CN1066565C - 超细锰锌铁氧体粉末的制备方法 - Google Patents

超细锰锌铁氧体粉末的制备方法 Download PDF

Info

Publication number
CN1066565C
CN1066565C CN97112638A CN97112638A CN1066565C CN 1066565 C CN1066565 C CN 1066565C CN 97112638 A CN97112638 A CN 97112638A CN 97112638 A CN97112638 A CN 97112638A CN 1066565 C CN1066565 C CN 1066565C
Authority
CN
China
Prior art keywords
manganese
zinc
super fine
ferrite powder
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN97112638A
Other languages
English (en)
Other versions
CN1202706A (zh
Inventor
钟炳
姚志强
王琴
李文怀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanxi Institute of Coal Chemistry of CAS
Original Assignee
Shanxi Institute of Coal Chemistry of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanxi Institute of Coal Chemistry of CAS filed Critical Shanxi Institute of Coal Chemistry of CAS
Priority to CN97112638A priority Critical patent/CN1066565C/zh
Publication of CN1202706A publication Critical patent/CN1202706A/zh
Application granted granted Critical
Publication of CN1066565C publication Critical patent/CN1066565C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compounds Of Iron (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

一种超细锰锌铁氧体粉末的制备方法,采用如下步骤:(a)锰、锌、铁的盐溶液定量混合均匀,滴入氢氧化钠溶液,控制体系pH值在9.0,继续搅拌,老化得到锰-锌-铁的水凝胶;(b)将锰-锌-铁的水凝胶过滤,洗涤;(c)然后用低碳有机醇对滤饼进行醇水交换,得到醇凝胶;(d)将醇凝胶置于高压釜内,加入低碳有机醇作为抽提剂,用氮气吹扫,密封加热,在高于有机醇临界温度10-50℃和临界压力10-30atm的范围内进行溶剂脱除,最后得到气凝胶。(e)将气凝胶粉末在700-1000℃的范围内,高纯氮气保护下烧结3-8小时,随炉冷却,得到产品。具有易操作,流程简单,节省能源等优点。

Description

超细锰锌铁氧体粉末的制备方法
本发明主要涉及一种软磁铁氧体超细粉末的制备方法。
软磁铁氧体的通式为MM′Fe2O4(M,M′=Mn,Fe,Co,Ni,Zn等元素的二价离子)。它广泛用作低频段和高频段的铁氧体。过去生产软磁铁氧体的方法主要是陶瓷烧结技术和粉末冶金工艺。上述方法一般都要经过以下步骤:配料-混合-预烧-成型-烧结等。用上述方法合成的铁氧体粉末粒子大,粒度分布不均匀,粒子的最终性质受到很大程度的破坏。另外,上述方法的致命弱点是烧结温度高,往往要在1200-1300℃之间,这样就使得锰和铁的变价以及锌的高温挥发等问题难以得到有效的控制,所以人们认为它们对提高材料的磁性能已显得无能为力了。为了克服上述方法的缺点,人们开始寻求新的合成铁氧体的途径,如今已开发出了多种制备软磁铁氧体超细粉末的化学法,如化学共沉淀法,水热合成法,有机金属盐热分解法等等。上述方法虽然克服了传统方法中的某些缺点,但它们存在的问题是干燥和烧结过程中不可避免地要发生初级粒子的聚集和长大。
为了克服上述缺点,人们开发了超临界流体干燥法,如中国专利“一种γ-Fe2O3磁粉的制备方法”(CN1108424A)和“超细二氧化锡粉体及其制备方法和用途”(CN1121047A),该方法不足是主要用来制备单一的氧化物。
中国专利(CN1108425A“超细磁粉及其制造方法”公开了一种掺钴γ-Fe2O3磁粉的制造技术,但此种材料主要用于水平磁记录,不能适应垂直磁记录的需要。
本发明的目的是提供一种用超临界流体干燥法制备锰锌铁氧体复合氧化物超细粉末的方法。
本发明锰锌铁氧体超细粉末的制备包括如下步骤:
(a)将锰、锌、铁的盐溶液按X∶(1-X)∶2,(0<X<1)的摩尔比混合均匀,滴入氢氧化钠溶液,控制体系pH值为8.5-9.5,继续搅拌,老化,得到锰-锌-铁的水凝胶;
(b)将锰-锌-铁的水凝胶过滤,洗涤;
(c)然后用低碳有机醇对滤饼进行醇水交换,得到醇凝胶;
(d)将醇凝胶置于高压釜内,加入低碳有机醇作为抽提剂,用氮气吹扫,密封加热,在高于有机醇临界温度10-50℃和临界压力10-30atm的范围内进行溶剂脱除,最后得到气凝胶。
(e)将气凝胶粉末在700-1000℃的范围内,高纯氮气保护下烧结3-8小时,随炉冷却,得到褐色的锰-锌-铁氧体超细粉末。
如上所述的低碳醇最好是甲醇、乙醇、丙醇。
如上所述的锰盐最好是硝酸锰。
如上所述的锌盐最好是硝酸锌、氯化锌。
如上所述的铁盐最好是硝盐酸、氯化铁。
如上所述的烧结时间最好为3-4小时。
本发明的制备过程,关键是利用了超临界状态下脱除溶剂,能避免粒子间的表面张力所带来的粒子聚集的特点,具有如下优点:
(1)粒径小,粒度分布均匀
(2)粒子活性高
(3)易操作,流程简单,节省能源。
本发明的最佳实施例如下:
实施例1
将48g Fe(NO3)39H2O溶于200ml的去离子水中,加入2.1g Zn(NO3)2和12.8ml的Mn(NO3)2溶液,搅拌均匀,将5.0N NaOH溶液逐滴滴入,滴速为2-3ml/分钟。控制体系的pH值为9.0。继续搅拌半小时,老化2小时后,用去离子水洗涤,过滤,再用400ml无水乙醇分4次进行醇水交换,得到醇凝胶。将醇凝胶移入0.5立升的高压釜中,加入320ml无水乙醇。上好釜盖后用氮气吹扫10分钟,密闭,加热。当釜内温度和压力达到临界点(243℃,6.3MPa)后,继续加热至温度和压力分别为260℃,8.0MPa,恒定30分钟,在260℃的温度下缓慢地释放出釜内的乙醇,至常压。最后用氮气吹扫,自然冷却至室温,开釜取出即得气凝胶。将气凝胶粉末放入管式炉的恒温区,用程序升温控制仪进行温度控制,在高纯氮气中升温至1000℃,恒定3.5小时后,随炉自然冷却,这样即得褐色的锰锌铁氧体超细粉末。磁性能如下:比饱和磁化强度为79.64emu/g,剩余比饱和磁化强度为1.29emu/g,内禀矫顽力为12.540e。
实施例2
步骤同实施例1,但不经过醇水交换这步,直接将水凝胶在1000℃温度,高纯氮气保护下焙烧3.5小时后,随炉自然冷却至室温,得到的锰锌铁氧体粉末的磁性能如下:比饱和磁化强度为65.57emu/g,剩余比饱和磁化强度为1.28emu/g,内禀矫顽力为13.43Oe。
实施例3
步骤同实施例1得到水凝胶,然后移入高压釜中进行水热反应,温度和压力分别为160℃和饱和水蒸汽压力,反应时间为3小时。将水热产物过滤,洗涤,干燥后在高纯氮气中1000℃温度下焙烧3.5小时,得到的粉末的磁性能如下:比饱和磁化强度为73.89emu/g,剩余比饱和磁化强度为1.65emu/g,内禀矫顽力为16.37Oe。
实施例4
步骤同实施例1,改变焙烧温度为900℃,得到的粉末的磁性能如下:比饱和磁化强度为75.62emu/g,剩余比饱和磁化强度为2.53emu/g,内禀矫顽力为26.06Oe。
实施例5
步骤同实施例1,改变焙烧温度为800℃,得到的粉末的磁性能如下:比饱和磁化强度为75.69emu/g,剩余比饱和磁化强度为2.92emu/g,内禀矫顽力为31.75Oe。
实施例6
步骤同实施例1,改变焙烧温度为600℃,得到的粉末的磁性能如下:比饱和磁化强度为73.76emu/g,剩余比饱和磁化强度为4.73emu/g,内禀矫顽力为51. 63Oe。

Claims (6)

1.一种超细锰锌铁氧体粉末的制备方法,其特征在于包括如下步骤:
 (a)将锰、锌、铁的盐溶液按X∶(1-X)∶2,(0<X<1)的摩尔比混合均
匀,滴入氢氧化钠溶液,控制体系pH值为9.0,继续搅拌,老化,得到锰-
锌-铁的水凝胶;
 (b)将锰-锌-铁的水凝胶过滤,洗涤;
 (c)然后用低碳有机醇对滤饼进行醇水交换,得到醇凝胶;
 (d)将醇凝胶置于高压釜内,加入低碳有机醇作为抽提剂,用氮气吹
扫,密封加热,在高于低碳有机醇临界温度10-50℃和临界压力10-30atm的
范围内进行溶剂脱除,最后得到气凝胶。
 (e)将气凝胶粉末在700-1000℃的范围内,高纯氮气保护下烧结3-8小时,随炉冷却,得到褐色的锰-锌-铁氧体超细粉末。
2.根据权利要求1所述的一种超细锰锌铁氧体粉末的制备方法,其特征在
于所述的低碳醇是甲醇、乙醇、丙醇。
3.根据权利要求1所述的一种超细锰锌铁氧体粉末的制备方法,其特征在
于所述的锰盐是硝酸锰。
4.根据权利要求1所述的一种超细锰锌铁氧体粉末的制备方法,其特征在
于所述的锌盐是硝酸锌、氯化锌。
5.根据权利要求1所述的一种超细锰锌铁氧体粉末的制备方法,其特征在
于所述的铁盐是硝酸铁、氯化铁。
6.根据权利要求1所述的一种超细锰锌铁氧体粉末的制备方法,其特征在
于所述的烧结时间为3-4小时。
CN97112638A 1997-06-14 1997-06-14 超细锰锌铁氧体粉末的制备方法 Expired - Fee Related CN1066565C (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN97112638A CN1066565C (zh) 1997-06-14 1997-06-14 超细锰锌铁氧体粉末的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN97112638A CN1066565C (zh) 1997-06-14 1997-06-14 超细锰锌铁氧体粉末的制备方法

Publications (2)

Publication Number Publication Date
CN1202706A CN1202706A (zh) 1998-12-23
CN1066565C true CN1066565C (zh) 2001-05-30

Family

ID=5172406

Family Applications (1)

Application Number Title Priority Date Filing Date
CN97112638A Expired - Fee Related CN1066565C (zh) 1997-06-14 1997-06-14 超细锰锌铁氧体粉末的制备方法

Country Status (1)

Country Link
CN (1) CN1066565C (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018139776A1 (ko) * 2017-01-26 2018-08-02 (주) 엘지화학 산화적 탈수소화 반응용 페라이트 촉매, 이의 제조방법 및 이를 이용한 부타디엔의 제조방법

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101376590B (zh) * 2008-10-13 2012-06-27 北京科技大学 一种自蔓延高温合成制备锰锌铁氧体粉料的方法
KR102079734B1 (ko) 2017-01-26 2020-02-20 주식회사 엘지화학 산화적 탈수소화 반응용 페라이트 촉매, 이의 제조방법 및 이를 이용한 부타디엔의 제조방법

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06287020A (ja) * 1993-03-31 1994-10-11 Nittetsu Mining Co Ltd フェライトコロイドの製造方法
CN1108425A (zh) * 1994-03-07 1995-09-13 中国科学院山西煤炭化学研究所 超细磁粉及其制造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06287020A (ja) * 1993-03-31 1994-10-11 Nittetsu Mining Co Ltd フェライトコロイドの製造方法
CN1108425A (zh) * 1994-03-07 1995-09-13 中国科学院山西煤炭化学研究所 超细磁粉及其制造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018139776A1 (ko) * 2017-01-26 2018-08-02 (주) 엘지화학 산화적 탈수소화 반응용 페라이트 촉매, 이의 제조방법 및 이를 이용한 부타디엔의 제조방법

Also Published As

Publication number Publication date
CN1202706A (zh) 1998-12-23

Similar Documents

Publication Publication Date Title
Abraham et al. Enhanced magneto-optical and photo-catalytic properties of transition metal cobalt (Co2+ ions) doped spinel MgFe2O4 ferrite nanocomposites
Mary Jacintha et al. Comparative studies of spinel MnFe2O4 nanostructures: structural, morphological, optical, magnetic and catalytic properties
US7547347B2 (en) Synthesis of nano-materials in ionic liquids
US6180073B1 (en) Compound with base of an alkaline-earth, sulphur and aluminium, gallium or indium, method of preparing same and use as luminophore
Huang et al. Optical properties and theoretical study of Mn doped ZnAl2O4 nanoparticles with spinel structure
Rashmi et al. Influence of Sm3+ ions on structural, optical and solar light driven photocatalytic activity of spinel MnFe2O4 nanoparticles
Bhavani et al. Okra (Abelmoschus esculentus) plant extract-assisted combustion synthesis and characterization studies of spinel ZnAl2O4 nano-catalysts
US4751070A (en) Low temperature synthesis
CN106866142B (zh) 纳米级高纯二氧化锆复合粉体的生产方法
EP1812348A1 (en) Method for synthesizing nano-sized titanium dioxide particles
Chhor et al. Syntheses of submicron magnesium oxide powders
Liu et al. High-yield synthesis and characterization of monodisperse sub-microsized CoFe2O4 octahedra
CN1066565C (zh) 超细锰锌铁氧体粉末的制备方法
Renuka et al. Synthesis of ZnFe2O4 nanoparticle by combustion and sol gel methods and their structural, photoluminescence and photocatalytic performance
US5057299A (en) Method for making beta cobaltous hydroxide
US6984369B1 (en) Process for making surfactant capped metal oxide nanocrystals, and products produced by the process
Drouet et al. Synthesis and characterization of non-stoichiometric nickel–copper manganites
CN1066564C (zh) 超细钡铁氧体粉末的制备方法
Mindru et al. Doped aluminium based spinels synthesized by a soft chemistry method
Paramasivan et al. Comparative investigation of NiFe2O4 nano and microstructures for structural, optical, magnetic and catalytic properties
Koroteev et al. Heterometallic Carboxylate Complexes as Precursors for Mixed Oxides: III. 3 d–4 f Carboxylates
Gingasu et al. Synthesis of lithium ferrites from polymetallic carboxylates
TW202043158A (zh) 置換型ε氧化鐵磁性粒子粉、置換型ε氧化鐵磁性粒子粉的製造方法、壓粉體、壓粉體的製造方法及電波吸收體
Popa et al. Synthesis and thermoanalytical investigation of an amorphous praseodymium citrate
Machado et al. Complexation of the Fe (III) and Fe (II) sulphates with diphenyl-4-amine barium sulphonate (DAS) Synthesis, thermogravimetric and spectroscopic studies

Legal Events

Date Code Title Description
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C06 Publication
PB01 Publication
C14 Grant of patent or utility model
GR01 Patent grant
C19 Lapse of patent right due to non-payment of the annual fee
CF01 Termination of patent right due to non-payment of annual fee