WO2021066459A1 - 폴리알킬렌 카보네이트 중합 용액으로부터 유기 아연 촉매를 분리하는 방법 - Google Patents
폴리알킬렌 카보네이트 중합 용액으로부터 유기 아연 촉매를 분리하는 방법 Download PDFInfo
- Publication number
- WO2021066459A1 WO2021066459A1 PCT/KR2020/013223 KR2020013223W WO2021066459A1 WO 2021066459 A1 WO2021066459 A1 WO 2021066459A1 KR 2020013223 W KR2020013223 W KR 2020013223W WO 2021066459 A1 WO2021066459 A1 WO 2021066459A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- polymerization solution
- organic zinc
- zinc catalyst
- polyalkylene carbonate
- separating
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D21/00—Separation of suspended solid particles from liquids by sedimentation
- B01D21/01—Separation of suspended solid particles from liquids by sedimentation using flocculating agents
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D39/00—Filtering material for liquid or gaseous fluids
- B01D39/14—Other self-supporting filtering material ; Other filtering material
- B01D39/16—Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres
- B01D39/1607—Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres the material being fibrous
- B01D39/1623—Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres the material being fibrous of synthetic origin
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J31/00—Catalysts comprising hydrides, coordination complexes or organic compounds
- B01J31/02—Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
- B01J31/12—Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing organo-metallic compounds or metal hydrides
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D39/00—Filtering material for liquid or gaseous fluids
- B01D39/08—Filter cloth, i.e. woven, knitted or interlaced material
- B01D39/083—Filter cloth, i.e. woven, knitted or interlaced material of organic material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D39/00—Filtering material for liquid or gaseous fluids
- B01D39/14—Other self-supporting filtering material ; Other filtering material
- B01D39/16—Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres
- B01D39/18—Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres the material being cellulose or derivatives thereof
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F6/00—Post-polymerisation treatments
- C08F6/02—Neutralisation of the polymerisation mass, e.g. killing the catalyst also removal of catalyst residues
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G64/00—Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
- C08G64/02—Aliphatic polycarbonates
- C08G64/0208—Aliphatic polycarbonates saturated
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G64/00—Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
- C08G64/40—Post-polymerisation treatment
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G64/00—Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
- C08G64/40—Post-polymerisation treatment
- C08G64/406—Purifying; Drying
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2257/00—Components to be removed
- B01D2257/60—Heavy metals or heavy metal compounds
Definitions
- the present invention relates to a method of separating an organic zinc catalyst from a polyalkylene carbonate polymerization solution. More specifically, it relates to a method for easily separating the organic zinc catalyst by changing the composition of the polyalkylene carbonate polymerization solution.
- Polyalkylene carbonate resin is a biodegradable resin prepared by polymerizing ethylene oxide (EO) and CO 2 in the presence of a catalyst.
- an organic zinc catalyst such as a zinc glutarate catalyst in which zinc and dicarboxylic acid are bonded is mainly used.
- the present invention is to solve the above problems, and to provide a method for effectively separating an organic zinc catalyst dispersed in a polyalkylene carbonate polymerization solution.
- the present invention comprises the steps of stirring and aging a polymerization solution containing a polyalkylene carbonate resin, an organic zinc catalyst, an alkylene oxide, and a polymerization solvent; And it provides a method of separating the organic zinc catalyst from the polyalkylene carbonate polymerization solution comprising the step of filtering the polymerization solution in which the aging has been completed.
- the polymerization solution is stirred to perform aging.
- the unreacted alkylene oxide monomer in the polymerization solution is polymerized with polyalkylene glycol on the surface of the organic zinc catalyst. Accordingly, during the aging process, the surface of the organic zinc catalyst is changed from the surface dominated by polyalkylene carbonate to the surface dominated by polyalkylene glycol, and the catalyst containing polyalkylene glycol is aggregated and precipitated into the lower part of the polymerization solution.
- phase separation occurs into an upper layer including a polyalkylene carbonate resin and a solvent and a lower layer including a polyalkylene glycol and a catalyst.
- a polymerization solution in which the organic zinc catalyst and the polyalkylene carbonate resin are phase-separated can be obtained as described above, the organic zinc catalyst can be easily separated through filtration.
- the organic zinc catalyst is aggregated and phase separation is promoted, thereby further improving the separation efficiency of the organic zinc catalyst.
- the organic zinc catalyst is separated according to the method of the present invention, there is an advantage in that the catalyst can be separated without chemical change, so that regeneration is possible, and the polymerization solvent can be reused without purification.
- FIG. 1 is a photograph showing a state of a polymerization solution obtained from Example 1 and Comparative Example 1.
- FIG. 1 is a photograph showing a state of a polymerization solution obtained from Example 1 and Comparative Example 1.
- Example 2 is a photograph showing the state of the filtrate obtained after filtering the polymerization solutions of Example 1 and Comparative Example 1.
- the present invention relates to a method of separating an organic zinc catalyst from a polymerization solution used for preparing a polyalkylene carbonate resin, and the method of the present invention comprises: (1) a polymerization solution containing a polyalkylene carbonate resin and an organic zinc catalyst. Agitation by stirring and (2) filtering the polymerization solution in which the aging has been completed.
- the aging process is performed after the polymerization of the polyalkylene carbonate resin is completed, the unreacted alkylene oxide monomer remaining in the polymerization solution of the polyalkylene carbonate resin on the surface of the organic zinc catalyst is further polymerized during the aging process.
- the polyalkylene glycol was formed, whereby the organic zinc catalyst was precipitated and phase separation occurred, and the polyalkylene carbonate resin and the organic zinc catalyst could be easily separated, and the present invention was completed.
- the polymerization solution is a solution from which CO 2 is removed after polymerization of the polyalkylene carbonate resin is completed, and includes a polyalkylene carbonate resin, an organic zinc catalyst, an unreacted alkylene oxide, and a polymerization solvent.
- the polymerization solution may contain polyalkylene glycol, which is a reaction by-product.
- the rate at which the alkylene oxide, which is a reactant, is converted to polyalkylene carbonate is at the level of 40 to 60%. Accordingly, an unreacted alkylene oxide monomer is present in the polymerization solution in addition to the product polyalkylene carbonate resin and the organic zinc catalyst as a catalyst.
- the alkylene oxide monomer may be, for example, an alkylene oxide having 2 to 20 carbon atoms, and specifically, ethylene oxide, propylene oxide, butene oxide, pentene oxide, hexene oxide, octene oxide, decene oxide, Dodecene oxide, tetradecene oxide, hexadecene oxide, octadecene oxide, butadiene monooxide, 1,2-epoxy-7-octene, epifluorohydrin, epichlorohydrin, epibromohydrin, isopropyl gly Cidyl ether, butyl glycidyl ether, t-butyl glycidyl ether, 2-ethylhexyl glycidyl ether, allyl glycidyl ether, and the like.
- the organic zinc catalyst may be an organic zinc catalyst used for polymerization of a polyalkylene carbonate resin in the art, for example, a zinc dicarboxylate-based compound.
- the zinc dicarboxylate-based compound may include a zinc salt of an aliphatic dicarboxylate having 3 to 20 carbon atoms or a zinc salt of an aromatic dicarboxylate having 8 to 40 carbon atoms.
- the aliphatic dicarboxylate having 3 to 20 carbon atoms may be, for example, glutarate, malonate, succinate, or adipate, and the aromatic dicarboxylate having 8 to 40 carbon atoms, for example , Terephthalate, isophthalate, homophthalate, phenyl glutarate, and the like, but are not limited thereto.
- the organic zinc catalyst is zinc glutarate.
- the organic zinc catalyst may include particles having an average particle diameter of 0.5 ⁇ m or less and a standard deviation of a particle diameter of 0.04 ⁇ m or less.
- the organic zinc catalyst may be in the form of uniform particles having an average particle diameter of 0.5 ⁇ m or less, or 0.1 to 0.4 ⁇ m, or 0.2 to 0.4 ⁇ m, and a standard deviation of a particle diameter of 0.04 ⁇ m or less, or 0.01 to 0.03 ⁇ m. I can.
- the organic zinc catalyst may have a surface area of 1.8 m 2 /g or more, or 1.8 to 2.5 m 2 /g.
- the organic zinc catalyst may exhibit improved activity by further increasing a contact area with a reactant during the manufacturing process of the polyalkylene carbonate resin.
- polymerization solvent polymerization solvents used for polymerization of polyalkylene carbonates in the art may be used without limitation.
- the polymerization solvent is methylene chloride, ethylene dichloride, trichloroethane, tetrachloroethane, chloroform, acetonitrile, propionitrile, dimethylformamide, N-methyl-2-pyrrolidone, dimethylsulfoxide Side, nitromethane, 1,4-dioxane, 1,3-dioxolane, hexane, toluene, tetrahydrofuran, methyl ethyl ketone, methyl amine ketone, methyl isobutyl ketone, acetone, cyclohexanone, trichloroethylene, Methyl acetate, vinyl acetate, ethyl acetate, propyl acetate, butyrolactone, caprolactone, nitropropyl acetate
- the polymerization solution in which polymerization of the polyalkylene carbonate is completed is stirred for a predetermined time while aging.
- the aging step may be performed in a temperature range of 10° C. to 70° C., and the aging time may be 12 hours or more, preferably about 12 hours to 144 hours.
- the aging temperature and time are within the above ranges, the polyalkylene glycol polymerization reaction proceeds smoothly on the surface of the organic zinc catalyst, so that the phase separation between the organic zinc catalyst and the polyalkylene carbonate occurs well.
- the unreacted alkylene oxide monomer remaining in the polymerization solution is polymerized on the surface of the organic zinc catalyst to form polyalkylene glycol.
- the surface composition of the organic zinc catalyst changes from polyalkylene carbonate dominant to polyalkylene glycol dominant, and when the amount of polyalkylene glycol formed on the catalyst surface increases, polyalkylene glycol and organic zinc catalyst Is precipitated while agglomeration and phase separation occurs. Accordingly, the aging polymerization solution is divided into an upper layer including a polyalkylene carbonate resin and a polymerization solvent, and a lower layer including a polyalkylene glycol and a catalyst.
- the method of the present invention may further perform the step of adding a coagulant after the aging step and before the filtration step to be described later, if necessary.
- the step of adding the coagulant is additionally performed, the phase separation of the polymerization solution is promoted while the organic zinc catalyst is agglomerated, thereby further improving the catalyst separation efficiency.
- a solid-state flocculant for example, polymethyl methacrylate (PMMA), polymethyl methacrylate copolymer, cellulose, silica, diatomaceous earth, Activated carbon, guar gum, alumina, aluminum hydroxide, sodium chloride, sodium sulfate, calcium chloride, magnesium sulfate, and the like may be used, but are not limited thereto.
- PMMA polymethyl methacrylate
- polymethyl methacrylate copolymer for example, polymethyl methacrylate (PMMA), polymethyl methacrylate copolymer, cellulose, silica, diatomaceous earth, Activated carbon, guar gum, alumina, aluminum hydroxide, sodium chloride, sodium sulfate, calcium chloride, magnesium sulfate, and the like may be used, but are not limited thereto.
- polymethyl methacrylate may be used as the flocculant, in which case, the polymethyl methacrylate has a weight average molecular weight (Mw) of 50,000 g/mol to 200,000 g/mol, preferably 70,000 g/mol ⁇ 150,000 g/mol, more preferably 90,000 g/mol ⁇ 100,000 g/mol, and a melting index (Melting Index, MI, measurement condition: 230° C., load 3.8 kg) is 10 g/10 min to 30 g/10 min, preferably For example, it may be 15 g/10min to 25 g/10min.
- Mw weight average molecular weight
- MI Melting Index
- the coagulant is preferably added in an amount of 0.01 to 10% by weight, preferably 0.1 to 5% by weight, and more preferably 0.1 to 2% by weight in the polymerization solution. If the amount of the coagulant is too small, the effect of improving the catalyst separation efficiency is insignificant, and if the amount is too much, an additional process for separating the coagulant is required, which may reduce process efficiency.
- the method of the present invention may further include a step of centrifuging the polymerization solution before the filtration step to be described later, if necessary.
- the centrifugal separation is for facilitating phase separation of the polymerization solution, for example, from 100 G to 50,000 G, or from 1,000 G to 30,000 G, or from 0.1 minutes to 10 minutes, or 0.1 minutes with a relative centrifugal force of 2,000 G to 20,000 G. It can be carried out for minutes to 5 minutes.
- the relative centrifugal force is a value when the centrifugal force is expressed as a ratio of the gravity of the earth and means a force applied during centrifugation, and the relative centrifugal force is excessively reduced to less than 100G, or the centrifugal separation If the time to proceed is excessively reduced to less than 0.1 minutes, the agglomeration effect of the organic zinc catalyst particles may decrease.
- centrifugation An example of a specific method of performing the centrifugation is not particularly limited, and various centrifugal separators widely used in the art may be used without limitation.
- the phase-separated polymerization solution is obtained by the above method, it is filtered to separate the organic zinc catalyst from the polyalkylene carbonate resin polymerization solution.
- the filtration may be performed using a filtration method commonly used in the art, for example, a filter such as a polypropylene filter cloth or a cellulose filter paper, and the method is not particularly limited.
- most of the polyalkylene glycol and organic zinc catalyst on the surface of the catalyst formed through the aging step are aggregated and precipitated to move to the lower layer of the polymerization solution, and the polyalkylene carbonate resin is polymerized on the upper layer of the polymerization solution.
- the solvent will remain.
- a coagulant is added and/or a step of centrifugation is performed, such phase separation is further promoted.
- the organic zinc catalyst can be easily separated through filtration.
- Carbon dioxide and ethylene oxide were polymerized in the presence of an organic zinc catalyst to synthesize a polyalkylene carbonate resin solution.
- a polyalkylene carbonate resin polymerization solution containing a solvent, a polyalkylene carbonate resin, an organic zinc catalyst, and the like was obtained in the same manner as in Example 1, except that the aging process was not performed.
- FIG. 1 is a photograph showing the state of the polymerization solution of Comparative Example 1 and Example 1. As shown in FIG. 1, it can be seen that the solution of Comparative Example 1 that did not undergo the aging process was uniformly dispersed in components without phase separation, whereas the solution of Example 1 that was subjected to the aging process had phase separation. have.
- PEC polyethylene carbonate
- PEG polyethylene glycol
- polyethylene carbonate is present as a main component in the supernatant of the polymerization solution of Example 1, and polyethylene glycol is present as a main component in the lower layer.
- a filtration experiment was performed by passing the polymerization solutions of Comparative Examples 1 and 1.
- the polymerization solutions were injected at a pressure of 7 bar, and the filtered solution was placed in a glass vial to compare the transparency.
- 2 is a photograph showing the state of the filtered solution contained in the glass vial. As shown in FIG. 2, it can be seen that the solution after filtration in Example 1 is transparent, but the organic zinc catalyst remains in the solution after filtration in Comparative Example 1 without being separated, and thus it is opaque.
- the polymerization solution of Example 1 subjected to the aging process has a significantly smaller Zn content in the filtration solution than that of the filtration solution of the polymerization solution of Comparative Example 1. According to the method, the separation efficiency of the organic zinc catalyst is remarkably excellent.
- a polyethylene carbonate resin was formed in the same manner as in Example 1, and aging was performed. As a result of analyzing the components of the polymerization solution after aging through NMR analysis, it was found that the content of polyethylene glycol in the polymerization solution was 1.5 parts by weight based on 100 parts by weight of polyethylene carbonate.
- a polyethylene carbonate resin was formed in the same manner as in Comparative Example 1. Then, 5% by weight of polyethylene glycol having a weight average molecular weight of 200 g/mol was added to the polymerization solution containing the polyethylene carbonate resin, and centrifugation was performed at 3000 G for 3 minutes in a centrifuge.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Textile Engineering (AREA)
- Polyesters Or Polycarbonates (AREA)
Abstract
본 발명은 폴리알킬렌 카보네이트 중합 용액으로부터 유기 아연 촉매를 분리하는 방법에 관한 것으로, 본 발명의 방법은, 폴리알킬렌 카보네이트 수지, 유기 아연 촉매, 알킬렌 옥사이드 및 중합 용매를 포함하는 포함하는 중합 용액을 교반하여 에이징하는 단계; 및 상기 에이징이 완료된 중합 용액을 여과하는 단계를 포함한다.
Description
[관련출원과의 상호 인용]
본 출원은 2019년 9월 30일에 출원된 한국특허출원 제10-2019-0120841호에 기초한 우선권의 이익을 주장하며, 해당 한국특허출원 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
[기술분야]
본 발명은 폴리알킬렌 카보네이트 중합 용액으로부터 유기 아연 촉매를 분리하는 방법에 관한 것이다. 보다 상세하게는, 폴리알킬렌 카보네이트 중합 용액의 조성을 변화시켜 유기 아연 촉매를 쉽게 분리할 수 있도록 한 방법에 관한 것이다.
폴리알킬렌카보네이트 수지는 에틸렌 옥사이드(Ethylene oxide, EO)와 CO2를 촉매 존재 하에 중합 반응시켜 제조되는 생분해 가능한 수지이다.
폴리알킬렌카보네이트 수지 제조에 사용되는 촉매로는 아연 및 디카르복실산이 결합된 아연 글루타레이트 촉매 등의 유기 아연 촉매가 주로 사용된다.
그러나, 중합이 완료된 중합용액 내에 유기 아연 촉매가 고르게 분산되어 있기 때문에, 폴리알킬렌카보네이트 중합 용액으로부터 유기 아연 촉매를 분리하는 것에 어려움이 있다. 이는 폴리알킬렌카보네이트 중합 전에는 유기 아연 촉매가 응집되어 있으나, 중합이 진행되어 점도가 상승함에 따라 전단응력(shear stress)가 상승하여 유기 아연 촉매가 작은 입자들로 분산되게 되고, 중합 이후에 촉매 표면에 폴리알킬렌카보네이트가 잔존하여 중합 용액 내에서 에멀젼화되어 분산되어 있기 때문이다. 이 때문에 불균일 촉매 제거 공정에서 일반적으로 사용되는 금속 필터, 폴리프로필렌 여과포, 셀루로오스 여과지 등의 필터나, 원심 분리 등의 방법으로는 폴리알킬렌카보네이트 중합 용액 중의 유기 아연 촉매를 분리하기 어려웠다.
용액상 고르게 분산되어 있는 유기 아연 촉매를 분리하기 위해, 실리카, 상용 응집제, 그리고 다른 용매 등을 적용하여 유기 아연 촉매 입자를 분리하는 방법이 제안되었으나, 촉매 입자 분리 효율이 좋지 않고, 최종 제조되는 폴리알킬렌카보네이트의 오염을 야기하거나 분해하는 등의 한계가 있었다.
본 발명은 상기와 같은 문제점을 해결하기 위한 것으로, 폴리알킬렌카보네이트 중합 용액 중에 분산된 유기 아연 촉매를 효과적으로 분리시킬 수 있는 방법을 제공하고자 한다.
이를 위해, 본 발명은, 폴리알킬렌카보네이트 수지, 유기 아연 촉매, 알킬렌옥사이드 및 중합 용매를 포함하는 중합 용액을 교반하여 에이징하는 단계; 및 상기 에이징이 완료된 중합 용액을 여과하는 단계를 포함하는 폴리알킬렌카보네이트 중합 용액으로부터 유기 아연 촉매를 분리하는 방법을 제공한다.
본 발명의 유기 아연 촉매의 분리 방법은 폴리알킬렌카보네이트 수지의 중합이 완료된 후에 중합 용액을 교반하여 에이징하는 단계를 실시한다. 본 발명과 같이 에이징 공정을 수행할 경우, 중합 용액 중의 미반응 알킬렌옥사이드 단량체가 유기 아연 촉매의 표면에서 폴리알킬렌글리콜로 중합된다. 이에 따라 에이징 공정 중에 유기 아연 촉매의 표면이 폴리알킬렌카보네이트가 우세한 표면에서 폴리알킬렌글리콜이 우세한 표면으로 변화하게 되고, 폴리알킬렌글리콜을 포함하는 촉매가 응집되면서 중합 용액 하부로 침전되어, 그 결과 폴리알킬렌카보네이트 수지와 용매를 포함하는 상층부와 폴리알킬렌글리콜과 촉매를 포함하는 하층부로 상 분리가 발생하게 된다. 본 발명의 방법에 따르면, 상기와 같이 유기 아연 촉매와 폴리알킬렌카보네이트 수지가 상 분리된 중합 용액을 얻을 수 있기 때문에, 여과를 통해 유기 아연 촉매를 손쉽게 분리할 수 있다.
한편, 에이징 단계 이후에 응집제를 투입하는 단계를 추가로 실시할 경우, 유기 아연 촉매가 응집되면서 상 분리가 촉진되어 유기 아연 촉매의 분리 효율을 더욱 향상시킬 수 있다.
또한, 본 발명의 방법에 따라 유기 아연 촉매를 분리할 경우, 촉매를 화학적 변화가 없는 상태로 분리할 수 있어 재생이 가능하고, 중합 용매도 정제 없이 재사용이 가능하다는 장점이 있다.
도 1은 실시예 1 및 비교예 1로부터 얻어진 중합 용액의 상태를 보여주는 사진이다.
도 2는 실시예 1 및 비교예 1의 중합 용액을 여과시킨 후 얻어진 여과 용액의 상태를 보여주는 사진이다.
도 3은 실시예 1 ~ 6으로부터 얻어진 중합 용액의 상태를 보여주는 사진이다.
도 4는 비교예 1 ~ 5로부터 얻어진 중합 용액의 상태를 보여주는 사진이다.
본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
본 명세서에서 사용되는 용어는 단지 예시적인 실시예들을 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도는 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다.
본 명세서에서, "포함하다" 또는 "가지다" 등의 용어는 실시된 특징, 숫자, 단계, 구성 요소 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 구성 요소, 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
이하, 본 발명에 대해 보다 구체적으로 설명한다.
본 발명은 폴리알킬렌카보네이트 수지 제조에 사용되는 중합 용액으로부터 유기 아연 촉매를 분리하는 방법에 관한 것으로, 본 발명의 방법은, (1) 폴리알킬렌카보네이트 수지 및 유기 아연 촉매를 포함하는 중합 용액을 교반하여에이징하는 단계 및 (2) 상기 에이징이 완료된 중합 용액을 여과하는 단계를 포함한다.
본 발명자들은, 폴리알킬렌카보네이트 수지의 중합이 완료된 후에 에이징 공정을 수행할 경우, 유기 아연 촉매의 표면에서 폴리알킬렌카보네이트 수지의 중합 용액에 잔류하는 미반응 알킬렌옥사이드 단량체가 에이징 공정 중에 추가 중합되어 폴리알킬렌글리콜을 형성하고, 이로 인해 유기 아연 촉매가 침전되어 상 분리가 발생하여 폴리알킬렌카보네이트 수지와 유기 아연 촉매를 손쉽게 분리할 수 있음을 알아내고 본 발명을 완성하였다.
본 발명에서, 상기 중합 용액은 폴리알킬렌카보네이트 수지의 중합이 완료된 후 CO2가 제거된 용액으로, 폴리알킬렌카보네이트 수지, 유기 아연 촉매, 미반응물인 알킬렌옥사이드 및 중합 용매 등을 포함한다. 또한, 상기 중합 용액에는 반응 부산물인 폴리알킬렌글리콜이 포함되어 있을 수 있다.
일반적으로 폴리에틸렌 카보네이트 수지 제조 공정에서 반응물인 알킬렌옥사이드가 폴리알킬렌카보네이트로 전환되는 비율은 40 ~ 60% 수준이다. 따라서, 중합 용액 내에는 생성물인 폴리알킬렌카보네이트 수지와 촉매인 유기 아연 촉매 이외에 미반응된 알킬렌옥사이드 단량체가 존재한다. 이때, 상기 알킬렌옥사이드 단량체는, 예를 들면, 탄소수 2 내지 20의 알킬렌옥사이드일 수 있으며, 구체적으로는, 에틸렌 옥사이드, 프로필렌옥사이드, 부텐옥사이드, 펜텐옥사이드, 헥센옥사이드, 옥텐옥사이드, 데센옥사이드, 도데센옥사이드, 테트라데센옥사이드, 헥사데센옥사이드, 옥타데센옥사이드, 부타디엔 모노옥사이드, 1,2-에폭시-7-옥텐, 에피플루오로하이드린, 에피클로로하이드린, 에피브로모하이드린, 아이소프로필 글리시딜 에테르, 부틸 글리시딜 에테르, t-부틸 글리시딜 에테르, 2-에틸헥실 글리시딜 에테르, 알릴 글리시딜 에테르 등일 수 있다.
한편, 상기 유기 아연 촉매는 당해 기술 분야에서 폴리알킬렌카보네이트 수지의 중합에 사용되는 유기 아연 촉매, 예를 들면, 아연 디카르복실레이트계 화합물일 수 있다. 구체적으로는, 상기 아연 디카르복실레이트계 화합물은 탄소수 3 내지 20의 지방족 디카르복실레이트의 아연염 또는 탄소수 8 내지 40의 방향족 디카르복실레이트의 아연염을 포함할 수 있다. 상기 탄소수 3 내지 20의 지방족 디카르복실레이트는, 예를 들면, 글루타레이트, 말로네이트, 숙시네이트, 또는 아디페이트 등일 수 있고, 상기 탄소수 8 내지 40의 방향족 디카르복실레이트는, 예를 들면, 테레프탈레이트, 이소프탈레이트, 호모프탈레이트 또는 페닐글루타레이트 등을 들 수 있으나, 이에 한정되는 것은 아니다. 상기 유기 아연 촉매의 활성 등의 측면에서, 상기 유기 아연 촉매는 아연 글루타레이트인 것이 특히 바람직하다.
상기 유기 아연 촉매는 0.5 ㎛ 이하의 평균 입경 및 0.04 ㎛ 이하의 입경의 표준 편차를 갖는 입자를 포함할 수 있다. 구체적으로, 상기 유기 아연 촉매는 0.5 ㎛ 이하, 또는 0.1 내지 0.4㎛, 또는 0.2 내지 0.4㎛의 평균 입경과, 0.04㎛ 이하, 또는 0.01 내지 0.03㎛의 입경의 표준 편차를 갖는 균일한 입자 형태로 될 수 있다.
이와 같이, 상기 유기 아연 촉매가 미세하고도 균일한 입경을 가짐에 따라, 상기 유기 아연 촉매는 1.8 ㎡/g 이상, 또는 1.8 내지 2.5 ㎡/g의 표면적을 가질 수 있다. 이로서, 상기 유기 아연 촉매는 폴리알킬렌카보네이트 수지 제조과정에서, 반응물과의 접촉 면적이 보다 증가하여 향상된 활성이 나타날 수 있다.
한편, 상기 중합 용매로는, 당해 기술 분야에서 폴리알킬렌카보네이트 중합에 사용되는 중합 용매들이 제한없이 사용될 수 있다. 예를 들어, 상기 중합 용매는, 메틸렌클로라이드, 에틸렌 디클로라이드, 트리클로로에탄, 테트라클로로에탄, 클로로포름, 아세토나이트릴, 프로피오나이트릴, 디메틸포름아마이드, N-메틸-2-피롤리돈, 디메틸설폭사이드, 니트로메탄, 1,4-다이옥산, 1,3-다이옥솔레인, 헥산, 톨루엔, 테트라하이드로퓨란, 메틸에틸케톤, 메틸아민케톤, 메틸아이소부틸케톤, 아세톤, 사이클로헥사논, 트리클로로 에틸렌, 메틸 아세테이트, 바이닐 아세테이트, 에틸 아세테이트, 프로필 아세테이트, 부틸로락톤, 카프로락톤, 니트로프로판, 벤젠, 스티렌, 자일렌 및 메틸프로파졸(methyl propasol) 또는 이들의 2 종 이상의 혼합물일 수 있으나 이에 한정되는 것은 아니다.
상기와 같은 폴리카보네이트 수지 중합 용액에는 유기 아연 촉매와 폴리알킬렌카보네이트 수지가 용액 중에 균일하게 분산된 형태로 존재하기 때문에 그 분리가 쉽지 않다. 이에 본 발명에서는 상기 중합 용액으로부터 유기 아연 촉매를 분리하기 위해, 폴리알킬렌카보네이트의 중합이 완료된 중합 용액을 일정시간 동안 교반하면서 에이징하는 단계를 수행한다. 상기 에이징 단계는 10℃ 내지 70℃의 온도 범위에서 수행될 수 있으며, 에이징 시간은 12시간 이상, 바람직하게는 12시간 내지 144시간 정도일 수 있다. 에이징 온도 및 시간이 상기 범위를 만족할 때, 유기 아연 촉매의 표면에서 폴리알킬렌글리콜 중합 반응이 원활하게 진행되어 유기 아연 촉매와 폴리알킬렌카보네이트의 상 분리가 잘 일어난다.
상기와 같은 에이징 공정을 수행하면 중합 용액 중에 잔류하는 미반응 알킬렌옥사이드 단량체가 유기 아연 촉매 표면에서 중합하여 폴리알킬렌글리콜을 형성한다. 이러한 추가 중합 반응에 의해 유기 아연 촉매의 표면 조성이 폴리알킬렌카보네이트 우세에서 폴리알킬렌글리콜 우세로 변화하게 되며, 촉매 표면에서 형성된 폴리알킬렌글리콜의 양이 증가하면 폴리알킬렌글리콜과 유기 아연 촉매가 응집되면서 침전되어 상 분리가 발생한다. 이에 따라, 상기 에이징이 완료된 중합 용액은 폴리알킬렌카보네이트 수지와 중합 용매를 포함하는 상층부와 폴리알킬렌글리콜과 촉매를 포함하는 하층부로 나뉘게 된다.
한편, 필수적인 것은 아니나, 본 발명의 방법은, 필요에 따라, 상기 에이징하는 단계 후 및 후술할 여과 단계 이전에 응집제를 투입하는 단계를 추가로 수행할 수 있다. 상기 응집제 투입 단계를 추가로 실시할 경우, 유기 아연 촉매가 응집되면서 중합 용액의 상 분리가 촉진되어 촉매 분리 효율을 더 향상시킬 수 있다.
이때, 상기 응집제로는, 고체 상(Solid-state)의 응집제를 사용하는 것이 바람직하며, 예를 들면, 폴리메틸메타크릴레이트(PMMA), 폴리메틸메타크릴레이트 공중합체, 셀룰로오스, 실리카, 규조토, 활성탄, 구아검, 알루미나, 알루미늄하이드록사이드, 소듐클로라이드, 소듐설페이트, 칼슘 클로라이드, 마그네슘 설페이트 등이 사용될 수 있으나, 이에 한정되는 것은 아니다.
바람직하게는, 상기 응집제로 폴리메틸메타크릴레이트가 사용될 수 있으며, 이때, 상기 폴리메틸메타크릴레이트는 중량평균분자량(Mw)이 50,000g/mol ~ 200,000 g/mol, 바람직하게는 70,000g/mol ~ 150,000 g/mol, 더 바람직하게는 90,000 g/mol ~ 100,000 g/mol 이고, 용융지수(Melting Index, MI, 측정 조건: 230℃, 하중 3.8kg)가 10 g/10min ~ 30g/10min, 바람직하게는 15 g/10min ~ 25 g/10min인 것일 수 있다.
또한, 상기 응집제는 상기 중합 용액 중에 0.01 ~ 10중량%, 바람직하게는 0.1 내지 5중량%, 더 바람직하게는 0.1 내지 2중량%의 양으로 투입되는 것이 바람직하다. 응집제의 투입량이 너무 적으면 촉매 분리 효율 향상 효과가 미미하고, 너무 많으면 응집제 분리를 위한 추가 공정이 필요하게 되어 공정 효율성이 감소할 수 있다.
또한, 본 발명의 방법은, 필요에 따라, 후술할 여과 단계 이전에 중합 용액을 원심분리하는 단계를 추가로 포함할 수 있다.
상기 원심 분리는 중합 용액의 상 분리를 촉진하기 위한 것으로, 예를 들면, 100 G 내지 50,000 G, 또는 1,000 G 내지 30,000 G, 또는 2,000 G 내지 20,000 G의 상대원심력으로 0.1 분 내지 10 분, 또는 0.1 분 내지 5 분간 진행될 수 있다. 상기 상대 원심력(relative centrifugal force)은 원심력이 지구의 중력에 대한 비율로 표시될 때의 값으로 원심 분리가 진행되는 동안 가해지는 힘을 의미하며, 상기 상대 원심력이 100G 미만으로 지나치게 감소하거나, 상기 원심 분리를 진행하는 시간이 0.1분 미만으로 지나치게 감소하면, 유기 아연 촉매 입자의 응집 효과가 감소할 수 있다.
상기 원심 분리를 실시하는 구체적인 방법의 예는 크게 한정되지 않으며, 당해 기술 분야에서 널리 쓰이는 다양한 원심분리장치를 제한 없이 사용할 수 있다.
상기와 같은 방법으로 상 분리된 중합 용액이 얻어지면, 이를 여과시켜 폴리알킬렌카보네이트 수지 중합 용액으로부터 유기 아연 촉매를 분리한다. 이때, 상기 여과는 당해 기술 분야에서 통상 사용되는 여과 방법, 예를 들면, 폴리프로필렌 여과포, 셀루로오스 여과지 등의 필터를 이용하여 수행될 수 있으며, 그 방법이 특별히 한정되는 것은 아니다.
본 발명의 방법에 따르면, 에이징 단계를 통해 형성된 촉매 표면의 폴리알킬렌글리콜과 유기 아연 촉매의 대부분은 응집 및 침전되어 중합 용액의 하층부로 이동하고, 중합 용액의 상층부에는 폴리알킬렌카보네이트 수지와 중합 용매가 남게 된다. 응집제 투입 및/또는 원심 분리 단계를 실시할 경우, 이와 같은 상 분리가 더욱 촉진된다.
이와 같이 본 발명의 방법에 따르면, 폴리알킬렌카보네이트 수지와 유기 아연 촉매가 상분리를 통해 분리된 상태로 존재하기 때문에, 여과를 통해 유기 아연 촉매를 쉽게 분리할 수 있다.
이하, 구체적인 실시예를 통해 본 발명을 구체적으로 설명한다.
실시예 1
이산화탄소와 에틸렌 옥사이드를 유기 아연 촉매 존재 하에 중합하여 폴리알킬렌카보네이트 수지 용액을 합성하였다.
그런 다음, 중합 반응기에서 이산화탄소를 제거하고, 용매, 폴리알킬렌카보네이트 수지, 유기 아연 촉매 등이 그대로 포함되어 있는 폴리알킬렌카보네이트 수지 중합 용액을 25℃에서 추가적으로 1일 동안 교반하면서 에이징을 진행하였다.
비교예 1
에이징 공정을 수행하지 않은 점을 제외하고는 실시예 1과 동일한 방법으로 용매, 폴리알킬렌카보네이트 수지, 유기 아연 촉매 등이 포함되어 있는 폴리알킬렌카보네이트 수지 중합 용액을 얻었다.
실험예 1
비교예 1 및 실시예 1의 방법에 따라 얻어진 중합 용액 상태를 육안으로 확인하였다. 도 1에는 비교예 1 및 실시예 1의 중합 용액의 상태를 보여주는 사진이 도시되어 있다. 도 1에 도시된 바와 같이, 에이징 공정을 거치지 않은 비교예 1의 용액은 상 분리 없이 성분들이 균일하게 분산되어 있는 반면, 에이징 공정을 진행한 실시예 1의 용액에서는 상 분리가 발생하였음을 확인할 수 있다.
또한, 조성 확인을 위해 비교예 1의 중합 용액과 실시예 1의 중합 용액의 상층액 및 하층액으로부터 채취된 시료의 NMR 분석을 진행하였다. 분석 결과는 하기 [표 1]에 나타내었다.
비교예 1 | 실시예 1 | ||
상층액 | 하층액 | ||
PEC | 99.84wt% | 94.55wt% | 28.44wt% |
PEG | 0.16wt% | 5.45wt% | 71.56wt% |
PEC: 폴리에틸렌 카보네이트PEG: 폴리에틸렌 글리콜
상기 [표 1]에 나타난 바와 같이, 에이징 공정을 수행한 실시예 1의 중합 용액의 경우, 비교예 1에 비해 폴리에틸렌글리콜의 함량이 높음을 확인할 수 있으며, 이는 에이징 공정을 통해 폴리에틸렌글리콜이 추가로 중합되었음을 보여준다.
또한, 실시예 1의 중합 용액의 상층액에는 폴리에틸렌카보네이트가 주 성분으로 존재하고, 하층액에는 폴리에틸렌글리콜이 주 성분으로 존재함을 확인할 수 있다.
실험예 2
필터 프레스 챔버에 셀룰로오스 재질의 여과 패드를 장착한 후, 비교예 1 및 실시예 1의 중합 용액을 통과시켜 여과 실험을 진행하였다. 중합 용액들은 7bar의 압력으로 주입하였으며, 여과된 용액을 유리 바이알에 담아 투명도를 비교하였다. 도 2에는 유리 바이알에 담긴 여과된 용액의 상태를 보여주는 사진이 도시되어 있다. 도 2에 도시된 바와 같이, 실시예 1의 여과 후 용액은 투명한데 반해, 비교예 1의 여과 후 용액 중에는 유기 아연 촉매가 분리되지 않고 잔류하여 불투명함을 확인할 수 있다.
또한, 여과된 용액 내의 촉매 잔류량을 확인하기 위해 유도플라즈마(ICP) 장치를 이용하여 여과 용액 중 Zn 금속 함량을 측정하였다. 측정 결과는 하기 [표 2]에 나타내었다.
Zn 함량(ppm) | |
실시예 1 | 40 |
비교예 1 | 1450 |
상기 표 2에 나타난 바와 같이, 에이징 공정을 수행한 실시예 1의 중합 용액은 여과 용액 중 Zn 함량이 비교예 1의 중합 용액의 여과 용액에 비해 현저하게 작음을 알 수 있으며, 이는 실시예 1의 방법에 따를 경우, 유기 아연 촉매 분리 효율이 현저하게 우수함을 보여준다.
실시예 2
실시예 1과 동일한 방법으로 폴리에틸렌 카보네이트 수지를 형성하고, 에이징을 수행하였다. NMR 분석을 통해 상기 에이징 후 중합 용액의 성분을 분석해본 결과, 상기 중합 용액 중 폴리에틸렌글리콜의 함량은 폴리에틸렌 카보네이트 100중량부에 대하여 1.5중량부인 것으로 확인되었다.
다음으로, 상기 에이징이 완료된 중합 용액에 응집제로 폴리메틸메타크릴레이트(용융지수 MI=23g/10min, 중량평균분자량 Mw=90,000~100,000g/mol) 0.1중량%를 첨가하고, 원심 분리기에서 3000G에서 3분간 원심분리를 진행하였다.
실시예 3
응집제로 폴리메틸메타크릴레이트(용융지수 MI=23g/10min, 중량평균분자량 Mw=90,000~100,000g/mol)를 0.2중량% 첨가한 점을 제외하고는, 실시예 2와 동일한 방법으로 실시하였다.
실시예 4
응집제로 폴리메틸메타크릴레이트(용융지수 MI=23g/10min, 중량평균분자량 Mw=90,000~100,000g/mol)를 0.3중량% 첨가한 점을 제외하고는, 실시예 2와 동일한 방법으로 실시하였다.
실시예 5
응집제로 폴리메틸메타크릴레이트(용융지수 MI=23g/10min, 중량평균분자량 Mw=90,000~100,000g/mol)를 0.4중량% 첨가한 점을 제외하고는, 실시예 2와 동일한 방법으로 실시하였다.
실시예 6
응집제로 폴리메틸메타크릴레이트(용융지수 MI=23g/10min, 중량평균분자량 Mw=90,000~100,000g/mol)를 0.5중량% 첨가한 점을 제외하고는, 실시예 2와 동일한 방법으로 실시하였다.
비교예 2
비교예 1과 동일한 방법으로 폴리에틸렌 카보네이트 수지를 형성하였다. 그런 다음, 상기 폴리에틸렌 카보네이트 수지를 포함하는 중합 용액에 중량평균분자량이 200g/mol인 폴리에틸렌글리콜 5중량%를 첨가하고, 원심 분리기에서 3000G에서 3분간 원심분리를 진행하였다.
비교예 3
중량평균분자량이 600g/mol인 폴리에틸렌글리콜을 첨가한 점을 제외하고는, 비교예 2와 동일한 방법으로 실시하였다.
비교예 4
중량평균분자량이 2,000g/mol인 폴리에틸렌글리콜을 첨가한 점을 제외하고는, 비교예 2와 동일한 방법으로 실시하였다.
비교예 5
중량평균분자량이 10,000g/mol인 폴리에틸렌글리콜을 첨가한 점을 제외하고는, 비교예 2와 동일한 방법으로 실시하였다.
실험예 3
실시예 1 ~ 6 및 비교예 1 ~ 5로부터 얻어진 용액의 상태를 육안으로 확인하였다. 도 3에는 실시예 1 ~ 6의 용액의 상태를 보여주는 사진이 도시되어 있으며, 도 4에는 비교예 1 ~ 5의 용액의 상태를 보여주는 사진이 도시되어 있다.
도 3에 나타난 바와 같이, 응집제를 투입하지 않은 실시예 1의 용액에 비해, 응집제를 투입한 실시예 2 ~ 6의 용액의 투명도가 높았으며, 응집제의 투입량이 증가할수록 투명도도 증가하였음을 확인할 수 있다. 이는 응집제 투입을 통해 유기 아연 촉매의 분리 효과가 향상되었음을 보여주는 것이다.
이에 비해, 도 4에 도시된 바와 같이, 에이징 공정을 통해 폴리에틸렌글리콜을 생성하지 않고, 폴리에틸렌글리콜을 투입한 비교예 2 ~ 5의 경우, 비교예 1과 마찬가지로 불투명하였으며, 이는 원심 분리 이후에도 유기 아연 촉매가 중합 용액 중에 분산된 상태로 존재함을 보여준다. 즉, 에이징 공정을 통해 촉매 표면에서 폴리에틸렌글리콜을 형성하지 않고, 폴리에틸렌글리콜을 첨가하는 방법으로는 유기 아연 촉매의 분리 효과가 없었다.
Claims (10)
- 폴리알킬렌 카보네이트 수지, 유기 아연 촉매, 알킬렌 옥사이드 및 중합 용매를 포함하는 포함하는 중합 용액을 교반하여 에이징하는 단계; 및상기 에이징이 완료된 중합 용액을 여과하는 단계를 포함하는 폴리알킬렌 카보네이트 중합 용액으로부터 유기 아연 촉매를 분리하는 방법.
- 제1항에 있어서,상기 에이징하는 단계는 10℃ 내지 70℃의 온도 범위에서 수행되는 것인 폴리알킬렌 카보네이트 중합 용액으로부터 유기 아연 촉매를 분리하는 방법.
- 제1항에 있어서,상기 에이징하는 단계는 12시간 이상 수행되는 것인 폴리알킬렌 카보네이트 중합 용액으로부터 유기 아연 촉매를 분리하는 방법.
- 제1항에 있어서,상기 에이징하는 단계에서 상기 유기 아연 촉매의 표면에서 폴리알킬렌 글리콜이 중합되는 것인 폴리알킬렌 카보네이트 중합 용액으로부터 유기 아연 촉매를 분리하는 방법.
- 제1항에 있어서,상기 에이징이 완료된 중합 용액은 폴리알킬렌 카보네이트 수지와 용매를 포함하는 상층부와 폴리알킬렌 글리콜과 촉매를 포함하는 하층부로 상 분리된 것인 폴리알킬렌 카보네이트 중합 용액으로부터 유기 아연 촉매를 분리하는 방법.
- 제1항에 있어서,상기 에이징하는 단계 후, 상기 여과시키는 단계 이전에 응집제를 투입하는 단계를 더 포함하는 폴리알킬렌 카보네이트 중합 용액으로부터 유기 아연 촉매를 분리하는 방법.
- 제6항에 있어서,상기 응집제는 고체 상 응집제인 폴리알킬렌 카보네이트 중합 용액으로부터 유기 아연 촉매를 분리하는 방법.
- 제7항에 있어서,상기 응집제는 폴리메틸메타크릴레이트(PMMA), 폴리메틸메타크릴레이트 공중합체, 셀룰로오스, 실리카, 규조토, 활성탄, 구아검, 알루미나, 알루미늄하이드록사이드, 소듐 클로라이드, 소듐 설페이트, 칼슘 클로라이드, 및 마그네슘 설페이트로 이루어진 군으로부터 선택되는 1종 이상인 폴리알킬렌 카보네이트 중합 용액으로부터 유기 아연 촉매를 분리하는 방법.
- 제6항에 있어서,상기 응집제는 상기 중합 용액 중에 0.01 ~ 10중량%의 양으로 투입하는 것인 폴리알킬렌 카보네이트 중합 용액으로부터 유기 아연 촉매를 분리하는 방법.
- 제1항에 있어서,상기 여과하는 단계 이전에 상기 에이징이 완료된 중합 용액을 원심 분리하는 단계를 더 포함하는 폴리알킬렌 카보네이트 중합 용액으로부터 유기 아연 촉매를 분리하는 방법.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/437,907 US12076714B2 (en) | 2019-09-30 | 2020-09-28 | Method for separating organozinc catalyst from polyalkylene carbonate polymerization solution |
CN202080013303.0A CN113423758B (zh) | 2019-09-30 | 2020-09-28 | 从聚碳酸亚烷基酯聚合溶液中分离有机锌催化剂的方法 |
EP20872589.5A EP3906985A4 (en) | 2019-09-30 | 2020-09-28 | METHOD FOR SEPARATION OF AN ORGANOZINC CATALYST FROM A POLYMERIZATION SOLUTION OF POLYALKYLENE CARBONATE |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2019-0120841 | 2019-09-30 | ||
KR1020190120841A KR102624002B1 (ko) | 2019-09-30 | 2019-09-30 | 폴리알킬렌 카보네이트 중합 용액으로부터 유기 아연 촉매를 분리하는 방법 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021066459A1 true WO2021066459A1 (ko) | 2021-04-08 |
Family
ID=75338317
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2020/013223 WO2021066459A1 (ko) | 2019-09-30 | 2020-09-28 | 폴리알킬렌 카보네이트 중합 용액으로부터 유기 아연 촉매를 분리하는 방법 |
Country Status (5)
Country | Link |
---|---|
US (1) | US12076714B2 (ko) |
EP (1) | EP3906985A4 (ko) |
KR (1) | KR102624002B1 (ko) |
CN (1) | CN113423758B (ko) |
WO (1) | WO2021066459A1 (ko) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3000064B2 (ja) * | 1989-03-31 | 2000-01-17 | ピー・エイ・シー・ポリマーズ・インコーポレイテッド | 金属有機触媒の再生方法 |
KR20020028589A (ko) * | 2000-10-11 | 2002-04-17 | 정명식 | 폴리(알킬렌 카보네이트-델타-발레로락톤) 공중합체 및그의 제조 방법 |
JP2006506324A (ja) * | 2002-05-08 | 2006-02-23 | アルコ ケミカル テクノロジィ, エル.ピー. | アルキレンカーボネートの精製方法 |
KR101699575B1 (ko) * | 2009-11-30 | 2017-02-13 | 미쓰비시 가가꾸 가부시키가이샤 | 에틸렌카보네이트 및 에틸렌글리콜의 제조 방법 |
Family Cites Families (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0358326B1 (en) * | 1988-08-09 | 1996-12-27 | Mitsui Petrochemical Industries, Ltd. | Process for preparing a zinc-containing solid catalyst and process for preparing polyalkylene carbonate |
US5010047A (en) | 1989-02-27 | 1991-04-23 | Arco Chemical Technology, Inc. | Recovery of double metal cyanide complex catalyst from a polymer |
JPH11236443A (ja) * | 1998-02-23 | 1999-08-31 | Lion Corp | ポリカーボネートポリオール |
KR100373711B1 (ko) * | 2000-10-11 | 2003-02-25 | 주식회사 포스코 | 지방족 폴리(알킬렌 카보네이트-락타이드) 공중합체 및그의 제조 방법 |
US6713593B2 (en) | 2000-10-11 | 2004-03-30 | Pohang Iron & Steel Co., Ltd. | Copolymer comprising alkylene carbonate and method of preparing same |
KR20020050990A (ko) | 2000-12-22 | 2002-06-28 | 신현준 | 슬래그 보드의 제조방법 |
DE10237274B4 (de) * | 2002-08-14 | 2004-09-09 | Consortium für elektrochemische Industrie GmbH | Verfahren zur Abtrennung von Zinksalzen aus Zink-Alkoholaten oder Zink-Amiden enthaltenden nicht-wässrigen Syntheselösungen |
US6806348B2 (en) * | 2003-02-11 | 2004-10-19 | Basf Corporation | Process for removing and regenerating a double metal cyanide (DMC) catalyst from a polymer polyol |
KR100513899B1 (ko) | 2003-03-11 | 2005-09-07 | 주식회사 엘지화학 | 고분자 중합물 내 잔류 촉매 제거방법 |
CN1290896C (zh) * | 2004-05-28 | 2006-12-20 | 泰兴市金龙绿色化学有限责任公司 | 脂肪族聚碳酸酯树脂的精制工艺 |
KR100843596B1 (ko) | 2005-11-21 | 2008-07-03 | 주식회사 엘지화학 | 촉매 잔사 제거 방법 |
KR100871058B1 (ko) | 2006-04-07 | 2008-11-27 | 주식회사 엘지화학 | 고분자 용액 내 잔류 촉매 제거 방법 |
KR101680402B1 (ko) * | 2009-05-22 | 2016-11-28 | 스미또모 세이까 가부시키가이샤 | 지방족 폴리카보네이트의 제조 방법 |
CN102977230B (zh) | 2011-09-05 | 2015-07-01 | 中国石油化工股份有限公司 | 一种除去聚合物溶液中加氢催化剂的方法 |
JP5711648B2 (ja) | 2011-11-16 | 2015-05-07 | ライオン株式会社 | アルキレンオキシド付加物の製造方法 |
WO2014003370A1 (ko) * | 2012-06-25 | 2014-01-03 | 주식회사 엘지화학 | 폴리알킬렌 카보네이트 성형품 제조용 에멀젼 조성물 및 이를 사용하여 제조된 수지 성형품 |
JP2016525619A (ja) * | 2013-08-02 | 2016-08-25 | コベストロ、ドイチュラント、アクチエンゲゼルシャフトCovestro Deutschland Ag | ポリエーテルカーボネートポリオールの製造方法 |
KR101640244B1 (ko) * | 2013-10-30 | 2016-07-15 | 주식회사 엘지화학 | 유기 아연 촉매의 제조 방법 및 폴리알킬렌 카보네이트 수지의 제조 방법 |
EP3048129B1 (en) * | 2013-11-18 | 2020-07-29 | LG Chem, Ltd. | Organic zinc catalyst, preparation method therefor, and method for preparing polyalkylene carbonate resin by using same |
KR101778761B1 (ko) * | 2014-11-04 | 2017-09-14 | 주식회사 엘지화학 | 폴리알킬렌 카보네이트 입자의 제조 방법 |
KR101748408B1 (ko) * | 2014-12-08 | 2017-06-16 | 주식회사 엘지화학 | 폴리알킬렌카보네이트 수지의 제조방법 |
CN107075104B (zh) * | 2014-12-08 | 2019-04-09 | Lg化学株式会社 | 制备聚碳酸亚烷基酯树脂的方法 |
KR101848797B1 (ko) * | 2015-02-17 | 2018-04-13 | 주식회사 엘지화학 | 선형 무기 배위 고분자, 금속 착화합물, 이를 포함하는 금속 나노 구조체 및 촉매 조성물 |
KR101794913B1 (ko) * | 2015-05-08 | 2017-11-07 | 주식회사 엘지화학 | 유기 아연 촉매 분리방법 |
JP6616894B2 (ja) * | 2016-03-11 | 2019-12-04 | エルジー・ケム・リミテッド | 熱安定性および加工性が向上したポリアルキレンカーボネートを含む樹脂組成物の経済的製造方法 |
EP3219741A1 (de) * | 2016-03-18 | 2017-09-20 | Covestro Deutschland AG | Verfahren zur herstellung von polyethercarbonatpolyolen |
-
2019
- 2019-09-30 KR KR1020190120841A patent/KR102624002B1/ko active IP Right Grant
-
2020
- 2020-09-28 US US17/437,907 patent/US12076714B2/en active Active
- 2020-09-28 EP EP20872589.5A patent/EP3906985A4/en active Pending
- 2020-09-28 WO PCT/KR2020/013223 patent/WO2021066459A1/ko unknown
- 2020-09-28 CN CN202080013303.0A patent/CN113423758B/zh active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3000064B2 (ja) * | 1989-03-31 | 2000-01-17 | ピー・エイ・シー・ポリマーズ・インコーポレイテッド | 金属有機触媒の再生方法 |
KR20020028589A (ko) * | 2000-10-11 | 2002-04-17 | 정명식 | 폴리(알킬렌 카보네이트-델타-발레로락톤) 공중합체 및그의 제조 방법 |
JP2006506324A (ja) * | 2002-05-08 | 2006-02-23 | アルコ ケミカル テクノロジィ, エル.ピー. | アルキレンカーボネートの精製方法 |
KR101699575B1 (ko) * | 2009-11-30 | 2017-02-13 | 미쓰비시 가가꾸 가부시키가이샤 | 에틸렌카보네이트 및 에틸렌글리콜의 제조 방법 |
Non-Patent Citations (3)
Title |
---|
A. AGUADERO, FALCON H., CAMPOS-MARTIN J. M., AL-ZAHRANI S. M., FIERRO J. L. G., ALONSO J. A.: "An Oxygen-Deficient Perovskite as Selective Catalyst in the Oxidation of Alkyl Benzenes", ANGEWANDTE CHEMIE INTERNATIONAL EDITION, �VERLAG CHEMIE| :, vol. 50, no. 29, 11 July 2011 (2011-07-11), pages 6557 - 6561, XP055005083, ISSN: 14337851, DOI: 10.1002/anie.201007941 * |
See also references of EP3906985A4 * |
SINGH, S.J. ; JAYARAM, R.V.: "Oxidation of alkylaromatics to benzylic ketones using TBHP as an oxidant over LaMO"3 (M=Cr, Co, Fe, Mn, Ni) perovskites", CATALYSIS COMMUNICATIONS, ELSEVIER, AMSTERDAM, NL, vol. 10, no. 15, 15 September 2009 (2009-09-15), AMSTERDAM, NL, pages 2004 - 2007, XP026542422, ISSN: 1566-7367, DOI: 10.1016/j.catcom.2009.07.018 * |
Also Published As
Publication number | Publication date |
---|---|
EP3906985A1 (en) | 2021-11-10 |
CN113423758B (zh) | 2023-03-17 |
CN113423758A (zh) | 2021-09-21 |
KR102624002B1 (ko) | 2024-01-12 |
EP3906985A4 (en) | 2022-05-04 |
US12076714B2 (en) | 2024-09-03 |
US20220143589A1 (en) | 2022-05-12 |
KR20210038114A (ko) | 2021-04-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2021066459A1 (ko) | 폴리알킬렌 카보네이트 중합 용액으로부터 유기 아연 촉매를 분리하는 방법 | |
EP2473544A2 (en) | Continuous process for manufacturing aliphatic polycarbonate from carbon dioxide and epoxide compounds | |
WO2018084417A1 (ko) | 고내열성 스티렌-아크릴로니트릴 수지 및 이의 제조방법 | |
CN1377381A (zh) | 生产聚亚芳基硫醚的方法 | |
CN1452645A (zh) | 从溶液淤浆中分离聚合物树脂的方法 | |
WO2012091361A2 (en) | Highly pure poloxamers and purification method thereof | |
WO2020130313A1 (ko) | 페놀계 부산물 분해 방법 | |
WO2021040384A1 (ko) | 촉매 조성물 및 이를 이용한 탄화수소 수지의 제조방법 | |
WO2020130728A1 (ko) | 유기아연 촉매의 제조방법 및 이로부터 제조된 유기아연 촉매를 이용한 폴리알킬렌 카보네이트 수지의 제조방법 | |
WO2020159167A1 (ko) | 아미드계 화합물의 회수 방법 | |
WO2020130686A1 (ko) | 여과막을 이용한 유기 아연 촉매의 분리 방법 | |
WO2014204279A1 (en) | Method of separating aliphatic polycarbonate polymer and catalyst from preparing process of copolymer | |
US5095049A (en) | Process for producing a low-particle-content transparent thermoplastic resin solution | |
WO2020130735A1 (ko) | 표면 개질 처리를 통한 폐 유기 아연 촉매의 재생방법 | |
US4414422A (en) | Purification of 4,4-dihydroxybiphenyl | |
EP3237370A1 (en) | Method and apparatus for purification of dimethyl carbonate using pervaporation | |
WO2022019507A1 (ko) | 압력 스윙 증류를 이용한 카르복실산과 아미드 화합물의 회수 방법 | |
WO2021054607A1 (ko) | 페놀계 부산물 분해 방법 | |
EP0583807A1 (en) | A process for preparing high molecular weight polyethyleneterephthalate from recycled PET | |
WO2020080899A1 (ko) | 폴리아릴렌 설파이드의 분리 회수 방법 | |
WO2020145699A1 (ko) | 폴리알킬렌카보네이트계 수지, 이의 제조방법 및 이로부터 제조된 성형품 | |
WO2018062965A1 (ko) | 폴리에테르에스테르 공중합체의 제조방법 | |
EP3628656A1 (en) | Method for manufacturing terephthalic acid and system thereof | |
WO2020149670A1 (ko) | 에스테르화 반응 촉매 및 그 제조방법 | |
WO2015084055A1 (ko) | 내열성 및 충격강도가 개선된 나일론 블렌드 조성물 및 이의 제조방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20872589 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2020872589 Country of ref document: EP Effective date: 20210806 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |