WO2015186915A1 - 산화탈수소화 반응을 통한 부타디엔의 제조방법 - Google Patents

산화탈수소화 반응을 통한 부타디엔의 제조방법 Download PDF

Info

Publication number
WO2015186915A1
WO2015186915A1 PCT/KR2015/004928 KR2015004928W WO2015186915A1 WO 2015186915 A1 WO2015186915 A1 WO 2015186915A1 KR 2015004928 W KR2015004928 W KR 2015004928W WO 2015186915 A1 WO2015186915 A1 WO 2015186915A1
Authority
WO
WIPO (PCT)
Prior art keywords
butadiene
stream
nitrogen
oxygen
reaction
Prior art date
Application number
PCT/KR2015/004928
Other languages
English (en)
French (fr)
Inventor
이재익
이정석
김미경
김대현
이종구
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020150066060A external-priority patent/KR101704902B1/ko
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to CN201580002761.3A priority Critical patent/CN105793216B/zh
Priority to EP15803599.8A priority patent/EP3050866B1/en
Priority to US15/034,815 priority patent/US9738574B2/en
Priority to JP2016529476A priority patent/JP6355216B2/ja
Publication of WO2015186915A1 publication Critical patent/WO2015186915A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/32Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by dehydrogenation with formation of free hydrogen
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C11/00Aliphatic unsaturated hydrocarbons
    • C07C11/12Alkadienes
    • C07C11/16Alkadienes with four carbon atoms
    • C07C11/1671, 3-Butadiene
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C7/00Purification; Separation; Use of additives

