WO2024039022A1 - 이소프로필 알코올의 제조 방법 - Google Patents

이소프로필 알코올의 제조 방법 Download PDF

Info

Publication number
WO2024039022A1
WO2024039022A1 PCT/KR2023/007922 KR2023007922W WO2024039022A1 WO 2024039022 A1 WO2024039022 A1 WO 2024039022A1 KR 2023007922 W KR2023007922 W KR 2023007922W WO 2024039022 A1 WO2024039022 A1 WO 2024039022A1
Authority
WO
WIPO (PCT)
Prior art keywords
column
stream
ipa
water
npa
Prior art date
Application number
PCT/KR2023/007922
Other languages
English (en)
French (fr)
Inventor
황성준
이성규
김성균
장경수
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020230069395A external-priority patent/KR20240025449A/ko
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to CA3237588A priority Critical patent/CA3237588A1/en
Priority to CN202380014137.XA priority patent/CN118139836A/zh
Publication of WO2024039022A1 publication Critical patent/WO2024039022A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/03Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by addition of hydroxy groups to unsaturated carbon-to-carbon bonds, e.g. with the aid of H2O2
    • C07C29/04Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by addition of hydroxy groups to unsaturated carbon-to-carbon bonds, e.g. with the aid of H2O2 by hydration of carbon-to-carbon double bonds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/74Separation; Purification; Use of additives, e.g. for stabilisation
    • C07C29/76Separation; Purification; Use of additives, e.g. for stabilisation by physical treatment
    • C07C29/80Separation; Purification; Use of additives, e.g. for stabilisation by physical treatment by distillation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/74Separation; Purification; Use of additives, e.g. for stabilisation
    • C07C29/76Separation; Purification; Use of additives, e.g. for stabilisation by physical treatment
    • C07C29/80Separation; Purification; Use of additives, e.g. for stabilisation by physical treatment by distillation
    • C07C29/82Separation; Purification; Use of additives, e.g. for stabilisation by physical treatment by distillation by azeotropic distillation

Definitions

  • the present invention relates to a method for producing isopropyl alcohol, and more specifically, to a method for purifying isopropyl alcohol from a reaction product to high purity.
  • Isopropyl alcohol is used in the electronics industry such as semiconductor or LCD (liquid crystal display) manufacturing for a variety of purposes, including as a solvent for detergents, industrial paints and reagent raw materials, paints, and inks.
  • IPA can be produced by reacting propylene with water.
  • propylene monomer for example, by reacting propylene monomer with water in a reactor to obtain a reaction product containing IPA, unreacted propylene monomer, unreacted water, n-propyl alcohol (NPA), and by-products such as low-boiling point organic matter or high boiling point organic matter, etc.
  • NPA n-propyl alcohol
  • the reaction product is transferred to a gas purification unit to discharge low-boiling materials (including unreacted propylene monomer) from the upper part, and a stream containing IPA, NPA, and water is separated from the lower part of the gas purification unit, and then the bottom stream (IPA , NPA, water, and high-boiling organic substances) can be transferred to an IPA purification unit containing multiple columns to separate IPA.
  • the unreacted propylene monomer and unreacted water can be recovered and reused in the IPA manufacturing process.
  • FIGS 1 and 2 schematically show the purification process of IPA performed in the prior art IPA production method.
  • a feed stream containing IPA, NPA, water, and high-boiling organic substances is supplied to the first column of the purification unit, a stream containing water and high-boiling organic substances is discharged from the bottom, and IPA, A stream containing an azeotropic mixture of NPA and water was separated and transferred to a second column, while NPA was removed at the bottom of a third column connected to the side of the first column. Subsequently, the azeotrope was broken using a solvent in the second column to separate a lower stream containing IPA and an upper stream of the solvent and water, and then the solvent and water used were separated in the fourth column. That is, in the IPA purification process of Figure 1, NPA was first removed and then water was separated.
  • the first and third columns contain a large amount of water, and at normal pressure, the azeotropic point of IPA and water is 80.4°C and the azeotropic point of NPA and water is 87.7°C, so an azeotropic mixture of water/IPA and water/NPA is formed. do. Therefore, even if NPA is removed from the bottom of the third column, NPA is included in the stream transferred to the second column, and NPA remains during final IPA recovery, making it difficult to produce high purity IPA.
  • Korean Patent Publication No. 10-2020-0065579 attempted to produce high-purity IPA by first separating water before removing NPA in the IPA purification process.
  • the feed stream is separated into an upper stream containing an azeotropic mixture of IPA, NPA, and water and a lower stream containing high boiling point organic matter and water, and the upper stream is After transferring to a second column to first separate water, the stream containing IPA and NPA was transferred to a third column to remove NPA, thereby recovering IPA.
  • the present invention changes the purification sequence to remove water before NPA removal. It provides a production method for recovering isopropyl alcohol with high purity by first separating it and applying a column (DWC) with a dividing wall structure to separate IPA and NPA and separate water and high boiling point organic matter.
  • DWC column
  • IPA isopropyl alcohol
  • the feed stream is separated into an upper stream containing IPA, NPA, and water and a lower stream containing water and high boiling point organics,
  • water is removed from the upper stream of the first column using an organic solvent to separate a stream containing IPA and NPA to the bottom, and the solvent forms a three-component azeotropic mixture with water and IPA. Discharge to the upper stream,
  • the third column of the purification unit includes first and second regions separated by a central dividing wall, and a mixed stream of the branch stream of the first column lower stream and the second column lower stream is supplied to the first region, , Separate from the mixed stream an upper stream containing water from which high-boiling organics have been removed, a side stream containing IPA from which NPA has been removed, and a lower stream containing the high-boiling organics and NPA, comprising the IPA.
  • a manufacturing method is provided wherein a side stream is recovered from the second zone.
  • water is first separated from the feed stream containing IPA, NPA, water, and high molecular organic matter, and then the first column is transferred to the first area of the third column with a dividing wall.
  • the first column is transferred to the first area of the third column with a dividing wall.
  • IPA recovered in the second region of the third dividing wall column may account for more than 99.99% of the IPA contained in the feed.
  • the water remaining in the bottom stream of the first column is separated at the bottom of the fourth column.
  • the discharged water combined with part of the stream can be recycled as process water or treated as wastewater with reduced chemical oxygen demand (COD).
  • Figures 1 and 2 each schematically show the purification process of IPA performed in the IPA production method of the prior art.
  • Figure 3 schematically shows the IPA purification process performed in the IPA production method according to an embodiment of the present invention.
  • 'comprising' or 'containing' specifies a specific characteristic, area, integer, step, operation, element, or ingredient, and the addition of another specific characteristic, area, integer, step, operation, element, or ingredient. It is not excluded.
  • the term 'stream' used herein may refer to the flow of fluid within a process, or may also refer to the fluid itself flowing within a pipe. Specifically, the stream may refer to both the fluid itself and the flow of the fluid flowing within the pipes connecting each device. Additionally, the fluid may include any one or more of gas, liquid, and solid.
  • the term 'top' refers to a point 0 to 20% in height from the top of the device, unless otherwise specified, and may specifically mean the top (top). Additionally, the term 'bottom' refers to a point at a height of 80 to 100% from the top of the device, and may specifically mean the bottom (bottom of the tower).
  • the term 'side stream' may mean a stream exiting at 25 to 80% height or 40 to 70% height downward from the top of the device.
  • pressure refers to gauge pressure measured relative to atmospheric pressure.
  • One embodiment of the present invention relates to a method for producing isopropyl alcohol (IPA), and specifically includes a step of obtaining a feed stream (S1) and a purification step of recovering IPA from the feed stream (S2). .
  • IPA isopropyl alcohol
  • step (S1) of the IPA production method according to the present invention gas purification is performed from the reaction product of propylene monomer and water to obtain a feed stream containing IPA, NPA, water and high boiling point organics.
  • the feed stream reacts propylene monomer and water in a reactor to produce reaction products including IPA, unreacted propylene monomer, unreacted water, n-propyl alcohol (NPA) as a by-product, low boiling point organic matter, and high boiling point organic matter.
  • reaction products including IPA, unreacted propylene monomer, unreacted water, n-propyl alcohol (NPA) as a by-product, low boiling point organic matter, and high boiling point organic matter.
  • NPA n-propyl alcohol
  • propylene and water may be performed in any one of gas phase reaction, gas/liquid phase reaction, or liquid phase reaction, and water may be obtained by reacting at a molar ratio of 0.3 to 2 or 0.35 to 1.5 to propylene monomer.
  • the yield of IPA can be increased by promoting the forward reaction of the equilibrium reaction and preventing the reverse reaction from proceeding.
  • the reactor can be operated under optimal conditions to efficiently produce IPA through the reaction of propylene monomer and water, for example, in the case of gas phase reaction, 10 to 50 kg/cm 2 ⁇ g, 30 to 50 kg/cm 2 ⁇ g or 35 to 45 kg/cm 2 ⁇ g and a temperature of 150 to 220°C, 160 to 220°C or 180 to 215°C.
  • the reaction products include unreacted propylene monomer, unreacted water, by-products such as n-propyl alcohol (NPA), isopropyl ether (DIPE), heavy high-boiling organic substances (e.g., hexanol), and It may include low boiling point organic substances (eg, acetone), etc. Therefore, in order to obtain IPA with high purity, it is necessary to separate unreacted substances and by-products contained in the reaction product and recover IPA. In addition, the water separated from the reaction product can be recovered and recycled as process water or treated as wastewater. If heavy, high-boiling point organic matter is included, COD (chemical oxygen demand) may increase, so when treating wastewater, Processes to reduce COD may be required.
  • COD chemical oxygen demand
  • the reaction product is first subjected to gas purification and then supplied to the IPA purification unit.
  • the gas purification is intended to remove low-boiling components, including unreacted propylene monomer, from the reaction product, and can be performed using an absorption tower, gas purification unit, etc.
  • step (S2) of the IPA production method according to the present invention IPA is purified from a stream containing IPA, NPA, water, and heavy high boiling point organic substances, and the purification of the IPA is performed through a plurality of processes as shown in FIG. 3. It may be performed in a purification unit including a column.
  • the feed stream obtained in step (S1) is supplied from the first column of the purification unit.
  • the feed stream may include 5 to 10% by weight of IPA, 0.1 to 3% by weight of NPA, 85 to 94% by weight of water, and 0.05 to 2% by weight of high boiling point organic matter.
  • the first column of the purification unit corresponds to a distillation column for separating a large amount of water contained in the feed and separating IPA and NPA to the top, and the IPA and NPA each form an azeotropic mixture with water and are sent to the top stream (1a). It is separated, and the high-boiling organics together with water are discharged to the bottom stream (1b).
  • the top discharge stream (1a) of the first column may comprise a mixture of 30 to 70% by weight of IPA, 20 to 50% by weight of NPA and 10 to 50% by weight of water, and the bottom discharge stream (1b) of the first column ) may include 95 to 99% by weight of water and 1 to 5% by weight of high boiling point by-products.
  • the first column is operated at a pressure of 0 to 3 kg/cm 2 ⁇ g or 0 to 2 kg/cm 2 ⁇ g and 80 to 150 °C or 90 to 140 °C in order to increase the separation efficiency of alcohol component and water from the reaction product.
  • the first column is intended to separate water from IPA and NPA, but it is difficult to completely remove water due to the formation of an azeotrope with water. Accordingly, in order to completely separate water from the azeotrope contained in the upper stream (1a) of the first column, the stream (1a) is transferred to the second column.
  • the second column of the purification unit is for separating water from the stream (1a) containing the IPA, NPA, and water, specifically the azeotropic mixture of IPA/water and the azeotropic mixture of NPA/water, and organic as an azeotrope.
  • a solvent e.g., cyclohexane, benzene, toluene, isopropyl acetate, etc.
  • water can be separated by breaking the azeotropic ratio between IPA or NPA and water. Therefore, in the second column, water is removed and the stream (2b) containing IPA and NPA is separated at the bottom, and the organic solvent forms a three-component azeotrope with water and IPA and is discharged as the top stream (2a). do.
  • the top stream (2a) of the second column may include an azeotrope of 65 to 85% by weight of organic solvent, 4 to 15% by weight of water, and 10 to 30% by weight of IPA when cyclohexane is used as the azeotrope. .
  • the second column is operated at a pressure of 0 to 2 kg/cm 2 ⁇ g or 0 to 1 kg/cm 2 ⁇ g and a temperature of 50 to 110 °C or 60 °C to increase the separation efficiency of water by the organic solvent used as an azeotrope. It can operate at a temperature of 100 °C.
  • the bottom stream (2b) of the second column may contain 70 to 98% by weight of IPA and 2 to 30% by weight of NPA, and in addition, a trace amount of water that was not separated in the previous step may remain, and the stream ( 2b) is transferred to the third column for IPA recovery.
  • the third column corresponds to a dividing wall-type distillation column (DWC) comprising two regions separated by a central dividing wall, one of which is the second region (the first region). It is fed to the bottom stream (2b) of the column.
  • DWC dividing wall-type distillation column
  • the branch stream (1b') of the stream (1b) separated from the bottom of the first column and containing water and high-boiling organic matter may be mixed with the bottom stream (2b) of the second column, and this mixed stream Can be supplied together to the first region of the third column.
  • the third column separates high boiling point organics and NPA from the mixed stream into a bottom stream (3b), thereby comprising an upper stream (3a) containing water from which high boiling point organics have been removed and IPA from which NPA has been removed.
  • a side stream can be obtained.
  • the side stream containing IPA from which the NPA has been removed can be recovered in another area (second area) of the third column, thereby purifying more than 99.99% by weight of IPA contained in the feed.
  • the upper stream (3a) of the third column is discharged by forming an azeotrope with IPA in which water from which high-boiling point organics have been removed forms an azeotrope, and the stream (3a) includes an azeotrope of IPA/water and NPA/water from the first column. It is mixed with the upper stream (1a) and transferred to a second column, where water can be separated from the azeotropic mixture. Additionally, the separated water may be discharged to the bottom of the fourth column.
  • the water (1b") remaining in the bottom stream of the first column is stored in the bottom of the fourth column. It can be combined with the separated stream (4b) and discharged as water (1b'"), which can be recycled as process water or treated as wastewater with reduced chemical oxygen demand (COD).
  • COD chemical oxygen demand
  • the content of high-boiling organics discharged to the bottom stream of the third column may be proportional to the branch flow rate of the first column bottom stream fed to the first region of the third column, but energy consumption Considering the economic aspects, appropriate control is necessary.
  • the branch stream (1b') of the first column bottom stream supplied to the first region of the third column may be branched at a flow rate of 0.5 to 5% by weight or 1 to 3% by weight of the total flow rate of the first column bottom stream. If the branch flow rate is less than 0.5% by weight, the COD reduction effect is insufficient due to the low removal rate of high-boiling organic matter, and if it exceeds 5% by weight, it may cause excessive energy consumption in the third column.
  • the third column is operated at a pressure of 0 to 2 kg/cm 2 ⁇ g or 0 to 1 kg/cm 2 ⁇ g and a temperature of 70 to 120 ° C. or 80 to 80 to increase the separation efficiency of high boiling point organics and NPA from the mixed stream. It can operate at a temperature of 110 °C.
  • the upper stream containing the solvent and water separated at the top of the second column is transferred to the fourth column of the purification unit for recovery of the organic solvent, and the upper stream 4a from which the water has been removed and the lower stream containing water It can be separated into (4b), and the organic solvent contained in the upper stream (4a) can be refluxed to the second column.
  • the fourth column is a solvent recovery column, and is operated at a pressure of 0 to 2 kg/cm 2 ⁇ g or 0 to 1 kg/cm 2 ⁇ g and 70 to 120 °C or 75 °C to increase the separation efficiency of organic solvent and water. It can operate at a temperature of 110 °C.
  • water is first separated from a stream containing an azeotropic mixture of IPA/water and NPA/water, and then the first region of the third dividing wall column is separated.
  • the mixed stream of the bottom stream of the first column including water and high-boiling organics
  • the mixed stream of the second column including IPA and NPA
  • the high-purity IPA from which the IPA has been removed can be recovered to the side of the second region of the third column and simultaneously discharged as an upper stream containing water from which high-boiling point organic substances have been removed.
  • the IPA recovered to the second region of the third dividing wall column may account for more than 99.99% by weight of the IPA contained in the feed.
  • the water remaining in the bottom stream of the first column is separated at the bottom of the fourth column.
  • the discharged water combined with part of the stream can be recycled as process water or treated as wastewater with reduced chemical oxygen demand (COD).
  • Step 1 Obtaining the feed stream
  • Propylene monomer and water are reacted in a gas phase at a molar ratio of 1:1 to produce isopropyl alcohol (IPA), unreacted propylene monomer, unreacted water, n-propyl alcohol (NPA) as a by-product, low boiling point organic matter, and high boiling point organic matter.
  • IPA isopropyl alcohol
  • NPA n-propyl alcohol
  • a purification process was performed to separate low boiling point components and gas components, including unreacted propylene monomer, from the reaction product to obtain a feed stream.
  • the feed stream contained 7% by weight IPA, 0.2% by weight NPA, 92.7% by weight water, and 0.1% by weight high boiling point organics.
  • IPA was recovered by supplying the feed stream obtained in step 1 to the purification unit including the first to fourth columns.
  • the feed stream is supplied from a first column, and the first column is operated at 0 kg/cm 2 ⁇ g at 90° C. at the top and 140° C. at the bottom to produce an upper stream (1a) containing IPA, NPA, and water and water. and a lower stream (1b) containing high boiling point organic matter.
  • the top stream (1a) and an organic solvent (cyclohexane) as an azeotrope are fed to a second column, and the second column is operated at 0 kg/cm 2 ⁇ g at 60° C. at the top and 100° C. at the bottom to purify the stream ( Water was removed from 1a) to separate the stream (2b) containing IPA and NPA to the bottom, while it was discharged to the top stream formed of an azeotrope of the organic solvent, water and IPA.
  • the bottom stream (2b) of the second column and the branch stream (1b') of the first column bottom stream (1b) were mixed and supplied to the first region of the third column having a dividing wall structure.
  • the flow rate of the branch stream (1b') was adjusted to 0.5% by weight of the total flow rate of the first column bottom stream.
  • the third column is operated at 0 kg/cm 2 ⁇ g with an upper temperature of 80° C. and a lower temperature of 110° C. to separate high-boiling organic matter and NPA from the mixed stream into a bottom stream (3b), so that the high-boiling organic matter is A top stream (3a) containing water removed and a side stream containing IPA from which NPA was removed were obtained.
  • the side stream containing IPA from which the NPA was removed was recovered in the second region of the third column, thereby purifying the IPA contained in the feed to a purity of 99.99% by weight or more.
  • the top stream (including solvent and water) of the second column is transferred to the fourth column, and the fourth column is operated at 0 kg/cm 2 ⁇ g at an upper temperature of 75°C and a lower temperature of 100°C to remove water. It was separated into an upper stream (4a) and a lower stream (4b) containing water, and the organic solvent contained in the upper stream (4a) was refluxed to the second column. Additionally, the water (1b") remaining in the bottom stream of the first column was combined with the stream (4b) separated at the bottom of the fourth column and discharged (1b'").
  • Example 2 The same process as Example 1 was performed except that the flow rate of the first column lower branch stream (1b') supplied to the first region of the third column was adjusted to 5% by weight of the total flow rate of the first column lower stream. IPA was recovered.
  • Example 2 The same process as Example 1 was performed except that the flow rate of the first column lower branch stream (1b') supplied to the first region of the third column was adjusted to 10% by weight of the total flow rate of the first column lower stream. IPA was recovered.
  • a feed stream was obtained through the same process as Step 1 of Example 1.
  • a feed stream was supplied to the first column to separate an upper stream containing an azeotropic mixture of IPA, NPA, and water and a lower stream containing water and high-boiling organic matter.
  • the top stream of the first column was transferred to the second column, while NPA was removed from the bottom of the third column connected to the side of the first column.
  • the azeotrope was broken using an organic solvent (cyclohexane) to separate a lower stream containing IPA and an upper stream of the solvent and water, and then the solvent and water used were separated in the fourth column.
  • a feed stream was obtained through the same process as Step 1 of Example 1.
  • the feed stream was supplied from the first column and separated into an upper stream containing an azeotropic mixture of IPA, NPA, and water and a lower stream containing high boiling point organic matter and water.
  • the top stream of the first column was transferred to the second column to first separate water, and then the stream containing IPA and NPA was transferred to the third column to remove NPA, thereby recovering IPA. Meanwhile, separation of the solvent and water used in the fourth column was performed.
  • Table 1 below shows the recovery results of IPA according to the purification process of Examples and Comparative Examples.
  • Examples 1 to 3 use a dividing wall third column to first separate water from a stream containing an azeotrope of IPA/water and NPA/water, and then to the first region of the dividing wall third column.
  • a mixed stream of the branch stream 1b' of the bottom stream of the first column (containing water and high-boiling organics) and the bottoms stream of the second column (2b, including IPA and NPA) is fed to remove the high-boiling organics and NPA.
  • high purity IPA with NPA removed was recovered, and the concentrations of remaining NPA and residual water were low at 2 ppm and 10 ppm, respectively.
  • the water contained in the first column lower branch stream 1b' was separated from the high-boiling organic matter and then refluxed, thereby reducing the COD of the water remaining in the first column lower stream. That is, as the content of high-boiling organic matter discharged to the bottom stream 3b of the third column is proportional to the branch flow rate of the first column bottom stream supplied to the first region of the third column, as a result, the first column The COD of the remaining water in the downstream stream was reduced.
  • Example 3 it can be seen that as the branch flow rate of the first column lower branch stream (1b') increases to 10% by weight, the amount of steam used according to the branch increases rapidly. Therefore, when branching the first column lower stream, the branch flow rate is adjusted to a predetermined range (e.g., 0.5 to 5% by weight of the total flow rate of the first column lower stream) in order to reduce the COD content of the wastewater and avoid excessive energy consumption. It is desirable.
  • a predetermined range e.g., 0.5 to 5% by weight of the total flow rate of the first column lower stream

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

본 발명은 IPA 제조 방법에 관한 것으로, 복수 칼럼을 이용한 정제 단계에서 제1 칼럼을 통해 IPA, NPA, 물 및 고비점 유기물을 포함하는 피드 스트림으로부터 IPA, NPA 및 물의 혼합물을 포함하는 상부 스트림과 물 및 고비점 유기물을 포함하는 하부 스트림으로 분리하고,제2 칼럼에서 유기 용매를 이용해 제1 칼럼의 상부 스트림으로부터 IPA 및 NPA를 포함하는 하부 스트림 및 상기 용매가 물 및 IPA와 함께 3성분 공비 혼합물을 형성한 상부 스트림을 배출하며, 분리벽형 구조를 갖는 제3 칼럼에서 제1 영역으로 제1 칼럼 하부 스트림의 분기 스트림 및 제2 칼럼 하부 스트림을 혼합한 스트림을 공급하고, 상기 혼합 스트림으로부터 고비점 유기물이 제거된 물을 포함하는 상부 스트림, NPA가 제거된 IPA를 포함하는 측면 스트림, 및 상기 고비점 유기물 및 NPA를 포함하는 하부 스트림을 분리하며, 상기 IPA를 포함하는 측면 스트림을 제2 영역으로부터 회수하는 방법을 제공한다.

Description

이소프로필 알코올의 제조 방법
관련출원과의 상호인용
본 출원은 2022년 8월 18일자 한국특허출원 제10-2022-0103273호 및 2023년 5월 30일자 한국특허출원 제10-2023-0069395호에 기초한 우선권의 이익을 주장하며, 해당 한국특허출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
기술분야
본 발명은 이소프로필 알코올의 제조 방법에 관한 것으로, 보다 상세하게는 반응 생성물로부터 이소프로필 알코올을 고순도로 정제하는 방법에 관한 것이다.
이소프로필 알코올(isopropyl alcohol, IPA)은 반도체나 LCD(Liquid crystal display) 제조 등의 전자 산업에서 세정제, 공업용 도료 및 시약 원료, 페인트, 잉크 등의 용매를 비롯한 다양한 용도에 사용되고 있다.
IPA는 프로필렌과 물을 반응시켜 제조될 수 있다. 예를 들어, 반응기에서 프로필렌 단량체와 물을 반응시켜 IPA, 미반응 프로필렌 단량체, 미반응 물, n-프로필 알코올(NPA) 및 저비점 유기물 또는 고비점 유기물과 같은 부산물 등을 포함하는 반응 생성물을 수득하고, 상기 반응 생성물은 가스 정제부로 이송하여 그 상부에서 저비점 물질(미반응 프로필렌 단량체 포함)을 배출하고 상기 가스 정제부의 하부에서는 IPA, NPA 및 물을 포함하는 스트림을 분리한 후, 상기 하부 스트림(IPA, NPA, 물 및 고비점 유기물을 포함)은 다수의 칼럼을 포함하는 IPA 정제부로 이송하여 IPA를 분리할 수 있다. 상기 미반응 프로필렌 단량체 및 미반응 물은 회수되어 IPA 제조 공정에 재사용될 수 있다.
도 1 및 2는 종래 기술의 IPA 제조 방법에서 수행된 IPA의 정제 과정을 개략적으로 나타낸 것이다.
먼저 도 1을 참조할 때, 정제부의 제1 칼럼에 IPA, NPA, 물 및 고비점 유기물을 포함하는 피드 스트림을 공급하여, 하부로 물 및 고비점 유기물이 포함된 스트림을 배출하고 상부에서 IPA, NPA 및 물의 공비 혼합물을 포함하는 스트림을 분리하여 제2 칼럼으로 이송하는 한편, 상기 제1 칼럼의 측부에 연결된 제3 칼럼의 하부로 NPA를 제거하였다. 이어서, 상기 제2 칼럼에서 용매를 이용해 공비를 깨고 IPA를 포함하는 하부 스트림과 상기 용매 및 물의 상부 스트림을 분리한 후, 제4 칼럼에서 사용된 용매 및 물의 분리를 수행하였다. 즉, 도 1의 IPA 정제 과정에서는 NPA를 먼저 제거한 이후 물을 분리하였다.
상기 제1 칼럼 및 제3 칼럼에는 물이 다량 포함되어 있으며, 상압에서 IPA와 물의 공비점은 80.4℃이고 NPA와 물의 공비점은 87.7℃임에 따라 물/IPA 및 물/NPA의 공비혼합물이 형성된다. 따라서, 상기 제3 칼럼의 하부로 NPA를 제거하더라도 제2 칼럼으로 이송되는 스트림에 NPA가 포함됨으로써, 최종 IPA 회수시에 NPA가 잔존하여 고순도의 IPA 생산이 어려운 한계가 있다.
이를 극복하기 위해, 국내 공개특허공보 10-2020-0065579호는 IPA 정제 과정에서는 NPA를 제거하기 전에 물을 먼저 분리함으로써 고순도의 IPA를 생산하고자 하였다.
구체적으로 도 2를 참조할 때, 정제부의 제1 칼럼에서 피드 스트림을 IPA, NPA 및 물의 공비 혼합물을 포함하는 상부 스트림과 고비점 유기물 및 물이 포함된 하부 스트림으로 분리하고, 상기 상부 스트림을 제2 칼럼으로 이송하여 물을 먼저 분리한 후, IPA 및 NPA를 포함하는 스트림을 제3 칼럼으로 이송하여 NPA를 제거함으로써 IPA를 회수하였다. 즉, 도 2의 IPA 정제 과정에서는 제2 칼럼에서 IPA, NPA 및 물의 공비 혼합물로부터 물을 먼저 분리하였기 때문에, 제3 칼럼에서는 공비 혼합물이 형성되지 않아 NPA가 쉽게 제거되었으며, 그 결과 최종 회수된 IPA에는 잔존 NPA가 도 1의 정제에 비해 낮지만 제2 칼럼에서 미처 분리되지 못한 물이 최종 IPA 회수시에 포함될 수 있다.
추가로, 도 1 및 도 2와 같은 종래의 IPA 정제 과정에서는 제1 칼럼의 하부로 배출되는 물에 고비점 유기물(heavy substances)이 포함됨에 따라, 상기 배출되는 물의 COD(chemical oxygen demand)가 높아져 공정수 또는 폐수 처리시에 추가 공정이 요구될 수 있다.
본 발명은 물이 IPA 및 NPA와 각각 공비를 이루면서 NPA를 효과적으로 제거하지 못하고 공정수 또는 폐수로 처리되는 물의 COD가 높았던 종래 방법의 문제점을 해결하기 위해, 정제 순서를 변경하여 NPA 제거 이전에 물을 먼저 분리하고, 분리벽형 구조의 칼럼(DWC)을 적용하여 IPA 및 NPA의 분리와 물 및 고비점 유기물의 분리를 함께 수행함으로써, 이소프로필알코올을 고순도로 회수하는 제조 방법을 제공하는 것이다.
상기의 과제를 해결하기 위한 본 발명의 일 측면에 따르면, 이소프로필 알코올(isopropyl alcohol, IPA)을 제조하는 방법으로서,
(S1) 프로필렌 단량체 및 물의 반응 생성물로부터 가스 정제를 수행하여 IPA, NPA, 물 및 고비점 유기물을 포함하는 피드 스트림을 수득하는 단계; 및
(S2) 상기 피드 스트림을 복수의 칼럼을 포함하는 정제부에 공급하여 IPA를 회수하는 단계를 포함하고,
상기 정제부의 제1 칼럼에서 상기 피드 스트림을 IPA, NPA 및 물을 포함하는 상부 스트림과 물 및 고비점 유기물을 포함하는 하부 스트림으로 분리하고,
상기 정제부의 제2 칼럼에서 유기 용매를 이용해 제1 칼럼의 상부 스트림으로부터 물을 제거하여 IPA 및 NPA를 포함하는 스트림을 하부로 분리하고, 상기 용매가 물 및 IPA와 함께 3성분 공비 혼합물을 형성하여 상부 스트림으로 배출하며,
상기 정제부의 제3 칼럼은 중심 분리벽에 의해 구분되는 제1 및 제2 영역을 포함하고, 상기 제1 영역으로 제1 칼럼 하부 스트림의 분기 스트림 및 제2 칼럼 하부 스트림을 혼합한 스트림을 공급하고, 상기 혼합 스트림으로부터 고비점 유기물이 제거된 물을 포함하는 상부 스트림, NPA가 제거된 IPA를 포함하는 측면 스트림, 및 상기 고비점 유기물 및 NPA를 포함하는 하부 스트림을 분리하며, 상기 IPA를 포함하는 측면 스트림을 제2 영역으로부터 회수하는 제조 방법이 제공된다.
본 발명에 따르면, IPA 제조시 복수의 칼럼을 이용한 정제 단계에서 IPA, NPA, 물 및 고분자 유기물을 포함하는 피드 스트림으로부터 물을 먼저 분리한 후, 분리벽형 제3 칼럼의 제1 영역으로 제1 칼럼의 하부 스트림(물 및 고비점 유기물을 포함)의 분기 스트림 및 제2 칼럼의 하부 스트림(IPA 및 NPA를 포함)의 혼합 스트림을 공급하여 상기 고비점 유기물 및 NPA를 분리함으로써, NPA가 제거된 고순도의 IPA를 제3 칼럼의 제2 영역 측면으로 회수함과 동시에 고비점 유기물이 제거된 물을 포함하는 상부 스트림으로 배출할 수 있다.
상기 분리벽형 제3 칼럼의 제2 영역으로 회수되는 IPA는 피드에 포함된 IPA의 99.99% 이상을 차지할 수 있다.
또한 상기 분리벽형 제3 칼럼에서 제1 칼럼 하부 스트림의 분기 스트림에 포함된 물을 고비점 유기물과 분리한 후 환류시킴으로써, 상기 제1 칼럼의 하부 스트림에서 남은 물이 제4 칼럼의 하부에서 분리된 스트림의 일부와 합쳐져 배출된 물은 공정수로 재활용되거나 COD(chemical oxygen demand)가 저감된 폐수로 처리될 수 있다.
도 1 및 2는 각각 종래 기술의 IPA 제조 방법에서 수행된 IPA의 정제 과정을 개략적으로 나타낸 것이다.
도 3는 본 발명의 일 실시형태에 따른 IPA 제조 방법에서 수행된 IPA 정제 과정을 개략적으로 나타낸 것이다.
본 발명의 설명 및 청구범위에서 사용된 용어나 단어는, 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여, 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
본원에서 사용되는 '포함' 또는 '함유'의 의미는 특정 특성, 영역, 정수, 단계, 동작, 요소 또는 성분을 구체화하며, 다른 특정 특성, 영역, 정수, 단계, 동작, 요소, 또는 성분의 부가를 제외시키는 것은 아니다.
본원에서 사용되는 용어 '스트림(stream)'은 공정 내 유체(fluid)의 흐름을 의미하는 것일 수 있고, 또한, 배관 내에서 흐르는 유체 자체를 의미하는 것일 수 있다. 구체적으로, 상기 스트림은 각 장치를 연결하는 배관 내에서 흐르는 유체 자체 및 유체의 흐름을 동시에 의미하는 것일 수 있다. 또한, 상기 유체는 기체(gas), 액체(liquid) 및 고체(solid) 중 어느 하나 이상의 성분을 포함할 수 있다.
본원에 사용된 용어 '상부'는 특별한 언급이 없는 한, 장치의 최상부로부터 아랫쪽으로 0 내지 20 %의 높이의 지점을 의미하며, 구체적으로 최상부(탑정)을 의미할 수 있다. 또한 용어 '하부'는 장치의 최상부로부터 아랫쪽으로 80 내지 100 %의 높이의 지점을 의미하며, 구체적으로 최하단(탑저)을 의미할 수 있다.
본원에 사용된 용어 '측면 스트림'은 특별한 언급이 없는 한, 장치의 최상부로부터 아랫쪽으로 25 내지 80 %의 높이 또는 40 내지 70%의 높이에서 배출되는 스트림을 의미할 수 있다.
또한, 본원에서 언급되는 "압력"은 대기압을 기준으로 측정한 게이지 압력을 의미한다.
본 발명의 일 실시형태는 이소프로필 알코올(isopropyl alcohol, IPA)의 제조 방법에 관한 것으로, 구체적으로 피드 스트림의 수득 단계(S1) 및 상기 피드 스트림으로부터 IPA를 회수하는 정제 단계(S2)를 포함한다.
이하에서는 본 발명의 일 실시형태에 따른 IPA 제조 방법을 단계별로 상세히 설명한다.
본 발명에 따른 IPA 제조 방법의 단계 (S1)에서는 프로필렌 단량체 및 물의 반응 생성물로부터 가스 정제를 수행하여 IPA, NPA, 물 및 고비점 유기물을 포함하는 피드 스트림을 수득한다.
구체적으로, 상기 피드 스트림은 반응기에서 프로필렌 단량체와 물을 반응시켜, IPA, 미반응 프로필렌 단량체, 미반응 물, 부산물로서 n-프로필 알코올(NPA), 저비점 유기물 및 고비점 유기물을 포함하는 반응 생성물을 생성한 후, 상기 반응 생성물로부터 미반응 프로필렌 단량체를 비롯한 저비점 성분을 분리하는 가스 정제를 수행하여 수득될 수 있다.
상기 반응기에서 프로필렌 및 물은 기상 반응, 기/액상 반응 또는 액상 반응 중 어느 하나의 형태로 수행될 수 있으며, 프로필렌 단량체 대비 물은 0.3 내지 2 또는 0.35 내지 1.5의 몰비로 반응시켜 수득할 수 있다. 상기 몰비율을 만족할 때, 평형 반응의 정반응을 촉진시키고, 역반응이 진행되는 것을 방지하여 IPA의 수율을 증가시킬 수 있다.
또한 상기 반응기는 프로필렌 단량체와 물의 반응을 통해 IPA를 효율적으로 제조할 수 있는 최적의 조건으로 작동될 수 있으며, 예컨대 기상 반응의 경우 10 내지 50 kg/cm2·g, 30 내지 50 kg/cm2·g 또는 35 내지 45 kg/cm2·g의 압력 및 150 내지 220 ℃, 160 내지 220 ℃ 또는 180 내지 215 ℃의 온도에서 작동될 수 있다.
상기 반응 생성물은 IPA 이외에도, 미반응 프로필렌 단량체, 미반응 물, 부산물로서 n-프로필 알코올(NPA), 이소프로필에테르(DIPE), 중질(heavy)의 고비점 유기물(예컨대, 헥산올), 추가로 저비점 유기물(예컨대, 아세톤) 등을 포함할 수 있다. 그러므로, IPA를 고순도로 얻기 위해서는 반응 생성물에 포함된 미반응 물질 및 부산물을 분리하여 IPA를 회수하는 과정이 필요하다. 또한, 상기 반응 생성물로부터 분리되는 물은 회수되어 공정수로 재활용되거나 폐수로 처리될 수 있는데, 중질(heavy)의 고비점 유기물이 포함되는 경우 COD(chemical oxygen demand)가 증가할 수 있으므로 폐수 처리시 COD를 감소시키는 공정이 요구될 수 있다.
이를 위해, 상기 반응 생성물은 먼저 가스 정제를 수행한 후 IPA 정제부로 공급된다. 상기 가스 정제는 반응 생성물로부터 미반응 프로필렌 단량체를 비롯한 저비점 성분을 제거하기 위한 것으로, 흡수탑, 가스 정제부 등을 이용하여 수행될 수 있다.
본 발명에 따른 IPA 제조 방법의 단계 (S2)에서는 IPA, NPA, 물 및 중질(heavy)의 고비점 유기물을 포함하는 스트림으로부터 IPA를 정제하며, 상기 IPA의 정제는 도 3에 나타낸 바와 같이 복수의 칼럼을 포함하는 정제부에서 수행될 수 있다.
도 3을 참조할 때, 상기 단계 (S1)에서 얻은 피드 스트림을 정제부의 제1 칼럼에서 공급한다. 상기 피드 스트림은 IPA 5 내지 10 중량%, NPA 0.1 내지 3 중량%, 물 85 내지 94 중량% 및 고비점 유기물 0.05 내지 2 중량%를 포함할 수 있다.
상기 정제부의 제1 칼럼은 피드에 포함된 다량의 물을 분리하여 상부로 IPA 및 NPA를 분리하기 위한 증류탑에 해당되며, 상기 IPA 및 NPA는 각각 물과 공비 혼합물을 형성하여 상부 스트림(1a)으로 분리되고, 물과 함께 고비점 유기물은 하부 스트림(1b)으로 배출된다.
상기 제1 칼럼의 상부 배출 스트림(1a)는 IPA 30 내지 70 중량%, NPA 20 내지 50 중량% 및 물 10 내지 50 중량%의 혼합물을 포함할 수 있으며, 상기 제1 칼럼의 하부 배출 스트림(1b)는 물 95 내지 99 중량% 및 고비점 부산물 1 내지 5 중량%를 포함할 수 있다.
상기 제 1 칼럼은 반응 생성물로부터 알코올 성분과 물의 분리 효율을 증대시키기 위해서 0 내지 3 kg/cm2·g 또는 0 내지 2 kg/cm2·g의 압력 및 80 내지 150 ℃ 또는 90 내지 140 ℃의 온도에서 작동될 수 있다.
상기 제1 칼럼은 IPA 및 NPA로부터 물을 분리하기 위한 것이나, 물과의 공비 형성으로 물이 완전히 제거되기 어렵다. 이에, 제1 칼럼의 상부 스트림(1a)에 포함된 공비 혼합물로부터 물을 완전히 분리하기 위해 상기 스트림(1a)를 제2 칼럼으로 이송한다.
즉 정제부의 제2 칼럼은 상기 IPA, NPA 및 물을 포함하는 스트림, 구체적으로 IPA/물의 공비 혼합물 및 NPA/물의 공비 혼합물을 포함하는 스트림(1a)으로부터 물을 분리하기 위한 것이며, 공비제로서 유기 용매(예컨대, 시클로 헥산, 벤젠, 톨루엔, 이소프로필 아세테이트 등)를 투입하면 IPA 또는 NPA와 물의 공비를 깨짐으로써 물을 분리할 수 있다. 따라서, 상기 제2 칼럼에서는 물이 제거되어 IPA 및 NPA를 포함하는 스트림(2b)이 하부로 분리되고, 상기 유기 용매가 물 및 IPA와 함께 3성분 공비 혼합물을 형성하여 상부 스트림(2a)로 배출된다.
상기 제2 칼럼의 상부 스트림(2a)은 공비제로서 시클로 헥산이 사용되는 경우, 유기 용매 65 내지 85 중량%, 물 4 내지 15 중량% 및 IPA 10 내지 30 중량%의 공비 혼합물을 포함할 수 있다.
상기 제 2 칼럼은 공비제로 사용된 유기 용매에 의한 물의 분리 효율을 증대시키기 위해서 0 내지 2 kg/cm2·g 또는 0 내지 1 kg/cm2·g의 압력 및 50 내지 110 ℃ 또는 60 ℃ 내지 100 ℃의 온도에서 작동될 수 있다.
상기 제2 칼럼의 하부 스트림(2b)은 IPA 70 내지 98 중량% 및 NPA 2 내지 30 중량%를 포함할 수 있고, 추가로 이전 단계에서 분리되지 못한 미량의 물이 잔존할 수 있으며, 상기 스트림(2b)은 IPA 회수를 위해 제3 칼럼으로 이송된다.
상기 제3 칼럼은 도 3에 예시된 바와 같이, 중심 분리벽에 의해 구분되는 2개의 영역을 포함하는 분리벽형 구조의 증류탑(DWC)에 해당하며, 그 중 한 영역(제1 영역)으로 제2 칼럼의 하부 스트림(2b)으로 공급된다. 이때, 제1 칼럼의 하부에서 분리되어 물 및 고비점 유기물을 포함하는 스트림(1b)의 분기 스트림(1b')이 상기 제2 칼럼의 하부 스트림(2b)과 혼합될 수 있으며, 이러한 혼합된 스트림은 제3 칼럼의 제1 영역으로 함께 공급될 수 있다.
상기 제3 칼럼은 상기 혼합 스트림으로부터 비점이 높은 고비점 유기물 및 NPA를 하부 스트림(3b)로 분리함으로써, 고비점 유기물이 제거된 물을 포함하는 상부 스트림(3a) 및 NPA가 제거된 IPA를 포함하는 측면 스트림을 수득할 수 있다. 상기 NPA가 제거된 IPA를 포함하는 측면 스트림은 제3 칼럼의 다른 영역(제2 영역)에서 회수함으로써, 피드에 포함된 IPA의 99.99 중량% 이상을 정제할 수 있다.
상기 제3 칼럼의 상부 스트림(3a)은 고비점 유기물이 제거된 물이 IPA와 공비 혼합물을 형성하여 배출되고, 상기 스트림(3a)는 제1 칼럼의 IPA/물 및 NPA/물의 공비 혼합물을 포함하는 상부 스트림(1a)과 혼합되어 제2 칼럼으로 이송되며, 상기 제2 칼럼에서 상기 공비 혼합물로부터 물을 분리할 수 있다. 또한, 상기 분리된 물은 제4 칼럼의 하부로 배출될 수 있다.
이와 같이 상기 제3 칼럼에서 제1 칼럼의 하부 스트림의 일부에 포함된 물을 고비점 유기물과 분리하여 환류됨에 따라, 상기 제1 칼럼의 하부 스트림에서 남은 물(1b")은 제4 칼럼의 하부에서 분리된 스트림(4b)와 합쳐져서 물(1b'")로 배출될 수 있으며, 이는 공정수로 재활용되거나 COD(chemical oxygen demand)가 저감된 폐수로 처리될 수 있다.
본 발명의 일 실시형태에서, 상기 제3 칼럼의 하부 스트림으로 배출된 고비점 유기물의 함량은 제3 칼럼의 제1 영역으로 공급되는 제1 칼럼 하부 스트림의 분기 유량에 비례할 수 있으나, 에너지 소비의 경제적인 측면을 고려할 때 적절한 제어가 필요하다. 예컨대, 상기 제3 칼럼의 제1 영역으로 공급되는 제1 칼럼 하부 스트림의 분기 스트림(1b')는 제1 칼럼 하부 스트림 전체 유량의 0.5 내지 5 중량% 또는 1 내지 3 중량%의 유량으로 분기될 수 있으며, 상기 분기 유량이 0.5 중량% 미만인 경우 고비점 유기물 제거율이 적어 COD 저감 효과가 불충분하고, 5 중량%를 초과하는 경우에는 제3 칼럼에서 과도한 에너지 소비를 유발할 수 있다.
또한 제3 칼럼은 상기 혼합 스트림으로부터 고비점 유기물 및 NPA의 분리 효율을 증대시키기 위해서 0 내지 2 kg/cm2·g 또는 0 내지 1 kg/cm2·g의 압력 및 70 내지 120 ℃ 또는 80 내지 110 ℃의 온도에서 작동될 수 있다.
한편, 상기 제2 칼럼의 상부에서 분리된 용매 및 물을 포함하는 상부 스트림은 유기 용매 회수를 위해 정제부의 제 4 칼럼으로 이송되어, 물이 제거된 상부 스트림(4a) 및 물을 포함하는 하부 스트림(4b)으로 분리될 수 있으며, 상기 상부 스트림(4a)에 포함된 유기 용매가 제2 칼럼으로 환류될 수 있다.
상기 제 4 칼럼은 용매 회수 칼럼으로서, 유기 용매 및 물의 분리 효율을 증대시키기 위해서 0 내지 2 kg/cm2·g 또는 0 내지 1 kg/cm2·g의 압력 및 70 내지 120 ℃ 또는 75 ℃ 내지 110 ℃의 온도에서 작동될 수 있다.
상기한 바와 같은 본 발명에 따르면, IPA 제조시 복수의 칼럼을 이용한 정제 단계에서 IPA/물 및 NPA/물의 공비 혼합물을 포함하는 스트림으로부터 물을 먼저 분리한 후, 분리벽형 제3 칼럼의 제1 영역으로 제1 칼럼의 하부 스트림(물 및 고비점 유기물을 포함)의 분기 스트림 및 제2 칼럼의 하부 스트림(IPA 및 NPA를 포함)의 혼합 스트림을 공급하여 상기 고비점 유기물 및 NPA를 분리함으로써, NPA가 제거된 고순도의 IPA를 제3 칼럼의 제2 영역 측면으로 회수함과 동시에 고비점 유기물이 제거된 물을 포함하는 상부 스트림으로 배출할 수 있다.
상기 분리벽형 제3 칼럼의 제2 영역으로 회수되는 IPA는 피드에 포함된 IPA의 99.99 중량% 이상을 차지할 수 있다.
또한 상기 분리벽형 제3 칼럼에서 제1 칼럼 하부 스트림의 분기 스트림에 포함된 물을 고비점 유기물과 분리한 후 환류시킴으로써, 상기 제1 칼럼의 하부 스트림에서 남은 물이 제4 칼럼의 하부에서 분리된 스트림의 일부와 합쳐져 배출된 물은 공정수로 재활용되거나 COD(chemical oxygen demand)가 저감된 폐수로 처리될 수 있다.
이하, 실시예에 의하여 본 발명을 더욱 상세하게 설명하고자 한다. 그러나, 하기 실시예는 본 발명을 예시하기 위한 것으로 본 발명의 범주 및 기술사상 범위 내에서 다양한 변경 및 수정이 가능함은 통상의 기술자에게 있어서 명백한 것이며, 이들 만으로 본 발명의 범위가 한정되는 것은 아니다.
실시예 1
(단계 1) 피드 스트림의 수득
프로필렌 단량체와 물을 1:1의 몰비로 기상 반응시켜, 이소프로필 알코올(IPA), 미반응 프로필렌 단량체, 미반응 물, 부산물로서 n-프로필 알코올(NPA), 저비점 유기물 및 고비점 유기물을 포함하는 반응 생성물을 생성한 후, 상기 반응 생성물로부터 미반응 프로필렌 단량체를 비롯한 저비점 성분 및 가스 성분을 분리하는 정제 공정을 수행하여 피드 스트림을 수득하였다. 상기 피드 스트림은 IPA 7 중량%, NPA 0.2 중량%, 물 92.7 중량% 및 고비점 유기물 0.1 중량%를 포함하였다.
(단계 2) 이소프로필 알코올(IPA)의 정제
도 3에 나타낸 바와 같이, 제1 내지 제4 칼럼을 포함하는 정제부에 상기 단계 1에서 얻은 피드 스트림을 공급하여 IPA를 회수하였다.
먼저 제1 칼럼에서 상기 피드 스트림을 공급하고, 상기 제1 칼럼을 0 kg/cm2·g에서 상부 90℃ 및 하부 140℃로 작동하여 IPA, NPA 및 물을 포함하는 상부 스트림(1a)과 물 및 고비점 유기물을 포함하는 하부 스트림(1b)으로 분리하였다.
상기 상부 스트림(1a) 및 공비제로서 유기 용매(시클로헥산)을 제2 칼럼에 공급하고, 상기 제2 칼럼을 0 kg/cm2·g에서 상부 60℃ 및 하부 100℃로 작동하여 상기 스트림(1a)으로부터 물을 제거하여 IPA 및 NPA를 포함하는 스트림(2b)를 하부로 분리하는 한편, 상기 유기용매, 물 및 IPA의 공비혼합물로 형성된 상부 스트림으로 배출하였다.
이후, 분리벽형 구조를 갖는 제3 칼럼의 제1 영역으로 상기 제2 칼럼의 하부 스트림(2b)과 상기 제1 칼럼 하부 스트림(1b)의 분기 스트림(1b')을 혼합하여 공급하였다. 이때, 상기 분기 스트림(1b')의 유량은 제1 칼럼 하부 스트림 전체 유량의 0.5 중량%로 조절하였다.
상기 제3 칼럼을 0 kg/cm2·g에서 상부 80℃ 및 하부 110℃로 작동하여, 상기 혼합 스트림으로부터 비점이 높은 고비점 유기물 및 NPA를 하부 스트림(3b)로 분리함으로써, 고비점 유기물이 제거된 물을 포함하는 상부 스트림(3a) 및 NPA가 제거된 IPA를 포함하는 측면 스트림을 수득하였다. 상기 NPA가 제거된 IPA를 포함하는 측면 스트림은 상기 제3 칼럼의 제2 영역에서 회수함으로써, 피드에 포함된 IPA를 99.99 중량% 이상의 순도로 정제하였다.
한편, 상기 제2 칼럼의 상부 스트림(용매 및 물을 포함)을 제 4 칼럼으로 이송하고, 상기 제4 칼럼을 0 kg/cm2·g에서 상부 75℃ 및 하부 100℃로 작동하여 물이 제거된 상부 스트림(4a) 및 물을 포함하는 하부 스트림(4b)으로 분리하였으며, 상기 상부 스트림(4a)에 포함된 유기 용매가 제2 칼럼으로 환류시켰다. 또한, 상기 제1 칼럼의 하부 스트림에서 남은 물(1b")을 제4 칼럼의 하부에서 분리된 스트림(4b)와 합쳐서 배출하였다(1b'").
실시예 2
상기 제3 칼럼의 제1 영역으로 공급되는 제1 칼럼 하부 분기 스트림(1b')의 유량을 제1 칼럼 하부 스트림 전체 유량의 5 중량%로 조절하는 것을 제외하고는 실시예 1과 동일한 과정을 수행하여 IPA를 회수하였다.
실시예 3
상기 제3 칼럼의 제1 영역으로 공급되는 제1 칼럼 하부 분기 스트림(1b')의 유량을 제1 칼럼 하부 스트림 전체 유량의 10 중량%로 조절하는 것을 제외하고는 실시예 1과 동일한 과정을 수행하여 IPA를 회수하였다.
비교예 1
(단계 1)
실시예 1의 단계 1과 같은 공정으로 피드 스트림을 수득하였다.
(단계 2)
도 1에 나타낸 바와 같은 정제 공정을 수행하였다.
구체적으로, 제1 칼럼에 피드 스트림을 공급하여 IPA, NPA 및 물의 공비 혼합물을 포함하는 상부 스트림과 물 및 고비점 유기물이 포함된 하부 스트림을 분리하였다. 상기 제1 칼럼의 상부 스트림을 제2 칼럼으로 이송하는 한편, 상기 제1 칼럼의 측부에 연결된 제3 칼럼의 하부로 NPA를 제거하였다. 이어서, 상기 제2 칼럼에서 유기 용매(시클로 헥산)를 이용해 공비를 깨고 IPA를 포함하는 하부 스트림과 상기 용매 및 물의 상부 스트림을 분리한 후, 제4 칼럼에서 사용된 용매 및 물의 분리를 수행하였다.
비교예 2
(단계 1)
실시예 1의 단계 1과 같은 공정으로 피드 스트림을 수득하였다.
(단계 2)
도 2에 나타낸 바와 같은 정제 공정을 수행하였다.
구체적으로, 제1 칼럼에서 피드 스트림을 공급하여 IPA, NPA 및 물의 공비 혼합물을 포함하는 상부 스트림과 고비점 유기물 및 물이 포함된 하부 스트림으로 분리하였다. 상기 제1 칼럼의 상부 스트림을 제2 칼럼으로 이송하여 물을 먼저 분리한 후, IPA 및 NPA를 포함하는 스트림을 제3 칼럼으로 이송하여 NPA를 제거함으로써 IPA를 회수하였다. 한편, 제4 칼럼에서 사용된 용매 및 물의 분리를 수행하였다.
하기 표 1은 실시예 및 비교예의 정제 공정에 따른 IPA의 회수 결과를 나타낸 것이다.
IPA 정제순서 제1 칼럼의 하부 스트림 대비 분기 유량 최종 IPA 회수 결과 폐수 COD1) 스팀 사용량2)
순도(wt%) NPA 농도
(ppm)
물 농도
(ppm)
비교예 1 NPA제거후 물 분리 - 99.92 500 250 1 1
비교예 2 물 선분리후 NPA 제거 - 99.995 2 50 1 1.06
실시예 1 물 선분리후 NPA 제거 0.5 중량% 99.995 2 10 0.995 1.11
실시예 2 물 선분리후 NPA 제거 5 중량% 99.995 2 10 0.96 1.37
실시예 3 물 선분리후 NPA 제거 10 중량% 99.995 2 10 0.88 1.88
1) 제1 칼럼의 하부에서 배출된 물의 COD(chemical oxygen demand)로서, 비교예 1에서 측정된 COD를 기준으로 표준화하여(normalized) 나타냄
2) 정제 공정 전반에 걸쳐 사용된 스팀량으로서, 비교예 1의 스팀 사용량을 기준으로 표준화하여(normalized) 나타냄.
상기 표 1에서, 비교예 1은 IPA 정제시에 제1 칼럼의 측부에 연결된 제3 칼럼의 하부로 NPA를 먼저 제거하였지만, 상기 제1 칼럼 및 제3 칼럼에 포함된 물에 의해 IPA 및 NPA와 공비혼합물이 형성됨에 따라 제2 칼럼으로 이송되는 스트림에 NPA가 포함됨으로써, 상기 제2 칼럼의 하부로 최종 IPA를 회수할 때 500ppm의 NPA 및 250ppm의 물이 잔존하였다. 또한, 제1 칼럼의 하부로 배출되는 물에 고비점 유기물(heavy substances)이 포함됨에 따라 COD(chemical oxygen demand)가 높았으며, 그 결과 폐수 처리시에 추가 공정이 요구될 수 있다.
비교예 2는 IPA 정제시에 제2 칼럼에서 IPA, NPA 및 물의 공비 혼합물로부터 물을 먼저 분리하였기 때문에, 제3 칼럼에서는 공비 혼합물이 형성되지 않아 NPA가 쉽게 제거되었으며, 그 결과 최종 회수된 IPA에는 잔존 NPA가 2ppm 수준으로 낮았다. 하지만 상기 제2 칼럼에서 미처 분리되지 못한 물이 최종 IPA 회수시에 50ppm의 농도로 포함되었다. 또한, 비교예 1과 유사하게 제1 칼럼의 하부로 배출되는 물에 고비점 유기물(heavy substances)이 포함됨에 따라 COD(chemical oxygen demand)가 높았다.
반면에, 실시예 1 내지 3은 분리벽형 제3 칼럼을 사용하여, IPA/물 및 NPA/물의 공비 혼합물을 포함하는 스트림으로부터 물을 먼저 분리한 후, 분리벽형 제3 칼럼의 제1 영역으로 제1 칼럼의 하부 스트림(물 및 고비점 유기물을 포함)의 분기 스트림(1b') 및 제2 칼럼의 하부 스트림(2b, IPA 및 NPA를 포함)의 혼합 스트림을 공급하여 상기 고비점 유기물 및 NPA를 제거한 결과, NPA가 제거된 고순도의 IPA를 회수하였으며, 잔존 NPA 및 잔존 물의 농도가 각각 2ppm 및 10ppm으로 낮았다.
더욱이, 실시예 1 내지 3에서는 제1 칼럼 하부 분기 스트림(1b')에 포함된 물을 고비점 유기물과 분리한 후 환류시킴에 따라, 상기 제1 칼럼의 하부 스트림에서 남은 물의 COD가 저감되었다. 즉, 상기 제3 칼럼의 하부 스트림(3b)으로 배출된 고비점 유기물의 함량이 제3 칼럼의 제1 영역으로 공급되는 제1 칼럼 하부 스트림의 분기 유량에 비례함에 따라, 결과적으로 상기 제1 칼럼의 하부 스트림에서 남은 물의 COD가 저감된 것이다.
한편 실시예 3의 경우 제1 칼럼 하부 분기 스트림(1b')의 분기 유량이 10 중량%로 높아짐에 따라 분기에 따른 스팀 사용량이 급격히 증가함을 볼 수 있다. 따라서, 상기 제1 칼럼 하부 스트림의 분기시에는 폐수의 COD 함량을 낮추면서도 과도한 에너지 소비를 피하기 위하여, 분기 유량을 소정 범위(예컨대 제1 칼럼 하부 스트림 전체 유량의 0.5 내지 5 중량%)로 조절하는 것이 바람직하다.

Claims (9)

  1. 이소프로필 알코올(isopropyl alcohol, IPA)을 제조하는 방법으로서,
    (S1) 프로필렌 단량체 및 물의 반응 생성물로부터 가스 정제를 수행하여 이소프로필 알코올(IPA), 노말 프로필 알코올(NPA), 물 및 고비점 유기물을 포함하는 피드 스트림을 수득하는 단계; 및
    (S2) 상기 피드 스트림을 복수의 칼럼을 포함하는 정제부에 공급하여 IPA를 회수하는 단계를 포함하고,
    상기 정제부의 제1 칼럼에서 상기 피드 스트림을 IPA, NPA 및 물의 혼합물을 포함하는 상부 스트림과 물 및 고비점 유기물을 포함하는 하부 스트림으로 분리하고,
    상기 정제부의 제2 칼럼에서 유기 용매를 이용해 제1 칼럼의 상부 스트림으로부터 물을 제거하여 IPA 및 NPA를 포함하는 스트림을 하부로 분리하고, 상기 용매가 물 및 IPA와 함께 3성분 공비 혼합물을 형성하여 상부 스트림으로 배출하며,
    상기 정제부의 제3 칼럼은 중심 분리벽에 의해 구분되는 제1 및 제2 영역을 포함하고, 상기 제1 영역으로 제1 칼럼 하부 스트림의 분기 스트림 및 제2 칼럼 하부 스트림을 혼합한 스트림을 공급하고, 상기 혼합 스트림으로부터 고비점 유기물이 제거된 물을 포함하는 상부 스트림, NPA가 제거된 IPA를 포함하는 측면 스트림, 및 상기 고비점 유기물 및 NPA를 포함하는 하부 스트림을 분리하며, 상기 IPA를 포함하는 측면 스트림을 제2 영역으로부터 회수하는 방법.
  2. 제1항에 있어서,
    상기 제2 칼럼의 상부에서 분리된 용매, 물 및 IPA의 3성분 공비 혼합물을 포함하는 상부 스트림은 정제부의 제4 칼럼으로 이송되어 물이 제거된 상부 스트림 및 물을 포함하는 하부 스트림으로 분리되고, 상기 상부 스트림은 제2 칼럼으로 환류되는 방법.
  3. 제1항에 있어서,
    상기 피드 스트림은 IPA 5 내지 10 중량%, NPA 0.1 내지 3 중량%, 물 85 내지 94 중량% 및 고비점 유기물 0.05 내지 2 중량%를 포함하는 방법.
  4. 제1항에 있어서,
    상기 제1 칼럼의 상부 스트림은 IPA 30 내지 70 중량%, NPA 20 내지 50 중량% 및 물 10 내지 50 중량%의 혼합물을 포함하는 방법.
  5. 제1항에 있어서,
    상기 제3 칼럼의 제1 영역으로 공급되는 제1 칼럼 하부 스트림의 분기 유량은 제1 칼럼 하부 스트림 전체 유량의 0.5 내지 5 중량%로 조절되는 방법.
  6. 제1항에 있어서,
    상기 제3 칼럼의 하부 스트림으로 배출된 고비점 유기물의 함량은 제3 칼럼의 제1 영역으로 공급되는 제1 칼럼 하부 스트림의 분기 유량에 비례하는 방법.
  7. 제1항에 있어서,
    상기 제3 칼럼에서 제1 영역의 측벽을 통해 회수되는 IPA는 99.99 중량% 이상의 순도를 만족하는 IPA의 제조 방법.
  8. 제1항에 있어서,
    상기 고비점 유기물은 헥산올을 포함하는 IPA의 제조 방법.
  9. 제1항에 있어서,
    상기 제2 칼럼에서 사용된 유기 용매는 사이클로헥산, 벤젠, 톨루엔 및 이소프로필 아세테이트로부터 선택되는 것인 IPA의 제조 방법.
PCT/KR2023/007922 2022-08-18 2023-06-09 이소프로필 알코올의 제조 방법 WO2024039022A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CA3237588A CA3237588A1 (en) 2022-08-18 2023-06-09 Method of preparing isopropyl alcohol
CN202380014137.XA CN118139836A (zh) 2022-08-18 2023-06-09 制备异丙醇的方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20220103273 2022-08-18
KR10-2022-0103273 2022-08-18
KR10-2023-0069395 2023-05-30
KR1020230069395A KR20240025449A (ko) 2022-08-18 2023-05-30 이소프로필 알코올의 제조 방법

Publications (1)

Publication Number Publication Date
WO2024039022A1 true WO2024039022A1 (ko) 2024-02-22

Family

ID=89942057

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/007922 WO2024039022A1 (ko) 2022-08-18 2023-06-09 이소프로필 알코올의 제조 방법

Country Status (2)

Country Link
CA (1) CA3237588A1 (ko)
WO (1) WO2024039022A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040085710A (ko) * 2003-04-01 2004-10-08 한국화학연구원 폐 이소프로필 알코올 재생 장치 및 방법
KR20150021483A (ko) * 2013-08-20 2015-03-02 주식회사 엘지화학 이소프로필 알코올의 정제 방법
CN105712839A (zh) * 2014-12-05 2016-06-29 中国石油天然气股份有限公司 一种同时适用于丙烯水合和丙酮加氢制备异丙醇的分离方法
WO2018135408A1 (ja) * 2017-01-23 2018-07-26 株式会社トクヤマ イソプロピルアルコール組成物及びイソプロピルアルコールの製造方法
WO2020111439A1 (ko) * 2018-11-30 2020-06-04 주식회사 엘지화학 이소프로필 알코올의 정제방법

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040085710A (ko) * 2003-04-01 2004-10-08 한국화학연구원 폐 이소프로필 알코올 재생 장치 및 방법
KR20150021483A (ko) * 2013-08-20 2015-03-02 주식회사 엘지화학 이소프로필 알코올의 정제 방법
CN105712839A (zh) * 2014-12-05 2016-06-29 中国石油天然气股份有限公司 一种同时适用于丙烯水合和丙酮加氢制备异丙醇的分离方法
WO2018135408A1 (ja) * 2017-01-23 2018-07-26 株式会社トクヤマ イソプロピルアルコール組成物及びイソプロピルアルコールの製造方法
WO2020111439A1 (ko) * 2018-11-30 2020-06-04 주식회사 엘지화학 이소프로필 알코올의 정제방법
KR20200065579A (ko) 2018-11-30 2020-06-09 주식회사 엘지화학 이소프로필 알코올의 정제방법

Also Published As

Publication number Publication date
CA3237588A1 (en) 2024-02-22

Similar Documents

Publication Publication Date Title
WO2019050281A1 (ko) 에스터 조성물의 제조 시스템 및 이를 이용한 에스터 조성물의 제조 방법
WO2017217708A1 (ko) 용매 회수 장치 및 용매 회수 방법
WO2021172898A1 (ko) 프로필렌 글리콜 메틸 에테르 아세테이트 제조 장치 및 제조 방법
WO2013070042A1 (ko) 트리할로실란의 정제 장치
WO2011081385A2 (ko) 트리클로로실란의 정제 방법 및 정제 장치
WO2021261682A1 (ko) 이소프로필 알코올 제조방법
WO2024039022A1 (ko) 이소프로필 알코올의 제조 방법
WO2013070043A1 (ko) 트리할로실란의 정제 장치
WO2020111439A1 (ko) 이소프로필 알코올의 정제방법
WO2015190801A1 (ko) 산화탈수소 반응을 통한 부타디엔 제조방법
WO2016105156A1 (en) Method and apparatus for purification of dimethyl carbonate using pervaporation
WO2013070044A1 (ko) 트리할로실란의 정제 장치
WO2018097690A1 (ko) 메탄올 및 아세톤의 제거 유닛 및 이를 포함하는 페놀 및 비스페놀 a의 제조 시스템
WO2022055104A1 (ko) 니트릴계 단량체의 회수 방법 및 회수 장치
WO2022255575A1 (ko) 이소프로필 알코올 제조방법
WO2022255576A1 (ko) 이소프로필 알코올 제조방법
WO2021002708A1 (ko) 디에스터계 조성물의 제조 시스템 및 방법
WO2021054607A1 (ko) 페놀계 부산물 분해 방법
WO2024043443A1 (ko) 이소프로필 알코올의 제조 방법
WO2024049103A1 (ko) 고순도 (메트)아크릴산의 제조방법
WO2023063525A1 (ko) 아크릴산 제조방법
WO2024058338A1 (ko) 아크릴산 제조방법
WO2024049105A1 (ko) 고순도 (메트)아크릴산의 제조방법
WO2024049107A1 (ko) 고순도 (메트)아크릴산의 제조방법
KR20240025449A (ko) 이소프로필 알코올의 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23854993

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202380014137.X

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 18707415

Country of ref document: US

ENP Entry into the national phase

Ref document number: 3237588

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2023854993

Country of ref document: EP

Ref document number: 23854993.5

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2023854993

Country of ref document: EP

Effective date: 20241004