WO2021072803A1 - Matériau composite d'électrode négative ayant une structure noyau-enveloppe multicouche, son procédé de préparation et utilisation associée - Google Patents

Matériau composite d'électrode négative ayant une structure noyau-enveloppe multicouche, son procédé de préparation et utilisation associée Download PDF

Info

Publication number
WO2021072803A1
WO2021072803A1 PCT/CN2019/113875 CN2019113875W WO2021072803A1 WO 2021072803 A1 WO2021072803 A1 WO 2021072803A1 CN 2019113875 W CN2019113875 W CN 2019113875W WO 2021072803 A1 WO2021072803 A1 WO 2021072803A1
Authority
WO
WIPO (PCT)
Prior art keywords
composite material
negative electrode
silicon oxide
metal
electrode composite
Prior art date
Application number
PCT/CN2019/113875
Other languages
English (en)
Chinese (zh)
Inventor
罗飞
刘柏男
李泓
Original Assignee
溧阳天目先导电池材料科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 溧阳天目先导电池材料科技有限公司 filed Critical 溧阳天目先导电池材料科技有限公司
Publication of WO2021072803A1 publication Critical patent/WO2021072803A1/fr

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/483Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides for non-aqueous cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/628Inhibitors, e.g. gassing inhibitors, corrosion inhibitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention relates to the technical field of batteries, in particular to a negative electrode composite material with a multilayer core-shell structure, and a preparation method and application thereof.
  • SiO X is an amorphous structure, and the valence states of Si in SiO X are diverse (Si0, Si 2+ , Si 4+, etc.), consisting of many uniformly distributed nano-scale Si clusters, SiO 2 clusters and The SiO X transition phase between the Si/SiO 2 phase interface is composed of a reversible capacity of 1500-2000mAh/g.
  • the inert phases Li 2 O and Li 4 SiO 4 generated when lithium is inserted for the first time will also increase the first irreversible capacity and reduce the cycle efficiency in the first week.
  • SiO X still experiences a large volume expansion during the process of deintercalating lithium.
  • SiO X materials still have huge room for improvement.
  • the purpose of the present invention is to provide a negative electrode composite material with a multilayer core-shell structure and a preparation method and application thereof.
  • the negative electrode composite material has a multilayer core-shell structure, and the core is a SiO X material with small silicon crystal grains to ensure cycle performance.
  • the middle layer is a metal-doped silicon oxide composite material, which provides a buffer layer for SiO X while improving the first Coulomb efficiency.
  • the outermost layer is a carbon coating layer, which can further improve the cycle performance of the material.
  • an embodiment of the present invention provides a negative electrode composite material having a multilayer core-shell structure, the negative electrode composite material having a multilayer core-shell structure;
  • the core of the negative electrode composite material is silicon oxide particles
  • the middle layer is a metal-doped silicon oxide composite material
  • the outermost layer is a carbon coating layer composed of continuous carbon particles or carbon thin films
  • the general formula of the silicon oxide is SiOx, 0 ⁇ x ⁇ 2;
  • the metal doping elements in the metal-doped silicon oxide composite material include Mg, Ca, Ba, Ti, Li, Mn, Fe, Co, Ni, Cu, Zn, Zr, Mo, Ge, Sn, Al, Na, One or more of B;
  • the metal-doped silicon oxide composite material is a composite material composed of an oxide and/or a composite oxide of the metal-doped element and silicon oxide;
  • the carbon source forming the carbon coating layer is one or more of toluene, methane, acetylene, glucose, pitch or high molecular polymer;
  • the negative electrode composite material still maintains a core-shell structure after being cycled in a lithium battery, wherein after the cycle, the core is silicon oxide that deintercalates lithium, and the nanophase of metal silicon or lithium silicon alloy is dispersed in lithium silicate and oxide. It is composed of a lithium matrix; the intermediate layer is doped silicon oxide that deintercalates lithium, which is composed of metal silicon, lithium silicon alloy, doped metal silicon, doped lithium silicon alloy, lithium silicate, lithium oxide, and composite silicic acid compound One or more of the composite oxides; the outermost layer is a composite material of a carbon coating layer and a solid electrolyte interface SEI film produced by the side reaction of the lithium battery cycle.
  • the size of the silicon crystal grains of the silicon oxide in the core is 1-100 nm;
  • the silicon contained in the metal-doped silicon oxide composite material is in a nanophase, with a particle size of 1-100 nm.
  • the mass fraction of the silicon oxide particles in the core is 1%-80%, and the mass fraction of the metal-doped silicon oxide composite material is 1%-80%, so The mass fraction of the carbon coating layer is 1%-30%.
  • the average particle size (D 50 ) of the particles of the negative electrode composite material is 0.1-40 ⁇ m;
  • the specific surface area of the particles of the negative electrode composite material is 1 m 2 /g-40 m 2 /g.
  • an embodiment of the present invention provides a method for preparing the negative electrode composite material with a multilayer core-shell structure as described in the first aspect, the preparation method includes:
  • the molar ratio of the silicon oxide powder to the simple substance or oxide of the metal doping element is 1:0.01-1:10;
  • the particles are then coated with carbon to obtain a negative electrode composite material with a multilayer core-shell structure.
  • the heat treatment is a heat treatment performed in a vacuum environment or a protective atmosphere.
  • the carbon coating specifically includes:
  • a gaseous carbon source is fed into the reactor according to the required mass ratio, and carbonized at 600-1100 degrees Celsius to coat the particles with carbon; or,
  • the gaseous carbon source is a mixture of one or more of toluene, methane and acetylene; the liquid or solid carbon source is glucose, pitch or high molecular polymer.
  • the metal doping element includes one of Mg, Ca, Ba, Ti, Li, Mn, Fe, Co, Ni, Cu, Zn, Zr, Mo, Ge, Sn, Al, Na, B or Several kinds.
  • the embodiments of the present invention provide the use of the negative electrode composite material with a multilayer core-shell structure described in the first aspect above, and the negative electrode composite material is used as a negative electrode material of a lithium ion battery.
  • an embodiment of the present invention provides a lithium ion battery having a negative electrode composite material with a multilayer core-shell structure.
  • the present invention provides a composite material with a multilayer core-shell structure, and the negative electrode composite material can be used as a negative electrode material of a lithium ion battery or the like or as a part of a negative electrode material.
  • the preparation method of the negative electrode composite material with the multilayer core-shell structure provided by the present invention is simple and easy to implement, high in safety, and easy to mass production.
  • the negative electrode composite material prepared by the method is used for the negative electrode of a lithium ion battery and has excellent cycle performance and rate The advantages of good performance.
  • FIG. 1 is a schematic diagram of a negative electrode composite material with a multilayer core-shell structure provided by an embodiment of the present invention
  • FIG. 2 is a diagram showing the full battery capacity retention of the nano-silicon-carbon composite material provided by the embodiment of the present invention
  • Fig. 3 is a diagram showing the full battery capacity retention of the nano-silicon-carbon composite material provided by the comparative example of the present invention.
  • FIG. 1 is a schematic structural diagram of the negative composite material with a multi-layer core-shell structure provided by an embodiment of the present invention.
  • the negative electrode composite material of the present invention has a multi-layer core-shell structure, as shown in FIG. 1.
  • the core of the negative electrode composite material is silicon oxide particles, the size of the silicon crystal grains is 1-100nm; the middle layer is a metal-doped silicon oxide composite material, and the silicon contained in it is nanophase with a particle size of 1-100nm;
  • the outer layer is a carbon coating layer composed of continuous carbon particles or carbon film;
  • silicon oxide is SiOx, 0 ⁇ x ⁇ 2;
  • the metal doping elements in the metal doped silicon oxide composite material include Mg, Ca, Ba, Ti, Li, Mn, Fe, Co, Ni, Cu, Zn, Zr, Mo, Ge, Sn, Al, Na, B.
  • Mg, Ca, Ba, Ti Li, Mn, Fe, Co, Ni, Cu, Zn, Zr, Mo, Ge, Sn, Al, Na, B.
  • the metal-doped silicon oxide composite material is a composite material composed of the oxide of the metal-doped element and/or the composite oxide and silicon oxide;
  • the carbon source forming the carbon coating layer is one or more of toluene, methane, acetylene, glucose, pitch or high molecular polymer.
  • the core silica particles account for 1%-80% mass fraction
  • the metal-doped silica composite material accounts for 1%-80% mass fraction
  • the carbon coating layer accounts for 1%-80% mass fraction. 1%-30%.
  • the average particle size (D 50 ) of the particles of the negative electrode composite material of the present invention is 0.1-40 ⁇ m; and the specific surface area is 1 m 2 /g-40 m 2 /g.
  • the negative electrode composite material of the present invention still maintains a core-shell structure after cycling in a lithium battery, wherein after cycling, the core is silicon oxide that releases lithium, and the nanophase of metal silicon or lithium silicon alloy is dispersed in lithium silicate, It is composed of a lithium oxide matrix; the intermediate layer is doped silicon oxide that deintercalates lithium, which is composed of metal silicon, lithium silicon alloy, doped metal silicon, doped lithium silicon alloy, lithium silicate, lithium oxide, and composite silicic acid One or more of compounds and composite oxides are composited; the outermost layer is a composite material of a carbon coating layer and a solid electrolyte interface SEI film produced by the side reaction of the lithium battery cycle.
  • the present invention has a multilayer core-shell structure of the negative electrode composite material.
  • the core is a SiO X material with small silicon crystal grains to ensure cycle performance.
  • the intermediate layer is a metal-doped silicon oxide composite material to provide a buffer layer for SiO X to eliminate The influence of the volume expansion of SiO X in the process of deintercalating lithium, and at the same time improve the first Coulomb efficiency, the outermost layer is a carbon coating layer, which can further improve the cycle performance of the material.
  • the embodiment of the present invention correspondingly provides a preparation method of the material, and the preparation process mainly includes the following steps:
  • Step 1 Simultaneously inject the silicon oxide powder and the simple substance or oxide of the metal doping element into the reactor;
  • the molar ratio of the silicon oxide powder to the simple substance or oxide of the metal doping element is 1:0.01-1:10;
  • Step 2 under a protective atmosphere of 400-1200°C, heat-treating the mixed powder of silicon oxide powder and the simple substance of metal doping elements or oxides;
  • the heat treatment is a heat treatment performed in a vacuum environment or a protective atmosphere.
  • the metal doping elements include one or more of Mg, Ca, Ba, Ti, Li, Mn, Fe, Co, Ni, Cu, Zn, Zr, Mo, Ge, Sn, Al, Na, and B.
  • the core and intermediate layer structure of the negative electrode composite material are formed.
  • Step 3 Grind the obtained product into particles, the average particle size of the particles is 0.1-50 ⁇ m;
  • step 4 the particles are then coated with carbon to obtain a negative electrode composite material with a multi-layer core-shell structure.
  • carbon coating specifically includes:
  • a gaseous carbon source is introduced into the reactor according to the required mass ratio, and carbonized at 600-1100 degrees Celsius to coat the particles with carbon; or,
  • the gaseous carbon source is a mixture of one or more of toluene, methane and acetylene; the liquid or solid carbon source is glucose, pitch or high molecular polymer.
  • the preparation method of the negative electrode composite material with the multilayer core-shell structure provided by the present invention is simple and easy to implement, high in safety, and easy to mass production.
  • the negative electrode composite material prepared by the method is used for the negative electrode of a lithium ion battery and has excellent cycle performance and rate The advantages of good performance.
  • This embodiment provides a method for preparing a negative electrode composite material with a multilayer core-shell structure, including:
  • the particle size of the material was measured by a Malvern laser particle size analyzer, and the specific surface area of the material was measured by the nitrogen adsorption method.
  • the average particle size of the obtained material was 8 ⁇ m, and the specific surface area was 12 m 2 /g.
  • the mass fraction of the core silicon oxide particles is 40%
  • the mass fraction of the metal-doped silicon oxide composite material of the intermediate layer is 53%
  • the rest is the carbon coating layer.
  • the electrochemical test mode is 0.1C discharge to 0.005V, 0.05C discharge to 0.005V, 0.02C discharge to 0.005V in the first week. Let stand for 5s and charge at 0.1C to 1V, and the subsequent cycles are 0.5C discharge to 0.005V, 0.2C discharge to 0.005V, 0.05C discharge to 0.005V, 0.02C discharge to 0.005V, and after standing for 5 seconds, 0.5C Charge to 1V cut-off.
  • the above discharging is a lithium insertion process, which corresponds to charging in a full battery
  • charging is a delithiation process, which corresponds to discharging of a full battery.
  • Fig. 2 is a diagram showing the full battery capacity retention of the nano-silicon-carbon composite material provided by an embodiment of the present invention. It can be seen that its capacity retention performance is very excellent, and it can reach 96% in 100 weeks.
  • the commercial graphite material A and the commercial soft carbon material B used in this embodiment and the following embodiments are all purchased from Jiangxi Zichen Technology Co., Ltd.
  • This embodiment provides a method for preparing a negative electrode composite material with a multilayer core-shell structure, including:
  • the average particle size of the obtained material was 10 ⁇ m, and the specific surface area was 7 m 2 /g. Among them, the mass fraction of the core silicon oxide particles is 70%, the mass fraction of the metal-doped silicon oxide composite material of the intermediate layer is 13%, and the remainder is the carbon coating layer.
  • the prepared material and commercial graphite A were mixed according to the proportion to form a lithium ion battery negative electrode material with a specific capacity of 650 mAh/g according to the procedure in Example 1 to test its electrochemical performance. Its efficiency in the first week can reach 88.7%, and its capacity retention performance is very good, reaching 97% in 100 weeks.
  • the specific results are shown in Table 1.
  • This embodiment provides a method for preparing a negative electrode composite material with a multilayer core-shell structure, including:
  • the prepared material has an average particle size of 10 ⁇ m and a specific surface area of 11 m 2 /g. Among them, the mass fraction of the core silicon oxide particles is 21%, the mass fraction of the metal-doped silicon oxide composite material in the middle layer is 73%, and the rest is the carbon coating layer.
  • the prepared material and commercial graphite A were mixed according to the proportion to form a lithium ion battery negative electrode material with a specific capacity of 650 mAh/g according to the procedure in Example 1 to test its electrochemical performance. Its efficiency in the first week can reach 84.1%, and its capacity retention performance is very good, reaching 93% in 100 weeks.
  • the specific results are shown in Table 1.
  • This embodiment provides a method for preparing a negative electrode composite material with a multilayer core-shell structure, including:
  • the average particle size of the prepared material is 17 ⁇ m, and the specific surface area is 11 m 2 /g. Among them, the mass fraction of the core silicon oxide particles is 41%, the mass fraction of the metal-doped silicon oxide composite material in the middle layer is 54%, and the rest is the carbon coating layer.
  • the prepared material and commercial soft carbon B were mixed in proportion to form a lithium ion battery negative electrode material with a specific capacity of 650 mAh/g according to the procedure in Example 1 to test its electrochemical performance. Its efficiency in the first week can reach 86.9%, and its capacity retention performance is very good, reaching 91% in 100 weeks.
  • the specific results are shown in Table 1.
  • This embodiment provides a method for preparing a negative electrode composite material with a multilayer core-shell structure, including:
  • the average particle size of the obtained material was 25 ⁇ m, and the specific surface area was 5 m 2 /g. Among them, the mass fraction of the core silicon oxide particles is 82%, the mass fraction of the metal-doped silicon oxide composite material of the intermediate layer is 11%, and the rest is the carbon coating layer.
  • the prepared material and commercial soft carbon B were mixed in proportion to form a lithium ion battery negative electrode material with a specific capacity of 650 mAh/g according to the procedure in Example 1 to test its electrochemical performance.
  • the efficiency can reach 89.9% in the first week, and the capacity can reach 89% when the capacity is maintained at 100 weeks.
  • the specific results are shown in Table 1.
  • This embodiment provides a method for preparing a negative electrode composite material with a multilayer core-shell structure, including:
  • the sieved sample is mixed with petroleum pitch at a mass ratio of 8:2 and then heat-treated at 850° C. for 2 hours to prepare the negative electrode composite material with a multilayer core-shell structure of the present invention.
  • the prepared material has an average particle size of 20 ⁇ m and a specific surface area of 11 m 2 /g. Among them, the mass fraction of the core silicon oxide particles is 42%, the mass fraction of the metal-doped silicon oxide composite material of the intermediate layer is 53%, and the rest is the carbon coating layer.
  • the prepared material and commercial graphite A were mixed according to the proportion to form a lithium ion battery negative electrode material with a specific capacity of 650 mAh/g according to the procedure in Example 1 to test its electrochemical performance.
  • the efficiency can reach 86.5% in the first week, and the capacity can reach 91% when maintained at 100 weeks.
  • the specific results are shown in Table 1.
  • This embodiment provides a method for preparing a negative electrode composite material with a multilayer core-shell structure, including:
  • the prepared material has an average particle size of 15 ⁇ m and a specific surface area of 22 m 2 /g. Among them, the mass fraction of the core silicon oxide particles is 48%, the mass fraction of the metal-doped silicon oxide composite material of the middle layer is 42%, and the remainder is the carbon coating layer.
  • the prepared material and commercial soft carbon B were mixed in proportion to form a lithium ion battery negative electrode material with a specific capacity of 650 mAh/g according to the procedure in Example 1 to test its electrochemical performance.
  • the efficiency can reach 86.3% in the first week, and the capacity can reach 90% when maintained at 100 weeks.
  • the specific results are shown in Table 1.
  • This embodiment provides a method for preparing a negative electrode composite material with a multilayer core-shell structure, including:
  • the prepared material has an average particle size of 11 ⁇ m and a specific surface area of 21 m 2 /g. Among them, the mass fraction of the core silicon oxide particles is 31%, the mass fraction of the metal-doped silicon oxide composite material of the intermediate layer is 63%, and the rest is the carbon coating layer.
  • the prepared material and commercial soft carbon B were mixed in proportion to form a lithium ion battery negative electrode material with a specific capacity of 650mAh/g according to the procedure in Example 1 to test its electrochemical performance. Its efficiency in the first week can reach 85.5%, and its capacity retention performance is very excellent, and it can reach 94% in 100 weeks.
  • the specific results are shown in Table 1.
  • This embodiment provides a method for preparing a negative electrode composite material with a multilayer core-shell structure, including:
  • the prepared material has an average particle size of 13 ⁇ m and a specific surface area of 7 m 2 /g. Among them, the mass fraction of the core silicon oxide particles is 38%, the mass fraction of the metal-doped silicon oxide composite material of the intermediate layer is 55%, and the rest is the carbon coating layer.
  • the prepared material and commercial soft carbon B were mixed in proportion to form a lithium ion battery negative electrode material with a specific capacity of 650 mAh/g according to the procedure in Example 1 to test its electrochemical performance. Its efficiency in the first week can reach 86.7%, and its capacity retention performance is very good, reaching 94% in 100 weeks.
  • the specific results are shown in Table 1.
  • This embodiment provides a method for preparing a negative electrode composite material with a multilayer core-shell structure, including:
  • the prepared material has an average particle size of 16 ⁇ m and a specific surface area of 5 m 2 /g. Among them, the mass fraction of the core silicon oxide particles is 25%, the mass fraction of the metal-doped silicon oxide composite material of the intermediate layer is 65%, and the rest is the carbon coating layer.
  • the prepared material and commercial graphite A were mixed according to the proportion to form a lithium ion battery negative electrode material with a specific capacity of 650 mAh/g according to the procedure in Example 1 to test its electrochemical performance. Its efficiency in the first week can reach 84.3%, and its capacity retention performance is very good, reaching 93% in 100 weeks.
  • the specific results are shown in Table 1.
  • This comparative example is intended to illustrate the performance level of materials prepared by the prior art. The steps are as follows:
  • the average particle size of the obtained material is 16 ⁇ m, and the specific surface area is 5 m 2 /g. Among them, the mass fraction of the core silica particles is 85%, and the mass fraction of the outer carbon coating layer is 15%.
  • FIG. 1 is a diagram of the full battery capacity retention of the nano-silicon-carbon composite material provided for this comparative example. Its efficiency in the first week was only 80.5%, and its capacity remained at 91% for 100 weeks. The specific results are shown in Table 1.
  • This comparative example is intended to illustrate the performance level of materials prepared by the prior art. The steps are as follows:
  • the average particle size of the obtained material is 16 ⁇ m, and the specific surface area is 5 m 2 /g.
  • the prepared material and commercial graphite A were mixed according to the ratio to form a 650mAh/g lithium ion battery negative electrode material according to the procedure in Example 1 to test its electrochemical performance. Its efficiency in the first week can reach 85.5%, but because the inside of the material is all doped, the cycle is very poor, and the cycle is only 85% for 100 cycles.
  • the negative electrode material with a multilayer core-shell structure prepared by the present invention takes into account the cycle stability of the silicon oxide material and the high first effect of the doped silicon oxide material, and has excellent comprehensive performance.
  • the inner core is silicon oxide particles
  • the middle layer is a metal-doped silicon oxide composite material
  • the outermost layer is a carbon coating layer composed of continuous carbon particles or carbon thin films.
  • SiO X is an amorphous structure process.
  • the Li 2 O and Li 4 SiO 4 matrix formed by lithium insertion can effectively buffer volume expansion and maintain structural stability.
  • the inert phases Li 2 O and Li formed during the first lithium insertion 4 SiO 4 will also increase the amount of irreversible capacity for the first time and reduce the first week cycle efficiency.
  • the core-shell structure material with a metal-doped silicon oxide composite intermediate layer prepared by the present invention has a slight improvement in capacity retention compared with the comparative example with only the carbon coating layer.
  • the efficiency is greatly improved in the first week. This is because metal or its oxide doping can inhibit the formation of inert phases Li 2 O and Li 4 SiO 4.
  • the metal or its oxide itself can act as a buffer matrix and provide for the diffusion of Li + Channel, thus ensuring the high first effect and cycle stability of the material.
  • too much metal or its oxide doping can also cause problems.
  • its first effect is 85.5%, which is not much different from that of Examples 1-10.
  • the negative electrode composite material with a multi-layer core-shell structure provided by the embodiment of the present invention has a multi-layer core-shell structure, the core is a SiO X material with small silicon crystal grains to ensure cycle performance, and the intermediate layer is a metal-doped silicon oxide composite material , Provide a buffer layer for SiO X while improving the first Coulomb efficiency.
  • the outermost layer is a carbon coating layer to further improve the cycle performance of the material.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

Matériau composite d'électrode négative ayant une structure noyau-enveloppe multicouche, son procédé de préparation et utilisation associée. Le matériau composite d'électrode négative présente une structure noyau-enveloppe multicouche, le matériau composite d'électrode négative comportant un noyau intérieure qui est une particule de monoxyde de silicium, une couche intermédiaire qui est un matériau composite d'oxyde de silicium dopé au métal, et une couche la plus extérieure qui est une couche de revêtement en carbone composée de particules de carbone consécutives ou un film de carbone mince. La formule générale du monoxyde de silicium est SiOx, où 0<x<2. Un élément de dopage métallique dans le matériau composite d'oxyde de silicium dopé au métal comprend un ou plusieurs parmi Mg, Ca, Ba, Ti, Li, Mn, Fe, Co, Ni, Cu, Zn, Zr, Mo, Ge, Sn, Al, Na and B. Le matériau composite d'oxyde de silicium dopé au métal est un matériau composite composé d'un oxyde de l'élément dopant métallique et/ou d'un oxyde composite et monoxyde de silicium. Une source de carbone pour former la couche de revêtement en carbone est un ou plusieurs parmi le toluène, le méthane, l'acétylène, le glucose, l'asphalte ou un polymère à poids moléculaire élevé.
PCT/CN2019/113875 2019-10-15 2019-10-29 Matériau composite d'électrode négative ayant une structure noyau-enveloppe multicouche, son procédé de préparation et utilisation associée WO2021072803A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910977360.X 2019-10-15
CN201910977360.XA CN110556529B (zh) 2019-10-15 2019-10-15 具有多层核壳结构的负极复合材料及其制备方法和应用

Publications (1)

Publication Number Publication Date
WO2021072803A1 true WO2021072803A1 (fr) 2021-04-22

Family

ID=68742800

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/113875 WO2021072803A1 (fr) 2019-10-15 2019-10-29 Matériau composite d'électrode négative ayant une structure noyau-enveloppe multicouche, son procédé de préparation et utilisation associée

Country Status (2)

Country Link
CN (1) CN110556529B (fr)
WO (1) WO2021072803A1 (fr)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113659141A (zh) * 2021-07-23 2021-11-16 湖南金硅科技有限公司 一种SiO@Mg/C复合材料及其制备方法和应用
CN113816384A (zh) * 2021-08-30 2021-12-21 上海纳米技术及应用国家工程研究中心有限公司 一种掺磷多孔碳包覆氧化亚硅材料的制备方法及其产品
CN113851639A (zh) * 2021-08-31 2021-12-28 湖南宸宇富基新能源科技有限公司 一种杂原子掺杂的氧-孔双渐变氧化亚硅材料及其制备和应用
CN114105149A (zh) * 2021-10-12 2022-03-01 湖南金硅科技有限公司 一种碳包覆氮磷双掺杂氧化亚硅复合材料及其制备方法和在锂离子电池中的应用
CN114335456A (zh) * 2021-12-06 2022-04-12 桂林电子科技大学 快充型复合负极材料及其制备方法与应用
CN114388770A (zh) * 2022-01-24 2022-04-22 浙江锂宸新材料科技有限公司 一种高容量高首效硅氧负极材料及其制备方法
CN114613972A (zh) * 2022-04-08 2022-06-10 南昌大学共青城光氢储技术研究院 一种锂离子电池用氧化亚硅碳负极材料及其制备方法
CN114684825A (zh) * 2022-04-19 2022-07-01 河北工业大学 一种具有核壳结构的氧化亚硅-碳复合纳米粒子的制备方法和应用
CN114843482A (zh) * 2022-05-23 2022-08-02 常州烯源谷新材料科技有限公司 一种核壳型硅碳复合材料及其制备方法和应用
CN114864888A (zh) * 2022-04-07 2022-08-05 湖南金硅科技有限公司 一种二氟草酸硼酸锂掺杂包覆SiO/C复合材料及其制备方法和应用
CN114975928A (zh) * 2022-05-26 2022-08-30 湖南金硅科技有限公司 一种氧化亚硅介孔原位生长碳纳米管复合材料及其制备方法和在锂离子电池中的应用
CN116014144A (zh) * 2023-03-27 2023-04-25 河南锂动电源有限公司 一种氧化亚硅复合材料及其制备方法

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111048770B (zh) * 2019-12-27 2020-12-08 中国科学院化学研究所 一种三元掺杂的硅基复合材料及其制备方法和应用
EP3872900A1 (fr) * 2019-12-30 2021-09-01 Shanghai Shanshan Tech Co., Ltd. Matériau de stockage de lithium à base de silicium et son procédé de préparation
CA3203502A1 (fr) * 2019-12-30 2021-07-08 Shanghai Shanshan Tech Co., Ltd. Materiau d'anode a base de silicium pour batterie secondaire et methode de preparation, batterie secondaire
WO2021134196A1 (fr) * 2019-12-30 2021-07-08 上海杉杉科技有限公司 Matériau de stockage de lithium à base de silicium et son procédé de préparation
CN111180693B (zh) * 2019-12-31 2021-06-04 安普瑞斯(南京)有限公司 负极活性材料及其制备方法和应用
JP7410301B2 (ja) * 2019-12-31 2024-01-09 博賽利斯(南京)有限公司 電池用の負極活性材料およびその製造方法
CN111653737B (zh) * 2020-04-20 2021-09-07 万向一二三股份公司 一种具有梯度预锂化结构的氧化硅复合材料及其制备方法、应用
CN111554909B (zh) * 2020-05-19 2022-04-08 溧阳天目先导电池材料科技有限公司 含金属掺杂硅基复合材料的负极材料、制备方法和锂电池
CN111584848A (zh) * 2020-05-22 2020-08-25 贝特瑞新材料集团股份有限公司 硅氧复合负极材料、其制备方法和锂离子电池
CN111634918A (zh) * 2020-06-09 2020-09-08 洛阳联创锂能科技有限公司 锂离子电池负极材料及其低成本制备方法
CN113809310B (zh) * 2020-06-15 2023-07-14 溧阳天目先导电池材料科技有限公司 硼掺杂软碳包覆硅基锂离子负极材料及其制备方法和应用
CN111916704B (zh) * 2020-08-04 2023-02-21 珠海冠宇电池股份有限公司 一种负极材料及制备方法、负极片和电池
CN112271277B (zh) * 2020-09-27 2023-07-18 溧阳天目先导电池材料科技有限公司 一种含有金属元素梯度掺杂的负极材料及其应用
CN112310368B (zh) * 2020-10-16 2023-09-12 欣旺达电动汽车电池有限公司 负极活性材料及其制备方法、应用和锂离子电池
CN112701270B (zh) * 2020-12-28 2022-08-05 宁德新能源科技有限公司 一种负极材料,包含该负极材料的极片以及电化学装置
CN112701267B (zh) * 2020-12-30 2022-02-08 湖州杉杉新能源科技有限公司 预锂化硅氧复合材料、负极极片、锂电池及其制备方法
CN112928237A (zh) * 2021-01-22 2021-06-08 惠州亿纬锂能股份有限公司 一种硅氧复合材料、其制备方法和在电池中的应用
CN113130868A (zh) * 2021-04-09 2021-07-16 昆山宝创新能源科技有限公司 含氧化亚硅的复合材料、负极片、锂电池及其制备方法
CN113394384A (zh) * 2021-08-17 2021-09-14 北京壹金新能源科技有限公司 一种嵌脱锂过程中抑制裂纹形成的硅基负极材料及其制备方法
CN114388738B (zh) * 2021-12-29 2024-01-02 湖北亿纬动力有限公司 一种硅基负极材料及其制备方法和应用
CN115084532B (zh) * 2022-08-23 2022-12-09 江苏正力新能电池技术有限公司 一种负极材料、其制备方法、负极片及锂离子电池

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009070825A (ja) * 2007-09-17 2009-04-02 Samsung Sdi Co Ltd リチウム2次電池用負極活物質とその製造方法、リチウム2次電池用負極及びリチウム2次電池
US20170104211A1 (en) * 2014-05-19 2017-04-13 Hitachi, Ltd. Negative Electrode Material, Negative Electrode for Lithium Ion Secondary Battery, Lithium Ion Secondary Battery, and Method of Manufacturing the Same
CN108232145A (zh) * 2017-10-23 2018-06-29 中航锂电(洛阳)有限公司 一种空间缓冲、掺杂锂的硅氧化物复合材料及其制备方法、锂离子电池
CN108493438A (zh) * 2018-04-27 2018-09-04 天津巴莫科技股份有限公司 一种锂离子电池用SiOx基复合负极材料及其制备方法
WO2019078690A2 (fr) * 2017-10-19 2019-04-25 주식회사 엘지화학 Matériau actif négatif, électrode négative renfermant un matériau actif négatif, et batterie secondaire comprenant une électrode négative
CN109755500A (zh) * 2018-12-05 2019-05-14 华为技术有限公司 一种硅氧复合负极材料及其制作方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5008180B2 (ja) * 2006-02-13 2012-08-22 日立マクセルエナジー株式会社 非水二次電池
JP5245592B2 (ja) * 2008-07-14 2013-07-24 信越化学工業株式会社 非水電解質二次電池用負極材、ならびにリチウムイオン二次電池及び電気化学キャパシタ
KR102227309B1 (ko) * 2017-06-02 2021-03-15 주식회사 엘지화학 음극 활물질, 상기 음극 활물질을 포함하는 음극, 및 상기 음극을 포함하는 이차 전지
CN109638231B (zh) * 2017-10-09 2020-09-25 卡博特高性能材料(珠海)有限公司 氧化亚硅复合负极材料及其制备方法和锂离子电池
CN108232173A (zh) * 2018-01-31 2018-06-29 金山电池国际有限公司 锂离子电池负极材料、其制备方法、其负极和锂离子电池
CN109599551B (zh) * 2018-12-28 2021-08-24 安普瑞斯(南京)有限公司 一种用于锂离子电池的掺杂型多层核壳硅基复合材料及其制备方法
CN109888246B (zh) * 2019-03-25 2022-03-11 合肥国轩高科动力能源有限公司 一种具有梯度结构的氧化亚硅复合负极材料及其制备方法和应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009070825A (ja) * 2007-09-17 2009-04-02 Samsung Sdi Co Ltd リチウム2次電池用負極活物質とその製造方法、リチウム2次電池用負極及びリチウム2次電池
US20170104211A1 (en) * 2014-05-19 2017-04-13 Hitachi, Ltd. Negative Electrode Material, Negative Electrode for Lithium Ion Secondary Battery, Lithium Ion Secondary Battery, and Method of Manufacturing the Same
WO2019078690A2 (fr) * 2017-10-19 2019-04-25 주식회사 엘지화학 Matériau actif négatif, électrode négative renfermant un matériau actif négatif, et batterie secondaire comprenant une électrode négative
CN108232145A (zh) * 2017-10-23 2018-06-29 中航锂电(洛阳)有限公司 一种空间缓冲、掺杂锂的硅氧化物复合材料及其制备方法、锂离子电池
CN108493438A (zh) * 2018-04-27 2018-09-04 天津巴莫科技股份有限公司 一种锂离子电池用SiOx基复合负极材料及其制备方法
CN109755500A (zh) * 2018-12-05 2019-05-14 华为技术有限公司 一种硅氧复合负极材料及其制作方法

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113659141B (zh) * 2021-07-23 2023-11-24 湖南金硅科技有限公司 一种SiO@Mg/C复合材料及其制备方法和应用
CN113659141A (zh) * 2021-07-23 2021-11-16 湖南金硅科技有限公司 一种SiO@Mg/C复合材料及其制备方法和应用
CN113816384B (zh) * 2021-08-30 2023-07-18 上海纳米技术及应用国家工程研究中心有限公司 一种掺磷多孔碳包覆氧化亚硅材料的制备方法及其产品
CN113816384A (zh) * 2021-08-30 2021-12-21 上海纳米技术及应用国家工程研究中心有限公司 一种掺磷多孔碳包覆氧化亚硅材料的制备方法及其产品
CN113851639A (zh) * 2021-08-31 2021-12-28 湖南宸宇富基新能源科技有限公司 一种杂原子掺杂的氧-孔双渐变氧化亚硅材料及其制备和应用
CN113851639B (zh) * 2021-08-31 2023-07-25 湖南宸宇富基新能源科技有限公司 一种杂原子掺杂的氧-孔双渐变氧化亚硅材料及其制备和应用
CN114105149A (zh) * 2021-10-12 2022-03-01 湖南金硅科技有限公司 一种碳包覆氮磷双掺杂氧化亚硅复合材料及其制备方法和在锂离子电池中的应用
CN114105149B (zh) * 2021-10-12 2023-09-22 湖南金硅科技有限公司 一种碳包覆氮磷双掺杂氧化亚硅复合材料及其制备方法和在锂离子电池中的应用
CN114335456A (zh) * 2021-12-06 2022-04-12 桂林电子科技大学 快充型复合负极材料及其制备方法与应用
CN114335456B (zh) * 2021-12-06 2024-05-17 桂林电子科技大学 快充型复合负极材料及其制备方法与应用
CN114388770A (zh) * 2022-01-24 2022-04-22 浙江锂宸新材料科技有限公司 一种高容量高首效硅氧负极材料及其制备方法
CN114864888B (zh) * 2022-04-07 2023-08-01 湖南金硅科技有限公司 一种二氟草酸硼酸锂掺杂包覆SiO/C复合材料及其制备方法和应用
CN114864888A (zh) * 2022-04-07 2022-08-05 湖南金硅科技有限公司 一种二氟草酸硼酸锂掺杂包覆SiO/C复合材料及其制备方法和应用
CN114613972A (zh) * 2022-04-08 2022-06-10 南昌大学共青城光氢储技术研究院 一种锂离子电池用氧化亚硅碳负极材料及其制备方法
CN114684825B (zh) * 2022-04-19 2022-12-06 河北工业大学 一种具有核壳结构的氧化亚硅-碳复合纳米粒子的制备方法和应用
CN114684825A (zh) * 2022-04-19 2022-07-01 河北工业大学 一种具有核壳结构的氧化亚硅-碳复合纳米粒子的制备方法和应用
CN114843482A (zh) * 2022-05-23 2022-08-02 常州烯源谷新材料科技有限公司 一种核壳型硅碳复合材料及其制备方法和应用
CN114843482B (zh) * 2022-05-23 2024-06-11 常州烯源谷新材料科技有限公司 一种核壳型硅碳复合材料及其制备方法和应用
CN114975928A (zh) * 2022-05-26 2022-08-30 湖南金硅科技有限公司 一种氧化亚硅介孔原位生长碳纳米管复合材料及其制备方法和在锂离子电池中的应用
CN114975928B (zh) * 2022-05-26 2024-03-19 湖南金硅科技有限公司 一种氧化亚硅介孔原位生长碳纳米管复合材料及其制备方法和在锂离子电池中的应用
CN116014144A (zh) * 2023-03-27 2023-04-25 河南锂动电源有限公司 一种氧化亚硅复合材料及其制备方法
CN116014144B (zh) * 2023-03-27 2023-08-15 河南锂动电源有限公司 一种氧化亚硅复合材料及其制备方法

Also Published As

Publication number Publication date
CN110556529A (zh) 2019-12-10
CN110556529B (zh) 2023-03-14

Similar Documents

Publication Publication Date Title
WO2021072803A1 (fr) Matériau composite d&#39;électrode négative ayant une structure noyau-enveloppe multicouche, son procédé de préparation et utilisation associée
WO2021057923A1 (fr) Matériau composite d&#39;électrode négative et procédé de préparation associé, et batterie au lithium
US11791461B2 (en) Composite silicon negative electrode material, preparation method and use
WO2021057929A1 (fr) Matériau d&#39;électrode négative de composite de silicium et son procédé de préparation, et batterie au lithium-ion
WO2022088543A1 (fr) Matériau actif d&#39;électrode négative utilisé pour une batterie et son procédé de fabrication, et électrode négative de batterie et batterie
CN109390563B (zh) 改性磷酸铁锂正极材料及其制备方法、正极片、锂二次电池
Qiao et al. One-pot synthesis of CoO/C hybrid microspheres as anode materials for lithium-ion batteries
JP2018512699A (ja) ケイ素:ケイ酸リチウムの複合材母材中にナノケイ素粒子を埋込んだケイ素−酸化ケイ素−リチウムの複合材料、及びその製造工程
WO2021077586A1 (fr) Particule de silicium-oxygene pour matériau d&#39;électrode, son procédé de préparation et son utilisation
CN111554909B (zh) 含金属掺杂硅基复合材料的负极材料、制备方法和锂电池
CN101188291A (zh) 锂电池用负极活性材料、其制备方法及包括其的锂电池
CN107845797B (zh) 一种锂离子电池用纳米硅碳复合负极材料及其制备方法
WO2022199389A1 (fr) Matériau d&#39;électrode négative composite à base de silicium-oxygène, procédé de préparation associé et batterie au lithium-ion
WO2021093865A1 (fr) Matériau d&#39;électrode négative et son procédé de préparation, et batterie au lithium-ion
CN111463419B (zh) 一种硅基@钛铌氧化物核壳结构的负极材料及其制备方法
CN108899550B (zh) 复合包覆正极活性材料及其制备方法、锂离子电池正极材料和固态锂离子电池
WO2022121281A1 (fr) Matériau composite à base de silicium revêtu à remplissage automatique, son procédé de préparation et son application
CN108682833B (zh) 一种磷酸铁锂基改性正极材料制备方法
WO2022062319A1 (fr) Matériau d&#39;électrode négative à base de silicium contenant un squelette de silicate, une plaque d&#39;électrode négative et une batterie au lithium
CN111342031B (zh) 一种多元梯度复合高首效锂电池负极材料及其制备方法
WO2023006000A1 (fr) Additif d&#39;ajout de lithium d&#39;électrode positive à noyau-enveloppe, procédé de préparation associé et application associée
WO2023174301A1 (fr) Couche d&#39;électrolyte solide inorganique de batterie au lithium, plaque d&#39;électrode négative composite pour batterie au lithium et son procédé de préparation, et batterie au lithium
CN113506861A (zh) 一种锂离子电池硅基复合负极材料及其制备方法
WO2020067609A1 (fr) Matériau actif d&#39;anode pour batterie secondaire au lithium et batterie secondaire au lithium le comprenant
CN116014104A (zh) 富锂镍系正极材料及其制备方法、正极片与二次电池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19948875

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19948875

Country of ref document: EP

Kind code of ref document: A1