Definitions

  • the present invention relates to a method for producing butadiene through oxidative dehydrogenation.
  • Butadiene is used as an intermediate of many petrochemical products in the petrochemical market and is one of the most important basic oils in the petrochemical market, and its demand and value are gradually increasing.
  • butadiene production method is extracted from C4 fraction through naphtha cracking, direct dehydrogenation of n-butene, oxidative dehydrogenation of n-butene (n-butene) , ODH)) reactions.
  • the naphtha cracking process which is responsible for more than 90% of butadiene in the market, consumes a lot of energy due to high reaction temperature and is not a sole process for butadiene production. The problem is that it is produced in surplus.
  • the manufacturing method through the direct dehydrogenation of normal-butene is not only thermodynamically disadvantageous, but also suitable for the commercialization process for producing butadiene due to the endothermic reaction requiring high temperature and low pressure to produce high yield of butadiene. not.
  • a method for preparing butadiene through oxidative dehydrogenation reaction (ODH) of normal-butene is using a reaction of removing two hydrogens from normal-butene using oxygen as a reactant to generate butadiene, which is stable as a product. Since water is produced, it is very thermodynamically advantageous, and unlike direct dehydrogenation, it is exothermic and thus high yield of butadiene can be obtained at a lower reaction temperature than direct dehydrogenation. Therefore, the method for producing butadiene through the oxidative dehydrogenation of normal-butene may be an effective production process that can meet the growing demand for butadiene.
  • the method of preparing butadiene by oxidative dehydrogenation of the normal-butene may reduce the risk of explosion of the reactants and at the same time, in addition to the reaction materials (normal-butene and oxygen) to prevent coking of the catalyst and to remove the heat of reaction. Inject nitrogen, steam, etc. Therefore, butadiene as a main product, carbon monoxide, carbon dioxide, and the like by-products are generated secondary, and carbon monoxide, etc., in the by-products should be separated and discharged so that continuous accumulation does not occur in the process.
  • the effective components such as oxygen, unreacted raw material (normal-butene), and butadiene produced are discharged together outside the system.
  • air is generally used as an input source of oxygen (O 2 ) and nitrogen (N 2 ) in an oxidative dehydrogenation reaction, in which case nitrogen, oxygen, unreacted raw materials and butadiene are discharged.
  • oxygen oxygen
  • N 2 nitrogen
  • the present invention has been made in order to solve the problems of the prior art as described above, by easily adding the oxygen (O 2 ) and nitrogen (N 2 ) included in the reaction raw material stream to each other easily the ratio of the oxygen and nitrogen It is an object of the present invention to provide a method for producing butadiene through an oxidative dehydrogenation reaction that can minimize the amount of active ingredients discharged by adjusting.
  • the present invention is to react the oxidative dehydrogenation reaction by introducing a reaction raw material stream containing C4 fraction, steam, oxygen (O 2 ) and nitrogen (N 2 ) into the reactor filled with a catalyst Advancing (step a); Separating the C4 mixture comprising butadiene obtained from the reactor and a light gas (step b); And purifying the C4 mixture comprising the butadiene (step c),
  • the first fraction stream provides a process for producing butadiene through an oxidative dehydrogenation reaction comprising at least one of nitrogen and carbon dioxide.
  • the production method according to the present invention can easily control the input ratio of oxygen and nitrogen contained in the reaction raw material stream, thereby minimizing the amount of active ingredients such as butadiene contained in the second fraction stream discharged to the outside of the system The loss of active ingredient can be reduced.
  • the raw material cost is reduced, productivity is improved, and the amount of incineration of the purge discharged to the outside of the system is reduced, thereby improving economic efficiency of the process.
  • Figure 1 is a schematic diagram showing the manufacturing process of butadiene using a conventional general oxidative dehydrogenation reaction according to an embodiment of the present invention.
  • Figure 2 shows a schematic diagram of a butadiene production process using an oxidative dehydrogenation reaction through a method of injecting oxygen and nitrogen into independent pure gas according to an embodiment of the present invention.
  • the term "light gas” as used throughout this specification, including claims and abstracts, refers to nitrogen, oxygen, water vapor, carbon monoxide or carbon dioxide in the reaction products produced through oxidative dehydrogenation reactions. It may mean a gas component containing.
  • active ingredient may mean a component effective for the butadiene production reaction, such as nitrogen, oxygen, unreacted raw materials or butadiene.
  • the present invention is to prepare the butadiene through the oxidative dehydrogenation reaction that can reduce the loss of the active ingredient, such as butadiene discharged to the outside after the reaction by controlling the ratio of oxygen (O 2 ) and nitrogen (N 2 ) in the reaction raw material stream Provide a method.
  • a method for producing butadiene through an oxidative dehydrogenation reaction includes a reaction raw material input line 1, a reactor 10, a reaction product transfer line 2, a gas separator 20, and an internal circulation line. (3), through a manufacturing apparatus comprising a discharge line 4, a separate C4 mixture transfer line 5, a refining apparatus 30 and a purified butadiene discharge line 6.
  • the reaction raw material is introduced into the reactor 10 through the reaction raw material input line 1 used for the production of butadiene, and a reaction product is obtained through an oxidative dehydrogenation reaction in the reactor 10.
  • the reaction product obtained enters the gas separator 20 via the reaction product transfer line 2 and is separated into a C4 mixture and a gas product.
  • Some of the separated gaseous product e.g. nitrogen
  • Discharged is also introduced into the purification apparatus 30 via C4 mixture transfer line 5 and purified to produce butadiene via butadiene discharge line 6.
  • oxidative dehydrogenation reaction may proceed, and the oxidative dehydrogenation reaction may be an exothermic reaction, and a main reaction formula may be as in Scheme 1 or 2 below.
  • the manufacturing process of butadiene through the oxidative dehydrogenation reaction includes oxygen, nitrogen, steam, etc. to prevent the coking of the catalyst and to remove the heat of reaction while reducing the explosion risk of the reactants.
  • a secondary reaction raw material low-boiling and water-soluble by-products such as butadiene as the main product, carbon monoxide (CO), carbon dioxide (CO 2 ), acetylene or carbonyl as by-products, and high-boiling by-products such as phenol and coumarin Side reaction products, including the like, are generated in a secondary manner, and carbon monoxide and the like in the by-products must be separated and discharged so that continuous accumulation does not occur in the process.
  • FIG. 1 is a conventional butadiene production method is the oxygen and nitrogen is introduced through the air (air), the air, steam or internal circulation line (4) is introduced to the oxygen concentration in consideration of the explosion range of the reactants It is controlled with some gaseous product re-injected through.
  • the mass ratio of oxygen to nitrogen is fixed at 20:78, and the ratio of nitrogen and steam according to the reaction conditions in the reactor 10 is also determined, so that the gas is re-injected to maintain the oxygen concentration in the reactor 10.
  • the amount of product can only be determined dependently.
  • the concentration of oxygen in the reactor 10 is adjusted by introducing air, the concentration of nitrogen is greatly increased because the mass ratio of nitrogen in the air is high, so the amount of the gas product containing nitrogen that can be re-introduced into the reactor is limited. It must be.
  • the amount of gaseous products discarded through the discharge line 4 is greater than the amount of gaseous products that are re-injected, so that a relatively large amount of butadiene, unreacted raw materials, etc. is discarded, butadiene manufacturing process It acts as one of the factors that worsen the economics.
  • the production method of the present invention can precisely control the flow rate (mass) of oxygen and nitrogen by injecting oxygen and nitrogen in the form of pure gas in order to improve the problems of the prior art as described above, and more than the amount necessary for the reaction It is characterized in that to prevent excessive inclusion.
  • the reaction raw material stream comprising C4 fraction, steam, oxygen (O 2 ) and nitrogen (N 2 )
  • introducing a catalyst into the reactor filled with the oxidative dehydrogenation reaction step a); Separating a C4 mixture comprising butadiene obtained from the reactor and a light gas (step b); And purifying the C4 mixture comprising the butadiene (step c).
  • the gas product separated in step b) is separated into a first fraction stream and a second fraction stream so that the first fraction stream is reintroduced into the reactor, the second fraction
  • the stream is further characterized by the step d) of exiting the system.
  • the production method according to the present invention can be carried out the reaction raw material input line (1), oxidative dehydrogenation reaction for introducing the reaction raw material stream containing C4 fraction, steam, oxygen and nitrogen into the reactor Reactor 10, a reaction product transfer line 2 for introducing the reaction product obtained from the reactor into the gas separator, a gas separator 20 for separating the C4 mixture and a light gas from the reaction product, a gas separator
  • a manufacturing apparatus comprising a C4 mixture conveying line 5, a refiner 30 and a purified butadiene discharge line 6 for transferring the separated C4 mixture to the refiner Can be done.
  • the reactor feed line 1 includes a separate pipeline for introducing each component of the reactor feed stream comprising C4 fraction, steam, oxygen and nitrogen into the reactor 10, or the reactor 10 and It may be to include a plurality of individual pipelines branched from one directly connected pipeline, each component of the reactant stream is fed separately.
  • the gas separator 20 is for separating the gas product (light gas) and the C4 mixture containing butadiene from the reaction product introduced through the reaction product transfer line (2), if necessary absorption tower and degassing column It may include at least one of.
  • the manufacturing apparatus for performing the manufacturing method according to an embodiment of the present invention is a quenching tower (quenching tower) for cooling the reaction product obtained from the reactor between the reactor 10 and the gas separator 20, etc.
  • a quenching device including a compressor, a compressor for compressing the reaction product, and a dehydration device for removing water included in the reaction product may be further included.
  • the purification device 30 includes a solvent separation and recovery device including a solvent recovery tower, a high boiling point removal tower, a solvent purification tower, and the like, and a purification tower for purifying high purity butadiene, if necessary, in order to obtain high purity butadiene. It may include.
  • Step a is an oxidative dehydrogenation reaction by introducing a reactant stream comprising C4 oil, steam, oxygen (O 2 ) and nitrogen (N 2 ) into a catalyst-filled reactor to produce butadiene from the C4 fraction. Step to proceed.
  • the mass ratio of each of the active ingredients (C4 fraction, steam, oxygen and nitrogen) in the reactor may be controlled by the incoming raw material stream and the first fraction stream to be re-introduced later.
  • the first fractional stream may include any one or more of nitrogen and carbon dioxide as main components, and may further include unreacted raw materials such as oxygen and steam. That is, the active ingredients (C4 fraction, steam, oxygen and nitrogen) in the reactor may be a mixture of the input from the reaction raw material stream and the input from the first fraction stream, the mass ratio of the active ingredient is the introduced reaction It may be adjusted according to the mass ratio of the active ingredient in the feed stream and the mass ratio of the active ingredient in the first fraction stream.
  • the mass ratio of oxygen and nitrogen in the reactor is controlled by the mass ratio of oxygen and nitrogen in the reactant stream and the mass ratio of oxygen and nitrogen in the first fraction stream to be reintroduced, and thus to the mass ratio of oxygen and nitrogen in the incoming reactant stream. Accordingly, the reflow amount of the first fractional stream may be dependent, and as a result, the discharge of the second fractional stream, which will be described later, may also be dependent.
  • conventional conventional production methods use oxygen and nitrogen contained in the reaction raw material stream as air, and in this case, the mass ratio of oxygen and nitrogen in the air is fixed at 0.2: 0.78 to perform the oxidative dehydrogenation reaction.
  • the mass ratio of oxygen, the main active ingredient, to an appropriate condition the mass ratio of nitrogen, a secondary active ingredient, increases more than the mass ratio of the optimum condition as the amount of air is increased. Being present in large quantities results in an increase in the amount of the second fraction stream exiting the system and a decrease in the amount of the first fraction stream re-introduced.
  • the manufacturing method according to an embodiment of the present invention may be to add oxygen (O 2 ) and nitrogen (N 2 ) contained in the reaction feed stream in the form of pure gas independent of each other, the independent
  • the pure gas form may mean that oxygen (O 2 ) and nitrogen (N 2 ) are not introduced from air, which is a mixed gas, but are introduced in the form of pure oxygen gas and pure nitrogen gas, respectively.
  • the oxygen may be introduced in the form mixed with air as necessary. That is, oxygen may be mixed with air (mixed gas in which the oxygen mass ratio is increased), or oxygen may be added while air is basically added.
  • the first fraction stream which is re-introduced by reacting oxygen and nitrogen in the form of independent pure gas without introducing oxygen and nitrogen in the form of a mixed gas such as air, is generated after the reaction.
  • the amount of each component included in the reaction raw material stream introduced into the reactor by measuring in real time the amount of butadiene and the active ingredient contained in the second fraction stream discharged to the outside of the system, in particular of one or more components selected from oxygen and nitrogen The amount can be adjusted individually. Therefore, the total amount of the second fraction stream discharged can be reduced, and as a result, it can be adjusted to minimize the amount of active ingredients such as butadiene contained in the second fraction stream and discharged to the outside of the system.
  • the C4 fraction may mean the remaining C4 raffinate-1, 2, and 3 remaining after separating useful compounds from the C4 mixture produced by naphtha cracking, and means a C4 class that can be obtained through ethylene dimerization. It may be.
  • the C4 fraction is n-butane, trans-2-butene, cis-2-butene and 1-butene It may be one or a mixture of two or more selected from the group consisting of (1-butene).
  • the steam or nitrogen (N 2 ) in the oxidative dehydrogenation reaction may reduce the explosion risk of the reactants, and may be a diluent gas introduced for the purpose of preventing coking of the catalyst and removing the heat of reaction.
  • the oxygen (O 2 ) may cause a dehydrogenation reaction by reacting with C4 fraction as an oxidant (oxidant).
  • the method of introducing the reactant stream into the reactor is mixed with C4 fraction, steam, oxygen (O 2 ) and nitrogen (N 2 ) before entering the reactor in the form of a mixed reactant
  • the C4 fraction, steam, oxygen (O 2 ), and nitrogen (N 2 ) may be introduced into the reactor through separate pipelines and uniformly mixed in the reactor.
  • the reactant stream is the C4 fraction, steam, oxygen (O 2 ) and nitrogen (N 2 ) are mixed by a mixing device located in front of the reactor and then introduced into the reactor, or the C4 fraction, Steam, oxygen (O 2 ) and nitrogen (N 2 ) may be mixed in one pipeline connected to the reactor passing through a plurality of individual pipelines each branched to enter the reactor (see FIG. 2). .
  • the C4 fraction, steam, oxygen and nitrogen contained in the reaction raw material stream may be introduced into the pipeline in a gaseous state, the gas is pre-heated to a temperature favorable for the oxidative dehydrogenation reaction May be
  • the catalyst charged in the reactor is not particularly limited as long as it is capable of producing butadiene by oxidative dehydrogenation of the C4 fraction, for example ferrite catalyst or bismuth molybdate catalyst Can be.
  • the catalyst may be a bismuth molybdate-based catalyst
  • the bismuth molybdate-based catalyst is one selected from the group consisting of bismuth (Bismuth), molybdenum (Molybdenum) and cobalt (Cobalt)
  • the bismuth molybdate catalyst may be a multicomponent bismuth molybdate catalyst.
  • the type and amount of the reaction catalyst may vary depending on the specific conditions of the reaction.
  • the reactor is not particularly limited as long as the oxidative dehydrogenation reaction can proceed.
  • it may be a tubular reactor, a tank reactor, or a fluidized bed reactor.
  • the reactor may be a fixed bed reactor or may be a fixed bed multi-tubular reactor or a plate reactor.
  • the step b is for separating the main product from the mixed reaction product including the main product including butadiene obtained from the reactor and the incidental by-products, the step of separating the gas product and the C4 mixture containing butadiene.
  • the separation may be performed through one or more steps selected from the group consisting of a compression step using a compressor, a dehydration step using a dehydration device, and a gas separation step using a gas separation device.
  • the manufacturing method according to an embodiment of the present invention may perform the step of quenching the mixed reaction product obtained from the reactor using a quenching tower (quenching tower) before the separation step of step b.
  • the mixed reaction product obtained from the reactor is
  • It may be in the form of hot gases, and therefore needs to be cooled before being introduced into the gas separation device.
  • the cooling method used in the quenching step is not particularly limited, but may be, for example, a cooling method of directly contacting the cooling solvent and the mixed reaction product, or a cooling method of indirectly contacting the cooling solvent and the mixed reaction product. It may be.
  • the separation step according to an embodiment of the present invention is to contact the mixed reaction product obtained from the reactor with the absorption solvent in the absorption tower to selectively absorb only the C4 mixture containing butadiene in the absorption solvent, and other gas products (light gas) can be separated and removed.
  • the C4 mixture including butadiene is selectively absorbed by the absorption solvent, and the remaining gas product is It goes through the pipe through the tower top.
  • the kind of the absorption tower is not particularly limited, and may be, for example, a packed tower, a wet wall tower, a spray tower, a cyclone scrubber, a bubble tower, a bubble stirring tank, a single tower (bubble tower, porous plate tower) or a foam separation tower.
  • an absorption solvent conventionally used in the art may be used.
  • a saturated hydrocarbon of C 6 to C 10 an aromatic hydrocarbon of C 6 to C 8, or an amide compound may be used.
  • the absorption solvent may be, for example, dimethylformamide (DMF), toluene, xylene, N-methyl-2-pyrrolidone (NMP), or the like.
  • the gas product discharged through the pipe through the top of the absorption tower may be divided into a first fraction stream and a second fraction stream.
  • the first fraction stream may be a concentrated stream comprising one or more selected from the group consisting of nitrogen and carbon dioxide, as described above, and may be circulated along an internal circulation line (see FIG. 2, FIG. 2) to be reintroduced into the reactor. (Step d).
  • the first fractional stream may further include oxygen, steam, unreacted raw materials, butadiene, etc. in addition to the aforementioned components, and the carbon dioxide contained in the first fractional stream is re-introduced into the reactor through internal circulation to oxidize dehydration in the reactor. It can act as a mild oxidant or as a diluent gas in the digestion reaction.
  • the second fraction stream is a purge stream discharged to the outside of the system, and is discharged to the outside of the system through a discharge line 4 (see FIG. 2) separate from the first fraction stream (step d).
  • the second fraction stream may comprise nitrogen (N 2 ), carbon dioxide (CO 2 ), unreacted raw materials and butadiene, and the like.
  • the mass of butadiene contained in the second fraction stream and discharged to the outside of the system may be in an amount corresponding to about 0.01% to 10% of the total amount of butadiene generated by the oxidative dehydrogenation reaction in the reactor.
  • the absorbing solvent is used to selectively absorb only the C4 mixture including butadiene, but may also dissolve a portion of a gas such as nitrogen and carbon dioxide.
  • a degassing step for removing gas such as nitrogen and carbon dioxide may be additionally performed, and the degassing step may be performed in a degassing tower.
  • the degassing method is not particularly limited and may be by conventional methods used in the art.
  • Step c is a step of purifying the C4 mixture containing butadiene to obtain a high purity butadiene.
  • the purification step is a solvent separation and recovery device including a solvent recovery tower for separating and recovering the absorption solvent, a high boiling point removal tower for removing the high boiling point component, a solvent purification tower and the like, butadiene purification for the purification of high purity butadiene This may be accomplished through one or more devices selected from the towers.
  • the method for separating and recovering the solvent is not particularly limited, and for example, a distillation separation method may be used.
  • a distillation separation method an absorption solvent in which a C4 mixture including butadiene is dissolved is introduced into a solvent recovery tower by a reboiler and a condenser, followed by distillation.
  • the distillation separation process extracts a C4 mixture containing butadiene from the vicinity of the column top.
  • the absorbing solvent separated in the above process is extracted from the bottom of the solvent recovery column, and the extracted absorbing solvent may be re-injected into the shearing process and used again. Since the absorbing solvent may contain impurities, a part of the absorbing solvent may be extracted before recycling to remove impurities by a known purification method such as distillation, decantation, sedimentation, contact treatment with an adsorbent or an ion exchange resin, and the like. You may.
  • the C4 mixture including butadiene separated from the absorption solvent may be introduced into the high boiling point removal tower for the separation of the high boiling point component.
  • a process of removing a high boiling point component (a component having higher solubility than butadiene) is performed, and a component having a higher solubility than the butadiene is dissolved in a solvent.
  • the solvent may be discharged from the bottom and transferred to the solvent purification tower.
  • butadiene from which the high boiling point component is removed may be discharged from the top of the high boiling point removing tower and transferred to the butadiene purification tower.
  • butadiene delivered to the purification tower may be obtained as high-purity butadiene by removing the high boiling point, low boiling point components during the purification tower.
  • the purity of butadiene finally obtained through the series of steps may be 99.0% ⁇ 99.9%.
  • An oxidative dehydrogenation reaction was performed by introducing a reactant stream into a reactor filled with a bismuth molybdate catalyst.
  • the reactor used a metal tubular reactor.
  • 1-butene, steam, oxygen and nitrogen were used as the reaction raw materials, the input ratio of the initial reaction raw materials was adjusted to the reaction conditions, and the mass ratio of oxygen and nitrogen thereafter was added as shown in Table 1 below.
  • the reactor was designed so that steam was mixed with other reaction raw materials and introduced into the reactor.
  • the amount of 1-butene was controlled using a mass flow controller for liquid, oxygen and nitrogen were controlled using a mass flow controller for gas, and the amount of steam was controlled using a liquid pump.
  • the mixed reaction product was separated into a gas product and a C4 mixture containing butadiene through a separator.
  • the butadiene-containing C4 mixture was further purified through a purification apparatus to prepare butadiene with a purity of 99.7% (yield 99.4%).
  • the separated gas product was discharged to the outside of the system as a purge stream (second fraction stream), and the amount of butadiene in the active ingredient contained in the purge stream and discharged to the outside of the system is oxidative dehydrogenation reaction in the reactor. Corresponding to about 0.06% of the amount of butadiene produced by.
  • Butadiene having a purity of 99.7% was prepared in the same manner as in Example 1, except that the mass ratio of oxygen and nitrogen introduced after the first was adjusted as shown in Table 1 below (yield 99.3%).
  • the amount of butadiene in the active ingredient discharged to the outside of the system corresponded to about 0.2% of the amount of butadiene produced by the oxidative dehydrogenation reaction in the reactor.
  • Butadiene having a purity of 99.7% was prepared in the same manner as in Example 1, except that oxygen and nitrogen were introduced as air as a mixed gas (yield 99.0%). At this time, the mass ratio of oxygen to nitrogen in the air was 0.3: 1.
  • the amount of butadiene in the active ingredient discharged to the outside of the system corresponds to about 0.5% of the amount of butadiene produced by the oxidative dehydrogenation reaction in the reactor.
  • Example 1 and Example 2 according to an embodiment of the present invention can be added to the oxygen and nitrogen independently in the reactor, the mass ratio of oxygen and nitrogen is added to the flexible It was confirmed that the mass ratio of nitrogen in the reactor can be easily adjusted in comparison with Comparative Example 1 in which oxygen and nitrogen are introduced into the air. In addition, it was confirmed that the total flow rate (Table 2) of the second fraction stream discharged to the outside of the system can be controlled by flexibly adjusting the mass ratio of the introduced oxygen and nitrogen, and as a result, the second fraction discharged to the outside of the system. By controlling the total amount of the stream it was confirmed that the amount of butadiene contained in it can be controlled out.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

본 발명은 산화탈수소화 반응을 통한 부타디엔의 제조방법에 관한 것으로, 이에 따른 제조방법은 반응원료로 사용되는 산소와 질소의 투입비율을 용이하게 조절할 수 있어 제2 분획 스트림(퍼지 스트림)에 포함되어 계 외부로 배출되는 부타디엔의 손실을 최소화할 수 있으며, 따라서 원료비 절감, 생산성의 향상 등 공정의 경제성을 확보할 수 있다.

Description

산화탈수소화 반응을 통한 부타디엔의 제조방법
본 발명은 산화탈수소화 반응을 통한 부타디엔의 제조방법에 관한 것이다.
부타디엔(Butadiene)은 석유화학 시장에서 많은 석유화학 제품의 중간체로서 이용되며, 현재 석유화학 시장에서 가장 중요한 기초유분 중 하나로서 그 수요와 가치가 점차 증가하고 있다.
이러한, 부타디엔을 제조하는 방법으로는 납사 크래킹을 통하여 C4 유분으로부터 추출하는 방법, 노르말-부텐(n-butene)의 직접 탈수소화 반응, 노르말-부텐(n-butene)의 산화적 탈수소화(oxidative dehydrogenation, ODH)) 반응을 통한 방법 등이 있다. 그러나, 시장에 투입되는 부타디엔의 90%이상을 담당하고 있는 납사 크래킹 공정을 통한 제조방법은 높은 반응온도로 인하여 에너지 소비량이 많을 뿐만 아니라, 부타디엔 생산만을 위한 단독 공정이 아니기 때문에 부타디엔 이외에 다른 기초 유분이 잉여로 생산된다는 문제점을 가지고 있다. 또한, 노르말-부텐의 직접 탈수소화 반응을 통한 제조방법은 열역학적으로 불리할 뿐만 아니라, 흡열반응으로써 높은 수율의 부타디엔 생산을 위해 고온 및 저압의 조건이 요구되어 부타디엔을 생산하는 상용화 공정으로는 적합하지 않다.
한편, 노르말-부텐의 산화적 탈수소화 반응(ODH)을 통해 부타디엔을 제조하는 방법은 반응물로 산소를 이용하여 노르말-부텐으로부터 2개의 수소를 제거하여 부타디엔을 생성하는 반응을 이용한 것으로, 생성물로 안정한 물이 생성되므로 열역학적으로 매우 유리하며, 직접 탈수소화 반응과 달리 발열 반응이기 때문에 직접 탈수소화 반응에 비하여 낮은 반응온도에서도 높은 수율의 부타디엔을 얻을 수 있다. 따라서, 노르말-부텐의 산화적 탈수소화 반응을 통한 부타디엔의 제조방법은 늘어나는 부타디엔 수요를 충족시킬 수 있는 효과적인 생산 공정이 될 수 있다.
또한, 상기와 같은 노르말-부텐을 산화적 탈수소화 반응시켜 부타디엔을 제조하는 방법은 반응물의 폭발 위험을 줄이는 동시에 촉매의 코킹(coking) 방지 및 반응열 제거를 위하여 반응원료(노르말-부텐 및 산소) 이외에 질소, 수증기(steam)등을 투입한다. 이에, 주생성물인 부타디엔을 비롯하여 부생성물인 일산화탄소, 이산화탄소 등이 부차적으로 생성되며, 상기 부생성물 중 일산화탄소 등은 공정 내에 지속적인 축적이 발생되지 않도록 분리·배출시켜야 한다. 그러나, 상기 배출 시 산소, 미반응 원료(노르말-부텐) 및 생성된 부타디엔 등의 유효한 성분이 함께 계 외부로 배출되는 문제가 있다.
관련하여, 일반적으로 산화적 탈수소화 반응 시 산소(O2) 및 질소(N2)의 투입원으로 공기(air)를 사용하고 있으며, 이 경우 배출되는 질소, 산소, 미반응 원료 및 부타디엔 등과 같은 유효성분의 양을 임의로 조절하기 어려운 문제점이 있다. 따라서 배출되는 유효성분을 최소화할 수 있는 방법이 필요한 실정이다.
본 발명은 상기와 같은 종래기술의 문제점을 해결하기 위하여 안출된 것으로, 반응원료 스트림에 포함되는 산소(O2) 및 질소(N2)를 서로 독립적으로 투입함으로써 상기 산소 및 질소의 비율을 용이하게 조절하여 배출되는 유효성분의 양을 최소화할 수 있는 산화탈수소화 반응을 통한 부타디엔의 제조방법을 제공하는 것을 목적으로 한다.
상기의 과제를 해결하기 위하여, 본 발명은 C4 유분, 스팀(steam), 산소(O2) 및 질소(N2)를 포함하는 반응원료 스트림을 촉매가 충진된 반응기 내에 유입시켜 산화탈수소화 반응을 진행시키는 단계(단계 a); 상기 반응기로부터 얻어진 부타디엔을 포함하는 C4 혼합물과, 가스 생성물(light gas)을 분리하는 단계(단계 b); 및 상기 부타디엔을 포함하는 C4 혼합물을 정제하는 단계(단계 c)를 포함하고,
상기 b) 단계의 가스 생성물을 제1 분획 스트림과 제2 분획 스트림으로 분리하여 상기 제1 분획 스트림은 반응기 내에 재유입시키고, 제2 분획 스트림은 계 외부로 배출시키는 단계 d)를 더 포함하며, 상기 제1 분획 스트림은 질소 및 이산화탄소 중 어느 하나 이상을 포함하는 것인 산화탈수소화 반응을 통한 부타디엔의 제조방법을 제공한다.
본 발명에 따른 제조방법은 반응원료 스트림에 포함되는 산소 및 질소의 투입비율을 용이하게 조절할 수 있으며, 이에 계 외부로 배출되는 제2 분획 스트림 내에 포함되는 부타디엔 등의 유효성분 양을 최소화할 수 있어 유효성분의 손실을 감소시킬 수 있다.
이에, 본 발명에 따라 부타디엔을 제조하는 경우 원료비가 절감되고 생산성이 향상되며, 계 외부로 배출된 퍼지의 소각 처리 양이 감소하므로 공정의 경제성이 향상될 수 있다.
본 명세서에 첨부되는 다음의 도면들은 본 발명의 바람직한 실시예를 예시하는 것이며, 전술한 발명의 내용과 함께 본 발명의 기술사상을 더욱 이해시키는 역할을 하는 것이므로, 본 발명은 그러한 도면에 기재된 사항에만 한정되어 해석되어서는 아니 된다.
도 1은, 본 발명의 일 실시예에 따른 종래의 일반적인 산화탈수소화 반응을 이용한 부타디엔의 제조공정을 도식화하여 나타낸 것이다.
도 2는, 본 발명의 일 실시예에 따른 산소 및 질소를 독립적인 순수가스로 투입하는 방법을 통한 산화탈수소화 반응을 이용한 부타디엔 제조공정을 도식화하여 나타낸 것이다.
[부호의 설명]
10: 반응기
20: 가스 분리 장치
30: 정제장치
1: 반응원료 투입라인
2: 혼합 반응 생성물 이송라인
3: 내부 순환 라인
4: 배출라인
5: C4 혼합물 이송라인
6: 정제된 부타디엔 수득라인
이하, 본 발명에 대한 이해를 돕기 위하여 본 발명을 더욱 상세하게 설명한다.
본 명세서 및 청구범위에서 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다. 특히, 청구범위 및 요약서를 포함하여 본 명세서의 전반에 걸쳐 사용되는 용어인 "가스 생성물(light gas)"은 산화탈수소화 반응을 통하여 생성된 반응 생성물 중 질소, 산소, 수증기, 일산화탄소 또는 이산화탄소 등을 포함하는 기체 성분을 의미하는 것일 수 있다. 또한, 용어 "유효성분"은 질소, 산소, 미반응 원료 또는 부타디엔 등과 같이 부타디엔 제조 반응에 유효한 성분을 의미하는 것일 수 있다.
본 발명은 반응원료 스트림 내 산소(O2) 및 질소(N2)의 비율을 조절함으로써 반응 후 계 외부로 배출되는 유효성분, 예컨대 부타디엔의 손실량을 줄일 수 있는 산화탈수소화 반응을 통한 부타디엔의 제조방법을 제공한다.
이하, 도 1을 참조하여 통상적인 산화탈수소화 반응을 통한 부타디엔의 제조방법을 설명한다.
도 1에 나타난 바와 같이, 일반적으로 산화탈수소화 반응을 통한 부타디엔의 제조방법은 반응원료 투입라인(1), 반응기(10), 반응 생성물 이송 라인(2), 가스 분리기(20), 내부 순환 라인(3), 배출 라인(4), 분리된 C4 혼합물 이송 라인(5), 정제장치(30) 및 정제된 부타디엔 배출 라인(6)을 포함하는 제조장치를 통하여 수행한다.
구체적으로, 부타디엔의 제조에 사용되는 반응원료 투입라인(1)을 통하여 반응원료가 반응기(10)에 유입되고 반응기(10) 내에서 산화탈수소화 반응을 통해 반응 생성물이 얻어진다. 얻어진 반응 생성물은 반응 생성물 이송 라인(2)를 통해 가스 분리기(20)에 유입되고 C4 혼합물과 가스 생성물로 분리된다. 분리된 가스 생성물 중 일부(예컨대, 질소)는 내부 순환 라인(3)를 통해 재순환되어 반응원료 투입라인(1)에 재투입되고 일부(예컨대, 일산화탄소)는 배출 라인(4)를 통해 계 외부를 배출된다. 또한, 분리된 C4 혼합물은 C4 혼합물 이송 라인(5)을 통해 정제 장치(30)에 유입되고 정제되어 부타디엔 배출 라인(6)을 통해 부타디엔이 제조된다.
상기 설명한 바와 같이 C4 유분, 스팀(steam), 산소(O2) 및 질소(N2)를 포함하는 반응원료 스트림이 반응원료 투입라인(1)을 통하여 촉매가 충진된 반응기(10) 내에 유입되면 산화탈수소화 반응이 진행될 수 있으며, 상기 산화탈수소화 반응은 발열 반응으로 주된 반응식은 아래의 반응식 1 또는 2와 같을 수 있다.
반응식 1
C4H8 + 1/2O2 → C4H6 + H2O
반응식 2
C4H10 + O2 → C4H6 + 2H2O
전술한 바와 같이, 상기 산화탈수소화 반응을 통한 부타디엔의 제조공정은 산소를 반응원료로 포함하고 반응물의 폭발 위험을 줄이는 동시에 촉매의 코킹(coking) 방지 및 반응열 제거를 위하여 질소, 스팀(steam) 등을 부수적인 반응원료로 포함하고 있어 주생성물인 부타디엔을 비롯하여 부생성물인 일산화탄소(CO), 이산화탄소(CO2), 아세틸렌류 또는 카르보닐류 등의 저비점 및 수용성 부산물, 페놀 및 쿠마린 등의 고비점 부산물 등을 포함하는 부반응 생성물이 부차적으로 생성되며, 상기 부생성물 중 일산화탄소 등은 공정 내에 지속적인 축적이 발생되지 않도록 분리·배출시켜야 한다. 그러나, 상기 배출 시 산소, 미반응 C4 유분 및 생성된 부타디엔 등의 유효한 성분이 함께 계 외부로 배출되는 문제가 있다. 특히, 도 1에 나타난 바와 같이 통상적인 부타디엔 제조방법은 산소와 질소를 공기(air)를 통하여 투입하고 있으며, 반응물의 폭발 범위를 고려한 산소 농도를 투입되는 공기, 스팀 또는 내부 순환 라인(4)를 통해 재투입된 일부 가스 생성물을 이용하여 조절한다. 공기는 산소와 질소의 질량비율이 20:78로 고정되어 있으며, 반응기(10) 내 반응조건에 따른 질소 및 스팀 비율도 정해져 있어, 상기 반응기(10) 내의 산소 농도를 유지하기 위해서는 재투입되는 가스 생성물의 양이 종속적으로 결정될 수 밖에 없다. 즉, 공기를 투입하여 반응기(10) 내 산소의 농도를 맞추게 되면 공기 내 질소의 질량비가 높기 때문에 질소의 농도가 크게 증가하게 되므로 반응기 내로 재투입할 수 있는 질소를 포함하는 가스 생성물의 양이 한정될 수 밖에 없다. 결과적으로, 재투입되는 가스 생성물의 양보다 배출라인(4)를 통해 버려지는 가스 생성물의 양이 많게 되며, 따라서 상대적으로 많은 양의 부타디엔, 미반응 원료 등이 버려지는 문제점이 있으며, 부타디엔 제조공정의 경제성을 악화시키는 요인 중 하나로 작용한다.
따라서, 본 발명의 제조방법은 상기와 같은 종래기술의 문제를 개선하기 위하여 산소와 질소를 각각 순수가스 형태로 투입함으로써 산소와 질소의 유량(질량)을 정교하게 조절할 수 있으며, 반응에 필요한 양 이상으로 과다하게 포함되는 것을 방지하는 것을 특징으로 한다.
구체적으로, 본 발명의 일 실시예에 따른 상기 산화탈수소화 반응을 통한 부타디엔의 제조방법은, C4 유분, 스팀(steam), 산소(O2) 및 질소(N2)를 포함하는 반응원료 스트림을 촉매가 충진된 반응기 내에 유입시켜 산화탈수소화 반응을 진행시키는 단계(단계 a); 상기 반응기로부터 얻어진 부타디엔을 포함하는 C4 혼합물과 가스 생성물(light gas)를 분리하는 단계(단계 b); 및 상기 부타디엔을 포함하는 C4 혼합물을 정제하는 단계(단계 c)를 포함하는 것을 특징으로 한다.
또한, 본 발명의 일 실시예에 따른 상기 제조방법은 상기 단계 b)에서 분리된 가스 생성물을 제1 분획 스트림과 제2 분획 스트림으로 분리하여 제1 분획 스트림은 반응기 내로 재유입시키고, 제2 분획 스트림은 계 외부로 배출시키는 단계 d)를 더 포함하는 것을 특징으로 한다.
이하, 도 2를 참조하여 본 발명의 일 실시예에 따른 상기 제조방법을 더 상세하게 설명한다.
도 2에 나타낸 바와 같이, 본 발명에 따른 제조방법은 C4 유분, 스팀, 산소 및 질소를 포함하는 반응원료 스트림을 반응기에 유입시키기 위한 반응원료 투입라인(1), 산화탈수소화 반응을 수행할 수 있는 반응기(10), 반응기로부터 얻어진 반응 생성물을 가스 분리기로 유입시키기 위한 반응 생성물 이송 라인(2), 반응 생성물로부터 C4 혼합물과 가스 생성물(light gas)를 분리하기 위한 가스 분리기(20), 가스 분리기(20)로부터 분리된 가스 생성물 중 질소 및 이산화탄소 중 하나 이상을 포함하는 제1 분획 스트림을 반응기 내로 재투입 시키기 위한 내부 순환 라인(3), 제2 분획 스트림을 배출하기 위한 배출 라인(4), 분리된 C4 혼합물을 정제장치로 이송시키기 위한 C4 혼합물 이송 라인(5), 정제장치(30) 및 정제된 부타디엔 배출 라인(6)을 포함하는 제조장치를 통하여 수행할 수 있다.
상기 반응원료 투입라인(1)은 C4 유분, 스팀, 산소 및 질소를 포함하는 반응원료 스트림의 각 성분을 반응기(10) 내에 각각 유입시키기 위한 개별 파이프라인을 포함하는 것이거나, 반응기(10)와 직접 연결된 하나의 파이프라인에서 분기되어 상기 반응원료 스트림의 각 성분이 개별적으로 투입되는 복수개의 개별 파이프라인을 포함하는 것일 수 있다.
또한, 상기 가스 분리기(20)는 반응 생성물 이송 라인(2)을 통해 유입된 반응 생성물로부터 부타디엔을 포함하는 C4 혼합물과 가스 생성물(light gas)를 분리하기 위한 것으로, 필요에 따라 흡수탑 및 탈기탑 중 적어도 하나이상을 포함할 수 있다.
또한, 본 발명의 일 실시예에 따른 제조방법을 수행하기 위한 상기의 제조장치는 상기 반응기(10)과 가스 분리기(20) 사이에 반응기로부터 얻어진 반응 생성물을 냉각하기 위한 급랭탑(quenching tower) 등을 포함하는 급랭장치, 반응 생성물의 압축을 위한 압축기(compressor) 및 상기 반응 생성물에 포함된 수분을 제거하기 위한 탈수 장치 등이 더 포함될 수 있다.
또한, 상기 정제장치(30)은 고순도의 부타디엔을 수득하기 위하여 필요에 따라 용매 회수탑, 고비점 제거탑 및 용매 정제탑 등을 포함하는 용매 분리·회수 장치와 고순도 부타디엔을 정제하기 위한 정제탑을 포함할 수 있다.
이하, 본 발명의 일 실시예에 따른 상기 제조방법을 단계로 나누어 더 상세하게 설명한다.
상기 단계 a는 C4 유분으로부터 부타디엔을 생성하기 위하여 C4 유분, 스팀(steam), 산소(O2) 및 질소(N2)를 포함하는 반응원료 스트림을 촉매가 충진된 반응기 내에 유입시켜 산화탈수소화 반응을 진행시키는 단계이다.
상기 반응은 반응기 내 반응조건을 전 반응공정 동안 일정한 조건으로 조절하면서 수행하는 것일 수 있으며, 구체적으로 상기 반응조건은 C4 유분 : 스팀 : 산소 : 질소=1:0.01 내지 10:0.01 내지 3:0.01 내지 15의 질량비로 조절될 수 있다.
상기 반응기 내 각 유효성분(C4 유분, 스팀, 산소 및 질소)의 질량비는 유입되는 반응원료 스트림 및 후술하는 재유입되는 제1 분획 스트림에 의해 조절되는 것일 수 있다. 이때, 상기 제1 분획 스트림은 질소 및 이산화탄소 중 어느 하나 이상을 주요성분으로 포함할 수 있으며, 이외에 산소 및 스팀 등의 미반응 원료를 더 포함할 수 있다. 즉, 상기 반응기 내 유효성분(C4 유분, 스팀, 산소 및 질소)은 반응원료 스트림으로부터 유입된 것과 제1 분획 스트림으로부터 유입된 것이 혼합되어 있는 것일 수 있으며, 상기 유효성분의 질량비는 상기 유입된 반응원료 스트림 내 유효성분의 질량비와 제1 분획 스트림 내 유효성분의 질량비에 따라 조절되는 것일 수 있다.
특히, 반응기 내 산소 및 질소의 질량비는 반응원료 스트림 내 산소 및 질소의 질량비 및 재유입되는 제1 분획 스트림 내 산소 및 질소의 질량비로 조절되며, 따라서 유입되는 반응원료 스트림 내 산소 및 질소의 질량비에 따라 제1 분획 스트림의 재유입량이 종속될 수 있고, 결과적으로 후술하는 제2 분획 스트림의 배출량도 종속될 수 있다.
구체적으로, 종래의 통상적인 제조방법은 반응원료 스트림 내에 포함되는 산소 및 질소를 공기로 투입하여 사용하고 있으며, 이 경우 공기 내 산소 및 질소의 질량비가 0.2:0.78으로 고정되어 있어 산화탈수소화 반응을 위한 주 유효성분인 산소의 질량비를 적정 조건으로 조절하기 위하여 공기 투입량을 증가시킬수록 부수적인 유효성분인 질소의 질량비가 더 크게 증가하여 적정 조건의 질량비를 벗어나게 되며, 따라서 반응에 필요하지 않는 질소가 다량으로 존재하게 되어 계 외부로 배출되는 제2 분획 스트림의 양이 증가하고 재유입되는 제1 분획 스트림의 양이 감소하게 된다.
반면, 본 발명의 일 실시예에 따른 상기 제조방법은 상기 반응원료 스트림 내에 포함되는 산소(O2) 및 질소(N2)를 서로 독립적인 순수 가스 형태로 투입되는 것일 수 있으며, 상기 서로 독립적인 순수 가스 형태는 산소(O2) 및 질소(N2)가 혼합가스인 공기로부터 투입되지 않고, 각각 산소 순수가스 형태 및 질소 순수가스 형태로 투입되는 것을 의미할 수 있다.
이때, 상기 산소는 필요에 따라 공기와 혼합된 형태로 투입되는 것일 수 있다. 즉, 산소를 공기와 혼합한 형태(산소 질량비를 높인 혼합가스 형태), 또는 공기를 기본적으로 투입하면서 산소를 투입하는 것일 수 있다.
따라서, 상기 제조방법은 전술한 바와 같이, 산소 및 질소를 공기와 같은 혼합가스 형태로 투입하지 않고 산소 및 질소를 독립적인 순수 가스 형태로 투입함으로써, 재유입되는 제1 분획 스트림, 반응 후 생성된 부타디엔 및 계 외부로 배출되는 제2 분획 스트림에 포함된 유효성분 등의 양을 실시간으로 측정하여 반응기에 투입되는 반응원료 스트림 내 포함되는 각 성분의 양, 특히 산소 및 질소 중 선택되는 하나 이상의 성분의 양을 개별적으로 조절할 수 있다. 따라서, 배출되는 제2 분획 스트림의 총량이 줄어들 수 있고 결과적으로 상기 제2 분획 스트림에 포함되어 계 외부로 배출되는 부타디엔 등의 유효성분의 양도 최소화시킬 수 있도록 조절할 수 있다.
상기 C4 유분은 납사 크래킹으로 생산된 C4 혼합물에서 유용한 화합물을 분리하고 남은 C4 라피네이트-1, 2, 3을 의미하는 것일 수 있으며, 에틸렌 다이머리제이션(dimerization)을 통해 얻을 수 있는 C4 류를 의미하는 것일 수도 있다. 본 발명의 일 실시예에서, 상기 C4 유분은 n-부탄(n-butane), 트랜스-2-부텐(trans-2-butene), 시스-2-부텐(cis-2-butene) 및 1-부텐(1-butene)으로 이루어지는 군에서 선택되는 하나 또는 2 이상의 혼합물일 수 있다.
상기 스팀(steam) 또는 질소(N2)는 산화탈수소화 반응에 있어서, 반응물의 폭발 위험을 줄이는 동시에, 촉매의 코킹(coking) 방지 및 반응열 제거 등의 목적으로 투입되는 희석기체일 수 있다.
한편, 상기 산소(O2)는 산화제(oxidant)로서 C4 유분과 반응하여 탈수소반응을 일으킬 수 있다.
본 발명의 일 실시예에서, 상기 반응원료 스트림을 반응기에 유입시키는 방법은 C4 유분, 스팀(steam), 산소(O2) 및 질소(N2)를 반응기에 유입하기 전에 혼합하여 혼합 반응물 형태로 반응기에 유입시키거나, 상기 C4 유분, 스팀(steam), 산소(O2) 및 질소(N2) 각각이 개별 파이프라인을 통하여 반응기에 유입되어 반응기 내에서 균일하게 혼합되는 것일 수 있다. 구체적으로, 상기 반응원료 스트림은 C4 유분, 스팀(steam), 산소(O2) 및 질소(N2)가 반응기 전단에 위치한 혼합 장치에 의해 혼합된 다음 반응기 내에 유입되는 것이거나, 상기 C4 유분, 스팀(steam), 산소(O2) 및 질소(N2)가 각각 분기된 복수개의 개별 파이프라인을 통과한 반응기와 연결된 하나의 파이프라인에서 혼합되어 반응기에 유입되는 것일 수 있다(도 2 참조).
본 발명의 일 실시예에서, 상기 반응원료 스트림에 포함되는 C4 유분, 스팀, 산소 및 질소는 기체 상태로 파이프라인에 투입될 수 있으며, 상기 기체는 산화탈수소화 반응에 유리한 온도로 사전 가열되어 투입될 수도 있다.
본 발명의 일 실시예에서, 상기 반응기 내에 충진된 촉매는 C4 유분을 산화탈수소화 반응시켜 부타디엔을 생성할 수 있게 하는 것이라면 특별히 제한되지 않으며, 예를 들어 페라이트계 촉매 또는 비스무스 몰리브데이트계 촉매일 수 있다.
본 발명의 일 실시예에서, 상기 촉매는 비스무스 몰리브데이트계 촉매일 수 있으며, 상기 비스무스 몰리브데이트계 촉매는 비스무스(Bismuth), 몰리브덴(Molybdenum) 및 코발트(Cobalt)로 이루어지는 군에서 선택되는 하나 이상을 포함하는 것일 수 있으며, 또한 상기 비스무스 몰리브데이트계 촉매는 다성분계 비스무스 몰리브데이트 촉매일 수도 있다. 다만 상기 반응 촉매의 종류와 양은 반응의 구체적인 조건에 따라 달라질 수 있다.
본 발명의 일 실시예에서, 상기 반응기는 산화탈수소화 반응이 진행될 수 있다면 특별히 제한되지 않는다. 예를 들면, 관형 반응기, 조형 반응기, 또는 유동상 반응기일 수 있다. 또 다른 예로, 상기 반응기는 고정상 반응기일 수도 있으며, 고정상의 다관식 반응기 또는 플레이트식 반응기일 수도 있다.
상기 단계 b는 반응기로부터 얻어진 부타디엔을 포함하는 주생성물 및 부수적으로 생성된 부생성물을 포함하는 혼합 반응 생성물로부터 주생성물을 분리하기 위한 것으로, 부타디엔을 포함하는 C4 혼합물과 가스 생성물을 분리하는 단계이다.
상기 분리는 압축기(compressor)를 이용한 압축 단계, 탈수 장치를 이용한 탈수 단계 및 가스 분리 장치를 이용한 가스 분리 단계로 이루어지는 군에서 선택되는 하나 이상의 단계를 통하여 수행될 수 있다.
또한, 본 발명의 일 실시예에 따른 제조방법은 상기 단계 b의 분리단계 이전에 급랭탑(quenching tower)를 이용하여 반응기로부터 얻어진 혼합 반응 생성물을 급랭시키는 단계를 수행할 수 있다. 상기 반응기로부터 얻어지는 혼합 반응 생성물은
고온의 가스 형태일 수 있으며, 이에 따라 가스 분리 장치로 투입되기 이전에 냉각될 필요성이 있다.
상기 급랭 단계에서 사용되는 냉각 방법은 특별히 제한되지 것은 아니나, 예를 들어, 냉각 용매와 혼합 반응 생성물을 직접 접촉시키는 냉각 방법을 사용할 수도 있고, 냉각 용매와 혼합 반응 생성물을 간접 접촉시키는 냉각 방법을 사용할 수도 있다.
구체적으로, 본 발명의 일 실시예에 따른 상기 분리 단계는 반응기로부터 얻어진 혼합 반응 생성물을 흡수탑 내에서 흡수 용매와 접촉시켜 부타디엔을 포함하는 C4 혼합물만 흡수 용매에 선택적으로 흡수시키고, 그 외의 가스 생성물(light gas)은 분리·제거할 수 있다.
상세하게는, 반응기로부터 얻어진 혼합 반응 생성물이 흡수탑 내에서 흡수 용매와 향류(counter flow) 접촉되면, 부타디엔을 포함하는 C4 혼합물이 흡수 용매에 의해 선택적으로 흡수되고, 나머지 가스 생성물은 상기 흡수탑의 탑정을 통하여 배관을 거쳐 나간다.
상기 흡수탑의 종류는 특별히 제한되지 않으며, 예를 들어, 충전탑, 젖은 벽탑, 분무탑, 사이클론 스크러버, 기포탑, 기포 교반조, 단탑 (포종탑, 다공판탑) 또는 포말 분리탑일 수 있다.
상기 흡수 용매는 당해 기술 분야에서 통상적으로 사용되는 흡수 용매를 사용할 수 있으며, 예를 들어 C6 내지 C10의 포화 탄화수소, C6 내지 C8의 방향족 탄화수소 또는 아미드 화합물 등이 사용될 수 있다. 상기 흡수 용매는 예를 들어, 디메틸포름아미드(DMF), 톨루엔(Toluene), 자일렌(Xylene), N-메틸-2-피롤리돈 (NMP) 등 일 수 있다.
한편, 본 발명의 일 실시예에서, 상기 흡수탑의 탑정을 통하여 배관을 거쳐 배출되는 가스 생성물은 제1 분획 스트림 및 제2 분획 스트림으로 나누어질 수 있다.
상기 제1 분획 스트림은 전술한 바와 같이, 질소 및 이산화탄소로 이루어지는 군에서 선택된 하나 이상을 포함하는 농축된 흐름일 수 있으며, 내부 순환 라인(3, 도 2 참고)을 따라 순환되어 반응기 내로 재투입될 수 있다(단계 d). 상기 제1 분획 스트림에는 전술한 성분 이외에 산소, 스팀, 미반응 원료 및 부타디엔 등이 더 포함될 수 있으며, 상기 제1 분획 스트림에 포함된 이산화탄소는 내부 순환을 통해 반응기 내에 재투입되어 반응기 내에서 산화탈수소화 반응의 약산화제(mild oxidant) 역할 또는 희석기체의 역할을 할 수 있다.
한편, 상기 제2 분획 스트림은 계 외부로 배출되는 퍼지 스트림으로서, 제1 분획 스트림과는 별도의 배출 라인(4, 도 2 참고)을 통하여 계 외부로 배출된다(단계 d). 상기 제2 분획 스트림은 질소(N2), 이산화탄소(CO2), 미반응 원료 및 부타디엔 등을 포함할 수 있다. 이때, 제2 분획 스트림에 포함되어 계 외부로 배출되는 부타디엔의 질량은 반응기 내에서 산화탈수소화 반응으로 생성된 부타디엔 전체 양의 약 0.01% 내지 10% 범위에 해당하는 정도의 양일 수 있다.
한편, 본 발명의 일 실시예에서, 상기 흡수 용매는 부타디엔을 포함하는 C4 혼합물만 선택적으로 흡수하기 위해 사용되는 것이지만, 질소, 이산화탄소 등 기체 일부 또한 용해시킬 수 있다. 이에, 상기 질소, 이산화탄소 등의 가스를 제거하기 위한 탈기 단계가 추가적으로 진행될 수 있으며, 상기 탈기 단계는 탈기탑 내에서 진행될 수 있다.
상기 탈기 단계에 있어서 탈기 방법은 특별히 제한되지 않으며, 당해 분야에서 사용되는 통상적인 방법에 의한 것일 수 있다.
상기 단계 c는 순도 높은 부타디엔을 얻기 위하여 부타디엔을 포함하는 C4 혼합물을 정제하는 단계이다. 상기 정제 단계는 흡수 용매를 분리·회수하기 위한 용매 회수탑, 고비점 성분을 제거하기 위한 고비점 제거탑, 용매 정제탑 등을 포함하는 용매 분리·회수 장치 및 고순도의 부타디엔을 정제하기 위한 부타디엔 정제탑 중 선택되는 하나 이상의 장치를 통하여 수행할 수 있다.
본 발명의 일 실시예에서, 용매를 분리·회수하기 위한 방법은 특별히 제한되지 않으며, 예를 들어 증류 분리법이 사용될 수 있다. 증류 분리법에 의하면 리보일러(reboiler)와 콘덴서(condensor)에 의해 부타디엔을 포함하는 C4 혼합물이 용해된 흡수 용매가 용매 회수탑으로 투입된 후 증류 분리가 진행된다. 상기 증류 분리 과정을 거치면 탑정 부근으로부터 부타디엔을 포함하는 C4 혼합물이 추출된다.
상기 과정에서 분리된 흡수 용매는 용매 회수탑의 탑저로부터 추출되며, 상기 추출된 흡수 용매는 전단 공정에 재투입되어 다시 사용될 수 있다. 상기 흡수 용매는 불순물을 포함하고 있을 수도 있으므로, 재활용 전에 일부를 추출하여 증류, 데칸테이션(decantation), 침강, 흡착제나 이온 교환 수지 등과 접촉 처리하는 등 공지된 정제 방법으로 불순물을 제거하는 과정을 거치게 할 수도 있다.
본 발명의 일 실시예에서, 상기 흡수 용매로부터 분리된 부타디엔을 포함하는 C4 혼합물은 고비점 성분의 분리를 위해 고비점 제거탑으로 투입될 수도 있다.
상기 고비점 제거탑에서는 고비점 성분(부타디엔보다 용해도가 높은 성분)을 제거하는 과정이 진행되는데, 상기 과정에서 부타디엔에 비하여 용해도가 높은 성분은 용매에 용해된다. 상기 용매는 탑저로부터 배출되어 용매 정제탑으로 전달될 수 있다.
한편, 상기 고비점 성분이 제거된 부타디엔은 고비점 제거탑의 탑정으로부터 배출되어 부타디엔 정제탑에 전달될 수 있다. 본 발명의 일실시예에서, 정제탑에 전달된 부타디엔은 상기 정제탑을 거치는 동안 고비점·저비점 성분들이 제거되어 고순도의 부타디엔으로 얻어질 수 있다.
본 발명의 일실시예에서, 상기 일련의 단계를 통하여 최종적으로 얻을 수 있는 부타디엔의 순도는 99.0% ~ 99.9%일 수 있다.
실시예
이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 예시하기 위한 것으로, 본 발명의 범위가 이들 실시예에 의해 제한되는 것으로 해석되지 않는 것은 당업계에서 통상의 지식을 가진 자에게 있어서 자명할 것이다.
실시예 1
비스무스 몰리브데이트계 촉매가 충진된 반응기에 반응원료 스트림을 유입시켜 산화탈수소화 반응을 진행시켰다.
반응기는 금속 관형 반응기를 사용하였다. 반응원료로는 1-부텐, 스팀, 산소 및 질소를 사용하였으며, 최초 반응원료 투입 비율은 반응조건에 맞게 조절하여 투입하였으며, 이후의 산소 및 질소의 질량비는 하기 표 1에 나타낸 바에 따라 투입하였다. 반응조건은 1-부텐:스팀:산소:질소=1:3:0.5:9의 질량비로 조절하였다. 스팀은 다른 반응원료와 함께 혼합되어 반응기에 유입되도록 반응 장치를 설계하였다. 1-부텐의 양은 액체용 질량유속조절기를 사용하여 제어하였으며, 산소 및 질소는 기체용 질량유속조절기를 사용하여 제어하였고, 스팀의 양은 액체 펌프를 이용해서 주입속도를 조절하였다. 반응 후 혼합 반응 생성물은 분리장치를 통해 부타디엔을 포함하는 C4 혼합물과 가스 생성물로 분리하였다. 상기 부타디엔을 포함하는 C4 혼합물은 다시 정제장치를 통해 정제시켰으며, 순도 99.7%의 부타디엔을 제조하였다(수율 99.4%).
또한, 상기 분리된 가스 생성물 중 일부는 퍼지 스트림(제2 분획 스트림)으로 계 외부로 배출시켰으며, 상기 퍼지 스트림에 포함되어 계 외부로 배출되는 유효성분 중 부타디엔의 양은 반응기 내에서 산화탈수소화 반응으로 생성된 부타디엔 양의 약 0.06%에 해당하였다.
실시예 2
최초 이후에 투입된 산소와 질소의 질량비를 하기 표 1에 표기한 대로 조절한 것을 제외하고는 상기 실시예 1과 동일한 방법을 통하여 순도 99.7%의 부타디엔을 제조하였다(수율 99.3%). 한편, 계 외부로 배출된 유효성분 중 부타디엔의 양은 반응기 내에서 산화탈수소화 반응으로 생성된 부타디엔 양의 약 0.2%에 해당하였다.
비교예 1
산소 및 질소를 혼합기체인 공기로 투입한 것을 제외하고는 상기 실시예 1과 동일한 방법을 통하여 순도 99.7%의 부타디엔을 제조하였다(수율 99.0%). 이때, 공기 내의 산소 대 질소의 질량비는 0.3:1이었다. 또한, 계 외부로 배출되는 유효성분 중 부타디엔의 양은 반응기 내에서 산화탈수소화 반응으로 생성된 부타디엔 양의 약 0.5%에 해당하였다.
한편, 이때 부타디엔의 최종 회수율은 99.0%였다.
표 1
구분 실시예 1 실시예 2 비교예 1
산소(O2) 대 질소(N2) 외부 투입 질량비 3.28 0.78 0.30
반응기 내 질량비 스팀(steam) 대 C4 유분 0.98 0.98 0.98
산소(O2) 대 C4 유분 비 0.49 0.49 0.49
질소(N2) 대 C4 유분 비 3.93 5.07 5.36
배출되는 부타디엔 내 순생성(반응) 부타디엔 비 0.0006 0.002 0.005
부타디엔 최종 회수율(%) 99.4 99.3 99.0
표 2
제2 분획 스트림(4)
구분 실시예 1 실시예 2 비교예 1
총 유량(ton/hr) 5.79 17.13 41.52
질량비(wt%) C4 성분 1.82 0.8 0.5
산소 1.62 1.8 1.9
질소 57.96 84.2 92
이산화탄소 37.31 12.4 4.9
부타디엔 0.26 0.3 0.3
기타 1.03 0.52 0.3
상기 표 1 및 표 2의 결과는 최초 반응 공정 이후 연속공정 중 동일한 어느 시점에 측정한 것으로, 최초 반응은 동일한 질량비의 반응원료 스트림을 투입하여 수행하였으며, 반응기 내로 투입되는 총 유량은 모두 동일하였다. 상기 각 성분의 비는 가스크로마토그래피-질량분석법을 이용하여 수득하였다.
상기 표 1 및 표 2의 결과로 나타난 바와 같이, 본 발명의 일 실시예에 따른 실시예 1 및 실시예 2는 산소 및 질소를 독립적으로 반응기 내에 투입할 수 있어 투입되는 산소 및 질소의 질량비를 유연하게 조절할 수 있으며, 이에 따라 산소 및 질소를 공기로 투입하는 비교예 1과 비교하여 반응기 내 질소의 질량비가 용이하게 조절될 수 있음을 확인하였다. 또한, 상기 투입되는 산소 및 질소의 질량비를 유연하게 조절함으로써 계 외부로 배출되는 제2 분획 스트림의 총 유량(표 2)이 조절될 수 있음을 확인하였으며, 결과적으로 계 외부로 배출되는 제2 분획 스트림의 총량이 조절됨으로써 이에 포함되어 계 외부로 배출되는 부타디엔의 양이 조절될 수 있음을 확인하였다.

Claims (9)

  1. a) C4 유분, 스팀(steam), 산소(O2) 및 질소(N2)를 포함하는 반응원료 스트림을 촉매가 충진된 반응기 내에 유입시켜 산화탈수소화 반응을 진행시키는 단계;
    b) 상기 반응기로부터 얻어진 부타디엔을 포함하는 C4 혼합물과 가스 생성물(light gas)을 분리하는 단계; 및
    c) 상기 부타디엔을 포함하는 C4 혼합물을 정제하는 단계를 포함하고,
    상기 b) 단계의 가스 생성물을 제1 분획 스트림과 제2 분획 스트림으로 분리하여 상기 제1 분획 스트림은 반응기 내에 재유입시키고, 제2 분획 스트림은 계 외부로 배출시키는 단계 d)를 더 포함하며,
    상기 제1 분획 스트림은 질소 및 이산화탄소 중 어느 하나 이상을 포함하는 것인 산화탈수소화 반응을 통한 부타디엔의 제조방법.
  2. 청구항 1에 있어서,
    상기 반응원료 스트림에 포함되는 산소(O2) 및 질소(N2)는 서로 독립적인 순수 가스 형태로 투입되는 것인 산화탈수소화 반응을 통한 부타디엔의 제조방법.
  3. 청구항 1 에 있어서,
    상기 반응원료 스트림에 포함되는 산소(O2)는 공기(air)와 혼합된 상태로 투입되는 것인 산화탈수소화 반응을 통한 부타디엔의 제조방법.
  4. 청구항 1에 있어서,
    상기 반응기 내 반응조건은 C4 유분 : 스팀 : 산소 : 질소=1: 1 내지 9: 0.01 내지 3:3 내지 9의 질량비인 것인 산화탈수소화 반응을 통한 부타디엔의 제조방법.
  5. 청구항 1 에 있어서,
    상기 제1 분획 스트림의 총량은 반응원료 스트림 내 산소 및 질소의 질량비에 따라 조절되고,
    상기 반응원료 스트림 내 산소 및 질소의 질량비는 서로 독립적으로 조절되는 것인 산화탈수소화 반응을 통한 부타디엔의 제조방법.
  6. 청구항 1에 있어서,
    상기 이산화탄소(CO2)는 반응기 내에서 약산화제(mild oxidant) 또는 희석기체로 사용되는 것인 산화탈수소화 반응을 통한 부타디엔의 제조방법.
  7. 청구항 1 에 있어서,
    상기 제2 분획 스트림의 총량에 비례하여 손실되는 부타디엔의 총량이 조절되고,
    상기 제2 분획 스트림의 총량은 반응원료 스트림 내 산소 및 질소의 질량비에 따라 조절되며
    상기 반응원료 스트림 내 산소 및 질소의 질량비는 서로 독립적으로 조절되는 것인 산화탈수소화 반응을 통한 부타디엔의 제조방법.
  8. 청구항 7에 있어서,
    상기 손실되는 부타디엔의 총량은 반응기 내에서 산화탈수소화 반응으로 생성된 부타디엔 총량의 0.01% ~ 10%인 것인 산화탈수소화 반응을 통한 부타디엔의 제조방법.
  9. 청구항 1 에 있어서,
    상기 C4 유분은 n-부탄(n-butane), 트랜스-2-부텐(trans-2-butene), 시스-2-부텐(cis-2-butene) 및 1-부텐(1-butene)으로 이루어지는 군에서 선택되는 1종 이상인 것인 산화탈수소화 반응을 통한 부타디엔의 제조방법.
PCT/KR2015/004928 2014-06-03 2015-05-15 산화탈수소화 반응을 통한 부타디엔의 제조방법 WO2015186915A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201580002761.3A CN105793216B (zh) 2014-06-03 2015-05-15 通过氧化脱氢反应生产丁二烯的方法
EP15803599.8A EP3050866B1 (en) 2014-06-03 2015-05-15 Method for preparing butadiene through oxidative dehydrogenation
US15/034,815 US9738574B2 (en) 2014-06-03 2015-05-15 Method for producing butadiene through oxidative dehydrogenation reaction
JP2016529476A JP6355216B2 (ja) 2014-06-03 2015-05-15 酸化脱水素化反応を通じたブタジエンの製造方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20140067685 2014-06-03
KR10-2014-0067685 2014-06-03
KR1020150066060A KR101704902B1 (ko) 2014-06-03 2015-05-12 산화탈수소화 반응을 통한 부타디엔의 제조방법
KR10-2015-0066060 2015-05-12

Publications (1)

Publication Number Publication Date
WO2015186915A1 true WO2015186915A1 (ko) 2015-12-10

Family

ID=54766952

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/004928 WO2015186915A1 (ko) 2014-06-03 2015-05-15 산화탈수소화 반응을 통한 부타디엔의 제조방법

Country Status (1)

Country Link
WO (1) WO2015186915A1 (ko)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005536498A (ja) * 2002-07-12 2005-12-02 ビーエーエスエフ アクチェンゲゼルシャフト n−ブタンからのブタジエンの製造方法
KR20070095335A (ko) * 2005-01-17 2007-09-28 바스프 악티엔게젤샤프트 n-부탄으로부터의 부타디엔의 제조 방법
WO2013002459A1 (ko) * 2011-06-30 2013-01-03 (주) 엘지화학 1,3-부타디엔의 고수율 제조방법
KR20130046259A (ko) * 2011-10-27 2013-05-07 주식회사 엘지화학 부텐의 산화탈수소 반응을 통한 부타디엔의 증산 방법 및 이에 사용되는 장치

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005536498A (ja) * 2002-07-12 2005-12-02 ビーエーエスエフ アクチェンゲゼルシャフト n−ブタンからのブタジエンの製造方法
KR20070095335A (ko) * 2005-01-17 2007-09-28 바스프 악티엔게젤샤프트 n-부탄으로부터의 부타디엔의 제조 방법
WO2013002459A1 (ko) * 2011-06-30 2013-01-03 (주) 엘지화학 1,3-부타디엔의 고수율 제조방법
KR20130046259A (ko) * 2011-10-27 2013-05-07 주식회사 엘지화학 부텐의 산화탈수소 반응을 통한 부타디엔의 증산 방법 및 이에 사용되는 장치

Similar Documents

Publication Publication Date Title
KR101704902B1 (ko) 산화탈수소화 반응을 통한 부타디엔의 제조방법
WO2015076624A1 (ko) 산화탈수소 반응을 통한 부타디엔 제조 공정 내 흡수 용매 회수방법
WO2019098501A1 (ko) 페놀 제조 공정에서의 부산물 분해방법
WO2015190801A1 (ko) 산화탈수소 반응을 통한 부타디엔 제조방법
WO2019098502A1 (ko) 페놀 제조 공정에서의 부산물 분해방법
WO2021261682A1 (ko) 이소프로필 알코올 제조방법
WO2016003215A1 (ko) 부타디엔 제조 공정 내 에너지 재활용 방법
WO2018124579A1 (ko) 부타디엔 제조방법
WO2015186915A1 (ko) 산화탈수소화 반응을 통한 부타디엔의 제조방법
WO2016153139A1 (ko) 공액디엔의 제조방법 및 제조장치
KR20150060543A (ko) 부타디엔 제조 공정 내 다단 냉각 방법
WO2020130314A1 (ko) 페놀계 부산물의 분해 방법 및 이의 분해 장치
WO2022055104A1 (ko) 니트릴계 단량체의 회수 방법 및 회수 장치
WO2021015541A1 (en) Method of recovering unreacted ethylene in ethylene oligomerization process
WO2022255576A1 (ko) 이소프로필 알코올 제조방법
WO2022255575A1 (ko) 이소프로필 알코올 제조방법
WO2016105156A1 (en) Method and apparatus for purification of dimethyl carbonate using pervaporation
WO2018225908A1 (ko) 에틸렌 분리공정 및 분리장치
WO2022235025A1 (ko) 이소프로필 알코올 제조방법
WO2024049105A1 (ko) 고순도 (메트)아크릴산의 제조방법
WO2024049107A1 (ko) 고순도 (메트)아크릴산의 제조방법
WO2024043443A1 (ko) 이소프로필 알코올의 제조 방법
WO2019168276A1 (ko) 1,3-부타디엔의 제조방법
WO2024039022A1 (ko) 이소프로필 알코올의 제조 방법
WO2018124580A1 (ko) 부타디엔 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15803599

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2015803599

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015803599

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15034815

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2016529476

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE