스-2-부텐 30 내지 60 중량% 또는 트랜스-2-부텐 50 내지 65 중량% 및 시스-2-부텐 35 내지 50 중량%, 바람직하게는 트랜스-2-부텐 55 내지 65 중량% 및 시스-2-부텐 35 내지 55 중량%로 포함될 수 있으며, 이 범위 내에서 부텐의 전환율이나 부타디엔 선택도, 수율 등이 특히 우수하여 부타디엔을 생산성 높게 제공할 수 있다.
상기 산화적 탈수소화 반응은 일례로, 반응온도가 300 내지 600℃ 또는 350 내지 550℃, 바람직하게는 375 내지 500℃일 수 있으며, 상기 범위 내에서 부텐의 전환율이나 부타디엔 선택도, 수율 등이 특히 우수하여 부타디엔을 생산성 높게 제공할 수 있다.
상기 반응물은 일례로, 부텐: 산소: 질소: 스팀이 1: 0.1 내지 6: 1 내지 10: 1 내지 20의 몰비로 포함할 수 있으며, 이 범위 내에서 반응열의 제어가 용이하고, 부타디엔의 수율이 우수한 효과가 있다.
구체적으로, 상기 반응물은 부텐: 산소: 질소: 스팀이 1: 0.1 내지 4: 1 내지 6: 3 내지 15, 또는 1: 0.5 내지 3: 2 내지 5: 4 내지 13, 바람직하게는 1: 0.5 내지 2: 2 내지 5: 4 내지 6 일 수 있고, 이 범위 내에서 운전 안정성 및 선택도가 우수한 효과가 있다.
상기 산화 탈수소화 반응은 기체공간속도(GHSV)가 일례로 부텐을 기준으로 20 내지 300 h-1 또는 100 내지 300 h-1, 바람직하게는 250 내지 300 h-1일 수 있으며, 상기 범위 내에서 높은 전환율과 선택도를 나타내는 효과가 있다.
이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시하나, 하기 실시예는 본 발명을 예시하는 것일 뿐 본 발명의 범주 및 기술사상 범위 내에서 다양한 변경 및 수정이 가능함은 당업자에게 있어서 명백한 것이며, 이러한 변형 및 수정이 첨부된 특허청구범위에 속하는 것도 당연한 것이다.
[실시예]
페라이트 촉매의 제조
FeCl36H2O 62.303g과 ZnCl2 15.711g을 에탄올 978.1ml에 넣어 녹인 후, 전구체가 완전히 녹으면 교반하는 전구체 용액에 프로필렌 옥사이드(propylene oxide) 196.8g을 투입하여 전구체 용액을 겔 형태로 만들었다. 겔 형태의 합성물은 1일간 숙성 후 2회의 에탄올 교환 과정을 거쳤다. 이때 겔 형성 시 생성되는 용액은 제거하고 새로운 에탄올을 공급하며, 1회 에탄올 교환과정은 충분한 에탄올 교환이 진행될 수 있도록 에탄올 공급 후 6시간 정도 정치하여 두었다. 에탄올 교환 과정을 마친 합성물은 감압여과 방식으로 필터링(filtering) 과정을 거친 후 80℃ 오븐에서 24시간 건조시켰다. 상기 건조된 합성물들은 공기 분위기(1L/min)에서 하기와 같이 소성 조건을 달리하여, 소성을 진행하여, 촉매를 제조하였다.
실시예 1
상기 페라이트 촉매의 제조에서 소성을 80℃에서 시작하여, 0.5℃/min의 속도로 200℃까지 승온한 다음, 200℃에서 6시간 유지하였다.
그 후, 200℃에서 1℃/min의 속도로 650℃까지 승온한 다음, 650℃에서 6시간 유지하였다. 이때 제조된 페라이트 촉매는 스피넬상 페라이트가 100 중량%이었다.
실시예 2
상기 실시예 1에서, 200℃에서 1℃/min의 속도로 650℃까지 승온한 것을 대신하여, 200℃에서 1℃/min의 속도로 700℃까지 승온하여 실시한 것을 제외하고, 상기 실시예 1과 동일한 방법으로 실시하여 촉매를 제조하였다. 이때 제조된 페라이트 촉매는 스피넬상 페라이트가 100 중량%이었다.
실시예 3
상기 실시예 1에서, 200℃에서 1℃/min의 속도로 650℃까지 승온한 것을 대신하여, 200℃에서 1℃/min의 속도로 750℃까지 승온하여 실시한 것을 제외하고, 상기 실시예 1과 동일한 방법으로 실시하여 촉매를 제조하였다. 이때 제조된 페라이트 촉매는 스피넬상 페라이트가 100 중량%이었다.
실시예 4
상기 실시예 1에서, 200℃에서 1℃/min의 속도로 650℃까지 승온한 것을 대신하여, 200℃에서 1℃/min의 속도로 800℃까지 승온하여 실시한 것을 제외하고, 상기 실시예 1과 동일한 방법으로 실시하여 촉매를 제조하였다. 이때 제조된 페라이트 촉매는 스피넬상 페라이트가 100 중량%이었다.
실시예 5
상기 실시예 1에서, 200℃에서 1℃/min의 속도로 650℃까지 승온한 것을 대신하여, 200℃에서 1℃/min의 속도로 850℃까지 승온하여 실시한 것을 제외하고, 상기 실시예 1과 동일한 방법으로 실시하여 촉매를 제조하였다. 이때 제조된 페라이트 촉매는 스피넬상 페라이트가 100 중량%이었다.
비교예 1
상기 페라이트 촉매의 제조에서 소성을 80℃에서 시작하여, 1℃/min의 속도로 650℃까지 승온한 다음, 650℃에서 6시간 유지하였다. 이때 제조된 페라이트 촉매는 스피넬상 페라이트가 100 중량%이었다.
비교예 2
상기 페라이트 촉매의 제조에서 소성을 80℃에서 시작하여, 0.5℃/min의 속도로 200℃까지 승온한 다음, 200℃에서 3시간 유지하였다.
그 후, 200℃에서 0.5℃/min의 속도로 300℃까지 승온한 다음, 300℃에서 3시간 유지한 후, 300℃에서 1℃/min의 속도로 650℃까지 승온한 다음, 650℃에서 6시간 유지하였다. 이때 제조된 페라이트 촉매는 스피넬상 페라이트가 100 중량%이었다.
비교예 3
상기 페라이트 촉매의 제조에서 소성을 80℃에서 시작하여, 0.5℃/min의 속도로 200℃까지 승온한 다음, 200℃에서 3시간 유지하였다.
그 후, 200℃에서 0.5℃/min의 속도로 300℃까지 승온한 다음, 300℃에서 3시간 유지한 후, 300℃에서 1℃/min의 속도로 550℃까지 승온한 다음, 550℃에서 6시간 유지하였다. 이때 제조된 페라이트 촉매는 스피넬상 페라이트가 100 중량%이었다.
비교예 4
상기 페라이트 촉매의 제조에서 소성을 80℃에서 시작하여, 0.5℃/min의 속도로 200℃까지 승온한 다음, 200℃에서 6시간 유지하였다.
그 후, 200℃에서 1℃/min의 속도로 550℃까지 승온한 다음, 550℃에서 6시간 유지하였다. 이때 제조된 페라이트 촉매는 스피넬상 페라이트가 100 중량%이었다.
비교예 5
FeCl36H2O 47.667g와 ZnCl3 2.019g 전구체를 증류수 835.5g에 녹인 전구체 용액과 암모니아수를 증류수 8500g에 동시에 떨어뜨려 pH를 9로 조절하며 촉매를 합성하였다. 합성물은 필터링(filtering) 과정을 거친 후 90℃ 오븐에서 건조하고 공기 분위기(1L/min)에서 소성을 진행하였다. 상기 소성은 80℃에서 시작하여, 1℃/min의 속도로 650℃까지 승온하고, 650℃에서 6시간 유지하여 소성을 실시하여, 촉매를 제조하였다. 이때 제조된 페라이트 촉매는 스피넬상 페라이트가 7.7 중량%이었다.
상기 실시예 1 및 비교예 1 내지 5에서 제조된 촉매의 표면적 및 탄소함량을 하기의 방법으로 측정하였고, 그 결과를 하기 표 1에 나타내었다.
-표면적(m2/g): 비표면적 분석장비 (질소 등온흡탈착 이용)를 통해 측정하였다.
-탄소함량(중량%): 산소 분위기하에 열중량분석장치(TGA)를 이용하여 측정하였다.
소성 조건 Step 표면적 (m2/g) 탄소함량 (wt%)
실시예 1 80 → 200℃, 0.5℃/min, 6h유지;200 → 650℃, 1℃/min, 6h 유지 10.96 0.3
비교예 1 80 → 650 ℃, 1℃/min, 6h 유지 9.19 0.3
비교예 2 80 → 200℃, 0.5℃/min, 3h 유지;200 → 300℃, 0.5℃/min, 3h 유지;300 → 650℃ 1℃/min, 6h 유지 11.16 0.4
비교예 3 80 → 200℃, 0.5℃/min 3h 유지;200 → 300℃ 0.5℃/min 3h 유지;300 → 550℃ 1℃/min 6h 유지 19.1 0.9
비교예 4 80 → 200℃, 0.5℃/min, 6h유지;200 → 550℃, 1℃/min, 6h유지 19.09 0.9
비교예 5 80 → 650℃, 1℃/min, 6h유지 4.91 0.3
상기 표 1과 같이, 졸-겔 법을 통해 촉매를 제조하되, 소성을 80℃에서 200℃까지 승온한 후, 6시간 유지하고, 200℃에서 650℃까지 승온하여, 6시간 유지한 실시예 1의 경우, 공침법을 통해 촉매를 제조한 비교예 5 대비, 탄소함량(%)을 동등하게 유지하면서도, 표면적이 넓은 것을 확인할 수 있었다.
또한, 실시예 1의 경우, 졸-겔 법을 통해 촉매를 제조하되, 상기 소성 조건만을 실시예 1과 달리하여 실시한 비교예 1 내지 4 대비, 낮은 탄소함량을 가지면서, 동시에 넓은 표면적을 갖는 것을 확인할 수 있었다.
또한, 하기 도 1에 나타낸 바와 같이, 졸-겔법으로 제조된 실시예 1 및 비교예 1 내지 4의 경우, ZnFe2O4 상만이 형성되어 있으며, 공침법을 통해 제조된 비교예 5의 경우, α-Fe2O3 상과 ZnFe2O4 상이 동시에 존재하는 것을 확인할 수 있었다.
[시험예]
상기 실시예 1 내지 5 및 비교예 5에서 제조된 산화적 탈수소화 반응용 촉매를 사용하여 하기의 방법으로 부타디엔을 제조하였고, 그 결과를 하기 표 2에 나타내었다.
부타디엔 제조방법
반응물로 트랜스-2-부텐 60 중량% 및 시스-2-부텐 40 중량%를 포함하는 혼합물과 산소를 사용하였고, 부가적으로 질소와 스팀이 함께 유입되도록 하였다. 반응기로는 금속 관형 반응기를 사용하였다. 반응물의 비율은 산소/부텐 1, 스팀/부텐 5 및 질소/부텐 4의 몰비로 설정하였고, GHSV(gas hourly spacevelocity) 262 h- 1 로 설정하였다. 하기 실시예 및 비교예에서 제조된 촉매를 고정층 반응기에 충전하였으며, 반응물이 접촉하는 촉매층의 부피는 0.1cc로 고정하였다. 스팀은 물의 형태로 주입되되, 기화기(vaporizer)를 이용해 150℃에서 스팀으로 기화되어 반응물인 부텐 혼합물 및 산소와 함께 혼합되어 반응기에 유입되도록 하였다. 부텐 혼합물의 양은 액체용 질량유속조절기를 사용하여 제어하였고, 산소 및 질소는 기체용 질량유속조절기를 사용하여 제어하였으며, 스팀의 양은 액체 펌프를 이용해 주입 속도를 제어하였다. 반응 온도는 375℃, 400℃, 425℃, 450℃, 475℃ 및 500℃로 유지하였고, 반응 후 생성물은 가스 크로마토그래피(GC)를 이용하여 분석하였으며, 부텐 혼합물의 전환율, 혼합물 내의 각 부텐의 전환율, 1,3-부타디엔 선택도는 가스 크로마토그래피로 측정된 결과를 통해, 하기 수학식 1 및 2에 따라 계산하였다.
Figure PCTKR2018000160-appb-M000001
Figure PCTKR2018000160-appb-M000002
구 분 최종소성온도(℃) 375℃ 400℃ 425℃
전환율(%) 선택도(%) 전환율(%) 선택도(%) 전환율(%) 선택도(%)
실시예 1 650 68.7 86.4 52.4 76.9 40.7 67.8
실시예 2 700 80.5 92.5 71.8 87.3 68.8 86.1
실시예 3 750 87.6 92.2 83.4 92.1 76.0 88.5
실시예 4 800 78.7 89.9 69.4 85.9 63.2 82.7
실시예 5 850 77.7 90.4 71.6 86.5 71.8 85.4
비교예 5 650 70.0 88.5 71.0 88.6 72.6 87.8
구 분 최종소성온도(℃) 450℃ 475℃ 500℃
전환율(%) 선택도(%) 전환율(%) 선택도(%) 전환율(%) 선택도(%)
실시예 1 650 38.9 68.3 32.8 62.1 29.5 56.6
실시예 2 700 64.8 84.0 61.3 82.1 59.3 80.9
실시예 3 750 73.2 86.7 68.8 82.2 65.5 79.9
실시예 4 800 59.1 81.5 56.1 78.6 53.2 76.3
실시예 5 850 67.9 83.2 64.9 81.0 62.3 78.1
비교예 5 650 69.6 85.2 65.4 80.7 63.8 77.6
상기 표 2 및 표 3에 나타낸 바와 같이, 실시예 1 내지 5의 경우 375 내지 500℃의 반응온도에서 전환율 및 선택도가 기존 공침법으로 제조된 촉매를 사용한 비교예 5 대비 동등하거나, 우수한 것을 확인할 수 있었다.
특히, 최종 소성온도가 750℃인 실시예 3의 경우, 반응온도 전 영역에서 비교예 5보다 높은 전환율과 선택도를 보이는 것을 확인할 수 있었다.
또한, 하기 도 2에 나타낸 바와 같이, 본 발명의 실시예 1을 기반으로 소성온도를 달리한 촉매를 제조하여, XRD 분석한 결과, 소성온도가 변화됨에 따라 촉매의 결정성은 증가하였으며, 촉매의 결정구조는 변하지 않았음을 확인할 수 있었다.

Claims (18)

  1. (a) 3가 양이온 철(Fe) 전구체 및 2가 양이온 금속(A) 전구체를 알코올 용매에 용해시켜 전구체 용액을 준비하는 단계;
    (b) 상기 전구체 용액에 에폭사이드계 화합물을 혼합하여 겔을 수득하는 단계;
    (C) 상기 수득된 겔을 숙성시키는 단계;
    (D) 상기 숙성된 겔을 건조하여 합성물을 수득하는 단계; 및
    (E) 상기 합성물을 소성하는 단계;를 포함하되,
    상기 소성하는 단계(E)는 70 내지 200℃에서 소성하는 제1 소성단계; 및 200℃ 초과 내지 250℃에서 600 내지 900℃까지 승온하여 소성하는 제2 소성단계;를 포함하는 것을 특징으로 하는
    산화적 탈수소화 반응용 페라이트 촉매의 제조방법.
  2. 제1항에 있어서,
    상기 제1 소성단계는 70 내지 90℃에서 170 내지 200℃까지 승온한 후, 4 내지 8시간 동안 170 내지 200℃로 유지하는 것을 특징으로 하는
    산화적 탈수소화 반응용 페라이트 촉매의 제조방법.
  3. 제2항에 있어서,
    상기 제 1 소성단계의 승온 속도는 0.1 내지 1℃/분인 것을 특징으로 하는
    산화적 탈수소화 반응용 페라이트 촉매의 제조방법.
  4. 제1항에 있어서,
    상기 제2 소성단계는 200℃ 초과 내지 250℃에서 630 내지 900℃까지 승온한 후, 4 내지 8시간 동안 630 내지 900℃로 유지하는 것을 특징으로 하는
    산화적 탈수소화 반응용 페라이트 촉매의 제조방법.
  5. 제4항에 있어서,
    상기 제2 소성단계의 승온 속도는 0.5 내지 1.5℃/분인 것을 특징으로 하는
    산화적 탈수소화 반응용 페라이트 촉매의 제조방법.
  6. 제1항에 있어서,
    상기 2가 양이온 금속(A)은 구리(Cu), 라듐(Ra), 바륨(Ba), 스트론튬(Sr), 칼슘(Ca), 베릴륨(Be), 아연(Zn), 마그네슘(Mg), 망간(Mn) 및 코발트(Co)로 이루어진 군으로부터 선택된 1종 이상인 것을 특징으로 하는
    산화적 탈수소화 반응용 페라이트 촉매의 제조방법.
  7. 제1항에 있어서,
    상기 3가 양이온 철(Fe) 전구체와 2가 양이온 금속(A) 전구체의 몰비(금속원소기준)는 1.5: 1.0 내지 3.0: 1.0인 것을 특징으로 하는
    산화적 탈수소화 반응용 페라이트 촉매의 제조방법.
  8. 제1항에 있어서,
    상기 알코올 용매는 메탄올, 에탄올, 프로판올, 이소프로판올, 1-부탄올 및 2-부탄올로부터 선택되는 1종 이상인 것을 특징으로 하는
    산화적 탈수소화 반응용 페라이트 촉매의 제조방법.
  9. 제1항에 있어서,
    상기 에폭사이드계 화합물은 프로필렌 옥사이드, 에틸렌 옥사이드 및 1,2-에폭시부탄으로 이루어진 군으로부터 선택되는 1종 이상인 것을 특징으로 하는
    산화적 탈수소화 반응용 페라이트 촉매의 제조방법.
  10. 제1항에 있어서,
    겔을 숙성시키는 단계(C)는 10 내지 40℃에서 12 내지 48시간 동안 수행되는 것을 특징으로 하는
    산화적 탈수소화 반응용 페라이트 촉매의 제조방법.
  11. 제1항에 있어서,
    상기 D) 단계의 건조는 70 내지 100℃에서 12 내지 48시간 동안 실시하는 것을 특징으로 하는
    산화적 탈수소화 반응용 페라이트 촉매의 제조방법.
  12. 제1항에 있어서,
    상기 D) 단계는 알코올 교환 과정(alcohol exchange)을 포함하는 것을 특징으로 하는
    산화적 탈수소화 반응용 페라이트 촉매의 제조방법.
  13. 제1항에 있어서,
    상기 D) 단계는 필터링(filtering) 과정을 포함하는 것을 특징으로 하는
    산화적 탈수소화 반응용 페라이트 촉매의 제조방법.
  14. 하기 화학식 1로 표시되는 페라이트 촉매로서,
    [화학식 1]
    AFe2O4
    (상기 A는 Cu, Ra, Ba, Sr, Ca, Be, Zn, Mg, Mn 및 Co 이다)
    탄소함량이 0.3 내지 0.4 중량%이고, 표면적이 10 내지 12 m2/g인 것을 특징으로 하는
    산화적 탈수소화 반응용 페라이트 촉매.
  15. 제14항에 있어서,
    상기 산화적 탈수소화 반응용 페라이트 촉매는 스피넬상(phase) 페라이트가 99중량% 이상인 것을 특징으로 하는
    산화적 탈수소화 반응용 페라이트 촉매.
  16. 제14항 또는 제15항에 따른 산화적 탈수소화 반응용 촉매를 이용하여, 부텐, 산소, 질소 및 스팀을 포함하는 반응물로부터 산화적 탈수소화 반응에 의해 부타디엔을 제조하는 것을 특징으로 하는
    부타디엔의 제조방법.
  17. 제16항에 있어서,
    상기 산화적 탈수소화 반응은 반응온도가 300 내지 600℃인 것을 특징으로 하는
    부타디엔의 제조방법.
  18. 제 16항에 있어서,
    상기 반응물은 부텐: 산소: 질소: 스팀이 1: 0.1 내지 6: 1 내지 10: 1 내지 20의 몰비로 포함된 것을 특징으로 하는
    부타디엔의 제조방법.
PCT/KR2018/000160 2017-01-26 2018-01-04 산화적 탈수소화 반응용 페라이트 촉매, 이의 제조방법 및 이를 이용한 부타디엔의 제조방법 WO2018139776A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US16/307,317 US10843173B2 (en) 2017-01-26 2018-01-04 Ferrite catalyst for oxidative dehydrogenation, method of preparing ferrite catalyst, and method of preparing butadiene using ferrite catalyst
JP2018563905A JP6678922B2 (ja) 2017-01-26 2018-01-04 酸化的脱水素化反応用フェライト触媒、その製造方法及びそれを用いたブタジエンの製造方法
CN201880002321.1A CN109475857B (zh) 2017-01-26 2018-01-04 氧化脱氢用铁氧体催化剂、其制备方法以及使用铁氧体催化剂制备丁二烯的方法
EP18744568.9A EP3560589A4 (en) 2017-01-26 2018-01-04 FERRITE CATALYST FOR OXIDATIVE DEHYDROGENATION REACTION, PREPARATION METHOD THEREOF, AND BUTADIENE PREPARATION METHOD USING THE SAME

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2017-0012545 2017-01-26
KR20170012545 2017-01-26
KR10-2017-0167295 2017-12-07
KR1020170167295A KR102079734B1 (ko) 2017-01-26 2017-12-07 산화적 탈수소화 반응용 페라이트 촉매, 이의 제조방법 및 이를 이용한 부타디엔의 제조방법

Publications (1)

Publication Number Publication Date
WO2018139776A1 true WO2018139776A1 (ko) 2018-08-02

Family

ID=62979519

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/000160 WO2018139776A1 (ko) 2017-01-26 2018-01-04 산화적 탈수소화 반응용 페라이트 촉매, 이의 제조방법 및 이를 이용한 부타디엔의 제조방법

Country Status (1)

Country Link
WO (1) WO2018139776A1 (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111545216A (zh) * 2020-04-22 2020-08-18 佛山市顺德区美的洗涤电器制造有限公司 一种复合催化材料及其制备方法与应用
CN112642430A (zh) * 2019-10-11 2021-04-13 中国石油天然气股份有限公司 一种丁烯氧化脱氢制丁二烯的微球催化剂的制备方法
EP3763694A4 (en) * 2018-11-30 2021-05-19 Lg Chem, Ltd. BUTADIENE PRODUCTION PROCESS

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2855378B2 (ja) * 1991-08-13 1999-02-10 新日本製鐵株式会社 ソフトフェライト粉末の製造方法
CN1066565C (zh) * 1997-06-14 2001-05-30 中国科学院山西煤炭化学研究所 超细锰锌铁氧体粉末的制备方法
KR100847206B1 (ko) * 2007-05-10 2008-07-17 에스케이에너지 주식회사 아연 페라이트 촉매, 이의 제조방법 및 이를 이용한1,3-부타디엔의 제조방법
KR101161625B1 (ko) * 2009-04-06 2012-07-04 주식회사 이엠따블유 와이 타입 페라이트 제조 방법 및 이에 의해 제조된 와이 타입 페라이트

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2855378B2 (ja) * 1991-08-13 1999-02-10 新日本製鐵株式会社 ソフトフェライト粉末の製造方法
CN1066565C (zh) * 1997-06-14 2001-05-30 中国科学院山西煤炭化学研究所 超细锰锌铁氧体粉末的制备方法
KR100847206B1 (ko) * 2007-05-10 2008-07-17 에스케이에너지 주식회사 아연 페라이트 촉매, 이의 제조방법 및 이를 이용한1,3-부타디엔의 제조방법
KR101161625B1 (ko) * 2009-04-06 2012-07-04 주식회사 이엠따블유 와이 타입 페라이트 제조 방법 및 이에 의해 제조된 와이 타입 페라이트

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
BHOSALE, RAHUL R.: "Propylene oxide assisted sol-gel synthesis of zinc ferrite nanoparticles for solar fuel production", CERAMICS INTERNATIONAL, vol. 42, no. 2, 2016, pages 2431 - 2438, XP029331128 *
See also references of EP3560589A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3763694A4 (en) * 2018-11-30 2021-05-19 Lg Chem, Ltd. BUTADIENE PRODUCTION PROCESS
US11447435B2 (en) 2018-11-30 2022-09-20 Lg Chem, Ltd. Method for producing butadiene
CN112642430A (zh) * 2019-10-11 2021-04-13 中国石油天然气股份有限公司 一种丁烯氧化脱氢制丁二烯的微球催化剂的制备方法
CN112642430B (zh) * 2019-10-11 2023-06-30 中国石油天然气股份有限公司 一种丁烯氧化脱氢制丁二烯的微球催化剂的制备方法
CN111545216A (zh) * 2020-04-22 2020-08-18 佛山市顺德区美的洗涤电器制造有限公司 一种复合催化材料及其制备方法与应用

Similar Documents

Publication Publication Date Title
WO2018139776A1 (ko) 산화적 탈수소화 반응용 페라이트 촉매, 이의 제조방법 및 이를 이용한 부타디엔의 제조방법
WO2018088815A1 (ko) 올레핀 복분해 반응용 촉매 및 이의 제조방법
WO2014182018A1 (ko) 메조포러스 복합 산화물 촉매, 그 제조방법 및 이를 이용한 1,3-부타디엔 합성방법
WO2013105779A1 (ko) 카본나노튜브 및 그 제조방법
WO2017183829A2 (ko) 세공체 표면 코팅 촉매 및 세공체의 표면처리 방법
WO2013105784A1 (ko) 카본나노튜브 및 그 제조방법
WO2014061917A1 (ko) 에탄올로부터 1,3-부타디엔 제조를 위한 규칙적인 메조세공 실리카계 촉매 및 이를 이용한 1,3-부타디엔의 제조방법
WO2016195162A1 (ko) 페라이트 금속 산화물 촉매의 제조방법
WO2011071314A2 (en) Processes for preparing crystalline forms a and b of ilaprazole and process for converting the crystalline forms
WO2019132392A1 (ko) 아연 페라이트 촉매의 제조방법 및 이에 의해 제조된 아연 페라이트 촉매
WO2020101234A1 (ko) 5-히드록시메틸퍼퓨랄로부터 2,5-퓨란디메탄올 및 2,5-테트라히드로퓨란 디메탄올의 제조방법
WO2019004777A1 (ko) 하이드록시메틸푸르푸랄로부터 2,5-퓨란디메틸카르복실레이트의 제조방법
WO2016006883A1 (ko) 고성능 폴리옥소메탈레이트 촉매 및 이의 제조 방법
WO2019107884A1 (ko) 산화적 탈수소화 반응용 촉매 시스템, 이를 포함하는 부타디엔 제조용 반응기 및 1,3-부타디엔의 제조방법
WO2019050347A1 (ko) 산화금속-실리카 복합 에어로겔의 제조방법 및 이로부터 제조된 산화금속-실리카 복합 에어로겔
WO2018088736A1 (ko) 합성 가스로부터 디메틸에테르를 제조하기 위한 촉매 및 이의 제조방법
WO2020009493A1 (ko) 1,2-펜탄디올 제조용 촉매 및 이를 이용한 1,2-펜탄디올의 제조방법
WO2016171516A1 (ko) 촉매 활성화를 위해 별도의 환원 전처리를 수행하지 않는 피셔-트롭쉬 합성반응을 통해 합성가스로부터 액체 또는 고체 탄화수소를 제조하는 방법
WO2018080025A1 (ko) 촉매의 재현성이 우수한 부타디엔의 제조방법
WO2021256628A1 (ko) 알루미나 촉매의 제조방법, 이로부터 제조된 알루미나 촉매 및 이를 이용한 프로필렌의 제조방법
WO2014119870A1 (ko) CoO상 입자를 포함하는 피셔-트롭시 합성용 촉매 및 이를 이용하여 천연가스로부터 액체 탄화수소를 제조하는 방법
WO2018190642A2 (ko) 산화적 탈수소화 반응용 촉매 시스템, 이를 포함하는 산화적 탈수소화용 반응기 및 산화적 탈수소화 방법
WO2018038505A1 (ko) 프로필렌 직접산화 반응용 촉매, 이의 제조방법 및 이를 이용한 프로필렌 직접산화 반응에 의한 프로필렌 옥사이드 제조방법
WO2020116770A1 (ko) 4족 전이금속 화합물, 이의 제조방법 및 이를 이용하여 박막을 형성하는 방법
WO2020105891A1 (ko) 폴리부텐 올리고머의 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18744568

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018563905

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018744568

Country of ref document: EP

Effective date: 20181203