WO2018088846A1 - 페놀의 정제 방법 - Google Patents

페놀의 정제 방법 Download PDF

Info

Publication number
WO2018088846A1
WO2018088846A1 PCT/KR2017/012740 KR2017012740W WO2018088846A1 WO 2018088846 A1 WO2018088846 A1 WO 2018088846A1 KR 2017012740 W KR2017012740 W KR 2017012740W WO 2018088846 A1 WO2018088846 A1 WO 2018088846A1
Authority
WO
WIPO (PCT)
Prior art keywords
phenol
feed
distillation column
hydroxyacetone
fraction
Prior art date
Application number
PCT/KR2017/012740
Other languages
English (en)
French (fr)
Inventor
이시내
이성규
신준호
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020170148530A external-priority patent/KR102040059B1/ko
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to EP17868986.5A priority Critical patent/EP3388412B1/en
Priority to US16/071,553 priority patent/US10532968B2/en
Priority to CN201780011012.6A priority patent/CN108602743B/zh
Priority to JP2018550363A priority patent/JP6694519B2/ja
Publication of WO2018088846A1 publication Critical patent/WO2018088846A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D3/00Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
    • B01D3/14Fractional distillation or use of a fractionation or rectification column
    • B01D3/32Other features of fractionating columns ; Constructional details of fractionating columns not provided for in groups B01D3/16 - B01D3/30
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C37/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring
    • C07C37/68Purification; separation; Use of additives, e.g. for stabilisation
    • C07C37/70Purification; separation; Use of additives, e.g. for stabilisation by physical treatment
    • C07C37/74Purification; separation; Use of additives, e.g. for stabilisation by physical treatment by distillation
    • C07C37/78Purification; separation; Use of additives, e.g. for stabilisation by physical treatment by distillation by azeotropic distillation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C39/00Compounds having at least one hydroxy or O-metal group bound to a carbon atom of a six-membered aromatic ring
    • C07C39/02Compounds having at least one hydroxy or O-metal group bound to a carbon atom of a six-membered aromatic ring monocyclic with no unsaturation outside the aromatic ring
    • C07C39/04Phenol

Definitions

  • Phenol is a step of oxidizing an alkylaryl compound to an alkylaryl hydroperoxide, a step of concentrating the alkylaryl hydroperoxide, a step of cleaving the concentrate with an phenol and a ketone with an acid catalyst, neutralizing the acid cleavage product,
  • the neutralized cleavage product is prepared by a step of fractional distillation.
  • the method of producing a phenol by acid-decomposing the cumene hydroperoxide obtained by cumene oxidation is known.
  • the acid decomposition product in this method is composed of phenol and acetone as main components, and various by-products including ⁇ -methylstyrene, acetophenone, 4-cumylphenol, 2-phenyl-2-propanol, and unreacted cumene; And various carbonyl compounds including trace amounts of hydroxyacetone (HA) and ⁇ -phenylpropionaldehyde ( ⁇ -PPA).
  • HA hydroxyacetone
  • ⁇ -PPA ⁇ -phenylpropionaldehyde
  • hydroxyacetone HA
  • 2-methylbenzofuran or mesityl oxide acts as a major factor in determining the quality of phenols.
  • hydroxyacetone it is necessary to purify the latter stage unless most of them are removed from the first column of the purification process. Purification efficiency in ion exchange resins, which are generally located in the process, can be extremely degraded, which can lead to problems leading to deterioration of the final product.
  • An object of the present invention is to adjust the temperature of the feed containing phenol, acetone, hydroxyacetone and water input to the distillation column in the fractional distillation process, to determine the content of hydroxyacetone in the fraction containing the phenol subjected to the distillation process It is to provide a method for purifying phenol to be reduced.
  • the present invention comprises the steps of supplying a feed comprising a phenol, acetone, hydroxyacetone and water to a distillation column at a temperature of 60 to 95 °C; Separating the feed into a first fraction comprising the acetone and separated to the top of the distillation column and a second fraction containing the phenol and separated to the bottom of the distillation column; And recovering the first fraction and the second fraction, respectively.
  • the purification method of the phenol of the present invention by adjusting the temperature of the feed supplied to the distillation column, it is possible to improve the separation efficiency of hydroxyacetone, and to separate the hydroxyacetone to the bottom, while minimizing the outflow of the hydroxyacetone to the bottom Can be. Accordingly, the content of hydroxyacetone in the fraction containing phenol can be significantly reduced.
  • FIG. 1 shows an example of a purification apparatus used in the present invention.
  • Figure 2 shows the correlation between the content of hydroxyacetone in the second fraction of Examples 1 to 3, Comparative Example 2 and the energy (reboiler duty) consumed in the reboiler of the distillation column.
  • the purification device used in the purification method of phenol according to an embodiment of the present invention is not particularly limited as long as it is a purification device used in the technical field of the present invention.
  • the purification apparatus used in the purification method of the phenol of the present invention is a distillation column (1), the stop inlet 10 located on the side of the distillation column (1), the distillation column (1) A first line 11 connected to the upper end and a second line 12 connected to the lower end of the distillation column 1 are included.
  • the distillation column (1) means a zone where fractional distillation is performed to separate phenol from a feed comprising phenol, acetone, hydroxyacetone and water.
  • the distillation column used in the present invention may be a distillation column.
  • the interruption input unit 10 means an inlet for supplying the feed.
  • the first line 11 refers to a line for recovering the first fraction containing acetone separated from the distillation column 1 by separating the acetone, specifically, acetone vapor, for further purification of acetone. May be connected to an acetone purification column (not shown).
  • a switch may be located between the distillation column 1 and the first line 11, and a reflux cooler 21 for the first fraction may be installed in the first line 11.
  • the second line 12 refers to a line for recovering a second fraction including phenol separated by fractional distillation in the distillation column 1, and is a phenol purification column (not shown) for further purification of phenol. ) Can be connected.
  • a switch may be located between the distillation column 1 and the second line 12, and the heat exchanger 22 may introduce an appropriate thermal energy into the distillation column 1 in the second line 12. Can be installed.
  • the distillation column 1 may further include a reflux pump (not shown). A part or all of the first fraction recovered from the upper end of the distillation column 1 by using the reflux pump is introduced into the upper end of the distillation column 1 through a third line (not shown) and the distillation column ( It can be purified again with the first fraction already present at the top of 1).
  • the refining apparatus may have a discharge line only at the top and bottom, there may be no stream discharged to the stop.
  • a line is discharged from the column separating the phenol and acetone fraction into a stop, and a stream for separating unreacted phenol precursors (e.g. cumene), hydroxyacetone and ⁇ -methylstyrene, etc. It is common that there is essentially at least one column present for the insertion or removal of hydroxyacetone from the phenol fraction separated at the bottom.
  • Purifying method of phenol may include supplying a feed comprising phenol, acetone, hydroxyacetone and water to the distillation column (1) at a temperature of 60 to 95 °C.
  • the feed may be produced by oxidizing an alkylaryl compound to form a reaction mixture including an alkylaryl hydroperoxide and an unreacted alkylaryl compound, and cleaving the reaction mixture.
  • the cumene is oxidized to form cumene hydroperoxide
  • the reaction mixture comprising the cumene hydroperoxide and unreacted cumene is cleaved in the presence of an acid catalyst to contain phenol, acetone, hydroacetone and water. Cleavage product mixture.
  • oxidation of the cumene may be generally performed by automatic oxidation with oxygen-containing gas such as air or oxygen enriched air.
  • the oxidation reaction can be carried out with or without an additive such as alkali.
  • the additives include alkali metal compounds such as sodium hydroxide (NaOH), potassium hydroxide (KOH), alkaline earth metal compounds, alkali metal carbonates such as sodium carbonate (Na 2 CO 3 ), sodium hydrogen carbonate (NaHCO 3 ), ammonia and ammonium carbonate salts. Etc. can be used.
  • the oxidation reaction may be carried out at a temperature of about 50 to about 200 °C, atmospheric pressure to a pressure of about 5 MPa.
  • Oxidation of cumene can be carried out through a number of oxidation reactors, in particular three oxidation reactors used in conventional phenol processes.
  • a cumene hydroperoxide containing stream can be used by oxidizing a cumene containing stream having a concentration of cumene of at least 80%, specifically at least 99% by weight, in the presence of an oxygen containing stream.
  • Conventional initiators can be used to promote oxidation of the cumene.
  • an organic hydroperoxide such as cumene hydroperoxide, t-butyl hydroperoxide, a peroxy free radical initiator or an azo free radical initiator may be used.
  • the reaction mixture comprising cumene hydroperoxide and unreacted cumene may comprise from 60% to 95% by weight of cumene hydroperoxide relative to the total weight of the reaction mixture.
  • an inorganic acid includes sulfuric acid (H 2 SO 4 ), sulfur dioxide (SO 2 ), and the like
  • the organic acid includes toluene sulfonic acid or benzene sulfonic acid.
  • the acidic ion exchange resin includes sulfonated styrene-divinylbenzene resin and the like
  • the solid acid includes zeolite or alumina and the like.
  • the method for purifying phenol according to the present invention may be included in the method for preparing phenol as described above, other methods may be applied in addition to the method for preparing phenol described above, and the method for preparing phenol is not limited.
  • the feed is 40% to 70% by weight of the phenol, 15% to 45% by weight of acetone, 0.02% to 5% by weight of hydroxyacetone, and 9% to about water based on the total weight of the feed. It may include 11% by weight.
  • the water should be included in the above-described range in the feed, it is possible to reduce the content of hydroxyacetone in the second fraction to be described later.
  • the amount of phenol separated into the first fraction to be described later may be minimized, and the amount of ⁇ -methylstyrene separated into the second fraction to be described later may be minimized.
  • the loss of phenol and ⁇ -methylstyrene can be minimized. If the above range is not satisfied, reflux of the hydroxyacetone may not be performed properly in the fractionation distillation process, and the hydroxyacetone may remain in the second fraction to be described later without properly moving to the first fraction to be described later. .
  • the feed may further comprise by-products, the by-products may be produced in the above-described oxidation and cleavage process, for example cumene, ⁇ -methylstyrene, methanol, acetaldehyde, formaldehyde, cumylphenol, dicumyl Peroxide, ⁇ -methylstyrene dimer, mesityl oxide, 2-methylbenzofuran and phenol tar may be one or two or more selected from the group consisting of.
  • the by-products may be produced in the above-described oxidation and cleavage process, for example cumene, ⁇ -methylstyrene, methanol, acetaldehyde, formaldehyde, cumylphenol, dicumyl Peroxide, ⁇ -methylstyrene dimer, mesityl oxide, 2-methylbenzofuran and phenol tar may be one or two or more selected from the group consisting of.
  • the feed may be supplied to the distillation column 1 through the interruption input section 10 at a temperature of 60 to 95 °C, specifically 75 to 95 °C, more specifically at a temperature of 80 to 95 °C.
  • the pressure may be 2 atm or less.
  • the material to be separated to the lower part of the feed is moved to the upper part, thereby reducing the efficiency of the material refluxed from the upper part and eventually leading to a decrease in the purity of the product.
  • the energy efficiency is increased in comparison with that, it is generally supplied by heating to an appropriate temperature range.
  • the purification was performed by heating the feed temperature in the first distillation column to an appropriate temperature range of 100 ° C. or higher.
  • the separation efficiency of hydroxyacetone was low and hydroxyacetone in the phenol fraction was low.
  • the content is substantial so that additional columns are needed, or columns that separate into stops in addition to the top and bottom.
  • the feed may be cooled to 50 ° C. or less after the cleavage process of the phenol manufacturing process, and a separate heating process may be performed.
  • a separate heating process may be performed.
  • the feed may be supplied to the distillation column.
  • the feed when the feed is a cleavage product mixture, since the cleavage reaction using an acid catalyst, the pH may be very low to efficiently perform the second step. Accordingly, the feed has a pH of 3 to 10, specifically, using a base so as to be suitable for carrying out the second step, that is, so as not to corrode the purification apparatus such as the distillation column 1, ie, the purification apparatus. It can be adjusted to 4 to 7, it can be supplied to the distillation column.
  • the base may be sodium hydroxide solution, NaOH, ammonia, ammonium hydroxide, amine or diamine.
  • Purification method of the phenol comprises the first fraction containing the acetone and separated to the top of the distillation column (1) and the second comprising the phenol and separated to the bottom of the distillation column And separating into two fractions.
  • One or two or more distillations may be performed to separate the feed into the first and second fractions.
  • the first fraction refers to a fraction containing acetone as a main component
  • the second fraction refers to a fraction containing the phenol as a main component.
  • the second fraction has a distillation process that satisfies the temperature range of the feed given in the second step, and the content of hydroxyacetone in the second fraction is based on the total weight of the second fraction, A phenol fraction containing only 0.02% by weight or less, that is, 200 ppm or less can be obtained.
  • the temperature of the upper end of the distillation column 1 may be lower than the temperature of the lower end of the distillation column 1.
  • the temperature of the upper end of the distillation column (1) may be 65 to 115 °C, specifically 78 to 115 °C.
  • the temperature of the lower portion of the distillation column 1 may be 170 to 225 ° C, specifically 193 to 216 ° C.
  • the internal pressure of the distillation column 1, that is, the operating pressure may be 0 to 1 kgf / cm 2 ⁇ g.
  • the operating pressure or the composition, such as the composition of the feed may be low in relation to the separation efficiency of hydroxyacetone, may be a condition optimized for the separation efficiency in the overall purification process, if the above range is satisfied Ramen can achieve the effect of maximizing the separation efficiency of the aforementioned hydroxyacetone.
  • the upper end of the distillation column (1) does not comprehensively represent the upper region of the first fraction in the distillation column (1), but means the upper end of the distillation column (1).
  • the lower end of the distillation column (1) also means the lower end of the distillation column, not comprehensively expressed as a lower portion of the location of the second fraction in the distillation column (2).
  • Purifying method of phenol may include recovering the first fraction and the second fraction, respectively.
  • the first fraction may be recovered via a first line 11 connected to the top of the distillation column 1.
  • the second fraction may be recovered via a second line 12 connected to the bottom of the distillation column 1.
  • the first fraction may be transferred to an acetone purification column (not shown) via the first line 11, and the second fraction may be moved to a phenol purification column (not shown) via the second line 12.
  • a post-treatment process to remove hydroxyacetone and by-products, specifically 2-methylbenzofuran and mesityl oxide, etc. that may be present in the second fraction can do.
  • the post-treatment process may convert the hydroxyacetone, 2-methylbenzofuran and mesityl oxide into a high boiling point material by reacting the second fraction in a reactor filled with an ion exchange resin.
  • the purification method of phenol when the post-treatment process is performed, by applying control conditions such as temperature control in the distillation column of the purification process in the line flowing into the post-treatment process Since most of the hydroxyacetone is removed, the efficiency of removing substances such as 2-methylbenzofuran or mesityl oxide through the ion exchange resin can be greatly improved.
  • a plurality of reactors including the ion exchange resin are continuously used, and the temperature of the reactor is specifically set at 65 to 95 ° C, more specifically 70 to 90 ° C, whereby the ion exchange resin is used.
  • the temperature of the reactor is specifically set at 65 to 95 ° C, more specifically 70 to 90 ° C, whereby the ion exchange resin is used.
  • mesityl oxide may be decomposed to acetone in the ion exchange resin in the presence of water formed by the reaction between hydroxyacetone and phenol. Acetone may further react with phenol to become bisphenol A. After the second fraction is contacted with an ion exchange resin, the unwanted byproducts of the second fraction, hydroxyacetone, 2-methylbenzofuran and mesityl oxide, can be easily removed from the purified phenol in the final distillation step. It may be possible to convert to point materials.
  • the ion exchange resin means a cation exchange resin in the form of hydrogen, containing an aromatic sulfonic acid group, it may be composed of sulfonated and cross-linked polystyrene granules.
  • Purifying method of phenol by distilling the second fraction subjected to the post-treatment process, by removing the high-boiling material converted from hydroxyacetone, 2-methylbenzofuran and mesityl oxide High purity phenol can be obtained.
  • Example 1 to Example 10 Purification method of phenol
  • a distillation column having a stop input fed with a feed comprising phenol, acetone and hydroxyacetone, a first line connected to the top of the distillation column, a second line connected to the bottom of the distillation column and the distillation column and the first
  • the feed was purified in the following manner using a purification device comprising a reflux pump connected to one line.
  • the first fraction containing acetone was separated at the top of the distillation column, and the second fraction containing the phenol was separated at the bottom of the distillation column. Thereafter, a second fraction containing the phenol was recovered.
  • Example 1 Example 2
  • Example 3 Example 4
  • Example 5 Supply temperature (°C) 60 70 80 95 95 Feed composition (% by weight) phenol 47.0 47.0 47.0 45.0 Acetone 30.0 30.0 30.0 30.0 28.0 Hydroxyacetone 0.2 0.2 0.2 0.2 0.1 ⁇ -methylstyrene 4.0 4.0 4.0 3.0 Low boiling impurities 6.4 6.4 6.4 13.1 High boiling impurities 1.4 1.4 1.4 0.8 water 11.0 11.0 11.0 11.0 10.0 10.0 Operating pressure (kgf / cm2 g) 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 Top temperature of column (°C) 88 88 88 88 92 Bottom temperature of the column (° C) 202 202 202 202 202 202 202 202 202
  • Example 11 Example 11 Supply temperature (°C) 95 95 95 95 95 95 95 Feed composition (% by weight) phenol 47.0 47.0 48.0 47.0 49.0 46.0 Acetone 30.0 30.0 30.0 30.0 31.0 29.0 Hydroxyacetone 0.2 0.2 0.2 0.2 0.2 0.2 ⁇ -methylstyrene 3.0 4.0 4.0 4.0 4.0 4.0 Low boiling impurities 8.1 6.4 6.1 6.4 6.1 6.1 High boiling impurities 1.7 1.4 2.7 1.4 1.7 2.7 water 10.0 11.0 9.0 11.0 8.0 12.0 Operating pressure (kgf / cm2 g) 0.35 0 One 0.35 0.35 0.35 0.35 Top temperature of column (°C) 87 80 99 85 88 89 Bottom temperature of the column (° C) 202 193 215 202 203 202
  • Low boiling impurities one or more of methanol, acetaldehyde, formaldehyde and cumene
  • High boiling impurities one or two or more of cumylphenol, dicumyl peroxide, ⁇ -methylstyrene dimer, phenol tar
  • a distillation column having a stop input fed with a feed comprising phenol, acetone and hydroxyacetone, a first line connected to the top of the distillation column, a second line connected to the bottom of the distillation column and the distillation column and the first
  • the feed was purified in the following manner using a purification device comprising a reflux pump connected to one line.
  • the first fraction containing acetone was separated at the top of the distillation column, and the second fraction containing the phenol was separated at the bottom of the distillation column. Thereafter, a second fraction containing the phenol was recovered.
  • Low boiling impurities at least one of methanol, acetaldehyde, formaldehyde and cumene
  • High boiling impurities at least one of cumylphenol, dicumyl peroxide, ⁇ -methylstyrene dimer, phenol tar
  • Example 1 92.2 2.1 5.6999 One Example 2 92.2 2.1 5.6998 2 Example 3 92.2 2.1 5.6997 3 Example 4 92.2 2.1 5.6977 23 Example 5 95.9 0.9 3.1866 134 Example 6 93.3 0.8 5.8962 38 Example 7 92.3 2.0 5.6969 31 Example 8 92.1 2.2 5.6986 14 Example 9 92.7 1.5 5.7829 171 Example 10 94.0 0.1 5.8174 826 Example 11 91.4 3.0 5.5971 29 Comparative Example 1 92.2 2.1 5.6999 One Comparative Example 2 92.2 2.0 5.7456 544 Comparative Example 3 95.5 1.2 3.2042 958 Comparative Example 4 93.2 0.8 5.9046 954
  • the concentration of hydroxyacetone in the second fraction of Examples 1 to 9 is 1 to 171 ppm, compared to the hydroxyacetone present in the feed fed to the distillation column, the second fraction in the second fraction It was found that hydroxyacetone was significantly reduced.
  • Example 10 In the case of Example 10, the feed was supplied at a temperature of 95 ° C., but the water contained 8 wt% in the feed, the recovery amount of phenol was increased, but the removal effect of hydroxyacetone did not appear.
  • Example 11 the feed was supplied at a temperature of 95 ° C., but the water contained 12% by weight in the feed, so the amount of hydroxyacetone was significantly reduced, but the separation effect of ⁇ -methylstyrene was not observed, Losses as compared to Examples 1-8.
  • Example 1 60 in the x-axis of Figure 2 is Example 1
  • 70 is Example 2
  • 80 is Example 3
  • 100 means Comparative Example 2.
  • the thick line shows the content of hydroxyacetone in the second fraction and the solid line shows the energy consumed in the reboiler of the distillation column.
  • distillation column 10 stop input

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

본 발명은 페놀, 아세톤, 하이드록시아세톤 및 물을 포함하는 피드를 60 내지 95℃의 온도로 증류 컬럼에 공급하는 단계; 상기 피드를 상기 아세톤을 포함하고 상기 증류 컬럼의 상부로 분리되는 제1 분획 및 상기 페놀을 포함하고 상기 증류 컬럼의 하부로 분리되는 제2 분획으로 분리하는 단계; 및 상기 제1 분획 및 상기 제2 분획을 각각 회수하는 단계를 포함하는 것을 특징으로 하는 페놀의 정제방법에 관한 것이다.

Description

페놀의 정제 방법
[관련출원과의 상호인용]
본 발명은 2016.11.14에 출원된 한국 특허 출원 제10-2016-0151394호와 2017.11.09에 출원된 한국 특허 출원 제10-2017-0148530호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용을 본 명세서의 일부로서 포함한다.
페놀은 알킬아릴 화합물을 알킬아릴 하이드로퍼옥사이드로 산화하는 공정, 상기 알킬아릴 하이드로퍼옥사이드를 농축하는 공정, 상기 농축액을 산촉매로 페놀과 케톤으로 개열 반응시키는 공정, 상기 산개열 생성물을 중화하는 공정, 상기 중화된 산개열 생성물을 분별 증류하는 공정으로 제조된다.
예를 들면, 페놀의 제조방법으로서, 쿠멘 산화에 의해 얻어진 쿠멘 하이드로퍼옥사이드를 산분해함으로써 페놀을 제조하는 방법이 알려져 있다. 이 방법에 있어서의 산분해 생성물은, 페놀 및 아세톤을 주성분으로 하고, 이 밖에 α-메틸스티렌, 아세토페논, 4-쿠밀페놀, 2-페닐-2-프로판올, 미반응 쿠멘을 포함하는 각종 부산물과, 미량의 하이드록시아세톤(HA), α-페닐프로피온알데히드(α-PPA)를 포함하는 각종 카르보닐 화합물을 포함하고 있다. 그런데, 페놀의 유도체인 비스페놀-A를 원료로 하여 폴리카보네이트 등이 제조되고 있지만, 이들의 용도 분야에 있어서는 고순도의 페놀이 요구되는 실정이다.
이러한 고순도 페놀을 얻기 위해서, 산분해 생성물의 중화물로부터, 아세톤, 쿠멘, 물, α-메틸스티렌 등의 저비점 물질과 아세토페논, 2-페닐-2-프로판올 등의 고비점 물질의 대부분을 증류에 의해 제거한 페놀 분획을 더 정제하여 하이드록시아세톤 등의 지방족 카르보닐 화합물 및 α-페닐프로피온알데히드 등의 방향족 카르보닐 화합물을 제거하는 것이 실시되고 있지만, 이들의 카르보닐 화합물을 페놀로부터 제거하는 것이 특히 어려워, 최종생산품인 페놀의 품질을 악화시키고 있다. 이에 따라, 분별 증류 공정에서 최대한 많은 양의 카르보닐 화합물을 제거하는 것이 중요하다.
한편, 상기의 고순도 페놀에서는, 다양한 불순물들 중에서도 하이드록시아세톤(HA)을 제거하는 것이 중요하다. 하이드록시아세톤은 2-메틸벤조퓨란 또는 메시틸 옥사이드와 같은 물질과 함께 페놀의 품질을 결정하는 주요 요인으로 작용하며, 특히 하이드록시아세톤의 경우 정제공정의 제1 컬럼에서 대부분 제거되지 않으면 후단의 정제공정에 일반적으로 위치되는 이온교환수지에서의 정제 효율이 극도로 저하되고, 결국 최종 제품의 품질 저하를 불러오는 문제를 일으킬 수 있다.
이에, 상기와 같은 하이드록시아세톤을 분리하기 위하여, 다수의 컬럼을 설치하거나 반응기를 설치하는 등의 다양한 시도가 있으나, 이는 장치 설비비 등이 과도하게 소요되고 그에 따른 공장 설비의 초기 비용이나 운영 비용에 있어서 경쟁력이 낮다는 문제가 있다. 또한, 컬럼의 중단부에 배출 스트림을 추가로 설치하여 별도로 하이드록시아세톤, 쿠멘, α-메틸스티렌 등을 분리하는 방법을 적용하는 시도도 있었다. 하지만, 쿠멘은 페놀 및 아세톤을 생성하는 원료이고, α-메틸스티렌은 제품으로 판매할 수 있고, 회수 후 추가 반응을 수행하여 쿠멘으로 전환시킬 수 있으므로, 중단부를 통해 쿠멘, α-메틸스티렌 등을 분리한 후 후처리 공정을 수행하지 않는다면, 운전비용이 오히려 상승하여 공정 운영 등의 경쟁력 확보에 큰 도움이 되지 않는다.
또한, 중단부로 하이드록시아세톤을 제거하는 칼럼의 경우, 상단부와 하단부의 하이드록시아세톤의 농도를 모두 고려해야 하기 때문에 컬럼의 운전이 더 어려워질 수 있다. 만약 컬럼이 불안정한 상태로 있을 경우, 중단부로 하이드록시아세톤이 제거되지 않고 상단부와 하단부 모두에 존재할 수 있으므로, 이로 인해 후공정에 부정적인 영향을 줄 수 있다.
본 발명의 목적은 분별 증류 공정에서 증류 컬럼에 투입되는 페놀, 아세톤, 하이드록시아세톤 및 물을 포함하는 피드의 온도를 조절하여, 증류 공정이 수행된 페놀을 포함하는 분획 내 하이드록시아세톤의 함량을 감소시키는 페놀의 정제방법을 제공하는 것이다.
상기 과제를 해결하기 위하여, 본 발명은 페놀, 아세톤, 하이드록시아세톤 및 물을 포함하는 피드를 60 내지 95℃의 온도로 증류 컬럼에 공급하는 단계; 상기 피드를 상기 아세톤을 포함하고 상기 증류 컬럼의 상부로 분리되는 제1 분획 및 상기 페놀을 포함하고 상기 증류 컬럼의 하부로 분리되는 제2 분획으로 분리하는 단계; 및 상기 제1 분획 및 상기 제2 분획을 각각 회수하는 단계를 포함하는 것을 특징으로 하는 페놀의 정제방법을 제공한다.
본 발명의 페놀의 정제방법에 따르면, 증류 컬럼에 공급되는 피드의 온도를 조절함으로써, 하이드록시아세톤의 분리효율을 개선할 수 있고, 하이드록시아세톤이 하부로 유출되는 것을 최소로 하면서, 상부로 분리될 수 있다. 이에 따라, 페놀을 포함하는 분획 내 하이드록시아세톤의 함량이 현저하게 감소될 수 있다.
도 1은 본 발명에서 이용되는 정제장치의 일례를 도시한 것이다.
도 2는 실시예 1 내지 실시예 3, 비교예 2의 제2 분획 내 하이드록시아세톤의 함량과 증류 컬럼의 리보일러에서 소비되는 에너지(reboiler duty)의 상관 관계를 나타낸 것이다.
이하, 본 발명에 대한 이해를 돕기 위하여 본 발명을 더욱 상세하게 설명한다.
본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
본 발명의 일실시예에 따른 페놀의 정제방법에 이용되는 정제장치는 본 발명의 기술분야에 이용되는 정제장치라면 특별히 한정하지 않으나, 이해를 돕기 위하여 일례를 도 1을 이용하여 설명한다.
도 1을 참조하면, 본 발명의 페놀의 정제방법에 이용되는 정제장치는 증류 컬럼(1), 상기 증류 컬럼(1)의 측면에 위치하는 중단 투입부(10), 상기 증류 컬럼(1)의 상단과 연결되는 제1 라인(11) 및 상기 증류 컬럼(1)의 하단과 연결되는 제2 라인(12)을 포함한다.
상기 증류 컬럼(1)은 페놀, 아세톤, 하이드록시아세톤 및 물을 포함하는 피드로부터 페놀을 분리시키기 위하여 분별 증류가 수행되는 구역을 의미한다. 본 발명에서 이용되는 증류 컬럼은 증류탑일 수도 있다.
상기 중단 투입부(10)는 상기 피드를 공급하는 입구를 의미한다.
상기 제1 라인(11)은 상기 증류 컬럼(1)에서 분별 증류를 수행하여 분리된 아세톤, 구체적으로는 아세톤 증기를 포함하는 제1 분획이 회수되는 라인을 의미하는 것으로서, 아세톤의 추가 정제를 위한 아세톤 정제 컬럼(미도시)과 연결될 수 있다. 상기 증류 컬럼(1)과 상기 제1 라인(11) 사이에는 개폐기가 위치할 수 있고, 상기 제1 라인(11)에는 상기 제1 분획을 위한 환류 냉각기(21)가 설치될 수 있다.
상기 제2 라인(12)은 상기 증류 컬럼(1)에서 분별 증류를 수행하여 분리된 페놀을 포함하는 제2 분획이 회수되는 라인을 의미하는 것으로서, 페놀의 추가 정제를 위하여 페놀 정제 컬럼(미도시)과 연결될 수 있다. 상기 증류 컬럼(1)과 상기 제2 라인(12) 사이에는 개폐기가 위치할 수 있고, 상기 제2 라인(12)에는 적절한 열에너지를 상기 증류 컬럼(1)에 도입할 수 있는 열교환기(22)가 설치될 수 있다.
상기 증류 컬럼(1)은 환류 펌프(reflux pump, 미도시)를 더 포함할 수 있다. 상기 환류 펌프를 이용하여 상기 증류 컬럼(1)의 상단에서 회수된 제1 분획의 일부 또는 전부를 제3 라인(미도시)을 통해 다시 상기 증류 컬럼(1)의 상단으로 투입하여 상기 증류 컬럼(1)의 상단에 이미 존재하는 제1 분획과 함께 다시 정제할 수 있다.
또한, 상기 정제장치는 배출되는 라인이 상부 및 하부에만 존재하며, 중단부로 배출되는 스트림은 존재하지 않을 수 있다. 페놀의 정제공정에서는 페놀과 아세톤의 분획으로 분리하는 컬럼에서 중단부로 배출되는 라인을 설치하여, 미반응의 페놀 전구체(예컨대, 쿠멘 등), 하이드록시아세톤 및 α-메틸스티렌 등을 분리하는 스트림을 필수적으로 삽입하거나, 또는 하부에서 분리된 페놀 분획에서 하이드록시아세톤을 제거하기 위한 컬럼이 1단 이상 필수적으로 존재하는 것이 일반적이다.
그러나, 본 발명의 일 실시예에 따른 페놀의 정제방법에 이용되는 정제장치를 이용하고 적절하게 공급 피드의 온도가 조절되는 경우에는 상기와 같은 별도의 분리 스트림이 필요 없을 수 있고, 이에 따라 정제공정의 효율성이 극대화되면서도 하이드록시아세톤 등의 불순물을 제거하는 효율도 동등 이상의 수준을 유지할 수 있다. 또한, 하이드록시아세톤 및 2-메틸벤조퓨란을 제거하기 위하여 별도로 존재하던 컬럼이 필요하지 않을 수 있다. 이에 따라 공정이 단순화될 뿐만 아니라 효율이 높아질 수 있다.
본 발명의 일실시예를 따른 페놀의 정제방법은 페놀, 아세톤, 하이드록시아세톤 및 물을 포함하는 피드를 60 내지 95℃의 온도로 상기 증류 컬럼(1)에 공급하는 단계를 포함할 수 있다.
상기 피드는 알킬아릴 화합물을 산화시켜 알킬아릴 하이드로퍼옥사이드 및 미반응된 알킬아릴 화합물을 포함하는 반응 혼합물을 형성하고, 상기 반응 혼합물을 분열 반응시켜 생성된 것일 수 있다. 구체적으로는 쿠멘을 산화시켜 쿠멘 하이드로퍼옥사이드를 형성하고, 상기 쿠멘 하이드로퍼옥사이드 및 미반응 쿠멘을 포함하는 반응 혼합물을 산 촉매 존재 하에 개열시켜 생성된 페놀, 아세톤, 하이드록아세톤 및 물을 포함하는 개열 생성물 혼합물일 수 있다.
한편, 상기 쿠멘의 산화는 일반적으로 공기나 산소 농축 공기 등의 함-산소 가스에 의한 자동 산화로 수행될 수 있다. 또한, 상기 산화 반응은 알칼리와 같은 첨가제를 이용하거나 첨가제 없이 수행될 수 있다. 상기 첨가제로는 수산화나트륨(NaOH), 수산화칼륨(KOH)와 같은 알칼리 금속 화합물, 알칼리 토금속 화합물, 탄산나트륨(Na2CO3), 탄산수소나트륨(NaHCO3)과 같은 알칼리 금속 탄산염, 암모니아, 탄산암모늄염 등을 사용할 수 있다. 또한, 상기 산화 반응은 약 50 내지 약 200℃의 온도, 대기압 내지 약 5㎫의 압력조건에서 수행될 수 있다.
상기 쿠멘의 산화는 통상의 페놀 공정에 사용되는 다수의 산화반응기, 구체적으로는 3개의 산화반응기를 통해 진행될 수 있다. 상기 쿠멘의 농도가 80% 이상, 구체적으로는 99중량% 이상인 쿠멘 함유 스트림을 산소 함유 스트림의 존재 하에 산화시켜 쿠멘 하이드로퍼옥사이드 함유 스트림을 사용할 수 있다. 상기 쿠멘의 산화를 촉진하기 위해 통상의 개시제가 사용될 수 있다. 상기 개시제로는 쿠멘 하이드로퍼옥사이드, t-부틸 하이드로퍼옥사이드 등의 유기 하이드로퍼옥사이드, 퍼옥시계 자유 라디칼 개시제 또는 아조계 자유 라디칼 개시제 등이 사용될 수 있다.
상기 쿠멘 하이드로퍼옥사이드 및 미반응 쿠멘을 포함하는 반응 혼합물은 반응 혼합물 총 중량에 대하여, 60중량% 내지 95중량%의 쿠멘 하이드로퍼옥사이드를 포함할 수 있다. 상기 개열 반응시 사용되는 산촉매로는 무기산, 유기산, 산성 이온 교환 수지 및 고체산 등이 사용될 수 있다. 상기 무기산은 황산(H2SO4), 이산화황(SO2) 등을 포함하며, 상기 유기산은 톨루엔 술폰산 또는 벤젠 술폰산 등을 포함한다. 상기 산성 이온 교환 수지는 술폰화스티렌-디비닐벤젠 수지 등을 포함하며, 상기 고체산은 제올라이트 또는 알루미나 등을 포함한다.
본 발명에 따른 페놀의 정제방법은 전술한 바와 같은 페놀의 제조방법에 포함될 수 있고, 전술한 페놀의 제조방법 이외에 다른 방법이 적용될 수도 있으며, 페놀의 제조방법을 제한하는 것은 아니다.
상기 피드는 총 중량에 대하여, 상기 페놀을 40 중량% 내지 70 중량%, 아세톤을 15 중량% 내지 45 중량%, 상기 하이드록시아세톤을 0.02 중량% 내지 5 중량%, 및 상기 물을 9 중량% 내지 11 중량%로 포함할 수 있다.
상기 물이 상기 피드 내에 상술한 범위로 포함되어야만, 후술할 제2 분획 내 하이드록시아세톤의 함량을 감소시킬 수 있다. 또한, 후술할 제1 분획으로 분리되는 페놀의 양이 최소화될 뿐만 아니라, 후술할 제2 분획으로 분리되는 α-메틸스티렌의 양도 최소화될 수 있다. 결과적으로 페놀과 α-메틸스티렌의 손실을 최소화할 수 있다. 상술한 범위를 만족하지 않으면, 분별 증류과정에서 상기 하이드록시아세톤의 환류가 제대로 수행되지 않아, 상기 하이드록시아세톤이 후술할 제1 분획으로 제대로 이동하지 않고 후술할 제2 분획 내에 많이 잔류될 수 있다.
상기 피드는 부산물을 더 포함할 수 있는데, 상기 부산물은 상술한 산화 및 개열 공정에서 생성된 것일 수 있고, 예를 들어 쿠멘, α-메틸스티렌, 메탄올, 아세트알데하이드, 포름알데하이드, 쿠밀페놀, 디쿠밀 퍼옥사이드, α-메틸스티렌 다이머, 메시틸 옥사이드, 2-메틸벤조퓨란 및 페놀 타르로 이루어진 군에서 선택되는 1종 또는 2종 이상일 수 있다.
상기 피드는 상기 증류 컬럼(1)에 60 내지 95℃, 구체적으로는 75 내지 95℃의 온도, 보다 구체적으로는 80 내지 95℃의 온도로 상기 중단 투입부(10)를 통하여 공급할 수 있다. 이때 압력은 2기압 이하일 수 있다.
정제 공정시, 증류 컬럼으로 공급되는 피드의 온도가 높아지면 공급되는 피드 중 하부로 분리되어야 하는 물질이 상부로 이동하게 되어 상부에서 환류되는 물질의 효율이 저하되고 결국에는 생성물의 순도 저하로 이어질 수 있으나, 그에 비하여 증가되는 에너지 효율이 상당하여 적정 온도 범위까지는 가열하여 공급하는 것이 일반적이다.
이러한 이유에서, 페놀의 정제공정에서도 제1의 증류 컬럼에서 피드의 온도를 100℃ 이상의 적절한 온도 범위로 가열하여 정제를 수행하였으나, 이 경우 하이드록시아세톤의 분리 효율이 낮아 페놀 분획에서의 하이드록시아세톤 함량이 상당하여 추가의 컬럼이 필요하거나, 상하부 외에 중단부로 분리하는 컬럼이 필요하다.
그러나, 본 발명의 일 실시예에 따른 페놀의 정제방법에 따르면, 상술한 바와 같이 피드의 온도 범위를 60 내지 95℃로 조절함으로써 하이드록시아세톤의 분리 효율을 개선할 수 있고, 하이드록시아세톤이 하부로 유출되지 않고, 상부로 분리되는 임계적인 피드의 공급 온도를 제공한다.
상기 피드의 공급 온도가 60℃ 미만이면, 상기 증류 컬럼(1)에 공급되는 에너지, 즉 상기 증류 컬럼(1)의 리보일러에서 소비되는 에너지에 비하여 제거되는 하이드록시아세톤의 양이 매우 적으므로, 공정효율이 오히려 낮아질 수 있다. 또한, 하이드록시아세톤의 감소 효과가 상기 피드의 공급 온도가 60 내지 95℃일 때와 동등 수준이나, 증류 컬럼의 리보일러에서 소비되는 에너지가 증가하게 되므로 에너지 효율 측면에서 바람직하지 않다.
또한, 피드의 공급 온도가 95℃를 초과하면, 상기 증류 컬럼(1)의 리보일러에서 소비되는 에너지는 감소되나 하부로 유입되는 하이드록시아세톤의 양이 급증하여 기존의 페놀 정제방법에서와 유사하게 별도의 분리 컬럼이 필요하다는 등의 문제가 있을 우려가 있다.
상기 피드는 상술한 온도범위를 만족하기 위하여, 상기 페놀의 제조 공정 중 개열 공정을 수행한 후 50℃ 이하로 냉각시키고, 별도의 가열 공정이 수행될 수 있다. 또는, 상기 개열 공정을 수행한 후 상술한 온도범위까지만 냉각시킨 후, 상기 증류 컬럼에 공급할 수도 있다.
한편, 상기 피드가 개열 생성물 혼합물일 경우, 산 촉매를 이용한 개열 반응을 거치므로, 상기 제2 단계를 효율적으로 수행하기에는 pH가 매우 낮을 수 있다. 이에 따라 상기 제2 단계를 수행하기 적절하도록, 즉 상기 증류 컬럼(1) 등의 정제 장치에 무리, 즉 정제 장치가 부식되지 않도록, 상기 피드는 염기를 이용하여 pH가 3 내지 10, 구체적으로는 4 내지 7이 되도록 조절하여, 상기 증류 컬럼에 공급할 수 있다. 상기 염기는 수산화나트륨 용액, NaOH, 암모니아, 수산화암모늄, 아민 또는 디아민일 수 있다.
본 발명의 일실시예를 따른 페놀의 정제방법은 상기 피드를 상기 아세톤을 포함하고 상기 증류 컬럼(1)의 상부로 분리되는 제1 분획 및 상기 페놀을 포함하고 상기 증류 컬럼의 하부로 분리되는 제2 분획으로 분리하는 단계를 포함할 수 있다.
상기 피드를 상기 제1 및 제2 분획으로 분리하기 위하여 1회 또는 2회 이상의 증류가 수행될 수 있다.
상기 제1 분획은 상기 아세톤을 주성분으로 포함하는 분획을 의미하고, 상기 제2 분획은 상기 페놀을 주성분으로 포함하는 분획을 의미한다. 상기 제2 분획은 상술한 바와 같이, 상기 제2 단계, 상기 제시한 피드의 온도 범위를 만족하는 증류 공정을 거치면서 상기 제2 분획 내 하이드록시아세톤의 함량이 상기 제2 분획 총 중량에 대하여, 0.02 중량%이하, 즉 200ppm 이하만 포함된 페놀 분획을 얻을 수 있다.
한편, 상기 제2 단계를 수행 시 상기 증류 컬럼(1)의 상단의 온도는 상기 증류 컬럼(1)의 하단의 온도보다 낮을 수 있다. 구체적으로는 상기 증류 컬럼(1)의 상단의 온도는 65 내지 115℃, 구체적으로는 78 내지 115℃일 수 있다. 상기 증류 컬럼(1)의 하부의 온도는 170 내지 225℃, 구체적으로는 193 내지 216℃일 수 있다. 상기 증류 컬럼(1)의 내부 압력, 즉 운전 압력은 0 내지 1kgf/㎠ ·g일 수 있다. 상술한 온도 및 압력 조건을 만족하면, 상기 증류 컬럼 내에서 상기 피드의 환류가 효율적으로 일어나, 상기 제1 및 제2 분획으로의 분리가 용이하게 수행될 수 있다.
그러나, 상기 운전 압력이나, 피드의 조성과 같은 부분은 하이드록시아세톤의 분리 효율과는 관련성이 낮을 수 있으며, 전체적인 정제 공정에서의 분리 효율에 최적화된 조건일 수 있으며, 상기한 범위를 만족하는 경우라면 전술한 하이드록시아세톤의 분리 효율 극대화라는 효과를 달성할 수 있다.
여기서, 상기 증류 컬럼(1)의 상단은 상기 증류 컬럼(1) 내 제1 분획인 위치한 구역을 상부로 포괄적으로 표현한 것이 아니라, 상기 증류 컬럼(1)의 상부 끝단을 의미한다. 상기 증류 컬럼(1)의 하단도 상기 증류 컬럼(2) 내 제2 분획인 위치한 구역을 하부로 포괄적으로 표현한 것이 아니라, 상기 증류 컬럼의 하부 끝단을 의미한다.
본 발명의 일실시예를 따른 페놀의 정제방법은 상기 제1 분획 및 상기 제2 분획을 각각 회수하는 단계를 포함할 수 있다.
상기 제1 분획은 상기 증류 컬럼(1)의 상단에 연결된 제1 라인(11)을 통해 회수될 수 있다. 상기 제2 분획은 상기 증류 컬럼(1)의 하단에 연결된 제2 라인(12)을 통해 회수될 수 있다. 상기 제1 분획은 상기 제1 라인(11)을 통해 아세톤 정제 컬럼(미도시)으로 이동될 수 있고, 상기 제2 분획은 상기 제2 라인(12)을 통해 페놀 정제 컬럼(미도시)으로 이동될 수 있다.
본 발명의 일실시예에 따른 페놀의 정제방법은, 상기 제2 분획 내 존재할 수 있는 하이드록시아세톤 및 부산물, 구체적으로는 2-메틸벤조퓨란 및 메시틸 옥사이드 등을 제거하기 위하여 후처리 공정을 수행할 수 있다. 상기 후처리 공정은 이온교환수지가 충진된 반응기에 상기 제2 분획을 반응시킴으로써, 상기 하이드록시아세톤, 2-메틸벤조퓨란 및 메시틸 옥사이드를 고비점 물질로 전환시킬 수 있다.
다만, 본 발명의 일 실시예에 따른 페놀의 정제방법은, 상기 후처리 공정이 수행될 때, 후처리 공정으로 유입되는 라인에서는 정제공정의 증류 컬럼에서의 적절한 온도 조절 등의 제어 조건을 적용함으로써, 대부분의 하이드록시아세톤이 제거된 상태이므로, 2-메틸벤조퓨란이나 메시틸 옥사이드와 같은 물질을 이온교환수지를 통하여 제거하는 경우의 효율을 크게 향상시킬 수 있다.
상기 후처리 공정은 상기 이온교환수지를 포함하는 복수의 반응기를 연속적으로 사용하고, 상기 반응기의 온도를 구체적으로는 65 내지 95℃, 보다 구체적으로는 70 내지 90℃로 설정함으로써, 상기 이온교환수지를 포함하는 두 개의 반응기들 사이에서 에너지를 소모하는 증류 단계 없이, 상기 제2 분획 내 하이드록시아세톤, 2-메틸벤조퓨란 및 메시틸 옥사이드를 효율적으로 제거할 수 있다. 그 이유는 상기 제2 분획이 상기 이온교환수지와 접촉시킬 때, 하이드록시아세톤과 2-메틸벤조퓨란은 반응하여 고비점 물질로 전환될 수 있기 때문이다. 또한, 메시틸 옥사이드는 페놀과 반응하여 고비점 물질 및 물로 전환된다. 또한, 하이드록시아세톤 및 페놀 사이의 반응에 의해 형성된 물의 존재 하에서 메시틸 옥사이드의 일부는 이온교환수지에서 아세톤으로 분해될 수 있다. 아세톤은 페놀과 더 반응하여 비스페놀 A가 될 수도 있다. 상기 제2 분획이 이온교환수지와 접촉된 후에, 상기 제2 분획 내의 원하지 않는 부산물인 하이드록시아세톤, 2-메틸벤조퓨란 및 메시틸 옥사이드를 최종 증류 단계에서 정제된 페놀로부터 쉽게 제거될 수 있는 고비점 물질들로 전환하는 것을 가능하게 할 수 있다.
한편, 상기 이온교환수지는 수소 형태의 양이온교환수지를 의미하고 방항족 술폰산기를 함유하며, 술폰화되고 교차결합된 폴리스틸렌 과립으로 구성될 수 있다.
본 발명의 일실시예를 따른 페놀의 정제방법은, 상기 후처리 공정이 수행된 제2 분획을 증류하여, 하이드록시아세톤, 2-메틸벤조퓨란 및 메시틸 옥사이드로부터 전환된 고비점 물질을 제거함으로써 고순도의 페놀을 수득할 수 있다.
이하, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본 발명의 실시예에 대하여 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다.
실시예 1 내지 실시예 10: 페놀의 정제방법
페놀, 아세톤 및 하이드록시아세톤을 포함하는 피드가 공급되는 중단 투입부를 갖는 증류 컬럼, 상기 증류 컬럼의 상단에 연결되는 제1 라인, 상기 증류 컬럼의 하단에 연결되는 제2 라인 및 상기 증류 컬럼 및 제1 라인과 연결되는 환류 펌프를 포함하는 정제 장치를 이용하여 피드를 하기와 같은 방법으로 정제하였다.
하기 표 1 및 표 2에 기재된 피드를 하기 표 1 및 표 2에 기재된 온도로 중단 투입부를 통하여 증류 컬럼에 공급하고 하기 표 1 및 표 2에 기재된 운전 압력 및 온도로 운전하여 증류하였다.
상기 증류 컬럼의 상부에는 상기 아세톤을 포함하는 제1 분획이, 상기 증류 컬럼의 하부에는 상기 페놀을 포함하는 제2 분획이 위치하도록 분리하였다. 그 후, 상기 페놀을 포함하는 제2 분획을 회수하였다.
구분 실시예 1 실시예 2 실시예 3 실시예 4 실시예 5
공급 온도(℃) 60 70 80 95 95
피드의 조성(중량%) 페놀 47.0 47.0 47.0 47.0 45.0
아세톤 30.0 30.0 30.0 30.0 28.0
하이드록시아세톤 0.2 0.2 0.2 0.2 0.1
α-메틸스티렌 4.0 4.0 4.0 4.0 3.0
저비점 불순물 6.4 6.4 6.4 6.4 13.1
고비점 불순물 1.4 1.4 1.4 1.4 0.8
11.0 11.0 11.0 11.0 10.0
운전 압력(kgf/㎠ g) 0.35 0.35 0.35 0.35 0.35
컬럼의 상부 온도(℃) 88 88 88 88 92
컬럼의 하부 온도(℃) 202 202 202 202 202
구분 실시예 6 실시예 7 실시예 8 실시예 9 실시예 10 실시예 11
공급 온도(℃) 95 95 95 95 95 95
피드의 조성(중량%) 페놀 47.0 47.0 48.0 47.0 49.0 46.0
아세톤 30.0 30.0 30.0 30.0 31.0 29.0
하이드록시아세톤 0.2 0.2 0.2 0.2 0.2 0.2
α-메틸스티렌 3.0 4.0 4.0 4.0 4.0 4.0
저비점 불순물 8.1 6.4 6.1 6.4 6.1 6.1
고비점 불순물 1.7 1.4 2.7 1.4 1.7 2.7
10.0 11.0 9.0 11.0 8.0 12.0
운전 압력(kgf/㎠ g) 0.35 0 1 0.35 0.35 0.35
컬럼의 상부 온도(℃) 87 80 99 85 88 89
컬럼의 하부 온도(℃) 202 193 215 202 203 202
저비점 불순물: 메탄올, 아세트알데히드, 포름알데히드 및 쿠멘 중 1종 또는 2종 이상
고비점 불순물: 쿠밀페놀, 디쿠밀 퍼옥사이드, α-메틸스티렌 다이머, 페놀 타르 중 1종 또는 2종 이상
비교예 1 내지 비교예 4: 페놀의 정제방법
페놀, 아세톤 및 하이드록시아세톤을 포함하는 피드가 공급되는 중단 투입부를 갖는 증류 컬럼, 상기 증류 컬럼의 상단에 연결되는 제1 라인, 상기 증류 컬럼의 하단에 연결되는 제2 라인 및 상기 증류 컬럼 및 제1 라인과 연결되는 환류 펌프를 포함하는 정제 장치를 이용하여 피드를 하기와 같은 방법으로 정제하였다.
하기 표 3에 기재된 피드를 하기 표 3에 기재된 온도로 중단 투입부를 통하여 증류 컬럼에 공급하고 하기 표 3에 기재된 운전 압력 및 온도로 운전하여 분별 증류하였다.
상기 증류 컬럼의 상부에는 상기 아세톤을 포함하는 제1 분획이, 상기 증류 컬럼의 하부에는 상기 페놀을 포함하는 제2 분획이 위치하도록 분리하였다. 그 후, 상기 페놀을 포함하는 제2 분획을 회수하였다.
구분 비교예 1 비교예 2 비교예 3 비교예 4
공급 온도(℃) 55 100 100 100
피드의 조성(중량%) 페놀 47.0 47.0 45.0 47.0
아세톤 30.0 30.0 28.0 30.0
하이드록시아세톤 0.2 0.2 0.1 0.2
α-메틸스티렌 4.0 4.0 3.0 3.0
저비점 불순물 6.4 6.4 13.1 8.1
고비점 불순물 1.4 1.4 0.8 1.7
11.0 11.0 10.0 10
운전 압력(kgf/㎠ g) 0.35 0.35 0.35 0.35
컬럼의 상부 온도(℃) 88 88 92 87
컬럼의 하부 온도(℃) 202 202 202 203
저비점 불순물: 메탄올, 아세트알데히드, 포름알데히드 및 쿠멘 중 1종 이상
고비점 불순물: 쿠밀페놀, 디쿠밀 퍼옥사이드, α-메틸스티렌 다이머, 페놀 타르 중 1종 이상
시험예 1: 페놀을 포함하는 제2 분획의 성분 분석
실시예 1 내지 실시예 10, 비교예 1 내지 비교예 4의 제2 분획의 구성 성분을 가스크로마토그래피를 이용하여 분석하였고, 그 결과를 하기 표 4에 나타내었다.
구분 페놀(중량%) α-메틸스티렌(중량%) 기타(중량%) 하이드록시아세톤(wppm)
실시예 1 92.2 2.1 5.6999 1
실시예 2 92.2 2.1 5.6998 2
실시예 3 92.2 2.1 5.6997 3
실시예 4 92.2 2.1 5.6977 23
실시예 5 95.9 0.9 3.1866 134
실시예 6 93.3 0.8 5.8962 38
실시예 7 92.3 2.0 5.6969 31
실시예 8 92.1 2.2 5.6986 14
실시예 9 92.7 1.5 5.7829 171
실시예 10 94.0 0.1 5.8174 826
실시예 11 91.4 3.0 5.5971 29
비교예 1 92.2 2.1 5.6999 1
비교예 2 92.2 2.0 5.7456 544
비교예 3 95.5 1.2 3.2042 958
비교예 4 93.2 0.8 5.9046 954
상기 표 4를 참조하면, 실시예 1 내지 실시예 9의 제2 분획 내의 하이드록시아세톤의 농도가 1 내지 171ppm으로, 증류 컬럼에 공급된 피드 내에 존재하던 하이드록시아세톤과 비교하여, 제2 분획 내 하이드록시아세톤이 현저하게 줄어든 것을 알 수 있었다.
실시예 10의 경우, 95℃의 온도로 피드를 공급하였지만, 피드 내에 물이 8중량%로 포함되니, 페놀의 회수량은 증가하였지만, 하이드록시아세톤의 제거 효과가 나타나지 않았다.
실시예 11의 경우 95℃의 온도로 피드를 공급하였지만, 피드 내에 물이 12중량%로 포함되니, 하이드록시아세톤의 양이 현저하게 줄어들었으나, α-메틸스티렌의 분리 효과가 나타나지 않고, 페놀이 실시예 1 내지 8에 비하여 손실되었다.
실시예 10 및 실시의 11의 결과로부터 물이 페놀 및 α-메틸스티렌의 공비이고, 하이드록시아세톤이 페놀 및 α-메틸스티렌의 공비이므로, 적절하게 물의 농도를 유지해야 하이드록시아세톤의 제거 효율이 상승되고, 페놀과 α-메틸스티렌의 손실을 최소로 할 수 있다는 것을 알 수 있었다.
한편, 비교예 1의 경우, 실시예 1과 동등한 수준으로 하이드록시아세톤이 감소된 것을 알 수 있었다. 이 결과로부터 피드의 공급 온도가 60℃ 보다 더 낮아지더라도 하이드록시아세톤의 감소효과는 더 이상 나타나지 않는 것을 알 수 있었다. 하지만, 피드의 온도가 낮으므로 실시예 1과 비교하여 증류 컬럼을 가열하는 리보일러에서 소비되는 에너지가 증가하기 때문에 에너지 효율은 저하된다는 것을 유추할 수 있다.
비교예 2 내지 비교예 4의 경우, 제2 분획 내 하이드록시아세톤의 함량은 증류 컬럼에 공급된 피드 내에 존재하던 하이드록시아세톤의 함량 보다는 감소하였지만, 실시예 1 내지 실시예 8 보다는 수십배 이상 많은 것을 알 수 있다. 일반적으로 공급되는 피드의 온도를 상승시키면, 증류 컬럼을 가열하는 리보일러에서 소비되는 에너지가 감소하기 때문에, 에너지 절약을 위해 피드의 온도를 상승시킨다. 하지만, 비교예 2 내지 비교예 4와 같이 공급되는 피드의 온도가 95℃를 초과하면 리보일러에서 소비되는 에너지가 감소되어 칼럼 하부로 이동한 하이드록시아세톤이 충분히 기화되지 못해 증류 컬럼 상부로 이동하지 못하여, 하이드록시아세톤의 제거가 제대로 수행되지 않음을 알 수 있었다.
시험예 2: 증류 컬럼의 에너지 효율 분석
실시예 1 내지 실시예 3, 비교예 2의 제2 분획 내 하이드록시아세톤의 함량과 증류 컬럼의 리보일러에서 소비되는 에너지(reboiler duty)의 상관 관계를 도 2에 나타내었다.
한편, 도 2의 x축의 60은 실시예 1, 70은 실시예 2, 80은 실시예 3, 및 100은 비교예 2를 의미한다. 굵은 선은 제2 분획 내 하이드록시아세톤의 함량을, 실선은 증류 컬럼의 리보일러에서 소비되는 에너지를 나타낸다.
도 2를 참조하면, 피드 온도가 높아질수록 리보일러에서 소비되는 에너지가 감소하는 것을 확인할 수 있었다. 또한, 피드의 온도가 95℃를 초과하면, 리보일러에서 소비되는 에너지는 감소하지만, 제2 분획 내 하이드록시아세톤의 함량이 급격하게 증가하는 것을 확인할 수 있었다. 이 결과로부터 하이드록시아세톤의 제거 효율 및 에너지 효율을 모두 고려한다면, 피드의 적정 온도 범위는 80 내지 95℃일 수 있다는 점을 확인할 수 있었다.
<부호의 설명>
1: 증류 컬럼 10: 중단 투입부
11: 제1 라인 12: 제2 라인
21: 환류 냉각기 22: 열교환기

Claims (8)

  1. 페놀, 아세톤, 하이드록시아세톤 및 물을 포함하는 피드를 60 내지 95℃의 온도로 증류 컬럼에 공급하는 단계;
    상기 피드를 상기 아세톤을 포함하고 상기 증류 컬럼의 상부로 분리되는 제1 분획 및 상기 페놀을 포함하고 상기 증류 컬럼의 하부로 분리되는 제2 분획으로 분리하는 단계; 및
    상기 제1 분획 및 상기 제2 분획을 각각 회수하는 단계를 포함하는 것을 특징으로 하는 페놀의 정제방법.
  2. 청구항 1에 있어서,
    상기 증류 컬럼은 피드가 유입되는 중단 투입부; 제1 분획이 배출되는 제1 라인; 및 제2 분획이 배출되는 제2 라인;을 포함하고,
    상기 증류 컬럼은, 중단부로 배출되는 라인은 제공되지 않은 것을 특징으로 하는 페놀의 정제방법.
  3. 청구항 1에 있어서,
    상기 피드는 알킬아릴 화합물을 산화시켜 알킬아릴 하이드로퍼옥사이드 및 미반응된 알킬아릴 화합물을 포함하는 반응 혼합물을 형성하고, 상기 반응 혼합물을 분열 반응시켜 생성된 것임을 특징으로 하는 페놀의 정제방법.
  4. 청구항 3에 있어서,
    상기 피드는 쿠멘, α-메틸스티렌, 메탄올, 아세트알데하이드, 포름알데하이드, 쿠밀페놀, 디쿠밀 퍼옥사이드, α-메틸스티렌 다이머, 메시틸 옥사이드, 2-메틸벤조퓨란 및 페놀 타르로 이루어진 군에서 선택되는 1종 이상을 포함하는 것을 특징으로 하는 페놀의 정제방법.
  5. 청구항 1에 있어서,
    상기 피드는 75 내지 95℃의 온도로 상기 컬럼에 공급되는 것을 특징으로 하는 페놀의 정제방법.
  6. 청구항 1에 있어서,
    상기 피드의 pH는 3 내지 10인 것을 특징으로 하는 페놀의 정제방법.
  7. 청구항 1에 있어서,
    상기 피드는 총 중량에 대하여,
    상기 페놀 40중량% 내지 70중량%;
    상기 아세톤 15중량% 내지 45중량%;
    상기 하이드록시아세톤 0.02중량% 내지 5중량%; 및
    상기 물 9중량% 내지 11중량%로 포함하는 것을 특징으로 하는 페놀의 정제방법.
  8. 청구항 1에 있어서,
    상기 제2 분획 내 하이드록시아세톤은 중량 기준으로, 200ppm 이하인 것을 특징으로 하는 페놀의 정제방법.
PCT/KR2017/012740 2016-11-14 2017-11-10 페놀의 정제 방법 WO2018088846A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP17868986.5A EP3388412B1 (en) 2016-11-14 2017-11-10 Method for purifying phenol
US16/071,553 US10532968B2 (en) 2016-11-14 2017-11-10 Method for purifying phenol
CN201780011012.6A CN108602743B (zh) 2016-11-14 2017-11-10 纯化苯酚的方法
JP2018550363A JP6694519B2 (ja) 2016-11-14 2017-11-10 フェノールの精製方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2016-0151394 2016-11-14
KR20160151394 2016-11-14
KR1020170148530A KR102040059B1 (ko) 2016-11-14 2017-11-09 페놀의 정제 방법
KR10-2017-0148530 2017-11-09

Publications (1)

Publication Number Publication Date
WO2018088846A1 true WO2018088846A1 (ko) 2018-05-17

Family

ID=62109837

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/012740 WO2018088846A1 (ko) 2016-11-14 2017-11-10 페놀의 정제 방법

Country Status (1)

Country Link
WO (1) WO2018088846A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115322085A (zh) * 2022-07-08 2022-11-11 实友化工(扬州)有限公司 一种用于苯酚丙酮的提纯工艺

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060026476A (ko) * 2003-07-04 2006-03-23 이네오스 페놀 게엠베하 운트 콤파니 카게 페놀성 화합물을 제조하는 방법, 분열 생성물 혼합물로부터페놀을 분리하는 방법, 및 장치
KR20060130209A (ko) * 2004-03-24 2006-12-18 수노코, 인코포레이티드(알앤드엠) 페놀에서 아세톨을 제거하는 방법
KR20080109765A (ko) * 2006-04-18 2008-12-17 이네오스 페놀 게엠베하 운트 콤파니 카게 페놀 처리방법
KR20110134075A (ko) * 2010-06-08 2011-12-14 주식회사 엘지화학 페놀 불순물 제거 방법
JP2016060708A (ja) * 2014-09-17 2016-04-25 三井化学株式会社 粗フェノール中のヒドロキシアセトンを低減させる方法、ヒドロキシアセトンが少ない粗フェノールの製造方法および高純度フェノールの製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060026476A (ko) * 2003-07-04 2006-03-23 이네오스 페놀 게엠베하 운트 콤파니 카게 페놀성 화합물을 제조하는 방법, 분열 생성물 혼합물로부터페놀을 분리하는 방법, 및 장치
KR20060130209A (ko) * 2004-03-24 2006-12-18 수노코, 인코포레이티드(알앤드엠) 페놀에서 아세톨을 제거하는 방법
KR20080109765A (ko) * 2006-04-18 2008-12-17 이네오스 페놀 게엠베하 운트 콤파니 카게 페놀 처리방법
KR20110134075A (ko) * 2010-06-08 2011-12-14 주식회사 엘지화학 페놀 불순물 제거 방법
JP2016060708A (ja) * 2014-09-17 2016-04-25 三井化学株式会社 粗フェノール中のヒドロキシアセトンを低減させる方法、ヒドロキシアセトンが少ない粗フェノールの製造方法および高純度フェノールの製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115322085A (zh) * 2022-07-08 2022-11-11 实友化工(扬州)有限公司 一种用于苯酚丙酮的提纯工艺
CN115322085B (zh) * 2022-07-08 2023-11-03 实友化工(扬州)有限公司 一种用于苯酚丙酮的提纯工艺

Similar Documents

Publication Publication Date Title
CA1153017A (en) Process for producing phenolic compounds
KR100854260B1 (ko) 알킬아릴 하이드로퍼옥사이드의 개열시 생성된 개열생성물 혼합물의 증류에 의한 후처리 방법 및 후처리용 장치
WO2009080342A1 (en) Purification of cumene
KR101378274B1 (ko) 페놀 불순물 제거 방법
WO2018088846A1 (ko) 페놀의 정제 방법
WO2020130313A1 (ko) 페놀계 부산물 분해 방법
WO2018097690A1 (ko) 메탄올 및 아세톤의 제거 유닛 및 이를 포함하는 페놀 및 비스페놀 a의 제조 시스템
WO2020130314A1 (ko) 페놀계 부산물의 분해 방법 및 이의 분해 장치
WO2021054607A1 (ko) 페놀계 부산물 분해 방법
KR102040059B1 (ko) 페놀의 정제 방법
WO2022014876A1 (ko) 페놀계 부산물 분해방법
WO2022010102A1 (ko) 페놀계 부산물 분해방법
WO2017111357A1 (ko) 비스페놀-a 잔사물 분해 반응 생성물로부터 페놀 및 아세톤을 회수하기 위한 방법
WO2021261681A1 (ko) 페놀계 부산물 분해방법
WO2018139787A1 (ko) 페놀의 정제 방법
KR20060130073A (ko) 페놀의 정제 방법
WO2024053935A1 (ko) 네오펜틸 글리콜의 제조 방법
KR101146249B1 (ko) 페놀에서 아세톨을 제거하는 방법
KR830001166B1 (ko) 페놀 화합물의 제조방법
KR20230118809A (ko) 통합 공정에서 페놀 및 비스페놀-a 생성을 위한 단일 페놀 정제 트레인을 위한 공정 구성
KR20210155571A (ko) 페놀계 부산물 분해방법

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2017868986

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017868986

Country of ref document: EP

Effective date: 20180713

ENP Entry into the national phase

Ref document number: 2018550363

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE