WO2020130313A1 - 페놀계 부산물 분해 방법 - Google Patents

페놀계 부산물 분해 방법 Download PDF

Info

Publication number
WO2020130313A1
WO2020130313A1 PCT/KR2019/013513 KR2019013513W WO2020130313A1 WO 2020130313 A1 WO2020130313 A1 WO 2020130313A1 KR 2019013513 W KR2019013513 W KR 2019013513W WO 2020130313 A1 WO2020130313 A1 WO 2020130313A1
Authority
WO
WIPO (PCT)
Prior art keywords
phenol
decomposition
stream
phenolic
product
Prior art date
Application number
PCT/KR2019/013513
Other languages
English (en)
French (fr)
Inventor
이상범
강민석
신준호
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to EP19883331.1A priority Critical patent/EP3715338B1/en
Priority to JP2020528431A priority patent/JP6886081B2/ja
Priority to US16/765,104 priority patent/US11370735B2/en
Priority to CN201980005845.0A priority patent/CN111601784B/zh
Publication of WO2020130313A1 publication Critical patent/WO2020130313A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C37/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring
    • C07C37/68Purification; separation; Use of additives, e.g. for stabilisation
    • C07C37/86Purification; separation; Use of additives, e.g. for stabilisation by treatment giving rise to a chemical modification
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/20Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from organic compounds containing only oxygen atoms as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C15/00Cyclic hydrocarbons containing only six-membered aromatic rings as cyclic parts
    • C07C15/40Cyclic hydrocarbons containing only six-membered aromatic rings as cyclic parts substituted by unsaturated carbon radicals
    • C07C15/42Cyclic hydrocarbons containing only six-membered aromatic rings as cyclic parts substituted by unsaturated carbon radicals monocyclic
    • C07C15/44Cyclic hydrocarbons containing only six-membered aromatic rings as cyclic parts substituted by unsaturated carbon radicals monocyclic the hydrocarbon substituent containing a carbon-to-carbon double bond
    • C07C15/46Styrene; Ring-alkylated styrenes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C37/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring
    • C07C37/50Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring by reactions decreasing the number of carbon atoms
    • C07C37/52Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring by reactions decreasing the number of carbon atoms by splitting polyaromatic compounds, e.g. polyphenolalkanes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C37/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring
    • C07C37/68Purification; separation; Use of additives, e.g. for stabilisation
    • C07C37/70Purification; separation; Use of additives, e.g. for stabilisation by physical treatment
    • C07C37/72Purification; separation; Use of additives, e.g. for stabilisation by physical treatment by liquid-liquid treatment
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C37/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring
    • C07C37/68Purification; separation; Use of additives, e.g. for stabilisation
    • C07C37/88Use of additives, e.g. for stabilisation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C39/00Compounds having at least one hydroxy or O-metal group bound to a carbon atom of a six-membered aromatic ring
    • C07C39/02Compounds having at least one hydroxy or O-metal group bound to a carbon atom of a six-membered aromatic ring monocyclic with no unsaturation outside the aromatic ring
    • C07C39/04Phenol
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C39/00Compounds having at least one hydroxy or O-metal group bound to a carbon atom of a six-membered aromatic ring
    • C07C39/12Compounds having at least one hydroxy or O-metal group bound to a carbon atom of a six-membered aromatic ring polycyclic with no unsaturation outside the aromatic rings
    • C07C39/15Compounds having at least one hydroxy or O-metal group bound to a carbon atom of a six-membered aromatic ring polycyclic with no unsaturation outside the aromatic rings with all hydroxy groups on non-condensed rings, e.g. phenylphenol
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C4/00Preparation of hydrocarbons from hydrocarbons containing a larger number of carbon atoms
    • C07C4/24Preparation of hydrocarbons from hydrocarbons containing a larger number of carbon atoms by splitting polyarylsubstituted aliphatic compounds at an aliphatic-aliphatic bond, e.g. 1,4-diphenylbutane to styrene
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/78Separation; Purification; Stabilisation; Use of additives
    • C07C45/81Separation; Purification; Stabilisation; Use of additives by change in the physical state, e.g. crystallisation
    • C07C45/82Separation; Purification; Stabilisation; Use of additives by change in the physical state, e.g. crystallisation by distillation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C49/00Ketones; Ketenes; Dimeric ketenes; Ketonic chelates
    • C07C49/76Ketones containing a keto group bound to a six-membered aromatic ring
    • C07C49/78Acetophenone

Definitions

  • the present invention relates to a method for decomposing phenolic byproducts, and more particularly, to a method for decomposing a phenolic byproduct produced in a phenol production process.
  • the hump process includes (1) alkylating benzene with propylene to form cumene, (2) combining cumene with oxygen to oxidize to cumene hydroperoxide (CHP), and (3) cumene hydroperoxide It is carried out in three steps of decomposing to phenol and acetone by an acid decomposition reaction under an acid catalyst.
  • step (2) in the oxidation step of cumene, in addition to cumene hydroperoxide, acetophenone (AP), dimethyl benzyl alcohol (DMBA), dicumyl peroxide (DCP), and dicumene ( Byproducts such as Dicumene, DC) are produced.
  • AP acetophenone
  • DMBA dimethyl benzyl alcohol
  • DCP dicumyl peroxide
  • DC dicumene
  • the product stream is introduced into a separate separation device, and an acetone-based mixture comprising unreacted cumene, acetone, alpha-methylstyrene and hydroxyacetone, etc. is separated at the top of the separation device, and phenol and some alpha-methylstyrene , 2-methylbenzofuran and other by-products are separated at the bottom of the separation device.
  • the phenolic mixture separated from the bottom of the separation device is introduced into a phenol column, and the phenol is separated from the top of the phenol column, and phenolic by-products such as dicumyl peroxide, cumylphenol, alpha-methylstyrene dimer and tar, etc. Is separated at the bottom of the phenol column.
  • the phenol-based by-product separated from the bottom of the phenol column was used as a fuel or discarded without further treatment.
  • the phenol-based by-product separated from the bottom of the phenol column contains, in addition to the tar as an impurity, the product phenol and some active ingredients such as alpha-methylstyrene, so it is necessary to separate and recover the active ingredients from the phenol-based by-product. Do.
  • decomposing by-products contained in the phenolic by-products it is possible to generate cumene and the like.
  • the problem to be solved in the present invention in order to solve the problems mentioned in the technology that is the background of the invention, while decomposing the phenolic by-products produced in the phenol production process to obtain an active ingredient, prevent the load of the phenol production process Is to do.
  • the present invention effectively removes the salts contained in the phenolic by-products prior to decomposition of the phenolic by-products, thereby decomposing the phenolic by-products to effectively obtain the active ingredient, while preventing an increase in the load and energy consumption of the phenolic manufacturing process.
  • An object of the present invention is to provide a method for decomposing phenolic by-products.
  • the present invention is a method for decomposing a phenol-based by-product produced in a phenol production process, a phenol-based by-product stream, a decomposition device side discharge stream and process water to a mixing device Injecting and mixing (S10);
  • a step of separating a phase into an oil phase and an aqueous phase by introducing a mixing device discharge stream discharged from the mixing device into a phase separation device (S20);
  • a phenol-based by-product decomposition method comprising the step (S40) of circulating the decomposition device side discharge stream by the decomposition of the step (S30) to the mixing device of the step (S10).
  • salts contained in the phenolic by-products can be effectively removed prior to decomposition of the phenolic by-products. While decomposing the byproducts of the system to effectively obtain the active ingredient, there is an effect of reducing the content of acetophenone in the active ingredient.
  • FIG. 1 is a process flow diagram for a method for decomposing phenolic by-products according to an embodiment of the present invention.
  • FIG. 2 is a process flow diagram for a method for decomposing phenolic by-products according to another embodiment of the present invention.
  • FIG. 3 is a process flow diagram for a method for decomposing phenolic by-products including a phenol production process according to an embodiment of the present invention.
  • FIG. 4 is a process flow diagram for a method for decomposing a phenolic by-product including a phenol production process according to another embodiment of the present invention.
  • FIG. 5 is a process flow diagram for a method for decomposing phenolic by-products according to Comparative Examples 1 and 2 of the present invention.
  • FIG. 6 is a process flow diagram for a method for decomposing phenolic by-products according to Comparative Example 3 of the present invention.
  • FIG. 7 is a process flow diagram for a method for decomposing phenolic by-products according to Comparative Example 4 of the present invention.
  • the term'stream' may mean a flow of fluid in a process, and may also mean a fluid flowing in a pipe. Specifically, the'stream' may mean the fluid itself and the flow of fluid flowing in the pipe connecting each device at the same time. In addition, the fluid may mean gas.
  • the method for decomposing phenolic by-products according to the present invention may be a method for decomposing a phenolic by-product produced in a phenol production process.
  • the phenol manufacturing process may be a hoc process.
  • the phenol-based by-product decomposition method comprises the steps of mixing the phenol-based byproduct stream (PBS), the decomposition device side discharge stream (DSS) and the process water (PW) into the mixing device (10). (S10); A step of separating phases into an oil phase and an aqueous phase by introducing a mixing device discharge stream MS discharged from the mixing device 10 into a phase separation device 20; Step (S30) of supplying the oil phase stream (NOS-1) discharged by phase separation in the step (S20) to the decomposition device 30 (S30); And circulating the decomposition device side discharge stream DSS by the decomposition in step (S30) to the mixing device in step (S10) (S40).
  • PBS phenol-based byproduct stream
  • DSS decomposition device side discharge stream
  • PW process water
  • the phenol production process may be carried out by including an acid decomposition reaction of cumene hydroperoxide described above.
  • the acid decomposition reaction solution contains an acid. Therefore, in order to obtain phenol and acetone by a process such as distillation from the acid decomposition reaction solution, a process of neutralizing the acid decomposition reaction solution is required.
  • neutralization is performed with a basic aqueous solution, etc.
  • the neutralization reaction between the acid used for the acid decomposition reaction and the base such as a basic aqueous solution is performed.
  • Salt occurs.
  • the acid decomposition reaction neutralized by the neutralization process is phase-separated into an oil phase and an aqueous phase, and a separation process is carried out to obtain phenol and acetone from the separated oil phase.
  • the salts are mostly removed together in the aqueous phase, but some are It remains in the oil phase.
  • salts eventually remain in the phenolic by-products described in the present invention after the phenol separation process.
  • the salt remaining in the phenol-based by-products has a problem that causes a breakdown of the decomposition device by causing corrosion, occlusion, and deposition of the decomposition device when decomposing the phenol-based byproduct to obtain an active ingredient from the phenol-based by-product. . Therefore, it is important to minimize salts in the phenolic by-products when decomposing the phenolic by-products.
  • organic materials such as phenol, cumene and alpha-methylstyrene discharged as active ingredients from the upper discharge stream (ie, DUS) of the decomposition device 30 for decomposing phenolic by-products with process water are added to the phenolic by-products.
  • the method of removing the salt may also be considered, but since it utilizes the decomposition device upper discharge stream (DUS) obtained as an active ingredient as it is, the purification efficiency decreases and the reflux stream decreases to reduce the condenser There is a problem in that cold heat for driving is additionally required, thereby increasing the total operating energy (see FIG. 7 ).
  • the method for decomposing phenolic by-products according to the present invention it is possible to minimize salts in the phenolic by-products, and accordingly, stable operation of the device for decomposing phenolic by-products is possible, thereby effectively decomposing phenolic by-products to effectively There is an effect that can be obtained.
  • the step (S10) is a step for minimizing the salt (Salt) in the phenolic by-product, and directly supplying the phenolic by-product stream (PBS) to the decomposition device 30 as in the prior art
  • PBS phenol-based by-product stream
  • DSS decomposition device side discharge stream
  • PW process water
  • the phenol-based by-product stream may include one or more selected from the group consisting of phenol, alpha-methylstyrene, acetophenone, cumyl phenol and alpha-methylstyrene dimer.
  • the phenol-based by-product stream (PBS) may include two or more selected from the group consisting of phenol, alpha-methylstyrene, acetophenone, cumyl phenol, and alpha-methylstyrene dimer, or both.
  • These components separate the acetone-based mixture and the phenol-based mixture from the acid decomposition reaction solution of the phenol production process by a separation device, and the phenol discharged from the process of separating phenol and phenolic by-products from the phenol-based mixture by a phenol column. It may be components included in the system by-products.
  • the decomposition device side discharge stream is a stream discharged from the side of the decomposition device 30 to be described later, phenol; Acetophenone; And alpha-methylstyrene and cumene.
  • the cracking device side discharge stream (DSS) may include phenol, acetophenone, alpha-methylstyrene, and cumene.
  • the reason why the decomposition device side discharge stream (DSS) is introduced into the mixing device 10 is that the acetophenone contained in the decomposition device side discharge stream (DSS) is separated from the oil phase during phase separation in the step (S20) to be described later. This is to minimize the residual salt in the oil phase by activating the phase separation with the aqueous phase containing the salt.
  • the decomposition device side discharge stream may include acetophenone in an amount of 50 wt% or more, 60 wt% or more, or 60 wt% to 99 wt%.
  • the acetophenone is an organic substance included from the phenol-based byproduct stream (PBS), and acts as an impurity when using the active ingredient obtained by the phenol-based byproduct decomposition reaction. Therefore, it is desirable to minimize the content in the active ingredient.
  • phase separation of acetophenone (S20) ) Can be used to remove salts in the oil phase of phenolic by-products, and it is possible to minimize the content of acetophenone in the active ingredient obtained by the phenolic byproduct decomposition reaction, which is advantageous in terms of obtaining the active ingredient.
  • the cracking device side discharge stream may include some residual phenol that is not separated from the phenol column and phenol obtained from cracking (S30) of a phenolic byproduct.
  • DSS cracking device side discharge stream
  • the difference in boiling point between phenol (boiling point 181.7°C) and acetophenone (boiling point 202°C) is small and azeotropic, the operation of the cracking device 30 to obtain phenol from the top of the cracking device 30 to the maximum When raising the temperature, there is a problem that a part of acetophenone can be discharged by being included in the active ingredient together with phenol.
  • the method for decomposing phenolic by-products of the present invention is performed by intentionally lowering the operating temperature for obtaining the total amount of phenol from the upper portion of the decomposing device 30 in order to discharge acetophenone to the decomposition device side discharge stream (DSS) as much as possible.
  • DSS decomposition device side discharge stream
  • Phenol may thus be included in the decomposition unit side discharge stream (DSS).
  • DSS decomposition unit side discharge stream
  • the decomposition device side discharge stream may include phenol at 1 wt% to 10 wt%, 1 wt% to 8 wt%, or 1 wt% to 7 wt%.
  • DUS decomposition device side discharge stream
  • the process water (PW) is for dissolving and removing the salt in the phenolic by-product stream (PBS), in addition to distilled water, an acidic aqueous solution, a basic aqueous solution, etc. It may be meant to include all aqueous solutions.
  • the process water (PW) may have a pH of 3.5 to 7, 3.5 to 5.5, or 3.5 to 4.5, and within this range, the mixing device 10 and the phase separation device 20 While preventing the corrosion of, it improves the solubility of the salt, there is an effect of improving the phase separation ability when separating the oil phase and the water phase in the phase separation device 20.
  • the process water (PW) may be to include process water (PW) derived from an aqueous solution of the aqueous phase separated in the step (S20) to be described next (see FIG. 2 ). ).
  • the process water (PW) may be supplied from a part of the aqueous solution of the aqueous phase separated in step (S20). In this case, when decomposing phenolic by-products, the amount of newly added process water (PW) can be minimized by continuously circulating and using the process water (PW) in the process.
  • the mixing device 10 in the step (S10) is a mixer for mixing a phenol-based by-product stream (PBS), a decomposition device side discharge stream (DSS) and process water (PW)
  • PBS phenol-based by-product stream
  • DSS decomposition device side discharge stream
  • PW process water
  • the mixer is a line mixer or a static mixer to facilitate mixing of the phenolic by-product stream (PBS), cracker side discharge stream (DSS) and process water (PW). It may be provided with.
  • the phenolic by-product stream (PBS) and the decomposition device side discharge stream (DSS) are 1:0.1 to 1, 1:0.2 to 0.5, or, based on weight or flow rate, or 1:0.25 to 0.33 may be added and mixed, and the phenolic by-product stream (PBS) and the process water (PW) may be 1:1 to 5, 1:1 to 3, based on weight or flow rate. Or it may be mixed at a ratio of 1:1.25 to 1.4.
  • the (S20) step in order to remove salt from the mixing device discharge stream (MS) discharged from the mixing device 10, and introduced into the decomposition device 30, the mixing device
  • the discharge stream MS may be introduced into the phase separation device 20 to phase-separate the oil phase and the water phase.
  • the phase-separated oil discharged (NOS-1) from the phase separation device 20 is a phenolic by-product stream (PBS) by the steps (S10) and (S20).
  • PBS phenolic by-product stream
  • the phase separation device 20 is separated from the water phase stream is discharged may include a salt, thereby removing the salt from the phenol-based by-product stream (PBS) effect There is.
  • PBS phenol-based by-product stream
  • a part of the water stream may be re-supplied as the process water (PW) of the step (S10).
  • the phase separation device 20 in the step (S20) may be a drum for phase separation of the oil phase and the water phase.
  • the step (S20) is a phase separation liquid derived from the mixing device discharge stream (MS) for phase separation of the oil phase and the water phase in the phase separation device 20 for 1 hour To 10 hours, 2 hours to 8 hours, or 3 hours to 5 hours.
  • MS mixing device discharge stream
  • the step (S30), the phase separation in the step (S20) is discharged oil phase stream (NOS-1), that is, a device for decomposing a phenol-based by-product that minimizes the salt content (30) It may be a step of decomposing by feeding to.
  • NOS-1 oil phase stream
  • the decomposition performed in the decomposition device 30 may be thermal decomposition, and the decomposition device 30 for performing this may be a thermal cracker.
  • the pyrolysis device may be a reactor-distillation column-integrated separation device.
  • DSS decomposition device side discharge stream
  • the decomposition of the step (S30) may be carried out at 260 °C to 370 °C, 290 °C to 370 °C, or 300 °C to 350 °C, and within this range, acetophenone by the decomposition apparatus side discharge stream (DSS) This is discharged as much as possible, thereby minimizing the content of acetophenone in the upper discharge stream (DUS) of the cracking apparatus.
  • DUS decomposition apparatus side discharge stream
  • the decomposition of the step (S30) is 0.1 bar to 3.0 bar, 0.1 to separate the components of the decomposition device side discharge stream (DSS) and the decomposition device upper discharge stream (DUS). bar to 2.0 bar, or 0.1 bar to 1.5 bar.
  • DDS decomposition device side discharge stream
  • DUS decomposition device upper discharge stream
  • the operating temperature low since it is possible to keep the operating temperature low, there is an effect of reducing the thermal energy required when the decomposition device 30 is operated.
  • the decomposition device 30 may be a multi-stage decomposition device, in which case the decomposition device side discharge stream (DSS) is an intermediate position (25 of the total number of stages) of the side of the decomposition device. % To 90%, or 40% to 90%, or 50% to 90%). In this case, there is an effect of significantly reducing the discharge of acetophenone into the upper discharge stream (DUS) of the cracking apparatus.
  • DUS decomposition device side discharge stream
  • the decomposition apparatus upper discharge stream (DUS) by the decomposition of the step (S30) comprises, as an active ingredient, at least one selected from the group consisting of phenol, alpha-methylstyrene and cumene. May be
  • the active ingredient is phenol that is not separated at the bottom of the phenol column and contained in the phenol-based by-product stream (PBS) and phenol that is decomposed by the phenol-based by-product decomposition step (S30) and discharged to the decomposition device upper discharge stream (DUS). It can contain.
  • the useful components are useful components (e.g., alpha-methylstyrene, cumene, etc.) that are additionally available. It may contain useful components that are decomposed by the phenolic by-product decomposition step (S30) and discharged to the decomposition device upper discharge stream (DUS). That is, the active ingredient may mean a component that is decomposed by the phenol-based by-product decomposition step (S30) and discharged to the decomposition device upper discharge stream (DUS).
  • the lower discharge stream DBS discharged by the decomposition of the step (S30) may be recovered as tar and reused as fuel.
  • the (S40) step, the (S30) decomposition apparatus by the decomposition of the side discharge stream (DSS), to remove the salt in the phenol-based by-product stream (PBS) may be a step of circulating to the mixing device of step S10).
  • the phase separation in the step (S20) comprises an oil phase and a salt.
  • the phenol-based by-product decomposition method as a phenol production process, prior to the step (S10), the step of acid decomposing reaction of cumene hydroperoxide (CHP) under an acid catalyst (S1); Step (S1) to neutralize by introducing a basic aqueous solution to the acid decomposition reaction solution (ADS) discharged in the step, and phase separation of the neutralized acid decomposition reaction solution into an oil phase and an aqueous phase (S2);
  • the acid decomposition reaction liquid of the oil phase separated in the step (S2) is introduced into the separation device 300, and a separation device upper discharge stream (SUS) containing acetone and a separation device lower discharge stream (SBS) containing phenol are added.
  • SUS separation device upper discharge stream
  • SBS separation device lower discharge stream
  • step (S1) may be a step for preparing an acid decomposition reaction solution containing phenol and acetone by acid decomposing reaction of cumene hydroperoxide (CHP) under an acid catalyst.
  • the step (S1) may be carried out in an acid decomposition reaction apparatus 100 for performing an acid decomposition reaction.
  • the step (S1) may be carried out by adding an acid other than cumene hydroperoxide (CHP), and the acid may be sulfuric acid.
  • CHP cumene hydroperoxide
  • the step (S2) is a step for neutralizing the acid decomposition reaction solution (ADS) discharged in the step (S1), the acid decomposition reaction solution (ADS) neutralization device 200 ), and a basic aqueous solution for neutralizing the acid decomposition reaction solution may be introduced into the neutralization apparatus 200.
  • the step (S2) after the neutralization reaction by the introduction of a basic aqueous solution, separates the oil phase containing phenol and acetone, and the aqueous phase containing the salt produced by the neutralization reaction It may be a step.
  • the oil phase separated here can be fed as a feed stream for the separation of phenol and acetone, and the water phase can be discharged together with the salt.
  • the phase separated from the neutralization device 200 and discharged, the process water of the (S10) step to use as the process water (PW) of the (S10) step ( PW) (see FIG. 4).
  • the process water (PW) may include process water (PW) derived from an aqueous solution of the aqueous phase separated in the step (S2) (see FIG. 4).
  • PW process water
  • the amount of newly added process water (PW) can be minimized by continuously using process water (PW) in the phenol manufacturing process.
  • the step (S3) may be a step for separating phenol and acetone from the acid decomposition reaction liquid (NOS-2) separated in the step (S2).
  • the step (S3) is to input the acid decomposition reaction liquid of the oil phase separated in the step (S2) to the separation device 300, the separation device containing acetone upper discharge stream (SUS) and containing phenol Separation device may be carried out including the step of separating the lower discharge stream (SBS).
  • the separation device upper discharge stream (SUS) separated in the step (S3) is acetone; And unreacted cumene, acetone, alpha-methylstyrene, and hydroxyacetone.
  • the separation device upper discharge stream (SUS) may be input to the acetone column 500 to obtain acetone, and the acetone column upper discharge stream containing acetone in the acetone column 500 (Acetone), cumene, alpha -Methylstyrene and hydroxyacetone may be separated into an acetone column bottom discharge stream (ABS) comprising at least one selected from the group consisting of.
  • the separation step in order to obtain phenol from the separation unit bottom discharge stream (SBS) separated in the (S3) step, to decompose the phenolic by-products, the separation It may be a step of introducing the lower stream of the device (SBS) into the phenol column 400, and separating the upper stream of the phenol column containing phenol (Phenol) and the lower stream of the phenol column containing the phenolic by-product (PBS). have.
  • the phenol column top effluent stream (Phenol) comprising the phenol may be obtained as a phenol product, and the phenol column bottom effluent stream (PBS) may be used to decompose phenolic byproducts. It may be supplied as a phenolic by-product stream (PBS) of step S10). That is, the phenolic by-product stream (PBS) in the step (S10) may be a phenol column bottom discharge stream (PBS) separated in the step (S4).
  • the upper discharge stream (DUS) of the decomposition apparatus by the decomposition of the step (S30), the acid decomposition reaction liquid of the oil phase separated in the step (S2) is added to the separation apparatus Before, it may be mixed with the acid decomposition reaction of the oil phase (see Fig. 4).
  • phenol among the active ingredients included in the decomposition device upper discharge stream (DUS) can be obtained again as a phenol product from the phenol column 400 through the phenol column upper discharge stream (Phenol) through a phenol manufacturing process, and cumene
  • one or more selected from the group consisting of alpha-methylstyrene may be obtained as an acetone column bottom discharge stream (ABS) in the acetone column 500 again through a phenol production process through a separation device top discharge stream (SUS).
  • a phenolic by-product stream (PBS) and a decomposition device side discharge stream (DSS) having the composition shown in Table 1 below were supplied to the mixing device 10, and the process water (PW) was It was maintained at pH 4 and supplied to the mixing device 10.
  • Flow rate ratio of phenol-based by-product stream (PBS): decomposition device side discharge stream (DSS): process water (PW) to the mixing device 10 is based on 1,000 kg/hr of phenol-based by-product stream (PBS). 1 was 1:0.33:1.43, and Example 2 was 1:0.25:1.25.
  • Comparative Examples 1 and 2 were supplied to the mixing device 10 a phenolic by-product stream (PBS) of the composition shown in Table 4, the process water (PW) of pH 4 It was kept in a state and supplied to the mixing device 10.
  • PBS phenolic by-product stream
  • PW process water
  • Comparative Example 3 is a phenolic by-product stream (PBS) and C-AMS of the composition described in Table 6 below. (Crude Alpha-methyl styrene), Comparative Example 4, the phenol-based by-product stream (PBS) of the composition shown in Table 6 below and the upper discharge stream (DUS) of the cracking device were supplied to the mixing device 10, and the process water (PW ) Was maintained at a pH of 4 and supplied to the mixing device 10.
  • the flow rate ratio of the phenolic by-product stream (PBS):C-AMS:process water (PW) input to the mixing device 10 is 1:0.33 based on 1,000 kg/hr of the phenolic by-product stream (PBS): It was 1.43.
  • the flow rate ratio of the phenol-based by-product stream (PBS): decomposition device upper discharge stream (DUS): process water (PW) input to the mixing device 10 is based on 1,000 kg/hr of the phenol-based by-product stream (PBS). As 1:0.33:1.43.
  • the present inventors can effectively remove the salts contained in the phenolic by-products prior to decomposition of the phenolic byproducts when decomposing the phenolic by-products produced in the phenol production process according to the present invention from the above results. It was confirmed that the content of acetophenone in the active ingredient can be reduced while effectively decomposing the phenolic by-product to effectively obtain the active ingredient.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)

Abstract

본 발명은 페놀계 부산물 분해 방법에 관한 것으로, 보다 상세하게는 페놀 제조 공정에서 생성되는 페놀계 부산물 분해 방법에 있어서, 페놀계 부산물 스트림, 분해 장치 측면 배출 스트림 및 공정수를 혼합 장치에 투입하여 혼합하는 단계(S10); 상기 혼합 장치에서 배출되는 혼합 장치 배출 스트림을 상 분리 장치에 투입하여 유상 및 수상으로 상 분리하는 단계(S20); 상기 (S20) 단계에서 상 분리되어 배출되는 유상 스트림을 분해 장치에 공급하여 분해하는 단계(S30); 및 상기 (S30) 단계의 분해에 의한 분해 장치 측면 배출 스트림을 상기 (S10) 단계의 혼합 장치로 순환시키는 단계(S40)를 포함하는 페놀계 부산물 분해 방법을 제공한다.

Description

페놀계 부산물 분해 방법
관련출원과의 상호인용
본 출원은 2018년 12월 20일자 한국특허출원 제10-2018-0166127호에 기초한 우선권의 이익을 주장하며, 해당 한국특허출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
기술분야
본 발명은 페놀계 부산물 분해 방법에 관한 것으로, 보다 상세하게는 페놀 제조 공정에서 생성되는 페놀계 부산물 분해 방법에 관한 것이다.
전 세계에서 사용되는 페놀의 약 95 %는 일반적으로 혹 공정(Hock process)에 의해 생산된다. 상기 혹 공정은 (1) 벤젠을 프로필렌으로 알킬화하여 큐멘을 형성하는 단계, (2) 큐멘을 산소와 결합시켜 큐멘하이드퍼옥사이드(Cumene Hydroperoxide, CHP)로 산화시키는 단계 및 (3) 큐멘하이드로퍼옥사이드를 산 촉매 하에서 산 분해 반응에 의해 페놀과 아세톤으로 분해시키는 단계의 3 단계로 실시된다.
여기서, 상기 (2) 단계인 큐멘의 산화 단계에서는 큐멘하이드로퍼옥사이드 이외에도, 아세토페논(Acetophenone, AP), 디메틸벤질알코올(Dimethyl benzyl alcohol, DMBA), 디큐밀퍼옥사이드(Dicumylperoxide, DCP) 및 디큐멘(Dicumene, DC) 등의 부산물(By-product)이 생성된다.
또한, 상기 (3) 단계인 큐멘하이드로퍼옥사이드의 산 분해 반응에서는 페놀 및 아세톤 이외에도, 하이드록시아세톤(Hydroxy acetone, HA), 2-메틸벤조퓨란(2-Methylbenzofuran, 2-MBF), 알파-메틸스티렌(Alpha-methyl styrene, AMS), 메시틸옥사이드(Mesityl oxide, MO), 알파-메틸스티렌 다이머(AMS dimer) 및 큐밀페놀(Cumylphenol, CP) 등이 부산물(By-product)로 생성된다.
따라서, 상기와 같은 반응 공정을 통해 생성된 생성물 스트림은 페놀, 아세톤 및 다양한 부산물이 혼합된 상태로 존재하기 때문에, 생성물 스트림으로부터 페놀을 분리하기 위한 일련의 분리 공정이 필요하다.
상기 생성물 스트림은 별도의 분리 장치에 투입되어, 미반응 큐멘, 아세톤, 알파-메틸스티렌 및 하이드록시아세톤 등을 포함하는 아세톤계 혼합물은 분리 장치의 탑정에서 분리되고, 페놀과 일부의 알파-메틸스티렌, 2-메틸벤조퓨란 및 기타 부산물 등을 포함하는 페놀계 혼합물은 분리 장치의 탑저에서 분리된다.
상기 분리 장치의 탑저에서 분리된 페놀계 혼합물은 페놀 컬럼에 투입되어, 페놀은 페놀 컬럼의 탑정에서 분리되고, 디큐밀퍼옥사이드, 큐밀페놀, 알파-메틸스티렌 다이머 및 타르(tar) 등과 같은 페놀계 부산물은 상기 페놀 컬럼의 탑저에서 분리된다.
한편, 종래에는 상기 페놀 컬럼의 탑저에서 분리된 페놀계 부산물을 별도의 처리 없이 연료로 사용하거나 폐기하였다. 그러나, 상기 페놀 컬럼의 탑저에서 분리된 페놀계 부산물은 불순물인 타르 이외에도, 생성물인 페놀과, 알파-메틸스티렌 등과 같은 일부 유효 성분을 포함하고 있어 페놀계 부산물로부터 유효 성분들을 분리 및 회수하는 것이 필요하다. 또한, 상기 페놀계 부산물 내에 포함된 부산물들을 분해하는 경우, 큐멘 등을 생성하는 것이 가능하다.
따라서, 페놀 컬럼의 탑저에서 분리된 페놀계 부산물 내에 잔류하는 페놀 및 유효 성분과, 페놀계 부산물의 분해에 의해 생성되는 페놀 및 유효 성분을 수득하기 위한 연구가 진행되고 있다.
본 발명에서 해결하고자 하는 과제는, 상기 발명의 배경이 되는 기술에서 언급한 문제들을 해결하기 위하여, 페놀 제조 공정에서 생성되는 페놀계 부산물을 분해하여 유효 성분을 수득하면서도, 페놀 제조 공정의 부하를 방지하는 것이다.
즉, 본 발명은 페놀계 부산물의 분해에 앞서 페놀계 부산물 내에 포함된 염을 효과적으로 제거하고, 이에 따라 페놀계 부산물을 분해하여 유효 성분을 효과적으로 수득하면서도, 페놀 제조 공정의 부하 및 에너지 사용량 증가를 방지할 수 있는 페놀계 부산물 분해 방법을 제공하는 것을 목적으로 한다.
상기의 과제를 해결하기 위한 본 발명의 일 실시예에 따르면, 본 발명은 페놀 제조 공정에서 생성되는 페놀계 부산물 분해 방법에 있어서, 페놀계 부산물 스트림, 분해 장치 측면 배출 스트림 및 공정수를 혼합 장치에 투입하여 혼합하는 단계(S10); 상기 혼합 장치에서 배출되는 혼합 장치 배출 스트림을 상 분리 장치에 투입하여 유상 및 수상으로 상 분리하는 단계(S20); 상기 (S20) 단계에서 상 분리되어 배출되는 유상 스트림을 분해 장치에 공급하여 분해하는 단계(S30); 및 상기 (S30) 단계의 분해에 의한 분해 장치 측면 배출 스트림을 상기 (S10) 단계의 혼합 장치로 순환시키는 단계(S40)를 포함하는 페놀계 부산물 분해 방법을 제공한다.
본 발명에 따른 페놀계 부산물 분해 방법에 따라, 페놀 제조 공정에서 생성되는 페놀계 부산물을 분해하는 경우, 페놀계 부산물의 분해에 앞서 페놀계 부산물 내에 포함된 염을 효과적으로 제거할 수 있고, 이에 따라 페놀계 부산물을 분해하여 유효 성분을 효과적으로 수득하면서도, 유효 성분 내 아세토페논의 함량을 저감시키는 효과가 있다.
또한, 본 발명에 따른 페놀계 부산물 분해 방법에 따라, 페놀 제조 공정에서 생성되는 페놀계 부산물을 분해하는 경우, 페놀 제조 공정의 부하 및 에너지 사용량 증가를 방지할 수 있는 효과가 있다.
도 1은 본 발명의 일 실시예에 따른, 페놀계 부산물 분해 방법에 대한 공정 흐름도이다.
도 2는 본 발명의 다른 일 실시예에 따른, 페놀계 부산물 분해 방법에 대한 공정 흐름도이다.
도 3은 본 발명의 일 실시예에 따른, 페놀 제조 공정을 포함하는 페놀계 부산물 분해 방법에 대한 공정 흐름도이다.
도 4는 본 발명의 다른 일 실시예에 따른, 페놀 제조 공정을 포함하는 페놀계 부산물 분해 방법에 대한 공정 흐름도이다.
도 5는 본 발명의 비교예 1 및 2에 따른, 페놀계 부산물 분해 방법에 대한 공정 흐름도이다.
도 6은 본 발명의 비교예 3에 따른, 페놀계 부산물 분해 방법에 대한 공정 흐름도이다.
도 7은 본 발명의 비교예 4에 따른, 페놀계 부산물 분해 방법에 대한 공정 흐름도이다.
본 발명의 설명 및 청구범위에서 사용된 용어나 단어는, 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여, 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
본 발명에서 용어 '스트림(stream)'은 공정 내 유체(fluid)의 흐름을 의미하는 것일 수 있고, 또한, 배관 내에서 흐르는 유체 자체를 의미하는 것일 수 있다. 구체적으로, 상기 '스트림'은 각 장치를 연결하는 배관 내에서 흐르는 유체 자체 및 유체의 흐름을 동시에 의미하는 것일 수 있다. 또한, 상기 유체는 기체(gas)를 의미할 수 있다.
이하, 본 발명에 대한 이해를 돕기 위하여 본 발명을 더욱 상세하게 설명한다.
본 발명에 따른 페놀계 부산물 분해 방법은 페놀 제조 공정에서 생성되는 페놀계 부산물 분해 방법일 수 있다. 본 발명의 일 실시예에 따르면, 상기 페놀 제조 공정은 혹 공정(Hock process)일 수 있다.
본 발명의 일 실시예에 따르면, 상기 페놀계 부산물 분해 방법은 페놀계 부산물 스트림(PBS), 분해 장치 측면 배출 스트림(DSS) 및 공정수(PW)를 혼합 장치(10)에 투입하여 혼합하는 단계(S10); 상기 혼합 장치(10)에서 배출되는 혼합 장치 배출 스트림(MS)을 상 분리 장치(20)에 투입하여 유상 및 수상으로 상 분리하는 단계(S20); 상기 (S20) 단계에서 상 분리되어 배출되는 유상 스트림(NOS-1)을 분해 장치(30)에 공급하여 분해하는 단계(S30); 및 상기 (S30) 단계의 분해에 의한 분해 장치 측면 배출 스트림(DSS)을 상기 (S10) 단계의 혼합 장치로 순환시키는 단계(S40)를 포함하는 것일 수 있다.
본 발명의 일 실시예에 따르면, 페놀 제조 공정은 앞서 기재한 큐멘하이드로퍼옥사이드의 산 분해 반응을 포함하여 실시될 수 있다. 이 때, 상기 큐멘하이드로퍼옥사이드의 산 분해 반응은 산을 포함하여 실시되므로, 산 분해 반응액은 산을 포함하고 있다. 따라서, 상기 산 분해 반응액으로부터 증류 등의 공정에 의해 페놀 및 아세톤을 수득하기 위해서는 상기 산 분해 반응액을 중화시키는 공정이 필요하다.
이에, 상기 산 분해 반응액을 분리하기에 앞서, 염기성 수용액 등에 의해 중화시키게 되는데, 이 때 중화된 산 분해 반응액 내에는, 산 분해 반응에 이용된 산과, 염기성 수용액 등의 염기 사이의 중화 반응에 따른 염(Salt)이 발생한다. 중화 공정에 의해 중화된 산 분해 반응액은 유상 및 수상으로 상 분리되고, 분리된 유상으로부터 페놀 및 아세톤을 수득하기 위한 분리 공정을 실시하게 되는데, 상기 염은, 수상에서 대부분 함께 제거되지만, 일부는 유상 내에 잔존하게 된다.
이러한 염은 결국 페놀의 분리 공정을 거친 후, 본 발명에서 기재하는 페놀계 부산물 내에 잔존하게 된다. 이렇게 페놀계 부산물 내에 잔존하는 염은, 이 후 페놀계 부산물로부터 유효 성분을 수득하기 위한 페놀계 부산물 분해 시, 분해 장치의 부식, 폐색 및 퇴적 등을 일으켜 분해 장치의 고장의 원인이 되는 문제가 있다. 따라서, 페놀계 부산물 분해 시, 페놀계 부산물 내의 염을 최소화하는 것이 중요하다.
이에, 페놀계 부산물 내의 염을 제거하기 위한 방법으로, 페놀계 부산물을 분해하기에 앞서, 공정수를 투입하여 염을 제거하는 방법을 고려해볼 수 있으나, 이 경우 유상과 수상의 상 분리가 원활하지 않고, 이에 따라 염을 충분히 제거할 수 없는 문제가 있다(도 5 참조).
또한, 페놀계 부산물에 공정수와 함께 페놀 제조 공정 내 아세톤 컬럼 등으로부터 유효 성분으로 배출되는 큐멘 및 알파-메틸스티렌과 같은 유기물을 투입하여 염을 제거하는 방법도 고려해볼 수 있으나, 이는 큐멘 및 알파-메틸스티렌을 다시 생성물로 수득하여야 하기 때문에, 페놀 제조 공정에 과부하가 발생하고, 전체 운전 에너지를 증가시키는 문제가 있다(도 6 참조).
또한, 페놀계 부산물에 공정수와 함께 페놀계 부산물을 분해하기 위한 분해 장치(30)의 상부 배출 스트림(즉, DUS)에서 유효 성분으로 배출되는 페놀, 큐멘 및 알파-메틸스티렌과 같은 유기물을 투입하여 염을 제거하는 방법도 고려해볼 수 있으나, 이는 유효성분으로 수득되는 분해 장치 상부 배출 스트림(DUS)을 그대로 활용하기 때문에, 정제 효율이 감소하고, 환류되는 스트림이 감소하여 분해 장치 상부에 응축기를 운전하기 위한 냉열이 추가적으로 필요하여, 결국 전체 운전 에너지를 증가시키는 문제가 있다(도 7 참조).
반면, 본 발명에 따른 페놀계 부산물 분해 방법에 의하면, 페놀계 부산물 내의 염을 최소화하는 것이 가능하고, 이에 따라 페놀계 부산물 분해 장치의 안정적인 운전이 가능하여, 페놀계 부산물을 분해하여 유효 성분을 효과적으로 수득할 수 있는 효과가 있다.
이하에서, 도면을 참조하여 본 발명에 따른 페놀계 부산물 분해 방법을 더욱 상세하게 설명한다.
도 1 내지 4를 참조하면, 상기 (S10) 단계는, 페놀계 부산물 내에서 염(Salt)을 최소화하기 위한 단계로서, 종래와 같이 페놀계 부산물 스트림(PBS)을 분해 장치(30)에 직접 공급하기에 앞서, 페놀계 부산물 스트림(PBS)에, 이어서 기재될 분해 장치 측면 배출 스트림(DSS)과, 공정수(PW)를 혼합 장치(10)에 투입하여 혼합하는 단계일 수 있다.
본 발명의 일 실시예에 따르면, 상기 페놀계 부산물 스트림(PBS)은 페놀, 알파-메틸스티렌, 아세토페논, 큐밀 페놀 및 알파-메틸스티렌 다이머로 이루어진 군으로부터 선택된 1종 이상을 포함하는 것일 수 있다. 구체적인 예로, 상기 페놀계 부산물 스트림(PBS)은 페놀, 알파-메틸스티렌, 아세토페논, 큐밀 페놀 및 알파-메틸스티렌 다이머로 이루어진 군으로부터 선택된 2종 이상, 또는 이들 모두를 포함하는 것일 수 있다. 이러한 성분들은 분리 장치에 의해 페놀 제조 공정의 산 분해 반응액으로부터 아세톤계 혼합물과, 페놀계 혼합물을 분리하고, 페놀 컬럼에 의해 페놀계 혼합물로부터 페놀과, 페놀계 부산물을 분리하는 공정에서 배출된 페놀계 부산물 내에 포함된 성분들일 수 있다.
한편, 본 발명의 일 실시예에 따르면, 상기 분해 장치 측면 배출 스트림(DSS)은 후술하는 분해 장치(30)의 측면에서 배출되는 스트림으로서, 페놀; 아세토페논; 및 알파-메틸스티렌과 큐멘으로 이루어진 군으로부터 선택된 1종 이상을 포함하는 것일 수 있다. 구체적인 예로, 상기 분해 장치 측면 배출 스트림(DSS)은 페놀, 아세토페논, 알파-메틸스티렌 및 큐멘을 포함하는 것일 수 있다. 상기 분해 장치 측면 배출 스트림(DSS)을 상기 혼합 장치(10)에 투입하는 이유는, 상기 분해 장치 측면 배출 스트림(DSS)에 포함된 아세토페논이 후술할 (S20) 단계의 상 분리 시, 유상과 염을 포함하는 수상과의 상 분리를 활성화시켜, 유상 내 염이 잔존하는 것을 최소화하기 위함이다.
특히, 상기 분해 장치 측면 배출 스트림(DSS)은 아세토페논을 50 중량% 이상, 60 중량% 이상, 또는 60 중량% 내지 99 중량%로 포함하는 것일 수 있다. 상기 아세토페논은 페놀계 부산물 스트림(PBS)부터 포함되어 있는 유기물로써, 페놀계 부산물 분해 반응에 의해 수득되는 유효 성분을 이용할 때, 불순물로 작용한다. 따라서, 유효 성분 내의 함량을 최소화하는 것이 바람직하다. 따라서, 본 발명에 따라 상기 분해 장치 측면 배출 스트림(DSS)이 아세토페논을 50 중량% 이상, 60 중량% 이상, 또는 60 중량% 내지 99 중량%로 포함하는 경우, 아세토페논을 상 분리 단계(S20)에서 페놀계 부산물의 유상 내 염 제거를 위해 활용함은 물론, 페놀계 부산물 분해 반응에 의해 수득되는 유효 성분 내 아세토페논의 함량을 최소화할 수 있어, 유효 성분의 수득 측면에서도 유리한 효과가 있다.
본 발명의 일 실시예에 따르면, 상기 분해 장치 측면 배출 스트림(DSS)은 페놀 컬럼으로부터 미분리된 잔류 페놀과, 페놀계 부산물의 분해(S30)로부터 수득되는 페놀을 일부 포함할 수 있다. 이와 관련하여, 페놀(비점 181.7 ℃)과 아세토페논(비점 202 ℃)의 비점 차이가 작고 공비를 이루기 때문에, 분해 장치(30)의 상부로부터 페놀을 최대한으로 수득하기 위해 분해 장치(30)의 운전 온도를 높이는 경우, 아세토페논의 일부가 페놀과 함께 유효 성분 내에 포함되어 배출될 수 있는 문제가 있다.
따라서, 본 발명의 페놀계 부산물 분해 방법은, 아세토페논을 분해 장치 측면 배출 스트림(DSS)으로 최대한 배출하기 위해, 페놀을 분해 장치(30)의 상부로부터 전량 수득하기 위한 운전 온도보다 의도적으로 낮추어 실시될 수 있다. 이에 따라 페놀이 분해 장치 측면 배출 스트림(DSS)에 포함될 수 있다. 이와 같이, 분해 장치 측면 배출 스트림(DSS)에 포함되는 페놀은 결국 혼합 장치(10)로 순환되기 때문에, 순환 공정에 따라 분해 장치(30)로부터 지속적으로 회수될 수 있다.
구체적인 예로, 상기 분해 장치 측면 배출 스트림(DSS)은 페놀을 1 중량% 내지 10 중량%, 1 중량% 내지 8 중량%, 또는 1 중량% 내지 7 중량%로 포함하는 것일 수 있다. 이 범위 내에서 페놀계 부산물 스트림 내 염의 함량을 최소화하면서도, 분해 장치 상부 배출 스트림(DUS) 내 아세토페논의 함량을 최소화하는 효과가 있다.
또한, 본 발명의 일 실시예에 따르면, 상기 공정수(PW)는, 페놀계 부산물 스트림(PBS) 내의 염을 용해하여 제거하기 위한 것으로, 증류수 이외에도, 산성을 나타내는 수용액, 염기성을 나타내는 수용액 등 각종 수용액을 모두 포함하는 의미일 수 있다.
본 발명의 일 실시예에 따르면, 상기 공정수(PW)는 pH가 3.5 내지 7, 3.5 내지 5.5, 또는 3.5 내지 4.5일 수 있고, 이 범위 내에서 혼합 장치(10) 및 상 분리 장치(20)의 부식을 방지하면서도, 염의 용해도를 향상시키며, 상 분리 장치(20) 내에서 유상과 수상의 분리 시 상 분리 능력을 향상시키는 효과가 있다.
또한, 본 발명의 일 실시예에 따르면, 상기 공정수(PW)는, 이어서 기재될 (S20) 단계에서 분리된 수상의 수용액으로부터 유래된 공정수(PW)를 포함하는 것일 수 있다(도 2 참조). 구체적인 예로, 상기 공정수(PW)는, (S20) 단계에서 분리된 수상의 수용액의 일부로부터 공급되는 것일 수 있다. 이 경우, 페놀계 부산물 분해 시, 공정 내에서 공정수(PW)를 계속 순환하여 사용함으로써, 새로 투입되는 공정수(PW)의 양을 최소화할 수 있다.
한편, 본 발명의 일 실시예에 따르면, 상기 (S10) 단계의 혼합 장치(10)는 페놀계 부산물 스트림(PBS), 분해 장치 측면 배출 스트림(DSS) 및 공정수(PW)를 혼합하기 위한 혼합기일 수 있다. 구체적인 예로, 상기 혼합기는 상기 페놀계 부산물 스트림(PBS), 분해 장치 측면 배출 스트림(DSS) 및 공정수(PW)의 혼합을 용이하게 실시하기 위해 라인 믹서(line mixer) 또는 스태틱 믹서(static mixer)를 구비한 것일 수 있다.
또한, 본 발명의 일 실시예에 따르면, 상기 페놀계 부산물 스트림(PBS) 및 상기 분해 장치 측면 배출 스트림(DSS)은, 중량 또는 유량을 기준으로 1:0.1 내지 1, 1:0.2 내지 0.5, 또는 1:0.25 내지 0.33의 비율로 투입되어 혼합될 수 있고, 상기 페놀계 부산물 스트림(PBS) 및 상기 공정수(PW)는, 중량 또는 유량을 기준으로 1:1 내지 5, 1:1 내지 3, 또는 1:1.25 내지 1.4의 비율로 투입되어 혼합될 수 있다. 이 범위 내에서 페놀계 부산물 스트림(PBS), 분해 장치 측면 배출 스트림(DSS) 및 공정수(PW)의 혼합은 물론, 이어서 기재될 (S20) 단계에서 유상 및 수상의 상 분리 능력이 향상되며, 염의 제거 효율이 향상되는 효과가 있다.
본 발명의 일 실시예에 따르면, 상기 (S20) 단계는, 상기 혼합 장치(10)에서 배출되는 혼합 장치 배출 스트림(MS)으로부터 염을 제거하고, 분해 장치(30)에 투입하기 위해, 혼합 장치 배출 스트림(MS)을 상 분리 장치(20)에 투입하여 유상 및 수상으로 상 분리하는 단계일 수 있다.
본 발명의 일 실시예에 따르면, 상기 상 분리 장치(20)에서 상 분리되어 배출되는 유상 스트림(NOS-1)은, 상기 (S10) 단계 및 (S20) 단계에 의해, 페놀계 부산물 스트림(PBS)으로부터 염(Salt)이 제거된 스트림으로서, 분해 장치(30)의 공급 스트림으로 이용될 수 있고, 이를 공급 스트림으로 이용하는 분해 장치(30)는 공급 스트림 내 염의 함량이 최소화된 상태이기 때문에, 페놀계 부산물 분해 시, 분해 장치(30)의 부식, 폐색 및 퇴적 등을 방지할 수 있는 효과가 있다.
또한, 본 발명의 일 실시예에 따르면, 상기 상 분리 장치(20)에서 상 분리되어 배출되는 수상 스트림은 염을 포함하는 것일 수 있고, 이에 따라 페놀계 부산물 스트림(PBS)으로부터 염을 제거하는 효과가 있다. 한편, 앞서 기재한 바와 같이, 상기 수상 스트림은 그 일부가 상기 (S10) 단계의 공정수(PW)로서 재공급될 수 있다.
본 발명의 일 실시예에 따르면, 상기 (S20) 단계의 상 분리 장치(20)는 유상 및 수상을 상 분리하기 위한 드럼(drum)일 수 있다.
또한, 본 발명의 일 실시예에 따르면, 상기 (S20) 단계는 유상 및 수상의 상 분리를 위해, 혼합 장치 배출 스트림(MS)으로부터 유래된 상 분리액을 상 분리 장치(20) 내에서 1 시간 내지 10 시간, 2 시간 내지 8 시간, 또는 3 시간 내지 5 시간 체류하는 단계를 포함할 수 있다. 이와 같이, 상 분리액을 상 분리 장치(20) 내에서 체류시키는 경우, 상 분리가 보다 명확히 일어날 수 있고, 이에 따라, 수상으로부터 염을 최대한 제거할 수 있는 효과가 있다.
본 발명의 일 실시예에 따르면, 상기 (S30) 단계는, 상기 (S20) 단계에서 상 분리되어 배출되는 유상 스트림(NOS-1), 즉 염의 함량을 최소화한 페놀계 부산물을 분해 장치(30)에 공급하여 분해하는 단계일 수 있다.
본 발명의 일 실시예에 따르면, 상기 분해 장치(30)에서 실시되는 분해는 열 분해일 수 있고, 이를 실시하기 위한 분해 장치(30)는 열분해 장치(thermal cracker)일 수 있다. 구체적인 예로, 상기 열분해 장치는 반응기-증류탑 일체형 분리장치일 수 있다.
본 발명의 일 실시예에 따르면, 상기 (S30) 단계의 분해는 앞서 기재한 바와 같이, 분해 장치 측면 배출 스트림(DSS)에 의해 아세토페논이 최대한 배출될 수 있도록, 페놀을 분해 장치(30)의 상부로부터 전량 수득하기 위한 운전 온도보다 의도적으로 낮추어 실시될 수 있다.
구체적인 예로, 상기 (S30) 단계의 분해는 260 ℃ 내지 370 ℃, 290 ℃ 내지 370 ℃ 또는 300 ℃ 내지 350 ℃에서 실시될 수 있고, 이 범위 내에서 분해 장치 측면 배출 스트림(DSS)에 의해 아세토페논이 최대한 배출되어, 분해 장치 상부 배출 스트림(DUS) 내 아세토페논의 함량을 최소화하는 효과가 있다.
또한, 본 발명의 일 실시예에 따르면, 상기 (S30) 단계의 분해는 분해 장치 측면 배출 스트림(DSS)과 분해 장치 상부 배출 스트림(DUS)의 성분을 분리하기 위해, 0.1 bar 내지 3.0 bar, 0.1 bar 내지 2.0 bar, 또는 0.1 bar 내지 1.5 bar에서 실시될 수 있다. 이 경우, 분해 장치(30)의 운전 온도를 낮게 유지하는 것이 가능하여 분해 장치 상부 배출 스트림(DUS)에 포함되는 유효 성분 중 알파-메틸스티렌의 다이머화 또는 폴리머화를 방지하는 효과가 있다. 또한, 운전 온도를 낮게 유지하는 것이 가능하여 분해 장치(30)의 운전 시 필요한 열에너지를 저감시키는 효과가 있다.
또한, 본 발명의 일 실시예에 따르면, 상기 분해 장치(30)는 다단의 분해 장치일 수 있고, 이 경우 상기 분해 장치 측면 배출 스트림(DSS)은 분해 장치의 측면 중 중간 위치(총 단수의 25 % 내지 90 %, 또는 40 % 내지 90 %, 또는 50 % 내지 90 %)에서 배출되는 것일 수 있다. 이 경우, 아세토페논이 분해 장치 상부 배출 스트림(DUS)으로 배출되는 것을 현저히 저감시키는 효과가 있다.
본 발명의 일 실시예에 따르면, 상기 (S30) 단계의 분해에 의한 분해 장치 상부 배출 스트림(DUS)은, 유효 성분으로서 페놀, 알파-메틸스티렌 및 큐멘으로 이루어진 군으로부터 선택된 1종 이상을 포함하는 것일 수 있다. 상기 유효 성분은 페놀 컬럼의 탑저에서 미분리되어 페놀계 부산물 스트림(PBS)에 포함된 페놀과, 페놀계 부산물 분해 단계(S30)에 의해 분해되어 분해 장치 상부 배출 스트림(DUS)으로 배출되는 페놀을 포함할 수 있다. 또한, 상기 유효 성분은 페놀 컬럼의 탑저에서 분리되어 페놀계 부산물 스트림(PBS)에 포함된 성분들 중, 페놀 이외에도 추가적으로 이용 가능한 유용한 성분들(예를 들면, 알파-메틸스티렌, 큐멘 등)과, 페놀계 부산물 분해 단계(S30)에 의해 분해되어 분해 장치 상부 배출 스트림(DUS)으로 배출되는 유용한 성분들을 포함할 수 있다. 즉, 상기 유효 성분은 페놀계 부산물 분해 단계(S30)에 의해 분해되어 분해 장치 상부 배출 스트림(DUS)으로 배출되는 성분을 의미하는 것일 수 있다.
또한, 본 발명의 일 실시예에 따르면, 상기 (S30) 단계의 분해에 의해 배출되는 분해 장치 하부 배출 스트림(DBS)는 타르(tar)로서 회수되어 연료 등으로 재사용될 수 있다.
본 발명의 일 실시예에 따르면, 상기 (S40) 단계는, 상기 (S30) 단계의 분해에 의한 분해 장치 측면 배출 스트림(DSS)을, 페놀계 부산물 스트림(PBS) 내 염을 제거하기 위해 상기 (S10) 단계의 혼합 장치로 순환시키는 단계일 수 있다. 앞서 기재한 바와 같이, 본 발명에 따라 상기 분해 장치 측면 배출 스트림(DSS)을, 상기 (S10) 단계의 혼합 장치로 순환시키는 경우, 상기 (S20) 단계의 상 분리 시, 유상과 염을 포함하는 수상과의 상 분리를 활성화시켜, 유상 내 염이 잔존하는 것을 최소화하는 효과가 있다.
또한, 본 발명에 따른 페놀계 부산물 분해 방법은, 페놀 제조 공정으로써, 상기 (S10) 단계 이전에, 큐멘하이드로퍼옥사이드(CHP)를 산 촉매 하에서 산 분해 반응시키는 단계(S1); 상기 (S1) 단계에서 배출된 산 분해 반응액(ADS)에 염기성 수용액을 투입하여 중화시키고, 중화된 산 분해 반응액을 유상 및 수상으로 상 분리하는 단계(S2); 상기 (S2) 단계에서 분리된 유상의 산 분해 반응액을 분리 장치(300)에 투입하고, 아세톤을 포함하는 분리 장치 상부 배출 스트림(SUS) 및 페놀을 포함하는 분리 장치 하부 배출 스트림(SBS)을 분리하는 단계(S3); 및 상기 (S3) 단계에서 분리된 분리 장치 하부 배출 스트림(SBS)을 페놀 컬럼(400)에 투입하고, 페놀을 포함하는 페놀 컬럼 상부 배출 스트림(Phenol) 및 페놀계 부산물을 포함하는 페놀 컬럼 하부 배출 스트림(PBS)을 분리하는 단계(S4)를 포함하는 것일 수 있다(도 3 및 4 참조).
본 발명의 일 실시예에 따르면, 상기 (S1) 단계는 큐멘하이드로퍼옥사이드(CHP)를 산 촉매 하에서 산 분해 반응시켜 페놀 및 아세톤을 포함하는 산 분해 반응액을 제조하기 위한 단계일 수 있다. 본 발명의 일 실시예에 따르면, 상기 (S1) 단계는 산 분해 반응을 실시하기 위한 산 분해 반응 장치(100)에서 실시될 수 있다.
또한, 본 발명의 일 실시예에 따르면, 상기 (S1) 단계는 큐멘하이드로퍼옥사이드(CHP) 이외에 산을 투입하여 실시될 수 있고, 상기 산은 황산일 수 있다.
본 발명의 일 실시예에 따르면, 상기 (S2) 단계는, 상기 (S1) 단계에서 배출된 산 분해 반응액(ADS)을 중화시키기 위한 단계로서, 산 분해 반응액(ADS)을 중화 장치(200)에 투입하고, 상기 중화 장치(200)에 산 분해 반응액을 중화시키기 위한 염기성 수용액을 투입하여 실시될 수 있다.
또한, 본 발명의 일 실시예에 따르면, 상기 (S2) 단계는, 염기성 수용액의 투입에 의한 중화 반응 후에, 페놀 및 아세톤을 포함하는 유상과, 중화 반응에 의해 생성되는 염을 포함하는 수상을 분리하는 단계일 수 있다. 여기서 분리된 유상은 페놀 및 아세톤을 분리하기 위한 공급 스트림으로서 공급될 수 있고, 수상은 염과 함께 배출될 수 있다.
한편, 본 발명의 일 실시예에 따르면, 상기 중화 장치(200)에서 상 분리되어 배출되는 수상은, 상기 (S10) 단계의 공정수(PW)로 이용하기 위해 상기 (S10) 단계의 공정수(PW)로서 재공급될 수 있다(도 4 참조).
즉, 본 발명의 일 실시예에 따르면, 상기 공정수(PW)는, 상기 (S2) 단계에서 분리된 수상의 수용액으로부터 유래된 공정수(PW)를 포함하는 것일 수 있다(도 4 참조). 이와 같이 페놀계 부산물 분해 시, 페놀 제조 공정 내에서 공정수(PW)를 계속 순환하여 사용함으로써, 새로 투입되는 공정수(PW)의 양을 최소화할 수 있다.
본 발명의 일 실시예에 따르면, 상기 (S3) 단계는, 상기 (S2) 단계에서 분리된 유상의 산 분해 반응액(NOS-2)으로부터 페놀 및 아세톤을 분리하기 위한 단계일 수 있다. 구체적인 예로, 상기 (S3) 단계는 상기 (S2) 단계에서 분리된 유상의 산 분해 반응액을 분리 장치(300)에 투입하고, 아세톤을 포함하는 분리 장치 상부 배출 스트림(SUS) 및 페놀을 포함하는 분리 장치 하부 배출 스트림(SBS)을 분리하는 단계를 포함하여 실시될 수 있다.
본 발명의 일 실시예에 따르면, 상기 (S3) 단계에서 분리된 분리 장치 상부 배출 스트림(SUS)는 아세톤; 및 미반응 큐멘, 아세톤, 알파-메틸스티렌 및 하이드록시아세톤으로 이루어진 군으로부터 선택된 1종 이상을 포함하는 것일 수 있다. 상기 분리 장치 상부 배출 스트림(SUS)는 아세톤을 수득하기 위해 아세톤 컬럼(500)에 투입될 수 있고, 상기 아세톤 컬럼(500)에서 아세톤을 포함하는 아세톤 컬럼 상부 배출 스트림(Acetone)과, 큐멘, 알파-메틸스티렌 및 하이드록시아세톤으로 이루어진 군으로부터 선택된 1종 이상을 포함하는 아세톤 컬럼 하부 배출 스트림(ABS)으로 분리될 수 있다.
또한, 본 발명의 일 실시예에 따르면, 상기 (S4) 단계는, 상기 (S3) 단계에서 분리된 분리 장치 하부 배출 스트림(SBS)으로부터 페놀을 수득하고, 페놀계 부산물을 분해하기 위해, 상기 분리 장치 하부 배출 스트림(SBS)을 페놀 컬럼(400)에 투입하고, 페놀을 포함하는 페놀 컬럼 상부 배출 스트림(Phenol) 및 페놀계 부산물을 포함하는 페놀 컬럼 하부 배출 스트림(PBS)을 분리하는 단계일 수 있다.
본 발명의 일 실시예에 따르면, 상기 페놀을 포함하는 페놀 컬럼 상부 배출 스트림(Phenol)은 페놀 생성물로써 수득될 수 있고, 상기 페놀 컬럼 하부 배출 스트림(PBS)은 페놀계 부산물을 분해하기 위해 상기 (S10) 단계의 페놀계 부산물 스트림(PBS)으로 공급될 수 있다. 즉, 상기 (S10) 단계의 페놀계 부산물 스트림(PBS)은 상기 (S4) 단계에서 분리된 페놀 컬럼 하부 배출 스트림(PBS)일 수 있다.
또한, 본 발명의 일 실시예에 따르면, 상기 (S30) 단계의 분해에 의한 분해 장치 상부 배출 스트림(DUS)은, 상기 (S2) 단계에서 분리된 유상의 산 분해 반응액을 분리 장치에 투입하기 전에, 유상의 산 분해 반응액과 혼합되는 것일 수 있다(도 4 참조). 이 경우, 분해 장치 상부 배출 스트림(DUS) 내에 포함된 유효 성분 중 페놀은 다시 페놀 제조 공정을 거쳐 페놀 컬럼(400)으로부터 페놀 컬럼 상부 배출 스트림(Phenol)을 통해 페놀 생성물로 수득될 수 있고, 큐멘 및 알파-메틸스티렌으로 이루어진 군으로부터 선택된 1종 이상은 다시 페놀 제조 공정을 거쳐 분리 장치 상부 배출 스트림(SUS)을 통해, 아세톤 컬럼(500)에서 아세톤 컬럼 하부 배출 스트림(ABS)으로서 수득될 수 있다.
이하, 실시예에 의하여 본 발명을 더욱 상세하게 설명하고자 한다. 그러나, 하기 실시예는 본 발명을 예시하기 위한 것으로 본 발명의 범주 및 기술사상 범위 내에서 다양한 변경 및 수정이 가능함은 통상의 기술자에게 있어서 명백한 것이며, 이들 만으로 본 발명의 범위가 한정되는 것은 아니다.
실험예
실시예 1 및 2
도 2에 도시된 공정 흐름도를 이용하여, 하기 표 1에 기재된 조성의 페놀계 부산물 스트림(PBS) 및 분해 장치 측면 배출 스트림(DSS)을 혼합 장치(10)에 공급하였고, 공정수(PW)는 pH 4의 상태로 유지하여 혼합 장치(10)에 공급하였다.
혼합 장치(10)에 투입되는 페놀계 부산물 스트림(PBS):분해 장치 측면 배출 스트림(DSS):공정수(PW)의 유량비는 페놀계 부산물 스트림(PBS) 1,000 kg/hr를 기준으로, 실시예 1은 1:0.33:1.43이었고, 실시예 2는 1:0.25:1.25이었다.
이후, 실시예 1 및 2의 상 분리 장치(20) 내에서 0 시간, 3 시간 및 5 시간 체류 후, 상 분리된 유상 내의 염의 함량 및 염의 제거효율을 측정하여 하기 표 2에 나타내었다. 또한, 실시예 1 및 2에 따라 분해되어 배출되는 배출 장치 상부 배출 스트림의 조성을 하기 표 3에 나타내었다.
구분 페놀계 부산물 스트림(PBS) 분해 장치 측면 배출 스트림(DSS)
실시예 1 실시예 2
페놀 (wt%) 4.99 22.41 25.29
알파-메틸스티렌 (wt%) 5.67 6.55 8.02
큐멘 (wt%) 0.00 2.07 2.50
아세토페논 (wt%) 15.45 68.96 60.57
큐밀 페놀 (wt%) 21.27 0.00 0.51
알파-메틸스티렌 다이머 (wt%) 14.00 0.00 0.48
기타 (wt%) 38.62 0.01 2.63
(wt%) 100.00 100.00 100.00
구분 실시예
1 2
PBS:DSS:PW 유량비 1:0.33:1.43 1:0.25:1.25
상 분리 장치(20) 내 0 시간 체류 후 유상의 염 함량 (ppm) 400 530
상 분리 장치(20) 내 3 시간 체류 후 유상의 염 함량 (ppm) 25 35
상 분리 장치(20) 내 3 시간 체류 후 유상의 염의 제거효율 (%) 94 93
상 분리 장치(20) 내 5시간 체류 후 유상의 염 함량 (ppm) 25 35
상 분리 장치(20) 내 5시간 체류 후 유상의 염의 제거효율 (%) 94 93
PBS ton 대비 증가된 열에너지 (Mcal/ton) 47.5 30
구분 실시예
1 2
페놀 (wt%) 23.99 21.73
알파-메틸스티렌 (wt%) 43.32 49.21
큐멘 (wt%) 20.47 23.57
아세토페논 (wt%) 7.65 0.00
큐밀 페놀 (wt%) 0.00 0.00
알파-메틸스티렌 다이머 (wt%) 0.00 0.00
기타 (wt%) 4.57 5.49
(wt%) 100.00 100.00
비교예 1 내지 2
도 5에 도시된 공정 흐름도를 이용하여, 비교예 1 및 2는 하기 표 4에 기재된 조성의 페놀계 부산물 스트림(PBS)을 혼합 장치(10)에 공급하였고, 공정수(PW)는 pH 4의 상태로 유지하여 혼합 장치(10)에 공급하였다.
비교예 1 및 2에서, 혼합 장치(10)에 투입되는 페놀계 부산물 스트림(PBS):공정수(PW)의 유량비는 페놀계 부산물 스트림(PBS) 1,000 kg/hr를 기준으로 1:1이었다.
이후, 비교예 1 및 2의 상 분리 장치(20) 내에서 0 시간, 3 시간 및 5 시간 체류 후, 상 분리된 유상 내의 염의 함량 및 염의 제거효율을 측정하여 하기 표 5에 나타내었다.
구분 페놀계 부산물 스트림(PBS)
페놀 (wt%) 4.99
알파-메틸스티렌 (wt%) 5.67
큐멘 (wt%) 0.00
아세토페논 (wt%) 15.45
큐밀 페놀 (wt%) 21.27
알파-메틸스티렌 다이머 (wt%) 14.00
기타 (wt%) 38.62
(wt%) 100.00
구분 비교예
1 2
PBS:PW 유량비 1:1 1:1
상 분리 장치(20) 내 0 시간 체류 후 유상의 염 함량 (ppm) 500 530
상 분리 장치(20) 내 3 시간 체류 후 유상의 염 함량 (ppm) 170 150
상 분리 장치(20) 내 3 시간 체류 후 유상의 염의 제거효율 (%) 66 72
상 분리 장치(20) 내 5시간 체류 후 유상의 염 함량 (ppm) 152 120
상 분리 장치(20) 내 5시간 체류 후 유상의 염의 제거효율 (%) 70 77
비교예 3 내지 4
도 6 내지 7(비교예 3 - 도 6, 비교예 4 - 도 7)에 도시된 공정 흐름도를 이용하여, 비교예 3은 하기 표 6에 기재된 조성의 페놀계 부산물 스트림(PBS) 및 C-AMS(Crude Alpha-methyl styrene)을, 비교예 4는 하기 표 6에 기재된 조성의 페놀계 부산물 스트림(PBS) 및 분해 장치 상부 배출 스트림(DUS)을 혼합 장치(10)에 공급하였고, 공정수(PW)는 pH 4의 상태로 유지하여 혼합 장치(10)에 공급하였다.
비교예 3에서 혼합 장치(10)에 투입되는 페놀계 부산물 스트림(PBS):C-AMS:공정수(PW)의 유량비는 페놀계 부산물 스트림(PBS) 1,000 kg/hr를 기준으로 1:0.33:1.43이었다. 비교예 4에서 혼합 장치(10)에 투입되는 페놀계 부산물 스트림(PBS):분해 장치 상부 배출 스트림(DUS):공정수(PW)의 유량비는 페놀계 부산물 스트림(PBS) 1,000 kg/hr를 기준으로 1:0.33:1.43이었다.
이후, 비교예 3 및 4의 상 분리 장치(20) 내에서 0 시간, 3 시간 및 5 시간 체류 후, 상 분리된 유상 내의 염의 함량 및 염의 제거효율을 측정하여 하기 표 7에 나타내었다. 또한, 비교예 3 및 4에 따라 분해되어 배출되는 배출 장치 상부 배출 스트림의 조성을 하기 표 8에 나타내었다.
구분 페놀계 부산물 스트림(PBS) C-AMS 분해 장치 상부 배출 스트림(DUS)
페놀 (wt%) 4.99 0.00 24.21
알파-메틸스티렌 (wt%) 5.67 20.00 41.92
큐멘 (wt%) 0.00 80.00 21.66
아세토페논 (wt%) 15.45 0.00 7.63
큐밀 페놀 (wt%) 21.27 0.00 0.00
알파-메틸스티렌 다이머 (wt%) 14.00 0.00 0.00
기타 (wt%) 38.62 0.00 4.58
(wt%) 100.00 100.00 100.00
구분 비교예
3 4
PBS:(C-AMS or DUS):PW 유량비 1:0.33:1.43 1:0.33:1.43
상 분리 장치(20) 내 0 시간 체류 후 유상의 염 함량 (ppm) 500 400
상 분리 장치(20) 내 3 시간 체류 후 유상의 염 함량 (ppm) 40 70
상 분리 장치(20) 내 3 시간 체류 후 유상의 염의 제거효율 (%) 92 83
상 분리 장치(20) 내 5시간 체류 후 유상의 염 함량 (ppm) 20 20
상 분리 장치(20) 내 5시간 체류 후 유상의 염의 제거효율 (%) 96 77
PBS ton 대비 증가된 열에너지 (Mcal/ton) 90 154
구분 비교예
3 4
페놀 (wt%) 14.70 24.21
알파-메틸스티렌 (wt%) 33.23 41.92
큐멘 (wt%) 45.35 21.66
아세토페논 (wt%) 4.13 7.63
큐밀 페놀 (wt%) 0.00 0.00
알파-메틸스티렌 다이머 (wt%) 0.00 0.00
기타 (wt%) 2.59 4.58
(wt%) 100.00 100.00
상기 표 2 및 3을 참조하면, 본 발명에 따른 페놀계 부산물 분해 방법으로 페놀계 부산물을 분해함에 따라 페놀계 부산물 내에 포함된 염의 제거효율이 높게 유지되면서 유효 성분의 수득량이 높은 것을 확인할 수 있었다. 또한 열에너지의 소모도 적은 것을 확인할 수 있었다.반면, 표 5를 참조하면, 페놀계 부산물을 분해하기에 앞서, 공정수(PW)만을 투입한 비교예 1 및 2의 경우에는 상 분리 후에도 염의 함량이 높고 염의 제거효율이 본 발명에 비해 떨어지는 것을 확인할 수 있었다.
또한, 표 7을 참조하면, 페놀계 부산물에 공정수와 함께 페놀, 큐멘, 또는 알파-메틸스티렌 등과 같은 유기물을 투입하여 염을 제거하는 비교예 3 및 4의 경우에는 염의 제거효율이 높은 편이지만, 본 발명에 비해 열에너지의 소모가 매우 높은 것을 확인할 수 있었다.
본 발명자들은 상기와 같은 결과로부터, 본 발명에 따라 페놀 제조 공정에서 생성되는 페놀계 부산물을 분해하는 경우, 페놀계 부산물의 분해에 앞서 페놀계 부산물 내에 포함된 염을 효과적으로 제거할 수 있고, 이에 따라 페놀계 부산물을 분해하여 유효 성분을 효과적으로 수득하면서도, 유효 성분 내 아세토페논의 함량을 저감시킬 수 있는 것을 확인하였다.

Claims (11)

  1. 페놀 제조 공정에서 생성되는 페놀계 부산물 분해 방법에 있어서,
    페놀계 부산물 스트림, 분해 장치 측면 배출 스트림 및 공정수를 혼합 장치에 투입하여 혼합하는 단계(S10);
    상기 혼합 장치에서 배출되는 혼합 장치 배출 스트림을 상 분리 장치에 투입하여 유상 및 수상으로 상 분리하는 단계(S20);
    상기 (S20) 단계에서 상 분리되어 배출되는 유상 스트림을 분해 장치에 공급하여 분해하는 단계(S30); 및
    상기 (S30) 단계의 분해에 의한 분해 장치 측면 배출 스트림을 상기 (S10) 단계의 혼합 장치로 순환시키는 단계(S40)를 포함하는 페놀계 부산물 분해 방법.
  2. 제1항에 있어서,
    상기 페놀계 부산물 스트림은 페놀, 알파-메틸스티렌, 아세토페논, 큐밀 페놀 및 알파-메틸스티렌 다이머로 이루어진 군으로부터 선택된 1종 이상을 포함하는 것인 페놀계 부산물 분해 방법.
  3. 제1항에 있어서,
    상기 분해 장치 측면 배출 스트림은 페놀; 아세토페논; 및 알파-메틸스티렌과 큐멘으로 이루어진 군으로부터 선택된 1종 이상을 포함하는 것인 페놀계 부산물 분해 방법.
  4. 제1항에 있어서,
    상기 분해 장치 측면 배출 스트림은 아세토페논을 50 중량% 이상 포함하는 것인 페놀계 부산물 분해 방법.
  5. 제1항에 있어서,
    상기 공정수는 pH가 3.5 내지 7인 페놀계 부산물 분해 방법.
  6. 제1항에 있어서,
    상기 공정수는, 상기 (S20) 단계에서 분리된 수상의 수용액으로부터 유래된 공정수를 포함하는 것인 페놀계 부산물 분해 방법.
  7. 제1항에 있어서,
    상기 (S30) 단계의 분해에 의한 분해 장치 상부 배출 스트림은 페놀, 알파-메틸스티렌 및 큐멘으로 이루어진 군으로부터 선택된 1종 이상을 포함하는 것인 페놀계 부산물 분해 방법.
  8. 제1항에 있어서,
    상기 페놀계 부산물 분해 방법은, 상기 (S10) 단계 이전에,
    큐멘하이드로퍼옥사이드를 산 촉매 하에서 산 분해 반응시키는 단계(S1);
    상기 (S1) 단계에서 배출된 산 분해 반응액에 염기성 수용액을 투입하여 중화시키고, 중화된 산 분해 반응액을 유상 및 수상으로 상 분리하는 단계(S2);
    상기 (S2) 단계에서 분리된 유상의 산 분해 반응액을 분리 장치에 투입하고, 아세톤을 포함하는 분리 장치 상부 배출 스트림 및 페놀을 포함하는 분리 장치 하부 배출 스트림을 분리하는 단계(S3); 및
    상기 (S3) 단계에서 분리된 분리 장치 하부 배출 스트림을 페놀 컬럼에 투입하고, 페놀을 포함하는 페놀 컬럼 상부 배출 스트림 및 페놀계 부산물을 포함하는 페놀 컬럼 하부 배출 스트림을 분리하는 단계(S4)를 포함하는 것인 페놀계 부산물 분해 방법.
  9. 제8항에 있어서,
    상기 공정수는, 상기 (S2) 단계에서 분리된 수상의 수용액으로부터 유래된 공정수를 포함하는 것인 페놀계 부산물 분해 방법.
  10. 제8항에 있어서,
    상기 페놀계 부산물 스트림은 상기 페놀 컬럼 하부 배출 스트림인 페놀계 부산물 분해 방법.
  11. 제8항에 있어서,
    상기 (S30) 단계의 분해에 의한 분해 장치 상부 배출 스트림은,
    상기 (S2) 단계에서 분리된 유상의 산 분해 반응액을 분리 장치에 투입하기 전에, 유상의 산 분해 반응액과 혼합되는 것인 페놀계 부산물 분해 방법.
PCT/KR2019/013513 2018-12-20 2019-10-15 페놀계 부산물 분해 방법 WO2020130313A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP19883331.1A EP3715338B1 (en) 2018-12-20 2019-10-15 Method for decomposing phenolic by-product
JP2020528431A JP6886081B2 (ja) 2018-12-20 2019-10-15 フェノール系副産物の分解方法
US16/765,104 US11370735B2 (en) 2018-12-20 2019-10-15 Method for decomposing phenolic by-product
CN201980005845.0A CN111601784B (zh) 2018-12-20 2019-10-15 分解酚类副产物的方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2018-0166127 2018-12-20
KR1020180166127A KR102441602B1 (ko) 2018-12-20 2018-12-20 페놀계 부산물 분해 방법

Publications (1)

Publication Number Publication Date
WO2020130313A1 true WO2020130313A1 (ko) 2020-06-25

Family

ID=71101855

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/013513 WO2020130313A1 (ko) 2018-12-20 2019-10-15 페놀계 부산물 분해 방법

Country Status (6)

Country Link
US (1) US11370735B2 (ko)
EP (1) EP3715338B1 (ko)
JP (1) JP6886081B2 (ko)
KR (1) KR102441602B1 (ko)
CN (1) CN111601784B (ko)
WO (1) WO2020130313A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3995476A4 (en) * 2019-09-16 2022-05-11 LG Chem, Ltd. METHOD FOR DECOMPOSITION OF A PHENOLIC BY-PRODUCT
JP2022544359A (ja) * 2020-07-17 2022-10-18 エルジー・ケム・リミテッド フェノール系副産物の分解方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220007378A (ko) * 2020-07-10 2022-01-18 주식회사 엘지화학 페놀계 부산물 분해방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08259481A (ja) * 1994-12-09 1996-10-08 General Electric Co <Ge> クメンヒドロペルオキシド開裂の生成物からの酸触媒の除去及び中和法
JP2004002347A (ja) * 2002-04-10 2004-01-08 Mitsubishi Chemicals Corp フェノールの製造方法
JP2005029478A (ja) * 2003-07-08 2005-02-03 Mitsubishi Chemicals Corp フェノール副生油とビスフェノールa残渣の処理方法
KR20060026476A (ko) * 2003-07-04 2006-03-23 이네오스 페놀 게엠베하 운트 콤파니 카게 페놀성 화합물을 제조하는 방법, 분열 생성물 혼합물로부터페놀을 분리하는 방법, 및 장치
KR20140138325A (ko) * 2007-05-09 2014-12-03 바져 라이센싱 엘엘씨 비스페놀-a 처리 개선 방법

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2734085A (en) * 1956-02-07 Removal of salts from acetone-phenol mixtures
NL127228C (ko) * 1959-07-15
JPS5235656A (en) * 1975-09-13 1977-03-18 Nippon Kogaku Kk <Nikon> One shaft type device for crude and fine adjustments capable of effect ing moderate adjustment
DE2964960D1 (en) * 1978-08-18 1983-04-07 Bp Chem Int Ltd Process for the production of a phenol and a carbonyl compound by the catalysed decomposition of an aromatic hydroperoxide
JPS5814411B2 (ja) * 1979-11-02 1983-03-18 三井化学株式会社 フエノ−ル類の精製法
US4262151A (en) * 1979-12-31 1981-04-14 Uop Inc. Process for the recovery of phenol from a reaction mixture resulting from the acid cleavage of cumene hydroperoxide
IT1181903B (it) * 1984-06-15 1987-09-30 Anic Spa Procedimento per la pirolisi di peci fenoliche
IT1255264B (it) * 1992-05-22 1995-10-25 Giuseppe Messina Procedimento per il recupero di fenolo da sue miscele contenenti cumene e alfa-metilstirene
US5457244A (en) * 1994-10-04 1995-10-10 General Electric Company Phenol tar waste reduction process
US5962751A (en) * 1996-04-26 1999-10-05 General Electric Company Phenol tar desalting method
US6965056B1 (en) * 1999-05-03 2005-11-15 Shell Oil Company Removal of salts in the manufacture of phenolic compound
DE10060505A1 (de) * 2000-12-06 2003-01-30 Phenolchemie Gmbh & Co Kg Verfahren zur Abtrennung von Phenol aus einem Gemisch, welches zumindest Hydroxyaceton, Cumol, Wasser und Phenol aufweist
JP4337347B2 (ja) 2003-01-09 2009-09-30 三菱化学株式会社 フェノールの製造方法
US7186866B1 (en) * 2005-11-14 2007-03-06 Sunoco, Inc. (R&M) Process for recovery of cumene hydroperoxide decomposition products by distillation
EP1847522A1 (en) 2006-04-18 2007-10-24 INEOS Phenol GmbH & Co. KG Process for removal of hydroxyacetone from phenol
US8530702B2 (en) * 2007-10-26 2013-09-10 Shell Oil Company Recovery of acetophenone during the production of phenol
SG11201503421WA (en) 2012-12-06 2015-05-28 Exxonmobil Chem Patents Inc Process for producing phenol
KR101953801B1 (ko) 2015-12-23 2019-03-06 주식회사 엘지화학 비스페놀-a 잔사물 분해 반응 생성물로부터 페놀 및 아세톤을 회수하기 위한 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08259481A (ja) * 1994-12-09 1996-10-08 General Electric Co <Ge> クメンヒドロペルオキシド開裂の生成物からの酸触媒の除去及び中和法
JP2004002347A (ja) * 2002-04-10 2004-01-08 Mitsubishi Chemicals Corp フェノールの製造方法
KR20060026476A (ko) * 2003-07-04 2006-03-23 이네오스 페놀 게엠베하 운트 콤파니 카게 페놀성 화합물을 제조하는 방법, 분열 생성물 혼합물로부터페놀을 분리하는 방법, 및 장치
JP2005029478A (ja) * 2003-07-08 2005-02-03 Mitsubishi Chemicals Corp フェノール副生油とビスフェノールa残渣の処理方法
KR20140138325A (ko) * 2007-05-09 2014-12-03 바져 라이센싱 엘엘씨 비스페놀-a 처리 개선 방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3715338A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3995476A4 (en) * 2019-09-16 2022-05-11 LG Chem, Ltd. METHOD FOR DECOMPOSITION OF A PHENOLIC BY-PRODUCT
US11939282B2 (en) 2019-09-16 2024-03-26 Lg Chem, Ltd. Method for decomposing phenolic by-product
JP2022544359A (ja) * 2020-07-17 2022-10-18 エルジー・ケム・リミテッド フェノール系副産物の分解方法
EP3988535A4 (en) * 2020-07-17 2022-12-28 LG Chem, Ltd. PROCESSES FOR THE DECOMPOSITION OF PHENOLIC BY-PRODUCTS
JP7293539B2 (ja) 2020-07-17 2023-06-20 エルジー・ケム・リミテッド フェノール系副産物の分解方法

Also Published As

Publication number Publication date
JP2021511286A (ja) 2021-05-06
CN111601784A (zh) 2020-08-28
EP3715338B1 (en) 2023-06-14
KR102441602B1 (ko) 2022-09-06
EP3715338A1 (en) 2020-09-30
EP3715338A4 (en) 2021-08-11
US11370735B2 (en) 2022-06-28
JP6886081B2 (ja) 2021-06-16
US20210221760A1 (en) 2021-07-22
KR20200077027A (ko) 2020-06-30
CN111601784B (zh) 2023-01-20

Similar Documents

Publication Publication Date Title
WO2020130313A1 (ko) 페놀계 부산물 분해 방법
WO2019098501A1 (ko) 페놀 제조 공정에서의 부산물 분해방법
WO2019098502A1 (ko) 페놀 제조 공정에서의 부산물 분해방법
WO2021054607A1 (ko) 페놀계 부산물 분해 방법
WO2015076624A1 (ko) 산화탈수소 반응을 통한 부타디엔 제조 공정 내 흡수 용매 회수방법
WO2020130314A1 (ko) 페놀계 부산물의 분해 방법 및 이의 분해 장치
WO2022010102A1 (ko) 페놀계 부산물 분해방법
WO2022014876A1 (ko) 페놀계 부산물 분해방법
WO2021054608A1 (ko) 페놀계 부산물 분해 방법
WO2021261681A1 (ko) 페놀계 부산물 분해방법
WO2018097690A1 (ko) 메탄올 및 아세톤의 제거 유닛 및 이를 포함하는 페놀 및 비스페놀 a의 제조 시스템
WO2018088846A1 (ko) 페놀의 정제 방법
WO2018124453A1 (ko) 고체산 촉매를 이용한 n-치환 말레이미드 제조방법
KR20210155571A (ko) 페놀계 부산물 분해방법
WO2022092484A1 (ko) 아크릴로니트릴 이량체의 제조 방법
WO2022139117A1 (ko) 알파-메틸스타이렌의 제조방법
WO2022092655A1 (ko) 티오메틸페놀 유도체의 제조방법
EP2563748A1 (en) Method of preparing alkene compound
WO2018124580A1 (ko) 부타디엔 제조방법
WO2015186915A1 (ko) 산화탈수소화 반응을 통한 부타디엔의 제조방법
WO2022080751A1 (ko) 아크릴로니트릴 이량체의 제조 방법
WO2022080621A1 (ko) 아크릴로니트릴 이량체의 제조 방법

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020528431

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019883331

Country of ref document: EP

Effective date: 20200625

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19883331

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE