WO2019050347A1 - 산화금속-실리카 복합 에어로겔의 제조방법 및 이로부터 제조된 산화금속-실리카 복합 에어로겔 - Google Patents

산화금속-실리카 복합 에어로겔의 제조방법 및 이로부터 제조된 산화금속-실리카 복합 에어로겔 Download PDF

Info

Publication number
WO2019050347A1
WO2019050347A1 PCT/KR2018/010522 KR2018010522W WO2019050347A1 WO 2019050347 A1 WO2019050347 A1 WO 2019050347A1 KR 2018010522 W KR2018010522 W KR 2018010522W WO 2019050347 A1 WO2019050347 A1 WO 2019050347A1
Authority
WO
WIPO (PCT)
Prior art keywords
solution
water glass
metal oxide
silica composite
glass solution
Prior art date
Application number
PCT/KR2018/010522
Other languages
English (en)
French (fr)
Inventor
김종훈
이제균
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to US16/492,017 priority Critical patent/US11279625B2/en
Priority to CN201880015923.0A priority patent/CN110382417B/zh
Priority to JP2019552501A priority patent/JP6870108B2/ja
Priority to EP18854726.9A priority patent/EP3575266B1/en
Publication of WO2019050347A1 publication Critical patent/WO2019050347A1/ko
Priority to US17/584,625 priority patent/US20220144652A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/14Colloidal silica, e.g. dispersions, gels, sols
    • C01B33/157After-treatment of gels
    • C01B33/158Purification; Drying; Dehydrating
    • C01B33/1585Dehydration into aerogels
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/20Silicates
    • C01B33/24Alkaline-earth metal silicates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/0091Preparation of aerogels, e.g. xerogels
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F11/00Compounds of calcium, strontium, or barium
    • C01F11/02Oxides or hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F5/00Compounds of magnesium
    • C01F5/02Magnesia
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/10Solid density
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/14Pore volume
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/16Pore diameter
    • C01P2006/17Pore diameter distribution

Definitions

  • the present invention relates to a process for preparing a lightweight oxidized metal-silica composite aerogel and a metal oxide-silica composite airgel produced thereby.
  • Silica aerogels are super porous, high specific surface area materials with a porosity of about 90 to 99.9% and a pore size in the range of 1 to 100 nm. Because of their excellent lightweight / super insulation / ultra low dielectric properties, In addition to development research, application researches as transparent insulating material and environmentally friendly high temperature insulating material, ultra low dielectric thin film for highly integrated devices, catalyst and catalyst carrier, electrode for super capacitor, and electrode material for seawater desalination have been actively studied.
  • silica airgel which shows a thermal conductivity of 0.300 W / mK or less, which is lower than that of organic insulating materials such as conventional styrofoam.
  • organic insulating materials such as conventional styrofoam.
  • the conventional process for producing a metal oxide-silica composite aerogel in general has a complicated manufacturing process, a large amount of wastewater due to the use of an organic solvent during solvent replacement, and an excessive consumption of the surface modifier during the surface modification step.
  • the metal oxide-silica composite airgel is prepared by adding a metal ion solution and an acid catalyst to a water glass solution and reacting (step 1); And washing and drying the wet gel (step 2) to produce a metal oxide-silica composite airgel.
  • the metal oxide-silica composite airgel has a complex structure between the metal oxide and the silica, the reaction proceeds unevenly, has a broad pore distribution, and the surface modification reaction for stabilizing the particle surface is omitted Therefore, there is a serious shrinkage phenomenon during drying, which results in a low effective pore volume.
  • the oxidized metal-silica composite airgel since it has an open-pore structure due to the formation of the network structure between the primary particles and the polymer resin penetration into the pores is restricted,
  • the effective pore volume with limited penetration is an important physical property as a lightweight additive.
  • the pore volume has a low effective pore volume as described above, the physical properties as a lightweight additive are deteriorated.
  • the present invention has been conceived in order to solve the problems of the prior art described above, and it is an object of the present invention to provide a method for producing a metal oxide-silica composite airgel having a more uniform pore structure and a reinforced network structure, .
  • Another object of the present invention is to provide a metal oxide-silica composite airgel produced by the above-described production method.
  • the present invention provides a method for producing a water-based glass comprising the steps of: (1) preparing an acidic water glass solution by adding an acid catalyst to a first water glass solution; Adding a metal ion solution to the acidic water glass solution to prepare a precursor solution (step 2); And a step of adding a second water glass solution to the precursor solution and performing a gelation reaction (step 3).
  • the present invention provides a metal oxide-silica composite airgel having a full width at half maximum (FWHM) value of 34 nm or less and an effective pore volume of 0.9 cm 3 / g or more in a distribution according to pore diameter.
  • FWHM full width at half maximum
  • the method of manufacturing a metal oxide-silica composite airgel according to the present invention is advantageous in that the production cost is reduced due to the omission of the surface substitution step and the pyrolysis step, thereby providing excellent economical efficiency as well as improving the reaction uniformity between the metal oxide and silica, By strengthening the structure, the shrinkage phenomenon during drying can be suppressed and the collapse of the pore structure can be effectively prevented.
  • the metal oxide-silica composite aerogels prepared from the above-described production method according to the present invention have a uniform pore structure and a reinforced network structure, whereby the specific surface area and pore volume, pore uniformity, effective pore volume, The pore characteristics such as the density can be remarkably improved, and thus, it is possible to have an ultra-light characteristic.
  • the method of manufacturing the metal oxide-silica composite airgel according to an embodiment of the present invention and the metal oxide-silica composite aerogel manufactured therefrom can be easily applied to industrial industries such as silica airgel related industries, and particularly useful as lightweight additives .
  • FIG. 1 schematically shows a flow chart of a conventional method for producing a metal oxide-silica composite aerogel.
  • FIG. 2 schematically shows a flowchart of a method for producing a metal oxide-silica composite aerogel according to an embodiment of the present invention.
  • FIGS. 3 and 4 are graphs showing the distribution of the metal oxide-silica composite aerogels according to the pore diameters of the prepared metal oxide-silica composite aerogels according to one embodiment of the present invention and the comparative example.
  • the conventional process for producing a metal oxide-silica composite aerogel generally involves complicated manufacturing processes through aging, solvent substitution, and surface modification processes, and a large amount of wastewater is generated by the use of an organic solvent during solvent substitution, There was a problem of excessive consumption of the fuel.
  • the present invention provides a method for preparing a metal oxide-silica composite airgel having a uniform pore structure, a reinforced network structure, and improved specific surface area, pore volume, effective density and the like by overcoming the conventional problems.
  • step (1) of preparing an acidic water glass solution by adding an acid catalyst to a first water glass solution, ; Adding a metal ion solution to the acidic water glass solution to prepare a precursor solution (step 2); And a step (3) of adding a second water glass solution to the precursor solution and performing a gelation reaction, wherein the slow addition of the second water glass solution at a high concentration to the precursor solution induces a slow gelation reaction, Lt; RTI ID 0.0 > gelled < / RTI >
  • the manufacturing method of the metal oxide-silica composite airgel according to the present invention does not include the solvent substitution step, the surface modification and the pyrolysis step, the production process is relatively simple and the production efficiency can be increased.
  • the composite airgel produced according to the above-described production method has an effect of improving the mechanical uniformity of the reaction between the metal oxide and the silica, and in particular, has a reinforced network structure so that penetration of the polymer resin is limited The pore volume and the effective density are improved and the pore characteristics and the specific surface area are remarkably improved, so that it is advantageously used as a lightweight additive.
  • the metal oxide-silica composite wet gel can be obtained through steps 1 to 3.
  • the water glass solution may be a dilute solution in which distilled water is added to and mixed with water glass, and the water glass is composed of silicon dioxide (SiO 2 ) the silicate may be an alkali salt of sodium silicate (sodium silicate, Na 2 SiO 3 ) obtained by melting.
  • the “first “ and “ second " may be for distinguishing the order of addition. That is, the “first water glass solution” and the “second water glass solution” may represent water glass solutions sequentially added, respectively. Further, it may be that the water glass concentration in each water glass solution is different depending on the case.
  • the "gelation reaction” used in the present invention may represent a sol-gel reaction, and the “sol-gel reaction” is to form a network structure from a silicon or metal alkoxide unit precursor material, And a hydrolysis reaction in which water reacts to form a hydroxy (-OH) functional group on the metal, followed by a condensation reaction in which one water molecule simultaneously forms a metal-oxygen bond from the two hydroxy functional groups condensation of the reactant and the reactant to each other.
  • the network structure may include a plan net structure in which a specific polygon having one or more kinds of atomic arrays is connected, or a vertex, a corner, and a surface of a specific polyhedron, As shown in FIG.
  • precursor solution used in the present invention means an acidic reactant solution in which a metal ion solution is mixed with an acidic water glass solution prepared by including an acid catalyst in a first water glass solution,
  • the solution may be a precursor material in the form of a sol, which is the reactant of the sol-gel reaction.
  • step 1 is a step of preparing an acidic water glass solution, and an acid catalyst can be added to the first water glass solution to prepare an acidic water glass solution.
  • the concentration of the first water glass solution may be 0.01 M to 2.0 M, preferably 0.05 M to 1.2 M, and more preferably 0.1 M to 0.5 M.
  • the concentration of the first water glass solution means the concentration of water glass in the first water glass solution, that is, the first water glass solution may contain water glass in the numerical range concentration.
  • the concentration of the water glass in the solution of the first water glass solution is less than 0.01 M, the concentration is too low, so that when mixed with the metal ion in Step 2, the reaction uniformity between the metal oxide and silica can be lowered, If the concentration of water glass exceeds 2.0 M, there is a problem that an acid catalyst is excessively used to maintain the acidic water glass solution because of its strong basicity, resulting in poor economical efficiency in terms of production efficiency and production cost, It is necessary to add an excess amount of the second water glass solution in order to adjust the pH suitable for the reaction.
  • the pH of the acidic water glass solution may be 0.1 to 2.9, preferably 0.3 to 2, more preferably 0.5 to 1.5, and the pH may be controlled by an acid catalyst.
  • pH means hydrogen ion concentration or acidity, which can be used as a value indicating the degree of acidity or basicity of a substance, and may be a value representing the dissociation concentration of hydrogen ions by taking an inverse number of the logarithm.
  • the agglomerate can mean a gel or a precipitate.
  • the produced airgel has a weak network structure and a large pore structure, which may cause a shrinkage phenomenon during drying, resulting in deterioration of pore characteristics.
  • the reaction uniformity is remarkably decreased, and the mechanical properties of the produced airgel may be deteriorated.
  • the pores and mechanical properties of the aerogels produced due to the non-uniform mixing of the silica in the metal oxide and the water glass solution may be deteriorated.
  • the acid catalyst to be added is not particularly limited, but may be one or more selected from the group consisting of hydrochloric acid, nitric acid, acetic acid, sulfuric acid and hydrofluoric acid, preferably hydrochloric acid.
  • the content of the acid catalyst in the acidic water glass solution is not particularly limited, and it may be one in which the pH of the acidic water glass solution is in the range showing the above range.
  • Step 2 is a step of preparing a precursor solution, and may be prepared by adding a metal ion solution to an acidic water glass solution and mixing.
  • the metal ion solution may be prepared by dissolving a metal salt as a raw material for forming a metal oxide in a solvent in a metal oxide-composite airgel to be finally produced.
  • the concentration of the metal ion solution may be 0.01 M to 2.0 M, preferably 0.01 M to 1.2 M, and more preferably 0.01 M to 0.2 M.
  • the concentration of the metal ion solution may be the concentration of the metal ion in the metal ion solution.
  • the concentration of the metal ion in the metal ion solution is less than 0.01 M, the concentration is too low to be uniformly mixed with the silica in the water glass solution, and the pore characteristics of the produced airgel may be deteriorated, There may be a problem that the improvement effect due to the formation of metal oxides such as mechanical properties can not be obtained due to a small metal content.
  • the metal concentration exceeds 2.0 M, the porous structure of the prepared airgel is inhibited, The physical properties may deteriorate.
  • the solvent of the metal ion solution is not particularly limited as long as it can sufficiently dissolve the metal salt, but it may be distilled water, for example.
  • the metal ion solution may specifically include ions of a metal selected from the group consisting of alkali metals, alkaline earth metals, lanthanides, actinides, transition metals, and metals of Group 13 (IIIA) More specifically, a metal such as Ca, Mg, Cu, Zn, Mn, Cd, Pb, Ni, Cr, (Ag), titanium (Ti), vanadium (V), cobalt (Co), molybdenum (Mo), tin (Sn), antimony (Sb), strontium (Sr), barium ), And the like.
  • the metal salts forming the metal ion the metal salt may be appropriately selected according to the use of the metal oxide-silica composite airgel.
  • the metal salt may include calcium and magnesium as metals.
  • the metal salt can be used by forming one or more metal salts selected from the group consisting of chloride, nitrate, sulfate and hydrates thereof using the metals.
  • it may be calcium chloride dihydrate (CaCl 2 2H 2 O) and magnesium chloride hexahydrate (MgCl 2 6H 2 O).
  • the metal ion solution may be a binary metal ion solution containing calcium ions (Ca 2+ ) and magnesium ions (Mg 2+ ), wherein the calcium ions (Ca 2+ ) And the magnesium ion (Mg 2+ ) may be 1: 1 to 1:20, preferably 1: 1 to 1:15, and even more preferably 1: 1 to 1:12.
  • the metal ion solution is added to the acidic water glass solution prepared in step 1, so that the precipitation reaction does not occur, so that the silica and the metal of the water glass solution can be uniformly mixed in the solution phase to improve the reaction uniformity. And the pH of the first water glass solution is adjusted.
  • the metal ion solution may be added in such an amount that the metal ion in the solution and the water glass in the water glass solution can easily react.
  • the metal ion solution may be added in a ratio of 5: 1 to 1: 5 By volume. More specifically, the metal ion solution may be added in a volume ratio of 3: 1 to 1: 3, and more preferably in a volume ratio of 2: 1 to 1: 2, relative to the water glass solution.
  • the metal ion solution may be added so that the molar ratio of silicon (Si) in the water glass solution to metal ions (Mg 2+ and Ca 2+ ) in the metal ion solution is 1: 0.3 to 1: 2.5.
  • the process of adding and mixing the metal ion solution is not particularly limited, but may be, for example, stirring and mixing, and the stirring may be performed using a magnetic bar or a mechanical mixer.
  • the concentration of the precursor solution may be 0.1 to 3.9 wt%, preferably 0.1 to 3 wt%, and more preferably 0.5 to 2.5 wt%, based on 1 L of the solvent.
  • the weight is the weight of the solute in the precursor solution, and the solute includes all the water glass and metal ions dissolved in the solvent in the precursor solution.
  • the concentration of the precursor solution is 0.1 to 3.9% by weight, a large number of pores having a small size are formed to increase the ratio of the effective pores in which penetration of the resin is limited and the pore uniformity is improved.
  • Silica-based composite airgel as an additive is preferable in view of further improving the light weight.
  • the solvent is not particularly limited as long as it can sufficiently dissolve the solute, but it may be, for example, distilled water.
  • Step 3 is a step of gelling the precursor solution, and a silica precursor may be added to the precursor solution of Step 2, followed by gelation reaction.
  • the silica precursor is selected from the group consisting of silicon, such as tetramethyl orthosilicate (TMOS), tetraethyl orthosilicate (TEOS) or methyl triethyl orthosilicate Containing alkoxide compound may be used.
  • TMOS tetramethyl orthosilicate
  • TEOS tetraethyl orthosilicate
  • methyl triethyl orthosilicate Containing alkoxide compound may be used.
  • water glass can be used. That is, preferably, the gelling reaction can be performed by adding the second water glass solution to the precursor solution.
  • the second water glass solution may be one that functions as a base catalyst as well as being a silica precursor.
  • the metal oxide-silica composite airgel can be manufactured by including the second water glass solution of high concentration without using the base catalyst generally used for forming the airgel, cost reduction And the process can be simplified to provide an efficient process for producing a metal oxide-silica composite airgel.
  • a watery glass solution forms a gelation and an impregnation reaction of a metal ion can occur.
  • an impregnation reaction can be induced.
  • the concentration of the second water glass solution may be 0.5 M to 6.0 M, preferably 1.0 M to 5.0 M, and more preferably 1.2 M to 4.0 M.
  • concentration of the second water glass solution means the concentration of water glass in the second water glass solution, that is, the second water glass solution may contain water glass in the numerical range concentration, and the concentration of water glass in the second water glass solution May be greater than the concentration of water glass in the first water glass solution.
  • the concentration of the second water glass is less than 0.5 M, the gelation forms a porous network structure that is too large and the shrinkage during drying becomes severe, resulting in a very low pore volume and pore uniformity and a high single particle effective density Silica composite aerogels having poor physical properties such as water and bricks can be formed.
  • the gelation can be a dense structure without forming a porous network structure
  • the second water glass solution may be added so that the pH of the precursor solution is 3 to 10, preferably 3.5 to 9.5, and more preferably 4 to 8.
  • the slow addition of the second water glass solution may induce a slow gelation reaction
  • the method of introducing the second water glass solution is preferably a method of continuously introducing the solution or a method of periodically adding the solution repeatedly several times But is not limited thereto.
  • the method of adding the second water glass solution at one time can not induce a sufficient reaction between the reaction solution and induce a nonuniform reaction.
  • the precursor solution prepared in the step 2 forms a low pH range and already contains a water glass solution as a constituent component, the position of the precursor solution when the water glass solution is directly introduced into the metal ion solution
  • the gelation of the precursor solution of the present invention is instantly gelled even when the second water glass solution is added, whereas the gelation of the precursor solution of the present invention can be performed slowly while the second water glass solution is uniformly mixed.
  • the second water glass solution is slowly added to induce a slow gelation reaction, whereby the network structure of the gelatine can be formed more uniformly.
  • the gelation reaction is not particularly limited but may be carried out with stirring, for example, and the stirring may be performed using a magnetic bar or a mechanical mixer at 10 rpm to 500 rpm, preferably 100 rpm to 300 rpm And the reaction time may be 30 minutes to 5 hours, preferably 1 to 4 hours, more preferably 1 to 3 hours.
  • the gelation reaction may be carried out at a temperature of 10 to 100 ° C, preferably 10 to 80 ° C, more preferably 20 to 60 ° C, even more preferably 25 to 50 ° C.
  • the reaction temperature is preferable in terms of shortening the reaction time, optimizing the efficiency of the production process, preventing the formation of precipitates, and improving pore uniformity.
  • the addition of the second water glass solution at a high concentration does not exclude the addition of a base catalyst, and the base catalyst has a pH of 3 to 10, preferably 3.5 to 5, 9.5, and even more preferably the pH is in the range of 4 to 8.
  • the base catalyst may be one or more kinds of not particularly limited, such as sodium hydroxide (NaOH), aqueous ammonia (NH 4 OH) and potassium hydroxide (KOH). Specifically, it may be sodium hydroxide.
  • the manufacturing method according to one embodiment of the present invention may further include the step of washing the produced metal oxide-silica composite wet gel, and the cleaning may be performed using impurities generated during the reaction (for example, Si 4+ , Mg 2+ or Ca 2+ , byproducts such as Na + or Cl - ) to obtain a high purity metal oxide-silica composite airgel, and may be carried out by a method common to those skilled in the art .
  • impurities generated during the reaction for example, Si 4+ , Mg 2+ or Ca 2+ , byproducts such as Na + or Cl -
  • the washing may be performed by adding distilled water or an organic solvent to the metal oxide-silica composite wet gel and stirring for 20 minutes to 1 hour.
  • the organic solvent is not particularly limited, A hydrocarbon-based compound or a ketone-based compound, and more specifically, an alcohol-based compound such as methanol, ethanol, isopropanol or propanol; Hydrocarbon compounds such as hexane, octane, n-decane, n-heptane, n-undecane, cyclohexane or toluene; And ketone compounds such as methyl ethyl ketone or acetone. Any one or a mixture of two or more of them may be used.
  • the washing is carried out using an organic solvent, it is excellent in compatibility with water as a reaction solvent, easy penetration into pores in the silica gel particles, and in combination with a subsequent drying step,
  • An alcoholic compound which is free from contraction and deformation of the pore, and more specifically, ethanol can be used.
  • an alcohol compound is used, the water present in the metal oxide-silica composite wet gel is replaced with an alcohol having a relatively low surface tension, thereby further suppressing the shrinkage occurring during drying.
  • the washing process may be performed according to a conventional washing method, and may be carried out once or twice or more, specifically, three to five times. In addition, when the washing process is performed two or more times, it may be performed using the same washing solvent, or may be performed using different washing solvents. Specifically, after the first washing using distilled water or ethanol, a second washing process using a washing solvent comprising any one or a mixture of two or more selected from the group consisting of methanol, tetrahydrofuran, toluene, and hexane may be performed .
  • the manufacturing method according to an embodiment of the present invention may further include a water content control process through solid / liquid separation in the washing step.
  • the moisture content control process may be performed by a conventional solid / liquid separation method such as a vacuum filter. More specifically, the water content in the metal oxide-silica composite precipitate may be 99% or less by weight based on the total weight of the metal oxide- By weight, preferably not more than 95% by weight.
  • a conventional solid / liquid separation method such as a vacuum filter.
  • the water content in the metal oxide-silica composite precipitate may be 99% or less by weight based on the total weight of the metal oxide- By weight, preferably not more than 95% by weight.
  • the manufacturing method according to an embodiment of the present invention may further include drying the washed metal oxide-silica composite wet gel.
  • the drying step may be performed by a method such as heat treatment or hot air injection.
  • the specific temperature and time conditions at the time of drying may be suitably adjusted according to the washing solvent, specifically, 90 ° C to 200 ° C, and may be performed at atmospheric pressure drying, - It is possible to proceed by controlling the temperature and time so that the water content of the silica composite airgel is within 10%.
  • 'atmospheric pressure' refers to normal pressure or atmospheric pressure, meaning the pressure when the pressure is not particularly reduced or increased without using a high pressure device such as an autoclave.
  • the method according to an embodiment of the present invention includes preparing an acidic water glass solution, adding a metal ion solution to the acidic water glass solution and uniformly mixing the same to prepare a precursor solution, adding a high concentration second water glass solution to the precursor solution, And a slow gelation reaction to induce a slow gelation reaction, whereby a network structure and / or a homogeneous pore structure are easily formed and thereby pore characteristics such as pore uniformity, pore volume, pore diameter, effective pore volume, , The specific surface area and the density reduction rate are remarkably improved, so that a metal oxide-silica composite airgel which can be light in weight can be produced.
  • the present invention also provides a metal oxide-silica composite aerogel produced by the above-described production method.
  • the airgel according to an embodiment of the present invention may be one in which a metal oxide is doped in silica and the metal oxide may be used without any particular limitation as long as it is fixed by a silanol group on the surface of silica airgel to form a composite airgel have.
  • the metal oxide may be an oxide containing any one or two or more metals selected from the group consisting of alkali metals, alkaline earth metals, lanthanides, actinides, transition metals and Group 13 (IIIA) More specifically, it is preferable to use a metal such as Ca, Mg, Cu, Zn, Mn, Cd, Pb, Ni, Cr, (Ti), vanadium (V), cobalt (Co), molybdenum (Mo), tin (Sn), antimony (Sb), strontium (Sr), barium (Ba), and tungsten (W) , And more specifically, may be magnesium oxide, calcium oxide, or a mixture thereof. That is, the metal oxide-silica composite airgel according to an exemplary embodiment of the present invention may include magnesium oxide (MgO), calcium oxide (CaO), and silica (SiO 2 ).
  • a metal such as Ca, Mg, Cu, Zn, Mn, Cd, Pb, Ni, Cr, (Ti),
  • the doping indicates the addition of a limited amount of external material to the pure material, for example, indicating that the metal oxide is bound in the network of silica.
  • the pore uniformity of the metal oxide-silica composite airgel may be expressed by a full width half maximum (FWHM) value of the distribution curve in the distribution according to the pore diameter, and the full width at half maximum value may be 34 nm or less, Preferably 0.1 to 15 nm or less, more preferably 0.1 to 7 nm, even more preferably 0.1 to 5 nm.
  • FWHM full width half maximum
  • the full-width half-width value as a measure of the pore uniformity means the absolute value of the difference between two independent variable values which are half of the peak value in the distribution according to the pore diameter as shown in FIG. 3 and FIG.
  • the full width at half maximum value As the full width at half maximum value is smaller, the pore diameter distribution of the metal oxide-silica composite airgel is narrowly formed and the pore size is more uniform. On the contrary, when the full width at half maximum value is larger, the pore diameter distribution is broader, Is relatively uneven. Therefore, the full width at half maximum value in the distribution according to the pore diameter can confirm the uniformity of the pore size, that is, the pore uniformity.
  • the metal oxide-silica composite aerogels produced by the method according to an embodiment of the present invention have a full width at half maximum of not less than 40 nm, compared to conventional aerogels having a full width at half maximum of at least 40 nm, preferably at most 34 nm, 5 nm or less. Therefore, the present invention can provide a metal oxide-silica composite aerogel with much improved pore uniformity.
  • the pore volume of the metal oxide-silica composite airgel produced by the production method according to an embodiment of the present invention may be 0.9 cm 3 / g or more, preferably 1.0 to 3 cm 3 / g, More preferably 1.3 to 2.5 cm < 3 > / g.
  • the metal oxide-silica composite airgel may have an effective pore volume of 0.9 cm 3 / g or more, preferably 1.0 to 3 cm 3 / g, more preferably 1.3 to 2.5 cm 3 / g, and can have an effective pore volume value that is not significantly different from the above-described pore volume. That is, the ratio of the effective pore volume based on the measured total pore volume (measured pore volume) may be at least 0.8, preferably at least 0.9, more preferably from 0.98 to 1, which may be within the metal oxide- It may mean that all or most of the pore volume is the effective pore volume.
  • the effective pore volume may mean the volume value of the pores in which the penetration of the polymer resin into the pores is restricted when the metal oxide-silica composite airgel is used as a lightening additive. Specifically, From the cumulative pore volume at a pore diameter of about 50 nm or less. Since the penetration of the polymer resin into the pores occupying the effective pore volume is limited, the larger the ratio of the effective pore volume and the total pore volume to the effective pore volume, the more excellent the light weight can be.
  • the metal oxide-silica composite airgel produced by the method according to an embodiment of the present invention has an effective pore volume of 0.5-0.8 cm 3 / g, which is 0.9 cm 3 / g or more, Most preferably 1.3 to 2.5 cm < 3 > / g, so that it is possible to provide a metal oxide-silica composite airgel which is very light in weight.
  • the metal oxide-silica composite airgel produced by the production method according to an embodiment of the present invention may have an effective particle density of 0.7 g / ml or less, preferably 0.01 to 0.7 g / ml, more preferably 0.01 To 0.6 g / ml or less.
  • the Single Particle Effective Density means the density of the metal oxide-silica composite airgel which affects the actual weight reduction except the polymer resin infiltration site when the metal oxide-silica composite airgel is applied as an additive And can be obtained from the following equation (1).
  • Effective Pore Volume Cumulative pore volume at pore size of 50 nm or less in oxidized metal-silica composite airgel
  • the lightweight property may be excellent, and the metal-silica composite airgel produced by the manufacturing method according to one embodiment of the present invention Can be 0.7 g / ml or less, and most preferably 0.01 to 0.6 g / ml, while the single particle effective density of conventional aerogels is 0.9 g / ml, which is poorly applicable as an additive for polymer resin lightening. It is possible to provide an airgel having excellent properties and can be useful as an additive for lightening the polymer resin.
  • the density of the oxidized metal-silica composite airgel itself may be a value measured at room temperature and atmospheric pressure using a gas pyonometer apparatus (AccuPyc 1340, Micromeritics).
  • &quot room temperature " means room temperature, which is a temperature in a state where the temperature is not lowered or raised, and generally indicates a temperature of 20 5C.
  • the metal oxide-silica composite airgel produced by the method according to an embodiment of the present invention may have a density reduction rate of 3% or more, preferably 4 to 20%, and more preferably 5 to 20%.
  • the density reduction rate may mean a ratio (percentage) of a reduced density when a certain amount of a metal oxide-silica composite airgel is added to the polypropylene resin as an additive, relative to the density of the PP resin itself. That is, as the density reduction ratio is larger, the polymer resin has many effective pores that are not infiltrated, so that it may be excellent in light weight.
  • the pore diameter of the metal oxide-silica composite airgel produced by the manufacturing method according to an embodiment of the present invention is not limited, but may be preferably 50 nm or less. If the pore diameter of the oxidized metal-silica composite airgel is more than 50 nm, the pore size is large, and the polymer resin can permeate into the pores of the oxidized metal-silica composite airgel, thereby deteriorating the light weight of the metal oxide- There is a problem.
  • the metal oxide-silica composite airgel may have a specific surface area of 300 m 2 / g or more, and preferably has a specific surface area of 500 m 2 / g to 1500 m 2 / g, more preferably 800 m 2 / / g to 1500 m 2 / g.
  • the pore volume, pore diameter and specific surface area were pretreated for 24 hours at 150 ° C. under vacuum to remove water and organic components.
  • 0.3 g of the sample was introduced into a BET measuring device (ASAP 2010, Micrometrics) (0.11 ⁇ p / p 0 ⁇ 1) may be a value of analyzing the absorption / desorption amount of nitrogen in accordance with, where the specific surface area may be an indication of the BET specific surface area.
  • the metal oxide-silica composite airgel according to an embodiment of the present invention can be manufactured through the above-described manufacturing method to increase the specific surface area and thus exhibit porosity. In addition, it has an excellent pore uniformity, The pore characteristics such as density can be improved, and there can be many effective pores that the polymer resin can not penetrate, so that it is possible to have an excellent light weight effect.
  • a metal oxide-silica composite airgel was prepared through the steps shown in FIG.
  • hydrochloric acid (acid catalyst) was added to 200 ml of a 0.25 M water glass solution (first water glass solution) to prepare an acidic water glass solution.
  • the pH of the acidic water glass solution is 0.9.
  • the concentration of the precursor solution is 2.0 wt%.
  • a 2.0 M water glass solution (second water glass solution) was slowly added to the solution of the precursor solution at a temperature of 25 ⁇ until the pH of the precursor solution became 4.5, and the gelation reaction was conducted for 2 hours to prepare a metal oxide- Respectively.
  • the prepared metal oxide-silica composite wet gel was washed with distilled water and ethanol as a washing solvent, and was subjected to solid / liquid separation to a water content of 95%, and the washing process was repeated four times.
  • the washed metal oxide-silica composite wet gel was dried at atmospheric pressure in an oven at 125 DEG C for 6 hours to prepare a metal oxide-silica composite airgel.
  • Example 1 The procedure of Example 1 was repeated except that hydrochloric acid (HCl) was added to the first water glass solution to adjust the pH to 1.0 and the second water glass solution was added until the pH of the precursor solution reached 9.5. A composite airgel was prepared.
  • HCl hydrochloric acid
  • hydrochloric acid acid catalyst
  • the prepared metal oxide-silica composite wet gel was washed with distilled water and ethanol as a washing solvent, and was subjected to solid / liquid separation to a water content of 95%, and the washing process was repeated four times.
  • the washed metal oxide-silica composite wet gel was dried at atmospheric pressure in an oven at 125 DEG C for 6 hours to prepare a metal oxide-silica composite airgel.
  • hydrochloric acid acid catalyst
  • the prepared metal oxide-silica composite wet gel was washed with distilled water and ethanol as a washing solvent, and was subjected to solid / liquid separation to a water content of 95%, and the washing process was repeated four times.
  • the washed metal oxide-silica composite wet gel was dried at atmospheric pressure in an oven at 125 DEG C for 6 hours to prepare a metal oxide-silica composite airgel.
  • a 3.0 M water glass solution (second water glass solution) was slowly added to the solution of the precursor solution at a temperature of 25 ⁇ until the pH of the precursor solution reached 7.5, and the gelation reaction was continued for 2 hours to prepare a metal oxide- Respectively.
  • the prepared metal oxide-silica composite wet gel was washed with distilled water and ethanol as a washing solvent, and was subjected to solid / liquid separation to a water content of 95%, and the washing process was repeated four times.
  • the washed metal oxide-silica composite wet gel was dried at atmospheric pressure in an oven at 125 DEG C for 6 hours to prepare a metal oxide-silica composite airgel.
  • a 4.0 M water glass solution (second water glass solution) was slowly added to the precursor solution until the pH of the precursor solution reached 7.5 under a temperature condition of 50 ⁇ , and the gelation reaction was continued for 2 hours to prepare a metal oxide- Respectively.
  • the prepared metal oxide-silica composite wet gel was washed with distilled water and ethanol as a washing solvent, and was subjected to solid / liquid separation to a water content of 95%, and the washing process was repeated four times.
  • the washed metal oxide-silica composite wet gel was dried at atmospheric pressure in an oven at 125 DEG C for 6 hours to prepare a metal oxide-silica composite airgel.
  • a metal oxide-silica composite airgel was prepared in the same manner as in Example 2, except that the gelling reaction was conducted at a temperature of 40 ° C.
  • a metal oxide-silica composite airgel was prepared in the same manner as in Example 2 except that the gelling reaction was carried out at a temperature of 60 ° C.
  • a metal oxide-silica composite airgel was prepared in the same manner as in Example 2 except that the gelling reaction was carried out at a temperature of 100 ° C.
  • a metal oxide-silica composite airgel was prepared through the steps shown in FIG.
  • the pH of the acidic metal ion solution is 0.9.
  • a 2.0 M water glass solution was slowly added to the acidic metal ion solution until the pH of the acidic metal ion solution became 4.5 until the precipitation reaction (gelation) proceeded for 2 hours to prepare a metal oxide-silica composite wet gel.
  • the prepared metal oxide-silica composite wet gel was washed with ethanol as a washing solvent and at the same time, the water / liquid separation was carried out to a water content of 95%, and the washing process was repeated four times.
  • the washed metal oxide-silica composite wet gel was dried at atmospheric pressure in an oven at 125 DEG C for 6 hours to prepare a metal oxide-silica composite airgel.
  • Hydrochloric acid (acid catalyst) was added to 200 ml of a 0.5 M water glass solution until the pH became 4.0, and the gelation reaction proceeded to prepare a silica wet gel.
  • Hydrochloric acid was added to 200 ml of a 0.5 M water glass solution until the reaction pH reached 4.0, and the gelation reaction proceeded to prepare a silica wet gel.
  • Example 1 4.5 2.0 25
  • Example 2 7.5 2.0 25
  • Example 3 9.5 2.0 25
  • Example 4 7.5 1.0 50
  • Example 5 7.5 1.5 25
  • Example 6 7.5 3.0 25
  • Example 7 7.5 4.0 50
  • Example 8 7.5 2.0 40
  • Example 9 7.5 2.0 60
  • Example 10 7.5 2.0 100 Comparative Example 1 - - 25 Comparative Example 2 - - 25 Comparative Example 3 - - 25
  • the 'precursor solution' is a solution of a solution of a metal ion solution in an acidic water glass solution, that is, a solution of a water glass, a solution of a metal ion and an acid catalyst.
  • the pore volume and average pore diameter were analyzed by adsorption / desorption amount of nitrogen with partial pressure (0.11 ⁇ p / p 0 ⁇ 1) using ASAP 2010 apparatus (Micrometrics).
  • the pore volume and the average pore diameter were measured by introducing 0.3 g of the sample, which had been pretreated under vacuum at 150 ° C. for 24 hours, to remove moisture and organic components, and then charged into a BET measuring apparatus (ASAP 2010, Micrometrics).
  • the effective pore volume was calculated as the cumulative total volume of pores having a pore diameter of 50 nm or less in the pore volume measured in 1) above.
  • the value of Effective P.V./Measured P.V. is the calculated effective pore volume divided by the pore volume measured in 1) above.
  • the density of the oxidized metal-silica composite aerogel itself was measured at room temperature and atmospheric pressure using a gas pyonometer device (AccuPyc 1340, Micromeritics), and the measured effective pore volume value was used to calculate the following equation Respectively.
  • Effective Pore Volume Cumulative pore volume at pore size of 50 nm or less in oxidized metal-silica composite airgel
  • the ratio of the density of the reduced metal oxide-silica composite airgel to that of the polypropylene resin when the metal oxide-silica composite airgel is added in a certain amount as an additive is calculated as a percentage of the density of the polypropylene resin (PP resin) itself.
  • Table 2 shows measured values of properties of Examples 1 to 10 and Comparative Examples 1 to 3.
  • the metal oxide-silica composite aerogels of Examples 1 to 3 prepared according to one embodiment of the present invention were compared with the metal oxide-silica composite airgel of Comparative Examples 1 to 3, It has been confirmed that the effective density of the single particles, the density reduction rate, and the effective pore volume as a whole are also excellent as the pore uniformity (FWHM) and the effective pore volume are remarkably improved.
  • Examples 1 to 10 exhibited an accumulated pore volume at a pore diameter of 50 nm or less, which had a larger pore volume as compared with Comparative Examples 1 to 3 and in which the polymer hardly permeated, It can be seen that the volume is also a large value, and in particular, the ratio of the effective pore volume to the total pore volume is close to 1, and it can be seen that most of the pores existing in the airgel are effective pores capable of improving the light weight have. Thus, it can be seen that the effective density of the individual particles is also significantly reduced as the pore volume is large, especially when the ratio of the effective pore volume is high.
  • FIG. 3 and 4 show the pore diameters of the airgel according to Example 1 and Comparative Examples 1 to 3.
  • the pores uniformity of the airgel according to the embodiment of the present invention is far superior to those of the comparative examples 1 to 3, and the pores of most of the pores are small, so that the effective pores, in which penetration of the polymer resin is restricted, .
  • Comparative Example 1 similarly to Examples 1 to 10, even when the water glass solution is slowly added, since the water glass solution is put into the acidic metal ion solution, the gelation is instantaneously made instantaneously when the metal ion and the water glass solution come into contact with each other. It can be confirmed that the concentration of silica in the aerogels is uneven and the pore characteristics are degraded as described above.
  • the metal oxide-silica composite aerogels were prepared by mixing the metal ion solution in an acidic watery solution state so as not to cause precipitation and at the same time slowly gelling reaction with a high concentration watery solution It has been confirmed that an airgel useful as a lightweight additive can be produced because the internal network structure is strengthened to increase the pore volume, to improve the effective pore volume and effective density, and to have a uniform pore structure.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Silicon Compounds (AREA)

Abstract

본 발명은 산화금속-실리카 복합 에어로겔 제조방법 및 이에 따라 제조된 경량성이 우수한 산화금속-실리카 복합 에어로겔에 관한 발명으로 보다 상세하게는 제1 물유리 용액에 산촉매를 첨가하여 산성 물유리 용액을 준비하는 단계(단계 1); 상기 산성 물유리 용액에 금속이온 용액을 첨가하여 전구체 용액을 제조하는 단계(단계 2); 상기 전구체 용액에 제2 물유리 용액을 첨가하고 겔화 반응시키는 단계(단계 3)를 포함하는 산화금속-실리카 복합 에어로겔의 제조방법에 관한 것이다.

Description

산화금속-실리카 복합 에어로겔의 제조방법 및 이로부터 제조된 산화금속-실리카 복합 에어로겔
관련 출원(들)과의 상호 인용
본 출원은 2017년 09월 08일자 한국 특허 출원 10-2017-0115274호 및 한국 특허 출원 10-2017-0115275호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원들의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
본 발명은 경량성 산화금속-실리카 복합 에어로겔의 제조방법 및 이를 통하여 제조된 산화금속-실리카 복합 에어로겔에 관한 것이다.
실리카 에어로겔(aerogel)은 90~99.9% 정도의 기공율과 1~100 nm 범위의 기공크기를 갖는 초다공성의 고비표면적 물질로서, 뛰어난 초경량/초단열/초저유전 등의 특성을 갖는 재료이기 때문에 에어로겔 소재 개발연구는 물론 투명단열재 및 환경 친화적 고온형 단열재, 고집적 소자용 극저유전 박막, 촉매 및 촉매 담체, 슈퍼 커패시터용 전극, 해수 담수화용 전극 재료로서의 응용연구도 활발히 진행되고 있다.
실리카 에어로겔의 가장 큰 장점은 종래 스티로폼 등의 유기 단열재보다 낮은 0.300 W/mK 이하의 열전도율을 보이는 슈퍼단열성(super-insulation)이다. 또한, 유기단열재의 치명적인 약점인 화재 취약성과 화재시 유해가스 발생을 해결할 수도 있다.
한편, 실리카 에어로겔의 활용 범위를 더욱 확대시키기 위하여 상기 실리카 에어로겔이 본래 가지는 특성에 기계적 물성을 향상시키는 방안이 검토되고 있으며, 일례로 산화금속이 도입된 산화금속-실리카 복합 에어로겔이 개발되어 왔다.
종래의 일반적인 산화금속-실리카 복합 에어로겔의 제조공정은 제조공정이 복잡하고, 용매치환 시 유기용매 사용에 따른 다량의 폐수 발생, 그리고 표면개질단계에서의 표면개질제의 과량 소비의 문제점이 있었다.
이를 해결하기 위하여 근래에는 유기 용매와 표면개질제가 필요한 고비용의 표면 치환 공정과 열분해 공정을 생략한 저비용 생산 공정으로 제조하는 것을 연구하여 왔다.
구체적으로, 산화금속-실리카 복합 에어로겔은 물유리 용액에 금속이온 용액 및 산촉매를 첨가하고 반응시키는 단계(단계 1); 및 상기 습윤겔을 세척 및 건조하는 단계(단계 2)를 통하여 산화금속-실리카 복합 에어로겔을 제조하는 방법이다.
그러나, 산화금속-실리카 복합 에어로겔은 산화 금속과 실리카 간의 복합 구조체를 형성함에 따라 반응이 불균일하게 진행되어, 넓은 기공 분포도(Broad pore distribution)를 가지게 되며, 입자 표면을 안정화시키는 표면개질 반응을 생략함에 따라 건조 시 심한 수축 현상이 발생하게 되어 낮은 유효 기공 부피(effective pore volume)을 가지게 된다.
산화금속-실리카 복합 에어로겔의 경우, 1차 입자들(primary particles) 간의 망상구조 구조의 형성에 따른 오픈-포어 구조를 가지고 있으며, 기공 내부로의 폴리머 수지 침투를 제한하여 경량화가 이루어지므로 폴리머 수지의 침투가 제한되는 유효 기공 부피가 경량화 첨가제로써 중요한 물성인데, 전술한 것과 같이 낮은 유효 기공 부피를 가짐으로 인해 경량성 첨가제로써의 물성이 악화되는 문제점이 있다.
따라서, 산화금속과 실리카 간의 반응 균일성을 향상시켜 좁은 기공 분포도(Narrow pore distribution)를 가질 수 있도록 하며, 내부 망상구조 강화를 통해 건조 시 수축현상을 감소시켜 기공부피 및 유효 밀도를 개선하여 경량성 첨가제로 응용이 가능한 산화금속-실리카 복합 에어로겔의 제조 공정 개선이 필요한 실정이다.
본 발명은 상기의 종래 기술의 문제점을 해결하기 위하여 안출된 것으로, 보다 균일한 기공 구조와 강화된 망상구조를 가지고, 기공부피가 증대됨으로써 우수한 경량성을 가지는 산화금속-실리카 복합 에어로겔의 제조방법을 제공하는 것이다.
본 발명의 다른 목적은 상기의 제조방법으로 제조된 산화금속-실리카 복합 에어로겔을 제공하는 것이다.
상기의 과제를 해결하기 위하여, 본 발명은 제1 물유리 용액에 산촉매를 첨가하여 산성 물유리 용액을 준비하는 단계(단계 1); 상기 산성 물유리 용액에 금속이온 용액을 첨가하여 전구체 용액을 제조하는 단계(단계 2); 및 상기 전구체 용액에 제2 물유리 용액을 첨가하고 겔화 반응시키는 단계(단계 3)를 포함하는 산화금속-실리카 복합 에어로겔의 제조방법을 제공한다.
아울러, 본 발명은 기공 직경에 따른 분포도에서 반치전폭(FWHM) 값이 34 nm 이하이며, 유효 기공 부피(effective pore volume)가 0.9 cm3/g 이상인 산화금속-실리카 복합 에어로겔을 제공한다.
본 발명에 따른 산화금속-실리카 복합 에어로겔의 제조방법은 표면치환공정 및 열분해 공정을 생략함으로 인해 생산비용이 절감되어 경제성이 우수할 뿐 아니라, 산화금속과 실리카 간의 반응 균일성을 향상시키고 내부 망상구조 구조를 강화함으로써 건조 시 수축현상이 억제되어 기공구조의 붕괴가 효과적으로 방지될 수 있다.
또한, 본 발명에 따른 상기의 제조방법으로부터 제조된 산화금속-실리카 복합 에어로겔은 균일한 기공 구조 및 보다 강화된 망상구조 구조를 가짐으로써 비표면적과 기공부피, 기공 균일도, 유효 기공 부피, 단독입자 유효 밀도 등의 기공 특성이 현저히 개선될 수 있으며, 이로 인해 초경량의 특성을 가질 수 있다.
따라서, 본 발명의 일 실시예에 따른 상기 제조방법 및 이로부터 제조된 산화금속-실리카 복합 에어로겔은 이를 필요로 하는 산업, 예컨대 실리카 에어로겔 관련 산업에 용이하게 적용할 수 있으며 특히 경량화 첨가제로 유용하게 이용될 수 있다.
본 명세서에 첨부되는 다음의 도면들은 본 발명의 구체적인 실시예를 예시하는 것이며, 전술한 발명의 내용과 함께 본 발명의 기술사상을 더욱 이해시키는 역할을 하는 것이므로, 본 발명은 그러한 도면에 기재된 사항에만 한정되어 해석되어서는 아니 된다.
도 1은, 종래의 일반적인 산화금속-실리카 복합 에어로겔의 제조방법의 순서도를 개략적으로 나타낸 것이다.
도 2는, 본 발명의 일 실시예에 따른 산화금속-실리카 복합 에어로겔의 제조방법의 순서도를 개략적으로 나타낸 것이다.
도 3 및 도 4는, 본 발명의 일 실시예 및 비교예에 따른 산화금속-실리카 복합 에어로겔의 제조방법에 따라 제조된 산화금속-실리카 복합 에어로겔의 기공 직경에 따른 분포도 그래프이다.
이하, 본 발명에 대한 이해를 돕기 위하여 본 발명을 더욱 상세하게 설명한다.
본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
종래의 일반적인 산화금속-실리카 복합 에어로겔의 제조공정은 에이징, 용매치환, 표면개질 공정을 거쳐 제조공정이 복잡하고, 용매치환 시 유기용매 사용에 따른 다량의 폐수 발생, 그리고 표면개질단계에서의 표면개질제의 과량 소비의 문제점이 있었다.
이를 해결하기 위하여 도 1에서와 같이 유기 용매와 표면개질제가 필요한 고비용의 표면 치환 공정과 열분해 공정을 생략한 저비용 생산 공정으로 제조하는 방법이 제시되었으나, 산화금속-실리카 복합 에어로겔의 경우, 산화 금속과 실리카 간의 복합 구조체를 형성함에 따라 반응이 불균일하게 진행되어, 넓은 기공 분포도(Broad pore distribution)를 가지게 되며, 입자 표면을 안정화시키는 표면개질 반응을 생략함에 따라 건조 시 심한 수축 현상이 발생하게 되어 낮은 유효 기공 부피(effective pore volume)을 가져서 경량화 첨가제용으로는 성능이 매우 떨어지는 문제점이 있다.
따라서, 본 발명에서는 종래의 문제점을 극복하고, 균일한 기공 구조 및 강화된 망상구조 구조를 가지며, 비표면적, 기공 부피, 유효 밀도 등이 개선된 산화금속-실리카 복합 에어로겔의 제조방법을 제공한다.
이하, 도 2를 참고하여 본 발명의 일 실시예에 따른 산화금속-실리카 복합 에어로겔의 제조방법을 구체적으로 설명한다.
먼저, 도 2는 본 발명의 일 실시예에 따른 산화금속-실리카 복합 에어로겔의 제조방법을 순서도로 도시한 도면으로, 제1 물유리 용액에 산촉매를 첨가하여 산성 물유리 용액을 준비하는 단계(단계 1); 상기 산성 물유리 용액에 금속이온 용액을 첨가하여 전구체 용액을 제조하는 단계(단계 2); 및 상기 전구체 용액에 제2 물유리 용액을 첨가하고 겔화 반응시키는 단계(단계 3)를 포함하는 것으로, 상기 전구체 용액에 고농도의 제2 물유리 용액을 천천히 첨가하는 것으로 느린 겔화 반응을 유도하여 겔의 망상구조가 강화된 겔화물을 제조할 수 있다. 이와 같이, 본 발명에 따른 산화금속-실리카 복합 에어로겔의 제조방법은 용매 치환 공정이나, 표면개질, 열분해 공정을 포함하지 않으므로 제조공정이 비교적 단순하여 생산효율을 높일 수 있으며, 제조 비용 역시 절감되어 경제적 상승효과를 얻을 수 있다. 또한, 상기 제조방법에 따라 제조된 복합 에어로겔은 산화금속과 실리카의 반응 균일도가 우수하여 기계적 물성 등이 향상되는 효과가 있고, 특히, 보다 강화된 망상구조를 가짐으로써 폴리머 수지의 침투가 제한되는 유효 기공 부피, 유효 밀도가 개선되는 등 기공 특성 및 비표면적 등이 월등히 향상되어 경량화 첨가제로 유용하게 사용될 수 있는 효과가 있다.
여기에서, 단계 1 내지 3을 거쳐 산화금속-실리카 복합 습윤겔을 얻을 수 있다.
본 발명에서 사용되는 용어 "제1 물유리 용액", "제2 물유리 용액" 에서 물유리 용액은 물유리에 증류수를 첨가하고 혼합한 희석용액을 나타내는 것일 수 있으며, 상기 물유리는 이산화규소(SiO2)와 알칼리를 융해해서 얻은 규산알칼리염인 소듐 실리케이트(Sodium silicate, Na2SiO3)일 수 있다. 상기 "제1" 및 "제2" 는 첨가 순서를 구분하기 위한 것일 수 있다. 즉, 상기 "제1 물유리 용액" 및 "제2 물유리 용액" 은 각각 순차적으로 첨가되는 물유리 용액을 나타내는 것일 수 있다. 또한, 경우에 따라 각 물유리 용액 내 물유리 농도가 상이함을 나타내는 것일 수 있다.
본 발명에서 사용되는 "겔화 반응"은 졸-겔 반응을 나타내는 것일 수 있으며, 상기 "졸-겔(sol-gel)반응"은 실리콘이나 금속 알콕사이드 단위 전구체 물질로부터 망상구조를 형성시키는 것으로, 예컨대 실리콘과 물이 반응하여 금속에 하이드록시(-OH) 작용기를 형성하는 가수분해 반응(hydrolysis)이 일어난 후, 두 개의 하이드록시 작용기로부터 하나의 물 분자가 동시에 금속-산소간의 결합을 형성하는 축합반응(condensation)을 거쳐 반응물과 반응물이 서로 연결되어 성장하는 반응을 나타내는 것일 수 있다.
여기에서, 상기 망상구조(network structure)는 원자배열이 1종 혹은 그 이상의 종류로 되어 있는 어떤 특정한 다각형이 이어진 평면 그물 모양의 구조 또는 특정 다면체의 정점, 모서리, 면 등을 공유하여 3차원 골격구조를 형성하고 있는 구조를 나타내는 것일 수 있다.
본 발명에서 사용되는 용어 "전구체 용액"은 제1 물유리 용액에 산촉매를 포함하여 제조된 산성 물유리 용액에 금속이온 용액을 혼합하여 금속이온이 혼합된 산성의 반응물 용액을 의미하는 것일 수 있으며, 상기 전구체 용액은 졸-겔 반응의 반응물이 되는 졸(sol) 제형의 전구체 물질을 의미하는 것일 수 있다.
본 발명의 일 실시예에 따른 제조방법에 있어서, 단계 1은 산성 물유리 용액을 준비하는 단계로 제1물유리 용액에 산촉매를 첨가하여 산성 물유리 용액을 제조할 수 있다.
상기 제1 물유리 용액의 농도는 0.01 M 내지 2.0 M일 수 있고, 바람직하게는 0.05 M 내지 1.2 M, 보다 더 바람직하게는 0.1 M 내지 0.5 M일 수 있다. 이 때, 제1 물유리 용액의 농도는 제1 물유리 용액 내 물유리의 농도를 의미하는 것으로 즉, 제1 물유리 용액은 상기 수치범위 농도로 물유리를 함유하는 것일 수 있다.
상기 제1 물유리 용액의 용액 내 물유리의 농도가 0.01 M 미만이면, 농도가 너무 낮아 단계 2에서 금속이온과 혼합할 때, 균일하게 혼합되지 않아 산화금속과 실리카 간의 반응 균일성이 떨어질 수 있고, 상기 물유리의 농도가 2.0 M를 초과하면, 염기성이 강하여 산성의 물유리 용액으로 유지하기 위해 산촉매가 과도한 양이 사용되어 생산 효율성 및 생산 비용 측면에서 경제성이 떨어지는 문제가 발생할 수 있으며, 또한, 제2 물유리 용액을 투입할 때, 반응에 적합한 pH를 맞추기 위하여 과량의 제2 물유리 용액이 투입되어야 하므로 제조되는 산화금속 실리카 복합 에어로겔의 물성 저하 문제가 발생할 수 있고, 과량의 제2 물유리 용액을 투입하지 않고, 적정량의 제2 물유리 용액을 투입하는 경우에는 염기 촉매의 도입이 필요할 수 있어, 공정이 복잡해지고, 생산 효율 성 및 생산 비용 측면에서 경제성이 떨어지는 문제가 발생할 수 있다.
단계 1에서 상기 산성 물유리 용액의 pH는 0.1 내지 2.9, 바람직하게는 0.3 내지 2, 보다 더 바람직하게는 0.5 내지 1.5일 수 있으며, 상기 pH는 산촉매에 의하여 조절된 것일 수 있다.
pH는 수소이온농도 또는 산성도를 의미하는 것으로 물질의 산성, 염기성의 정도를 나타내는 수치로 사용될 수 있으며, 수소 이온의 해리농도를 로그의 역수를 취해 나타낸 값일 수 있다.
산성 물유리 용액의 pH가 2.9를 초과하면 상기 제1물유리 용액의 겔화 반응이 진행되어 응집물이 형성될 수 있고, 단계 2에서 금속이온을 첨가할 때 침전 반응이 일어나 금속이온이 혼합된 응집물이 형성되는 문제점이 발생할 수 있다. 상기 응집물은 겔화물 또는 침전물을 의미할 수 있다.
제1물유리 용액의 겔화 반응이 진행되어 응집물이 형성되면, 제조된 에어로겔의 망상구조가 약하고, 기공이 큰 구조로 형성되어 건조 시 수축현상이 심화되어 기공 특성이 악화될 수 있으며, 산화금속과의 반응 균일성이 현저하게 떨어져, 제조된 에어로겔의 기계적 물성 등이 악화되는 문제점이 발생할 수 있다. 또한, 금속이온이 혼합된 응집물이 형성되는 경우 역시 산화금속과 물유리 용액 내 실리카가 균일하게 혼합되지 않음으로 인해 제조된 에어로겔의 기공 특성 및 기계적 물성 등이 악화되는 문제점이 발생할 수 있다.
여기에서, 첨가되는 산촉매는 특별히 제한되는 것은 아니나, 예컨대 염산, 질산, 아세트산, 황산 및 불산으로 이루어진 군으로부터 선택된 1종 이상인 것일 수 있으며, 바람직하게는 염산일 수 있다. 상기 산성 물유리 용액 내 산촉매의 함량은 특별히 제한되지 않고 산성 물유리 용액의 pH가 상기의 범위를 나타내는 양으로 포함하는 것일 수 있다.
본 발명의 일 실시예에 따른 제조방법에 있어서, 단계 2는 전구체 용액을 제조하는 단계로, 산성 물유리 용액에 금속이온 용액을 첨가하여 혼합함으로써 제조할 수 있다.
상기 금속이온 용액은 최종 제조되는 산화금속-복합 에어로겔에 있어서 산화금속을 형성하도록 하는 원료물질인 금속염을 용매 중에 용해시켜 제조된 것일 수 있다. 상기 금속이온 용액의 농도는 0.01 M 내지 2.0 M인 것일 수 있으며, 바람직하게는 0.01 M 내지 1.2 M, 보다 더 바람직하게는 0.01 M 내지 0.2 M일 수 있다. 여기에서, 금속이온 용액의 농도는 금속이온 용액 내 금속이온의 농도를 의미하는 것일 수 있다.
상기 금속이온 용액 내 금속이온의 농도가 0.01 M 미만이면, 농도가 너무 낮아 물유리 용액 내 실리카와 균일하게 혼합될 수 없으며, 제조된 에어로겔의 기공 특성을 악화시키는 문제점이 있을 수 있을 뿐 아니라 에어로겔 내 산화금속의 함량이 작아 기계적 물성 등의 금속 산화물 형성에 따른 개선 효과를 가져올 수 없는 문제점이 있을 수 있고, 금속의 농도가 2.0 M를 초과하는 경우, 제조된 에어로겔의 다공성 구조를 저해하여 기공 부피 측면에서 물성이 악화되는 문제점이 발생할 수 있다.
금속이온 용액의 용매는 금속염을 충분히 용해시킬 수 있는 것이면 특별히 제한되는 것은 아니나, 예컨대 증류수일 수 있다.
상기 금속이온 용액은 구체적으로 알칼리 금속, 알칼리 토금속, 란탄족, 악티늄족, 전이 금속 및 제13족(IIIA)의 금속으로 이루어진 군에서 선택되는 어느 하나 또는 둘 이상을 금속의 이온을 포함할 수 있으며, 보다 구체적으로는 칼슘(Ca), 마그네슘(Mg), 구리(Cu), 아연(Zn), 망간(Mn), 카드뮴(Cd), 납(Pb), 니켈(Ni), 크롬(Cr), 은(Ag), 티타늄(Ti), 바나듐(V), 코발트(Co), 몰리브덴(Mo), 주석(Sn), 안티모니(Sb), 스트론튬(Sr), 바륨(Ba), 및 텅스텐(W)로 이루어진 군에서 선택되는 어느 하나 또는 둘 이상의 금속의 이온을 포함할 수 있다. 또 상기한 금속이온을 형성하는 금속염들 중에서도 산화금속-실리카 복합 에어로겔의 용도에 따라 적절히 선택될 수 있는데, 본 발명에 있어서 바람직하게는 상기 금속염은 칼슘과 마그네슘을 금속으로 포함할 수 있다.
또한, 상기 금속염은 상기 금속들을 사용하여 염화물(chloride), 질산염(nitrate), 황산염(sulfate) 및 이들의 수화물로 이루어진 군에서 선택되는 1 종 이상의 금속염을 형성하여 사용할 수 있으며, 본 발명에 있어서 보다 구체적으로는 염화칼슘 2수화물(CaCl22H2O) 및 염화마그네슘 6수화물(MgCl26H2O)일 수 있다.
즉, 본 발명의 일 실시예에서 금속이온 용액은 칼슘 이온(Ca2+)과 마그네슘 이온(Mg2+)을 포함하는 이성분 금속이온 용액인 것일 수 있으며, 이때 상기 칼슘 이온(Ca2+)과 마그네슘 이온(Mg2+)의 몰 비는 1:1 내지 1:20, 바람직하게는 1:1 내지 1:15, 보다 더 바람직하게는 1:1 내지 1:12일 수 있다.
상기 금속이온 용액을 단계 1에서 준비한 산성 물유리 용액에 첨가하여도 침전 반응이 일어나지 않아 용액상에서 물유리 용액의 실리카와 금속이 균일하게 혼합되어 반응 균일성을 향상시킬 수 있는데, 이는 단계 1에서 산촉매를 먼저 첨가하여 제1물유리 용액의 pH를 조절한 것으로 인한 결과일 수 있다.
또한, 상기 금속이온 용액은 용액 내 금속이온과 물유리 용액 내 물유리가 용이하게 반응할 수 있는 양으로 첨가하는 것일 수 있으며, 구체적으로는 상기 금속이온 용액은 물유리 용액 대비 5:1 내지 1:5의 부피비로 첨가하는 것일 수 있다. 더욱 구체적으로는 상기 금속이온 용액은 물유리 용액 대비 3:1 내지 1:3의 부피비로 첨가하는 것일 수 있고, 보다 더 바람직하게는 2:1 내지 1:2의 부피비로 첨가하는 것일 수 있다.
또한, 상기 금속이온 용액은 물유리 용액 내 규소(Si) 대 금속이온 용액 내 금속이온(Mg2+ 및 Ca2+)의 몰 비가 1:0.3 내지 1:2.5가 되도록 첨가하는 것일 수 있다.
상기 금속이온 용액을 첨가하여 혼합하는 과정은 특별히 제한된 것은 아니나 예컨대 교반하여 혼합하는 것일 수 있으며, 상기 교반은 마그네틱 바 또는 mechanical mixer를 이용하여 회전시키는 것일 수 있다.
여기에서 상기 전구체 용액의 농도는 용매 1 L를 기준으로 0.1 내지 3.9 중량%, 바람직하게는 0.1 내지 3 중량%, 보다 더 바람직하게는 0.5 내지 2.5 중량% 인 것일 수 있다. 이 때, 상기 중량%의 중량은 전구체 용액 내 용질의 중량이고, 상기 용질은 전구체 용액 내 용매에 녹아 있는 물유리, 금속이온 등을 모두 포함하는 것이다. 상기 전구체 용액의 농도가 0.1 내지 3.9 중량%일 때 크기가 작은 기공이 많이 형성되어 레진의 침투가 제한되는 유효기공의 비율을 높일 수 있고, 기공의 균일도가 향상되므로, 상기 농도 범위는 제조된 산화금속-실리카 복합 에어로겔을 첨가제로 적용 시 경량성을 보다 개선하는 측면에서 바람직하다.
또한, 이 때, 용매는 상기 용질을 충분히 용해시킬 수 있는 것이면 특별히 제한되는 것은 아니나, 예컨대 증류수일 수 있다.
본 발명의 일 실시예에 따른 제조방법에 있어서, 단계 3은 전구체 용액을 겔화 반응 시키는 단계로, 상기 단계 2의 전구체 용액에 실리카 전구체를 첨가하여 겔화 반응시켜 제조할 수 있다.
본 발명의 일 실시예에 있어서, 실리카 전구체는 테트라메틸 오르소실리케이트(tetramethyl orthosilicate; TMOS), 테트라에틸 오르소실리케이트(tetraethyl orthosilicate; TEOS) 또는 메틸트리에틸 오르소실리케이트(methyl triethyl orthosilicate)와 같은 실리콘 함유 알콕사이드계 화합물을 사용할 수 있으나, 본 발명에 있어서, 보다 구체적으로는 물유리를 사용할 수 있다. 즉, 바람직하게는 전구체 용액에 제2 물유리 용액을 첨가하여 겔화 반응을 진행할 수 있다.
여기에서 제2 물유리 용액은 실리카 전구체인 것과 동시에 염기촉매로 기능하는 것일 수 있다.
이와 같이, 본 발명에서는 일반적으로 에어로겔을 형성할 때 사용되는 염기촉매를 별도로 사용하지 않고도 고농도의 제2 물유리 용액을 포함함으로써 산화금속-실리카 복합 에어로겔을 제조할 수 있으므로, 제조 비용 측면에서 비용이 절감될 수 있고, 공정이 단순화되어 효율적인 산화금속-실리카 복합 에어로겔의 제조방법을 제공할 수 있다.
한편, 단계 3에서의 겔화 반응은 물유리 용액이 겔화물을 형성하는 것과 동시에 금속이온의 함침반응이 일어날 수 있으며, 예컨대 고농도의 제2물유리 용액을 첨가하여 pH를 높여 염기성 조건을 형성함으로써 겔화물 형성 및 함침반응을 유도할 수 있다.
상기 제2 물유리 용액의 농도는 0.5 M 내지 6.0 M인 것일 수 있으며, 바람직하게는 1.0 M 내지 5.0 M, 보다 더 바람직하게는 1.2 M 내지 4.0 M일 수 있다. 여기에서 제2 물유리 용액의 농도는 제2 물유리 용액 내 물유리의 농도를 의미하는 것으로 즉, 상기 제2 물유리 용액은 상기 수치범위 농도로 물유리를 함유하는 것일 수 있으며, 제2 물유리 용액 내 물유리의 농도는 상기 제1 물유리 용액 내 물유리의 농도보다 큰 것일 수 있다.
또한, 상기 제2 물유리 농도가 0.5 M 미만인 경우에는 상기 겔화물이 너무 큰 다공성의 망상구조를 형성하게 되고 건조 시 수축현상이 심화되어 결과적으로 매우 낮은 기공 부피 및 기공균일도와 높은 단독입자 유효밀도를 가지는 등 물성이 좋지 못한 산화금속-실리카 복합 에어로겔을 형성하게 될 수 있으며, 상기 제2 물유리 농도가 6.0 M을 초과하는 경우에는 상기 겔화물이 다공성의 망상구조를 형성하지 못하고 치밀한 구조체가 될 수 있어 최종적으로 제조된 산화금속-실리카 복합 에어로겔의 비표면적이 저하되는 문제가 발생할 수 있으며, 염기성이 급격하게 강해져 겔화 반응이 빠르게 일어남으로 인하여 기공 구조가 균일하지 못하고, 너무 큰 다공성의 망상구조를 형성하게 되어 전술한 것과 동일하게 매우 낮은 기공 물성이 현저히 떨어지는 산화 금속-실리카 복합 에어로겔을 형성하는 문제점이 발생할 수 있다.
아울러, 상기 제2 물유리 용액은 상기 전구체 용액의 pH가 3 내지 10, 바람직하게는 pH가 3.5 내지 9.5, 보다 더 바람직하게는 pH가 4 내지 8이 되도록 첨가하는 것일 수 있다.
상기 전구체 용액의 pH가 상기 범위를 벗어날 경우 겔화가 용이하지 않거나, 겔화 속도가 지나치게 느려져 공정성이 저하될 우려가 있다.
여기에서, 상기 제2 물유리 용액은 천천히 첨가함으로써 느린 겔화 반응을 유도할 수 있으며, 제2 물유리 용액의 투입 방법은 바람직하게는 연속적으로 투입하는 방법 또는 수 회에 걸쳐 주기적으로 반복 투입하는 방법이 있을 수 있으나, 이에 한정되지 않는다. 다만, 제2 물유리 용액을 한 번에 투입하는 방법은, 반응 용액 간 충분히 섞이지 않아 불균일한 반응이 유도될 수 있다.
또한, 상기 단계 2에서 제조된 전구체 용액은 낮은 pH 범위를 형성하고 있고, 구성성분 중 물유리 용액을 이미 포함하고 있으므로, 종래의 방식과 같이 금속이온 용액에 바로 물유리 용액을 투입하였을 때 투입한 위치를 중심으로 즉각적으로 겔화가 이루어지는 것에 반해 본 발명의 전구체 용액은 제2 물유리 용액을 첨가하더라도 즉각적으로 겔화가 이루어지지 않고, 제2 물유리 용액이 균일하게 혼합되면서 전체적으로 겔화가 천천히 이루어질 수 있다.
이와 같이, 본 발명에서는 제2 물유리 용액을 천천히 첨가하여 느린 겔화 반응을 유도함으로써 겔화물의 망상구조를 보다 더 균일하게 형성할 수 있다.
또한, 상기 겔화 반응은 특별히 제한되는 것은 아니나, 예컨대 교반하면서 수행하는 것일 수 있으며, 상기 교반은 마그네틱 바 또는 mechanical mixer를 이용하여 10 rpm 내지 500 rpm, 바람직하게는 100 rpm 내지 300 rpm 으로 회전시키는 것일 수 있고, 반응시간은 30 분 내지 5 시간, 바람직하게는 1 내지 4시간, 보다 더 바람직하게는 1 내지 3시간 동안 진행되는 것일 수 있다.
여기에서, 상기 겔화 반응은 온도 10 내지 100 ℃, 바람직하게는 10 내지 80 ℃, 보다 바람직하게는 20 내지 60 ℃, 보다 더 바람직하게는 25 내지 50 ℃의 조건 하에서 수행되는 것일 수 있다. 상기 반응 온도는 반응 시간을 단축시키고 제조 공정의 효율을 최적화하며, 침전물의 형성을 방지하여 기공 균일도를 개선하는 측면에서 바람직하다.
상기 단계 3에서는 고농도의 제2 물유리 용액을 첨가함에도 불구하고, 추가적으로 염기촉매를 더 포함하는 것을 배제하는 것은 아니며, 상기 염기촉매는 상기 전구체 용액의 pH가 3 내지 10, 바람직하게는 pH가 3.5 내지 9.5, 보다 더 바람직하게는 pH가 4 내지 8이 되도록 하는 양으로 사용하는 것일 수 있다.
상기 염기촉매는 특별히 제한되는 것은 아니나, 예컨대 수산화나트륨(NaOH), 암모니아수(NH4OH) 및 수산화칼륨(KOH) 중 1종 이상인 것일 수 있다. 구체적으로는 수산화나트륨일 수 있다.
본 발명의 일 실시예에 따른 제조방법은 제조된 산화금속-실리카 복합 습윤겔을 세척하는 단계를 더 수행할 수 있으며, 상기 세척은 반응 중 발생된 불순물(예컨대, Si4+, Mg2+ 또는 Ca2+와 같은 미반응물, Na+ 또는 Cl- 등의 부산물 등)을 제거하여 고순도의 산화금속-실리카 복합 에어로겔을 얻기 위한 것으로 특별히 제한되지 않고 당업계에 통상적인 방법을 통하여 수행하는 것일 수 있다.
예컨대, 상기 세척은 산화금속-실리카 복합 습윤겔에 증류수 또는 유기용매를 첨가하고, 20 분 내지 1 시간 동안 교반하여 수행하는 것일 수 있으며, 상기 유기용매는 특별히 제한되는 것은 아니나, 예컨대 알코올계 화합물, 탄화수소계 화합물 또는 케톤계 화합물 등이 사용될 수 있고 보다 구체적으로는 메탄올, 에탄올, 이소프로판올 또는 프로판올 등의 알코올계 화합물; 헥산, 옥탄, n-데칸, n-헵탄, n-운도데칸, 사이클로헥산 또는 톨루엔 등의 탄화수소계 화합물; 메틸에틸케톤 또는 아세톤 등의 케톤계 화합물 등을 들 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다. 만약, 상기 세척을 유기용매를 사용하여 수행할 경우에는 이중에서도 반응용매인 물과의 혼화성이 우수하고, 실리카겔 입자 내부의 기공까지 침투가 용이하며, 후속의 건조 공정과의 조합시 건조 효과 및 그에 따른 기공의 수축 및 변형 우려가 없는 알코올계 화합물, 보다 구체적으로는 에탄올이 사용될 수 있다. 알코올계 화합물을 사용하는 경우, 상기 산화금속-실리카 복합 습윤겔 내 존재하는 수분이 상대적으로 표면장력이 낮은 알코올로 치환됨으로써 건조 시 발생하는 수축현상이 추가적으로 억제될 수 있다.
상기 세척 공정은 통상의 세척 방법에 따라 수행될 수 있으며, 1회 또는 2회 이상, 구체적으로는 3회 내지 5회 반복 수행될 수 있다. 또, 상기 세척 공정이 2회 이상 수행될 경우, 동일한 세척용매를 이용하여 수행될 수도 있고, 서로 다른 이종의 세척용매를 이용하여 수행될 수도 있다. 구체적으로 증류수 또는 에탄올을 이용하여 1차 세척 후, 메탄올, 테트라히드로퓨란, 톨루엔 및 헥산으로 이루어진 군에서 선택되는 어느 하나 또는 둘 이상의 혼합물을 포함하는 세척용매를 이용한 2차 세척 공정이 수행될 수 있다.
또한, 본 발명의 일 실시예에 따른 제조방법은 상기 세척하는 단계에서 고체/액체 분리를 통한 함수율 제어 공정이 추가적으로 함께 수행될 수 있다.
상기 함수율 제어 공정은 진공필터 등과 같은 통상의 고체/액체 분리 방법에 의해 수행될 수 있으며, 보다 구체적으로는 금속산화물-실리카 복합 침전물 내 함수율이 금속산화물-실리카 복합 침전물 총 중량에 대하여 99 중량% 이하, 바람직하게는 95 중량% 이하가 되도록 수행될 수 있다. 이와 같이 고체/액체 분리를 통한 함수율 제어 공정을 진행함으로써 최종 산물인 산화금속-실리카 복합 에어로겔의 기공 내부 및/또는 외부에 포함된 염을 효과적으로 제거할 수 있으며, 건조 시 건조 시간을 단축시키는 동시에 공정성을 높일 수 있다.
본 발명의 일 실시예에 따른 제조방법은 세척된 산화금속-실리카 복합 습윤겔을 건조하는 단계를 더 수행할 수 있다.
상기 건조하는 단계는 가열처리 또는 열풍 주입 등의 방법으로 수행될 수 있다. 또 상기 건조 시 구체적인 온도 및 시간 조건은 세척 용매에 따라 적절히 조절될 수 있으며, 구체적으로는 90 ℃ 내지 200 ℃의 온도에서 수행될 수 있고, 상압 건조하여 수행되는 것일 수 있으며, 상기 건조는 산화금속-실리카 복합 에어로겔의 함수율이 10 % 이내가 되도록 온도 및 시간 등을 조절하여 진행할 수 있다.
한편, '상압'이란 Normal pressure 또는 Atmospheric pressure 를 의미하는 것으로서, 별도의 오토클레이브와 같은 고압의 장치를 사용하지 아니하고, 특별히 압력을 줄이거나 높이지 않을 때의 압력을 의미한다.
본 발명의 일 실시예에 따른 제조방법은 산성 물유리 용액을 준비하고, 상기 산성 물유리 용액에 금속이온 용액을 첨가 및 균일하게 혼합하여 전구체 용액을 제조하며, 상기 전구체 용액에 고농도의 제2 물유리 용액을 천천히 투입하여 느린 겔화 반응을 유도하는 단계를 포함함으로써 망상구조 및/또는 균일한 기공 구조가 용이하게 형성되고 이로 인하여 기공균일도, 기공 부피, 기공 직경, 유효 기공 부피, 단독입자 유효 밀도와 같은 기공 특성, 비표면적, 밀도 감소율이 월등히 향상되어 초경량이 가능한 산화금속-실리카 복합 에어로겔을 제조할 수 있다.
또한, 본 발명은 상기의 제조방법에 의하여 제조된 산화금속-실리카 복합 에어로겔을 제공한다.
본 발명의 일 실시예에 따른 상기 에어로겔은 산화금속이 실리카에 도핑되어 있는 것일 수 있으며, 상기 산화금속은 실리카 에어로겔 표면의 실라놀기에 의해 고정되어 복합 에어로겔을 형성하는데 사용되는 것이라면 특별한 제한없이 사용될 수 있다. 구체적으로 상기 산화금속은 알칼리 금속, 알칼리 토금속, 란탄족, 악티늄족, 전이 금속 및 제13족(IIIA)의 금속으로 이루어진 군에서 선택되는 어느 하나 또는 둘 이상을 금속을 포함하는 산화물일 수 있으며, 보다 구체적으로는 칼슘(Ca), 마그네슘(Mg), 구리(Cu), 아연(Zn), 망간(Mn), 카드뮴(Cd), 납(Pb), 니켈(Ni), 크롬(Cr), 은(Ag), 티타늄(Ti), 바나듐(V), 코발트(Co), 몰리브덴(Mo), 주석(Sn), 안티모니(Sb), 스트론튬(Sr), 바륨(Ba), 및 텅스텐(W)로 이루어진 군에서 선택되는 어느 하나 또는 둘 이상의 금속원소를 포함하는 산화물일 수 있고, 보다 더 구체적으로는 산화마그네슘, 산화칼슘 또는 이들의 혼합물일 수 있다. 즉, 본 발명의 일 실시예에 따른 산화금속-실리카 복합 에어로겔은 산화마그네슘(MgO), 산화칼슘(CaO) 및 실리카(SiO2)를 포함하는 것일 수 있다.
여기에서, 상기 도핑(doping)은 순수한 물질에 제한된 양의 외부 물질을 첨가하는 것을 나타내는 것으로, 예컨대 실리카의 망상구조 내에 산화금속이 결합되어 있는 것을 나타내는 것일 수 있다.
또한, 상기 산화금속-실리카 복합 에어로겔의 기공 균일도는 기공 직경에 따른 분포도에서 분포곡선의 반치전폭(Full Width Half Maximum, FWHM)값으로 나타낼 수 있고, 상기 반치전폭 값이 34 nm 이하인 것일 수 있으며, 바람직하게는 0.1 내지 15 nm 이하, 더 바람직하게는, 0.1 내지 7 nm, 보다 더 바람직하게는 0.1 내지 5 nm 인 것일 수 있다.
여기에서 기공균일도의 척도로 보는 반치전폭 값은 도 3 및 도 4와 같이 기공 직경에 따른 분포도에서 피크 값의 절반이 되는 두 독립 변수 값들의 차이의 절대값을 의미하는 것이다.
반치전폭 값이 작을수록 상기 산화금속-실리카 복합 에어로겔의 기공 직경 분포가 좁게 형성되어 기공 크기가 보다 더 균일한 것을 의미하고, 반대로 반치전폭 값이 클수록 기공 직경 분포가 넓게 형성되는 것을 의미하여 기공 크기가 상대적으로 불균일한 것을 나타내므로, 기공 직경에 따른 분포도에서 반치전폭 값은 기공 크기가 균일한 정도, 즉 기공 균일도를 확인할 수 있다.
본 발명의 일 실시예에 따른 제조방법으로 제조된 산화금속-실리카 복합 에어로겔은 종래의 에어로겔이 40 nm 이상의 반치전폭 값을 가진 것에 비해, 34 nm 이하, 바람직하게는 15 nm 이하, 가장 바람직하게는 5 nm 이하의 값을 가질 수 있으므로 본 발명에서는 기공 균일도가 월등히 향상된 산화금속-실리카 복합 에어로겔을 제공할 수 있다.
또한, 본 발명의 일 실시예에 따른 제조방법으로 제조된 산화금속-실리카 복합 에어로겔은 기공 부피(pore volume)가 0.9 cm3/g 이상일 수 있으며, 바람직하게는 1.0 내지 3 cm3/g, 보다 더 바람직하게는 1.3 내지 2.5 cm3/g일 수 있다.
특히, 상기 산화금속-실리카 복합 에어로겔은 유효 기공 부피(effective pore volume)가 0.9 cm3/g 이상일 수 있으며, 바람직하게는 1.0 내지 3 cm3/g, 보다 더 바람직하게는 1.3 내지 2.5 cm3/g일 수 있어, 전술한 기공 부피와 크게 다르지 않은 유효 기공 부피 값을 가질 수 있다. 즉, 측정된 총 기공부피(측정 기공부피)를 기준으로 유효 기공 부피의 비율이 0.8 이상, 바람직하게는 0.9 이상, 보다 더 바람직하게는 0.98 내지 1일 수 있고, 이는 산화금속-실리카 복합 에어로겔 내 기공 부피의 전체 또는 대부분이 유효 기공 부피인 것을 의미할 수 있다.
여기에서, 유효 기공 부피(Effective Pore Volume)란, 상기 산화금속-실리카 복합 에어로겔을 경량화 첨가제로 사용할 때, 기공 내부로의 폴리머 수지 침투가 제한되는 기공들의 부피 값을 의미할 수 있으며, 구체적으로는 약 50 nm 이하의 기공 직경에서의 누적 기공 부피(cumulative pore volume)로부터 구할 수 있다. 상기 유효 기공 부피를 차지하는 기공들에는 폴리머 수지의 침투가 제한되기 때문에 유효 기공 부피 및 총 기공 부피 대비 유효 기공 부피의 비가 클수록 경량성이 우수한 것일 수 있다.
본 발명의 일 실시예에 따른 제조방법으로 제조된 산화금속-실리카 복합 에어로겔은 종래의 에어로겔의 유효 기공 부피가 0.5 내지 0.8 cm3/g의 낮은 값을 가진 것에 비해, 0.9 cm3/g 이상, 가장 바람직하게는 1.3 내지 2.5 cm3/g의 값을 가질 수 있으므로 경량성이 매우 우수한 산화금속-실리카 복합 에어로겔을 제공할 수 있다.
본 발명의 일 실시예에 따른 제조방법으로 제조된 산화금속-실리카 복합 에어로겔은 단독입자 유효 밀도가 0.7 g/ml 이하인 것일 수 있으며, 바람직하게는 0.01 내지 0.7 g/ml, 보다 더 바람직하게는 0.01 내지 0.6 g/ml이하인 것일 수 있다.
여기에서, 단독입자 유효 밀도(Single Particle Effective Density)란, 산화금속-실리카 복합 에어로겔을 첨가제로 적용할 때, 폴리머 수지 침투 부위를 제외한 실제 경량화에 영향을 미치는 산화금속-실리카 복합 에어로겔의 밀도를 의미하는 것으로, 아래의 수학식 1로부터 구할 수 있다.
[수학식 1]
Figure PCTKR2018010522-appb-I000001
* Single Particle Effective Density: 단독입자 유효 밀도
* Skeletal Density: 산화금속-실리카 복합 에어로겔 자체의 밀도
* Effective Pore Volume: 산화금속-실리카 복합 에어로겔에서 50 nm 이하 기공 크기에서의 누적 기공 부피
이 때, 단독입자 유효 밀도가 낮을수록 폴리머 수지가 침투하지 않은 기공이 많은 것을 의미하므로, 경량성이 우수할 수 있으며, 본 발명의 일 실시예에 따른 제조방법으로 제조된 산화금속-실리카 복합 에어로겔은 종래의 에어로겔의 단독입자 유효 밀도가 0.9 g/ml 수준으로 폴리머 수지 경량화용 첨가제로써의 응용성이 떨어지는 것에 반해, 0.7 g/ml이하, 가장 바람직하게는 0.01 내지 0.6 g/ml일 수 있어 경량성이 매우 우수한 에어로겔을 제공할 수 있고, 폴리머 수지 경량화용 첨가제로써 유용할 수 있다.
여기에서, 상기 산화금속-실리카 복합 에어로겔 자체의 밀도는 Gas pyconometer 장치(AccuPyc 1340, Micromeritics 社)를 이용하여 상온 및 상압에서 측정한 값일 수 있다.
본 발명에서 “상온”은 '실온(room temperature)'을 의미하는 것으로 별도로 온도를 낮추거나 높이지 않은 상태에서의 온도이며, 일반적으로 20±5℃의 온도를 나타낸다.
아울러, 본 발명의 일 실시예에 따른 제조방법으로 제조된 산화금속-실리카 복합 에어로겔은 밀도 감소율이 3 % 이상, 바람직하게는 4 내지 20 %, 보다 더 바람직하게는 5 내지 20 %일 수 있다.
여기에서, 밀도 감소율은 폴리프로필렌 수지(PP resin) 자체의 밀도 대비 상기 폴리프로필렌 수지에 산화금속-실리카 복합 에어로겔을 첨가제로써 일정량 첨가하였을 때의 감소한 밀도의 비율(백분율)을 의미할 수 있다. 즉, 밀도 감소율이 클수록 폴리머 수지가 침투하지 않은 유효 기공이 많이 존재하는 것이므로 경량성이 우수한 것일 수 있다.
또한, 본 발명의 일 실시예에 따른 제조방법으로 제조된 산화금속-실리카 복합 에어로겔의 기공 직경은 제한되는 것은 아니나 바람직하게는 50 nm 이하일 수 있다. 상기 산화금속-실리카 복합 에어로겔의 기공 직경이 50 nm를 초과하면 기공의 크기가 커서 폴리머 수지가 산화금속-실리카 복합 에어로겔의 기공 내로 침투할 수 있어, 산화금속-실리카 복합 에어로겔의 경량성을 악화시키는 문제점이 있다.
또한, 상기 산화금속-실리카 복합 에어로겔은 비표면적이 300 m2/g 이상인 것일 수 있으며, 바람직하게는, 비표면적이 500 m2/g 내지 1500 m2/g, 보다 더 바람직하게는 800 m2/g 내지 1500 m2/g 인 것일 수 있다.
본 발명에서 상기 기공부피, 기공직경 및 비표면적은 150 ℃에서 진공 상태로 24시간 동안 전처리를 진행하여 수분, 유기 성분을 제거한 시료 0.3 g을 BET 측정장치(ASAP 2010, Micrometrics 社)에 투입하여 부분압(0.11<p/p0<1)에 따른 질소의 흡/탈착량으로 분석한 값일 수 있으며, 여기에서 비표면적은 BET 비표면적을 나타내는 것일 수 있다.
본 발명의 일 실시예에 따른 상기 산화금속-실리카 복합 에어로겔은 전술한 바와 같은 제조방법을 통해 제조됨으로써 비표면적이 증가하여 다공성을 나타낼 뿐 아니라, 기공 균일도가 우수하고, 유효 기공 부피, 단독입자 유효 밀도 등의 기공 특성이 개선되어 폴리머 수지가 침투할 수 없는 유효 기공들이 다수 존재할 수 있으므로 경량성이 우수한 효과를 가질 수 있다.
이하, 실시예 및 실험예에 의하여 본 발명을 더욱 상세하게 설명한다. 그러나, 하기 실시예 및 실험예는 본 발명을 예시하기 위한 것으로 이들 만으로 본 발명의 범위가 한정되는 것은 아니다.
실시예 1
도 2에 나타낸 바와 같은 단계를 통하여 산화금속-실리카 복합 에어로겔을 제조하였다.
구체적으로, 0.25 M의 물유리 용액(제1 물유리 용액) 200 ml에 염산(산촉매)을 첨가하여 산성 물유리 용액을 제조하였다. 이 때, 산성 물유리 용액의 pH는 0.9이다. 상기 산성 물유리 용액에 Mg2+: Ca2+=9:1의 몰 비를 가지는 0.05 M의 금속이온 용액 200 ml를 첨가 및 교반하여 전구체 용액을 제조하였다. 이 때 전구체 용액의 농도는 2.0 wt%이다. 이 후 25 ℃의 온도 조건 하에서 2.0 M의 물유리 용액(제2 물유리 용액)을 전구체 용액의 pH가 4.5가 될 때까지 천천히 첨가하면서 2 시간 동안 겔화 반응을 진행하여 산화금속-실리카 복합 습윤겔을 제조하였다. 제조된 산화금속-실리카 복합 습윤겔을 증류수 및 에탄올을 세척용매로 하여 세척함과 동시에 함수율 95 %내로 고/액분리하였으며, 상기 세척 과정을 4회 반복하였다. 상기 세척된 산화금속-실리카 복합 습윤겔을 125 ℃의 오븐에서 6 시간 동안 상압 건조시켜 산화금속-실리카 복합 에어로겔을 제조하였다.
실시예 2
제1 물유리 용액에 pH 0.95가 되도록 염산(HCl)을 첨가하고, 제2 물유리 용액을 전구체 용액의 pH가 7.5가 될 때까지 첨가하는 것을 제외하고는 실시예 1과 동일한 방법을 통하여 산화금속-실리카 복합 에어로겔을 제조하였다.
실시예 3
제1 물유리 용액에 pH 1.0이 되도록 염산(HCl)을 첨가하고, 제2 물유리 용액을 전구체 용액의 pH가 9.5가 될 때까지 첨가하는 것을 제외하고는 실시예 1과 동일한 방법을 통하여 산화금속-실리카 복합 에어로겔을 제조하였다.
실시예 4
0.125 M의 물유리 용액(제1 물유리 용액) 200 ml에 염산(산촉매)을 첨가하여 산성 물유리 용액을 제조하였다. 이 때, 산성 물유리 용액의 pH는 0.9이다. 상기 산성 물유리 용액에 Mg2+: Ca2+=9:1의 몰 비를 가지는 0.025 M의 금속이온 용액 200 ml를 첨가 및 교반하여 전구체 용액을 제조하였다. 이 때 전구체 용액의 농도는 1.0 wt%이다. 이 후 50 ℃의 온도 조건 하에서 1.0 M의 물유리 용액(제2 물유리 용액)을 전구체 용액의 pH가 7.5가 될 때까지 천천히 첨가하면서 2 시간 동안 겔화 반응을 진행하여 산화금속-실리카 복합 습윤겔을 제조하였다. 제조된 산화금속-실리카 복합 습윤겔을 증류수 및 에탄올을 세척용매로 하여 세척함과 동시에 함수율 95 %내로 고/액분리하였으며, 상기 세척 과정을 4회 반복하였다. 상기 세척된 산화금속-실리카 복합 습윤겔을 125 ℃의 오븐에서 6 시간 동안 상압 건조시켜 산화금속-실리카 복합 에어로겔을 제조하였다.
실시예 5
0.188 M의 물유리 용액(제1 물유리 용액) 200 ml에 염산(산촉매)을 첨가하여 산성 물유리 용액을 제조하였다. 이 때, 산성 물유리 용액의 pH는 0.9이다. 상기 산성 물유리 용액에 Mg2+: Ca2+=9:1의 몰 비를 가지는 0.038 M의 금속이온 용액 200 ml를 첨가 및 교반하여 전구체 용액을 제조하였다. 이 때 전구체 용액의 농도는 1.5 wt%이다. 이 후 25 ℃의 온도 조건 하에서 1.5 M의 물유리 용액(제2 물유리 용액)을 전구체 용액의 pH가 7.5가 될 때까지 천천히 첨가하면서 2 시간 동안 겔화 반응을 진행하여 산화금속-실리카 복합 습윤겔을 제조하였다. 제조된 산화금속-실리카 복합 습윤겔을 증류수 및 에탄올을 세척용매로 하여 세척함과 동시에 함수율 95 %내로 고/액분리하였으며, 상기 세척 과정을 4회 반복하였다. 상기 세척된 산화금속-실리카 복합 습윤겔을 125 ℃의 오븐에서 6 시간 동안 상압 건조시켜 산화금속-실리카 복합 에어로겔을 제조하였다.
실시예 6
0.375 M의 물유리 용액(제1 물유리 용액) 200 ml에 염산(산촉매)을 첨가하여 산성 물유리 용액을 제조하였다. 이 때, 산성 물유리 용액의 pH는 0.9이다. 상기 산성 물유리 용액에 Mg2+: Ca2+=9:1의 몰 비를 가지는 0.075 M의 금속이온 용액 200 ml를 첨가 및 교반하여 전구체 용액을 제조하였다. 이 때 전구체 용액의 농도는 3.0 wt%이다. 이 후 25 ℃의 온도 조건 하에서 3.0 M의 물유리 용액(제2 물유리 용액)을 전구체 용액의 pH가 7.5가 될 때까지 천천히 첨가하면서 2 시간 동안 겔화 반응을 진행하여 산화금속-실리카 복합 습윤겔을 제조하였다. 제조된 산화금속-실리카 복합 습윤겔을 증류수 및 에탄올을 세척용매로 하여 세척함과 동시에 함수율 95 %내로 고/액분리하였으며, 상기 세척 과정을 4회 반복하였다. 상기 세척된 산화금속-실리카 복합 습윤겔을 125 ℃의 오븐에서 6 시간 동안 상압 건조시켜 산화금속-실리카 복합 에어로겔을 제조하였다.
실시예 7
0.5 M의 물유리 용액(제1 물유리 용액) 200 ml에 염산(산촉매)을 첨가하여 산성 물유리 용액을 제조하였다. 이 때, 산성 물유리 용액의 pH는 0.9이다. 상기 산성 물유리 용액에 Mg2+: Ca2+=9:1의 몰 비를 가지는 0.1 M의 금속이온 용액 200 ml를 첨가 및 교반하여 전구체 용액을 제조하였다. 이 때 전구체 용액의 농도는 4.0 wt%이다. 이 후 50 ℃의 온도 조건 하에서 4.0 M의 물유리 용액(제2 물유리 용액)을 전구체 용액의 pH가 7.5가 될 때까지 천천히 첨가하면서 2 시간 동안 겔화 반응을 진행하여 산화금속-실리카 복합 습윤겔을 제조하였다. 제조된 산화금속-실리카 복합 습윤겔을 증류수 및 에탄올을 세척용매로 하여 세척함과 동시에 함수율 95 %내로 고/액분리하였으며, 상기 세척 과정을 4회 반복하였다. 상기 세척된 산화금속-실리카 복합 습윤겔을 125 ℃의 오븐에서 6 시간 동안 상압 건조시켜 산화금속-실리카 복합 에어로겔을 제조하였다.
실시예 8
겔화 반응이 40 ℃의 온도 조건 하에서 수행되는 것을 제외하고는 실시예 2와 동일한 방법을 통하여 산화금속-실리카 복합 에어로겔을 제조하였다.
실시예 9
겔화 반응이 60 ℃의 온도 조건 하에서 수행되는 것을 제외하고는 실시예 2와 동일한 방법을 통하여 산화금속-실리카 복합 에어로겔을 제조하였다.
실시예 10
겔화 반응이 100 ℃의 온도 조건 하에서 수행되는 것을 제외하고는 실시예 2와 동일한 방법을 통하여 산화금속-실리카 복합 에어로겔을 제조하였다.
비교예 1
도 1에 나타낸 바와 같은 단계를 통하여 산화금속-실리카 복합 에어로겔을 제조하였다.
구체적으로, Mg2+: Ca2+=9:1의 몰 비를 가지는 0.25 M의 금속이온 용액 200 ml에 염산(산촉매)을 첨가하여 산성 금속이온 용액을 제조하였다. 이 때 산성 금속이온 용액의 pH는 0.9이다. 상기 산성 금속이온 용액에 2.0 M의 물유리 용액을 상기 산성 금속이온 용액의 pH가 4.5가 될 때까지 천천히 첨가하면서 2 시간 동안 침전 반응(겔화)을 진행하여 산화금속-실리카 복합 습윤겔을 제조하였다. 제조된 산화금속-실리카 복합 습윤겔을 에탄올을 세척용매로 하여 세척함과 동시에 함수율 95 %내로 고/액분리하였으며, 상기 세척 과정을 4회 반복하였다. 상기 세척된 산화금속-실리카 복합 습윤겔을 125 ℃의 오븐에서 6시간 동안 상압건조시켜 산화금속-실리카 복합 에어로겔을 제조하였다.
비교예 2
0.5 M의 물유리 용액 200 ml에 pH가 4.0이 될 때까지 염산(산촉매)을 첨가하고 겔화 반응을 진행하여 실리카 습윤겔을 제조하였다. 상기 실리카 습윤겔에 Mg2+: Ca2+=9:1의 몰 비를 가지는 0.25 M의 금속이온 용액 100 ml와 2.0 M의 물유리 용액을 pH가 7.5가 될 때까지 첨가하고 2차 겔화 반응을 진행하여 산화금속-실리카 복합 습윤겔을 제조하였다. 세척 및 건조는 비교예 1과 동일하게 진행하여 산화금속-실리카 복합 에어로겔을 제조하였다.
비교예 3
0.5 M의 물유리 용액 200 ml에 반응 pH가 4.0이 될 때까지 염산을 첨가하고, 겔화 반응을 진행하여 실리카 습윤겔을 제조하였다. 상기 실리카 습윤겔에 Mg2+: Ca2+=9:1의 몰 비를 가지는 2.0 M의 금속이온 용액 100 ml와 2.0 M의 물유리 용액을 반응 pH가 7.5가 될 때까지 첨가하고 2차 겔화 반응을 진행하여 산화금속-실리카 복합 습윤겔을 제조하였다. 세척 및 건조는 비교예 1과 동일하게 진행하여 산화금속-실리카 복합 에어로겔을 제조하였다.
실시예 1 내지 10 및 비교예 1 내지 3의 산화금속-실리카 복합 에어로겔 합성 조건은 하기 표 1과 같이 나타낼 수 있다.
제2 물유리 용액 투입 후 pH 전구체 용액*의 농도 (wt%) 겔화 온도 (℃)
실시예 1 4.5 2.0 25
실시예 2 7.5 2.0 25
실시예 3 9.5 2.0 25
실시예 4 7.5 1.0 50
실시예 5 7.5 1.5 25
실시예 6 7.5 3.0 25
실시예 7 7.5 4.0 50
실시예 8 7.5 2.0 40
실시예 9 7.5 2.0 60
실시예 10 7.5 2.0 100
비교예 1 - - 25
비교예 2 - - 25
비교예 3 - - 25
*전구체 용액: 상기 표 1에서 '전구체 용액'은 산성 물유리 용액에 금속 이온 용액을 혼합한 용액, 즉 물유리 용액, 금속 이온 용액 및 산촉매가 혼합된 용액임.
실험예
상기 실시예 1 내지 실시예 10 및 비교예 1 내지 비교예 3에서 제조한 각 산화금속-실리카 복합 에어로겔의 물성 비교 분석을 위하여, 각 에어로겔의 기공 부피(Pore Volume, cm3/g), 기공 직경(pore diameter, nm), 유효 기공 부피(effective pore volume, cm3/g)를 측정하였고, 이를 통해 기공 균일도(FWHM, nm), 단독입자 유효 밀도(Single Particle Effective Density, g/ml), 밀도 감소율(%) 및 유효 기공 부피/기공 부피(effective P.V/Measured P.V.) 값을 산출하여 그 결과를 하기 표 2에 나타내었다.
1) 기공부피(Vpore, cm3/g) 및 평균 기공직경(Dpore, nm)
기공부피 및 평균 기공직경은 ASAP 2010 장치(Micrometrics 社)를 이용하여 부분압(0.11<p/p0<1)에 따른 질소의 흡/탈착량으로 분석하였다.
구체적으로, 150 ℃에서 진공 상태로 24시간 동안 전처리를 진행하여 수분, 유기 성분을 제거한 시료 0.3 g을 BET 측정장치(ASAP 2010, Micrometrics 社)에 투입하여 기공부피 및 평균 기공직경을 측정하였다.
2) 기공 균일도(FWHM, nm)
도 3 및 도 4와 같은 기공 직경에 따른 분포도에서 피크 값의 절반이 되는 두 독립 변수 값들의 차이의 절대값으로 산출하였다.
3) 유효 기공 부피(effective pore volume, cm3/g) 및 Effective P.V./Measured P.V. 측정
유효 기공 부피는 상기 1)에서 측정된 기공 부피에서 기공 직경이 50 nm 이하의 수치범위를 가지는 기공의 총 부피 누적량으로 산출하였다. Effective P.V./Measured P.V.값은 산출된 유효 기공 부피를 상기 1)에서 측정된 기공 부피로 나눈 값으로 나타내었다.
4) 단독입자 유효 밀도(Single Particle Effective Density, g/ml)
Gas pyconometer 장치(AccuPyc 1340, Micromeritics 社)를 이용하여 상온 및 상압에서 산화금속-실리카 복합 에어로겔 자체의 밀도(Skeletal density)를 측정한 후 상기 측정된 유효 기공 부피 값을 이용하여 아래의 수학식 1로 산출하였다. 단독입자 유효 밀도가 낮을수록 폴리머 수지가 침투하지 않은 유효 기공이 많은 것이므로 첨가제로 적용 시 경량성이 우수하다.
[수학식 1]
Figure PCTKR2018010522-appb-I000002
* Single Particle Effective Density: 단독입자 유효 밀도
* Skeletal Density: 산화금속-실리카 복합 에어로겔 자체의 밀도
* Effective Pore Volume: 산화금속-실리카 복합 에어로겔에서 50 nm 이하 기공 크기에서의 누적 기공 부피
5) 밀도 감소율 (%)
폴리프로필렌 수지(PP resin) 자체의 밀도 대비 상기 폴리프로필렌 수지에 산화금속-실리카 복합 에어로겔을 첨가제로써 일정량 첨가하였을 때의 감소한 밀도의 비율을 백분율로 산출한 값이다.
하기 표 2는 실시예 1 내지 10 및 비교예 1 내지 3 의 물성 측정값을 나타낸 것이다.
Pore Volume (cm3/g) Pore Diameter(nm) 기공균일도(FWHM, nm) Effective Pore Volume(cm3/g) Single Particle Effective Density(g/ml) 밀도 감소율(%) Effective P.V.*/Measured P.V.
실시예 1 1.69 6.93 1.44 1.67 0.46 8.5 0.990
실시예 2 1.16 5.31 1.65 1.16 0.61 4.6 1.000
실시예 3 1.33 22.01 4.63 1.32 0.56 5.6 1.000
실시예 4 1.46 9.34 1.62 1.43 0.52 6.8 0.980
실시예 5 1.23 4.75 1.14 1.23 0.58 5.1 1.000
실시예 6 1.73 9.72 6.51 1.73 0.45 9.2 1.000
실시예 7 1.70 21.16 29.03 1.64 0.47 8.5 0.960
실시예 8 1.77 12.95 4.87 1.76 0.45 9.3 0.990
실시예 9 2.24 26.28 12.15 2.22 0.39 12.5 0.992
실시예 10 2.24 26.99 32.69 1.90 0.63 10.1 0.848
비교예1 0.40 8.42 -(산출불가) 0.27 1.32 -3.3 0.680
비교예2 1.12 16.56 43.05 0.82 0.79 1.4 0.730
비교예3 0.87 8.24 -(산출불가) 0.75 0.84 0.7 0.860
* P.V.: pore volume
상기 표 2에 나타난 바와 같이, 본 발명의 일 실시예에 따라 제조된 실시예 1 내지 실시예 3의 산화금속-실리카 복합 에어로겔이 비교예 1 내지 비교예 3의 산화금속-실리카 복합 에어로겔에 비하여 기공 부피가 크고, 특히, 기공 균일도(FWHM)와 유효 기공 부피가 현저히 개선된 값을 가짐에 따라 단독입자 유효 밀도, 밀도 감소율, 전체 기공 부피 대비 유효 기공 부피 값 역시 우수한 것을 확인하였다.
구체적으로, 실시예 1 내지 10은 비교예 1 내지 3에 비해 큰 기공 부피를 가지고, 폴리머가 침투하기 어려운 50 nm 이하의 기공 직경에서의 누적된 기공 부피를 나타내어 실질적으로 경량성에 영향을 미치는 유효 기공 부피 역시 큰 값을 가지는 것을 확인할 수 있으며, 특히, 전체 기공 부피 대비 유효 기공 부피의 비율이 1에 가까워 에어로겔 내 존재하는 대부분의 기공이 경량화 측면에서 개선 효과를 가져올 수 있는 유효 기공인 점을 확인할 수 있다. 이와 같이, 기공 부피가 크면서, 특히 유효 기공 부피의 비율이 높음에 따라 단독입자 유효 밀도 역시 현저히 감소된 값을 가지는 것을 확인할 수 있다.
또한, 실시예 1 내지 10은 비교예 1 내지 3에 비해 기공 균일도를 나타내는 반치전폭 값(FWHM)이 매우 작은 값을 가지는 것을 확인할 수 있으며, 이에 반해 비교예 1 내지 3은 기공 직경에 따른 분포도에서 분포곡선이 매우 넓게 형성되거나 피크가 2개 이상으로 다수 형성되어, 분포곡선의 반치전폭 값이 산출되지 않거나 산출되더라도 정확도가 떨어지고 매우 큰 값으로 나타나는 등 기공 균일도가 떨어지는 것을 확인할 수 있다.
한편, 에어로겔의 기공 특성은 본 발명의 도 3 및 도 4를 통해서도 확인할 수 있는데, 도 3은 실시예 1 과 비교예 1 내지 3의 기공 직경에 따른 분포도를 도시한 도면이고, 도 4는 실시예 4 내지 비교예 1 내지 3의 기공 직경에 따른 분포도를 도시한 도면이다. 도 3 및 도 4를 살펴보면, 실시예 1 및 실시예 4는 매우 좁은 기공 직경 분포곡선을 가짐과 동시에 상기 기공 직경이 매우 작은 수치에서 피크를 형성하고 있는 것에 반해, 각각 종래의 제조방법을 이용하여 제조한 비교예 1 내지 3은 모두 넓은 기공 직경 분포곡선을 가지고, 피크가 형성되는 경우에도 2개 이상의 피크가 형성되는 것을 확인할 수 있다. 이로부터, 본 발명의 실시예에 따른 에어로겔의 기공 균일도가 비교예 1 내지 3에 비해 월등히 우수한 것은 물론, 대부분의 기공의 기공직경이 작아 폴리머 수지의 침투가 제한되는 유효 기공이 전체 기공의 대부분을 차지하는 것을 확인할 수 있다.
또한, 실시예 1 내지 10의 에어로겔은 폴리프로필렌 수지에 첨가제로써 투입하였을 때 폴리프로필렌 수지 자체의 밀도 대비 밀도가 큰 폭으로 감소하는 것에 반해 비교예 1 내지 3은 밀도 감소율이 실시예에 비해 떨어지고, 특히 비교예 1은 폴리프로필렌 수지에 첨가제로써 투입한 경우 밀도가 더 증가한 값을 보여 경량화 첨가제로써 효과가 떨어지는 것을 확인할 수 있다.
또한, 비교예 1 내지 3은 실시예 1 내지 10과 달리 금속이온이 물유리 용액 내 혼합되는 단계가 없고, 금속이온과 물유리 용액이 접촉하자마자 즉각적으로 겔화가 이루어지거나, 이미 습윤겔 상태에서 금속이온 용액을 혼합하여 산화금속-실리카 복합 에어로겔을 제조하기 때문에 실시예 1 내지 10에 비해 금속이 에어로겔 내 상대적으로 불균일하게 존재하여 제조된 산화금속-실리카 복합 에어로겔을 첨가제로 사용 시 기계적 강도가 떨어질 수 있고, 금속과 실리카의 불균일한 망상 구조로 인해 전체적으로 기공 특성이 저하한 것을 확인할 수 있다. 또한, 비교예 1은 실시예 1 내지 10과 유사하게 물유리 용액을 천천히 투입하더라도, 산성의 금속이온 용액에 물유리 용액을 투입하는 것이므로 금속 이온과 물유리 용액이 접촉하는 순간 즉각적으로 겔화가 이루어지기 때문에 복합 에어로겔 내 실리카의 농도가 불균일하고 이에 따라 전술한 것과 같이 기공 특성이 저하된 것을 확인할 수 있다.
상기 실험 결과를 통해 본 발명은 산화금속-실리카 복합 에어로겔을 제조함에 있어서, 산성의 물유리 용액 상태에서 금속이온 용액을 혼합하여 침전이 발생하지 않도록 함과 동시에 고농도의 물유리 용액으로 천천히 겔화 반응을 시킴으로 인해 내부 망상구조 구조를 강화하여 기공 부피가 증대되고, 유효 기공 부피 및 유효 밀도가 개선되며, 균일한 기공 구조를 가질 수 있어 경량성 첨가제로써 유용한 에어로겔을 제조할 수 있는 것을 확인하였다.

Claims (18)

1) 제1 물유리 용액에 산촉매를 첨가하여 산성 물유리 용액을 준비하는 단계;
2) 상기 산성 물유리 용액에 금속이온 용액을 첨가하여 전구체 용액을 제조하는 단계; 및
3) 상기 전구체 용액에 제2 물유리 용액을 첨가하고 겔화 반응시키는 단계를 포함하는 산화금속-실리카 복합 에어로겔의 제조방법.
제1항에 있어서,
상기 산성 물유리 용액의 pH는 0.1 내지 2.9인 것인 산화금속-실리카 복합 에어로겔의 제조방법.
제1항에 있어서,
상기 단계 3에서 반응 온도는 10 내지 100 ℃인 것인 산화금속-실리카 복합 에어로겔의 제조방법.
제1항에 있어서,
상기 단계 3에서 반응 온도는 10 내지 80 ℃인 것인 산화금속-실리카 복합 에어로겔의 제조방법.
제1항에 있어서,
상기 전구체 용액의 농도는 용매 1L 기준으로 0.1 내지 3.9 중량%인 것인 산화금속-실리카 복합 에어로겔의 제조방법.
제1항에 있어서,
상기 전구체 용액의 농도는 용매 1L 기준으로 0.1 내지 3.0 중량%인 것인 산화금속-실리카 복합 에어로겔의 제조방법.
제1항에 있어서,
상기 제1 물유리 용액의 농도는 0.01 M 내지 2.0 M인 것인 산화금속-실리카 복합 에어로겔의 제조방법.
제1항에 있어서,
상기 금속이온 용액의 농도는 0.01 M 내지 2.0 M인 것인 산화금속-실리카 복합 에어로겔의 제조방법.
제1항에 있어서,
상기 제2 물유리 용액의 농도는 0.5 M 내지 6.0 M인 것인 산화금속-실리카 복합 에어로겔의 제조방법.
제1항에 있어서,
상기 제2 물유리 용액의 농도는 상기 제1 물유리 용액의 농도보다 큰 것을 특징으로 하는 산화금속-실리카 복합 에어로겔의 제조방법.
제1항에 있어서,
상기 제2 물유리 용액은 상기 전구체 용액의 pH가 3 내지 10이 되도록 첨가하는 것인 산화금속-실리카 복합 에어로겔의 제조방법.
제1항에 있어서,
상기 금속이온 용액은 알칼리 금속, 알칼리 토금속, 란탄족, 악티늄족, 전이 금속 및 제13족(IIIA)의 금속으로 이루어진 군에서 선택되는 적어도 하나 이상의 금속의 이온을 포함하는 것인 산화금속-실리카 복합 에어로겔의 제조방법.
제1항에 있어서,
상기 금속이온 용액은 칼슘 이온(Ca2+)과 마그네슘 이온(Mg2+)을 포함하는 이성분 금속이온 용액인 것인 산화금속-실리카 복합 에어로겔의 제조방법.
제13항에 있어서,
상기 금속이온 용액 내 칼슘 이온(Ca2+)과 마그네슘 이온(Mg2+)의 몰비는 1:1 내지 1:20인 것인 산화금속-실리카 복합 에어로겔의 제조방법.
제1항에 있어서,
상기 산촉매는 염산, 질산, 아세트산, 황산 및 불산으로 이루어진 군으로부터 선택된 1종 이상인 것인 산화금속-실리카 복합 에어로겔의 제조방법.
제1항에 있어서,
상기 3)단계 이후 세척 및 건조하는 단계를 더 포함하는 것인 산화금속-실리카 복합 에어로겔의 제조방법.
기공 직경에 따른 분포도에서 반치전폭(FWHM) 값이 34 nm 이하이며,
유효 기공 부피(effective pore volume)가 0.9 cm3/g 이상인 것인 산화금속-실리카 복합 에어로겔.
제17항에 있어서,
상기 산화금속-실리카 복합 에어로겔은 단독입자 유효밀도(single particle effective density)가 0.7 g/ml 이하인 것인 산화금속-실리카 복합 에어로겔.
PCT/KR2018/010522 2017-09-08 2018-09-07 산화금속-실리카 복합 에어로겔의 제조방법 및 이로부터 제조된 산화금속-실리카 복합 에어로겔 WO2019050347A1 (ko)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US16/492,017 US11279625B2 (en) 2017-09-08 2018-09-07 Method of preparing metal oxide-silica composite aerogel and metal oxide-silica composite aerogel prepared by the same
CN201880015923.0A CN110382417B (zh) 2017-09-08 2018-09-07 金属氧化物-二氧化硅复合气凝胶的制备方法和制备的金属氧化物-二氧化硅复合气凝胶
JP2019552501A JP6870108B2 (ja) 2017-09-08 2018-09-07 酸化金属−シリカ複合エアロゲルの製造方法及びそれにより製造された酸化金属−シリカ複合エアロゲル
EP18854726.9A EP3575266B1 (en) 2017-09-08 2018-09-07 Method for producing metal oxide-silica composite aerogel, and metal oxide-silica composite aerogel produced thereby
US17/584,625 US20220144652A1 (en) 2017-09-08 2022-01-26 Method of preparing metal oxide-silica composite aerogel and metal oxide-silica composite aerogel prepared by the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20170115274 2017-09-08
KR10-2017-0115275 2017-09-08
KR20170115275 2017-09-08
KR10-2017-0115274 2017-09-08

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/492,017 A-371-Of-International US11279625B2 (en) 2017-09-08 2018-09-07 Method of preparing metal oxide-silica composite aerogel and metal oxide-silica composite aerogel prepared by the same
US17/584,625 Division US20220144652A1 (en) 2017-09-08 2022-01-26 Method of preparing metal oxide-silica composite aerogel and metal oxide-silica composite aerogel prepared by the same

Publications (1)

Publication Number Publication Date
WO2019050347A1 true WO2019050347A1 (ko) 2019-03-14

Family

ID=65634346

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/010522 WO2019050347A1 (ko) 2017-09-08 2018-09-07 산화금속-실리카 복합 에어로겔의 제조방법 및 이로부터 제조된 산화금속-실리카 복합 에어로겔

Country Status (6)

Country Link
US (2) US11279625B2 (ko)
EP (1) EP3575266B1 (ko)
JP (1) JP6870108B2 (ko)
KR (1) KR102192355B1 (ko)
CN (1) CN110382417B (ko)
WO (1) WO2019050347A1 (ko)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101868683B1 (ko) * 2015-06-01 2018-06-19 주식회사 엘지화학 금속산화물-실리카 복합 에어로겔의 제조방법 및 이를 이용하여 제조된 금속산화물-실리카 복합 에어로겔
KR101931569B1 (ko) * 2015-11-03 2018-12-21 주식회사 엘지화학 소수성의 산화금속-실리카 복합 에어로겔의 제조방법 및 이로부터 제조된 소수성의 산화금속-실리카 복합 에어로겔
CN115140772B (zh) * 2022-05-20 2023-08-22 大连工业大学 一种VO2-SiO2复合气凝胶的制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3131072A (en) * 1960-11-10 1964-04-28 Monsanto Chemicals Novel silica aerogels and processes for preparing same
KR20090115714A (ko) * 2006-12-22 2009-11-05 로베르타 디 몬테 금속 산화물 및 이의 복합물 기재 에어로겔 물질
KR20160141670A (ko) * 2015-06-01 2016-12-09 주식회사 엘지화학 금속산화물-실리카 복합 에어로겔의 제조방법 및 이를 이용하여 제조된 금속산화물-실리카 복합 에어로겔
KR20170047173A (ko) * 2015-10-22 2017-05-04 주식회사 엘지화학 산화금속-실리카 복합 에어로겔의 제조방법 및 이로부터 제조된 산화금속-실리카 복합 에어로겔
KR20170068391A (ko) * 2015-12-09 2017-06-19 주식회사 엘지화학 산화금속-실리카 복합 에어로겔의 제조방법 및 이로부터 제조된 산화금속-실리카 복합 에어로겔
KR20170071285A (ko) * 2015-12-15 2017-06-23 주식회사 엘지화학 산화금속-실리카 복합 에어로겔의 제조방법 및 이로부터 제조된 산화금속-실리카 복합 에어로겔

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6050721B2 (ja) * 1980-02-19 1985-11-09 千代田化工建設株式会社 多孔質無機酸化物の製造方法
JP3719687B2 (ja) * 1995-07-21 2005-11-24 東ソー・シリカ株式会社 シリカゲルの製造方法
DE19541715A1 (de) 1995-11-09 1997-05-15 Hoechst Ag Verfahren zur Herstellung von organisch modifizierten Aerogelen, bei dem die gebildeten Salze ausgefällt werden
SE529160C2 (sv) * 2004-12-27 2007-05-15 Svenska Aerogel Ab En metod för framställning av agglomerat av utfällt silikamaterial, ett mikroporöst material innefattande sådana agglomerat och användning därav
JP4618308B2 (ja) 2007-04-04 2011-01-26 ソニー株式会社 多孔質炭素材料及びその製造方法、並びに、吸着剤、マスク、吸着シート及び担持体
KR101227065B1 (ko) 2009-12-09 2013-01-30 (주)하니파워 에어로겔과 그의 제조 방법
KR101565932B1 (ko) 2011-04-28 2015-11-05 가부시끼가이샤 도꾸야마 금속 산화물 분말 및 그 제조 방법
KR101521793B1 (ko) * 2013-06-18 2015-05-20 한국에너지기술연구원 제조비용을 절감한 실리카 에어로겔 분말의 제조방법
US10752509B2 (en) 2015-06-01 2020-08-25 Lg Chem, Ltd. Method of preparing metal oxide-silica composite aerogel and metal oxide-silica composite aerogel prepared by using the same
KR102192354B1 (ko) * 2017-09-08 2020-12-17 주식회사 엘지화학 산화금속-실리카 복합 에어로겔의 제조방법 및 이로부터 제조된 산화금속-실리카 복합 에어로겔

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3131072A (en) * 1960-11-10 1964-04-28 Monsanto Chemicals Novel silica aerogels and processes for preparing same
KR20090115714A (ko) * 2006-12-22 2009-11-05 로베르타 디 몬테 금속 산화물 및 이의 복합물 기재 에어로겔 물질
KR20160141670A (ko) * 2015-06-01 2016-12-09 주식회사 엘지화학 금속산화물-실리카 복합 에어로겔의 제조방법 및 이를 이용하여 제조된 금속산화물-실리카 복합 에어로겔
KR20170047173A (ko) * 2015-10-22 2017-05-04 주식회사 엘지화학 산화금속-실리카 복합 에어로겔의 제조방법 및 이로부터 제조된 산화금속-실리카 복합 에어로겔
KR20170068391A (ko) * 2015-12-09 2017-06-19 주식회사 엘지화학 산화금속-실리카 복합 에어로겔의 제조방법 및 이로부터 제조된 산화금속-실리카 복합 에어로겔
KR20170071285A (ko) * 2015-12-15 2017-06-23 주식회사 엘지화학 산화금속-실리카 복합 에어로겔의 제조방법 및 이로부터 제조된 산화금속-실리카 복합 에어로겔

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3575266A4 *

Also Published As

Publication number Publication date
US20220144652A1 (en) 2022-05-12
EP3575266A1 (en) 2019-12-04
US11279625B2 (en) 2022-03-22
CN110382417A (zh) 2019-10-25
CN110382417B (zh) 2023-01-20
EP3575266A4 (en) 2020-04-29
US20200010328A1 (en) 2020-01-09
JP2020511395A (ja) 2020-04-16
KR20190028348A (ko) 2019-03-18
EP3575266B1 (en) 2022-08-03
KR102192355B1 (ko) 2020-12-17
JP6870108B2 (ja) 2021-05-12

Similar Documents

Publication Publication Date Title
WO2017078294A1 (ko) 소수성의 산화금속-실리카 복합 에어로겔의 제조방법 및 이로부터 제조된 소수성의 산화금속-실리카 복합 에어로겔
WO2019050345A1 (ko) 산화금속-실리카 복합 에어로겔의 제조방법 및 이로부터 제조된 산화금속-실리카 복합 에어로겔
WO2017078293A1 (ko) 소수성의 산화금속-실리카 복합 에어로겔의 제조방법 및 이로부터 제조된 소수성의 산화금속-실리카 복합 에어로겔
WO2017090912A1 (ko) 소수성의 실리카 에어로겔의 제조방법 및 이로부터 제조된 소수성의 실리카 에어로겔
WO2019050347A1 (ko) 산화금속-실리카 복합 에어로겔의 제조방법 및 이로부터 제조된 산화금속-실리카 복합 에어로겔
WO2015119430A1 (ko) 소수성 실리카 에어로겔의 제조방법
WO2017105065A1 (ko) 산화금속-실리카 복합 에어로겔의 제조방법 및 이로부터 제조된 산화금속-실리카 복합 에어로겔
WO2017090911A1 (ko) 소수성의 실리카 에어로겔의 제조방법 및 이로부터 제조된 소수성의 실리카 에어로겔
EP1717217B1 (en) Method for preparing electroconductive mayenite type compound
WO2015119431A1 (ko) 소수성 실리카 에어로겔의 제조방법
WO2018208005A1 (ko) 실리카 에어로겔 블랭킷의 제조방법 및 이로 제조된 실리카 에어로겔 블랭킷
WO2017171279A1 (ko) 구형 실리카 에어로겔 과립의 제조방법 및 이에 의해 제조되는 구형 실리카 에어로겔 과립
WO2018212414A1 (ko) 탄화규소 분말 및 그 제조방법
WO2016167494A1 (ko) 실리카 에어로겔 포함 블랑켓의 제조방법 및 이에 따라 제조된 실리카 에어로겔 포함 블랑켓
WO2017043721A1 (ko) 실리카 에어로겔 포함 블랑켓 및 이의 제조방법
CN107216120A (zh) 一种陶瓷绝缘子及其制备方法
WO2021054644A1 (ko) 에어로겔 블랑켓 및 이의 제조방법
WO2017159968A1 (ko) 에어로겔 전구체 및 이를 이용하여 제조한 에어로겔
WO2017176038A1 (ko) Basno3 박막 및 이의 저온 제조 방법
WO2018139776A1 (ko) 산화적 탈수소화 반응용 페라이트 촉매, 이의 제조방법 및 이를 이용한 부타디엔의 제조방법
WO2022080721A1 (ko) 에어로겔 블랭킷의 제조방법 및 이로부터 제조된 에어로겔 블랭킷
WO2018186546A1 (ko) 침상형 금속-실리카 복합 에어로겔 입자 제조방법 및 이에 의해 제조된 침상형 금속-실리카 복합 에어로겔 입자
US5114887A (en) Process for preparing oxynitride ceramic fibers
WO2017171217A1 (ko) 저분진 고단열 에어로겔 블랭킷의 제조방법
WO2017099488A1 (ko) 산화금속-실리카 복합 에어로겔의 제조방법 및 이로부터 제조된 산화금속-실리카 복합 에어로겔

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18854726

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018854726

Country of ref document: EP

Effective date: 20190830

ENP Entry into the national phase

Ref document number: 2019552501

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE