WO2018139787A1 - 페놀의 정제 방법 - Google Patents

페놀의 정제 방법 Download PDF

Info

Publication number
WO2018139787A1
WO2018139787A1 PCT/KR2018/000545 KR2018000545W WO2018139787A1 WO 2018139787 A1 WO2018139787 A1 WO 2018139787A1 KR 2018000545 W KR2018000545 W KR 2018000545W WO 2018139787 A1 WO2018139787 A1 WO 2018139787A1
Authority
WO
WIPO (PCT)
Prior art keywords
methylbenzofuran
phenol
sulfonic acid
chloride
boiling point
Prior art date
Application number
PCT/KR2018/000545
Other languages
English (en)
French (fr)
Inventor
남현
이영호
윤기용
임준혁
이경무
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to EP18722376.3A priority Critical patent/EP3381885B1/en
Priority to US15/778,584 priority patent/US11084771B2/en
Priority to JP2018562264A priority patent/JP6616530B2/ja
Priority to CN201880000621.6A priority patent/CN108633275B/zh
Publication of WO2018139787A1 publication Critical patent/WO2018139787A1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C37/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring
    • C07C37/68Purification; separation; Use of additives, e.g. for stabilisation
    • C07C37/70Purification; separation; Use of additives, e.g. for stabilisation by physical treatment
    • C07C37/74Purification; separation; Use of additives, e.g. for stabilisation by physical treatment by distillation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C37/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring
    • C07C37/68Purification; separation; Use of additives, e.g. for stabilisation
    • C07C37/685Processes comprising at least two steps in series
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C37/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring
    • C07C37/68Purification; separation; Use of additives, e.g. for stabilisation
    • C07C37/70Purification; separation; Use of additives, e.g. for stabilisation by physical treatment
    • C07C37/74Purification; separation; Use of additives, e.g. for stabilisation by physical treatment by distillation
    • C07C37/78Purification; separation; Use of additives, e.g. for stabilisation by physical treatment by distillation by azeotropic distillation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C37/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring
    • C07C37/68Purification; separation; Use of additives, e.g. for stabilisation
    • C07C37/86Purification; separation; Use of additives, e.g. for stabilisation by treatment giving rise to a chemical modification
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C39/00Compounds having at least one hydroxy or O-metal group bound to a carbon atom of a six-membered aromatic ring
    • C07C39/02Compounds having at least one hydroxy or O-metal group bound to a carbon atom of a six-membered aromatic ring monocyclic with no unsaturation outside the aromatic ring
    • C07C39/04Phenol
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/77Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom ortho- or peri-condensed with carbocyclic rings or ring systems
    • C07D307/78Benzo [b] furans; Hydrogenated benzo [b] furans
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/77Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom ortho- or peri-condensed with carbocyclic rings or ring systems
    • C07D307/78Benzo [b] furans; Hydrogenated benzo [b] furans
    • C07D307/79Benzo [b] furans; Hydrogenated benzo [b] furans with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to carbon atoms of the hetero ring

Definitions

  • the present invention claims the benefit of priority based on Korean Patent Application No. 10-2017-0011269, filed Jan. 24, 2017, and includes all contents disclosed in the literature of the Korean Patent Application as part of the present specification.
  • the present invention relates to a process for purifying phenol, and more particularly, to a process for purifying phenol using organic sulfonic acid and acyl chloride to remove hydroxy acetone, 2-methylbenzofuran and 3-methylbenzofuran in a phenol stream. .
  • Phenol is a step of oxidizing an alkylaryl compound to an alkylaryl hydroperoxide, a step of concentrating an alkylaryl hydroperoxide, a step of cleaving the concentrated alkylaryl hydroperoxide to an phenol and a ketone with an acid catalyst, and neutralizing an acid cleavage product. And a step of fractional distillation of the neutralized acid cleavage product.
  • the acid decomposition product in this method has phenol and acetone as main components, in addition, ⁇ -methylstyrene, acetophenone, 4-cumylphenol, 2-phenyl-2-propanol, 2-methylbenzofuran and 3-methyl It contains various by-products including benzofuran, unreacted cumene, and various carbonyl compounds containing trace amounts of hydroxy acetone (HA) and ⁇ -phenylpropionaldehyde ( ⁇ -PPA).
  • HA hydroxy acetone
  • ⁇ -PPA ⁇ -phenylpropionaldehyde
  • the present invention provides a phenol stream comprising hydroxy acetone, 2-methylbenzofuran, 3-methylbenzofuran and phenol in contact with acyl chloride in the presence of organic sulfonic acid to give hydroxy acetone, 2-methyl. Converting at least one selected from the group consisting of benzofuran and 3-methylbenzofuran to a high boiling point compound having a higher boiling point than the phenol; And recovering the high boiling point compound from the phenol stream.
  • At least one selected from the group consisting of hydroxy acetone, 2-methylbenzofuran and 3-methylbenzofuran in the phenol stream is converted into a high boiling point compound having a higher boiling point than phenol, Fractional distillation can easily yield high purity phenol.
  • hydroxy acetone, 2-methylbenzofuran and 3-methylbenzofuran in the phenol stream can all be converted into a high boiling point compound having higher boiling point than phenol in one reactor. It is very effective in terms of manufacturing efficiency and cost.
  • the high boiling point compound may be a concept including both a high boiling point compound derived from hydroxy acetone, a high boiling point compound derived from 2-methylbenzofuran, and a high boiling point compound derived from 3-methylbenzofuran.
  • the high boiling point compound derived from hydroxy acetone, the high boiling point compound derived from 2-methylbenzofuran, and the high boiling point compound derived from 3-methylbenzofuran may be different compounds, or compounds having different boiling points.
  • the high boiling point compound in the present invention may be a compound having a boiling point higher than that of phenol and having a boiling point that can be separated by phenol and fractional distillation.
  • a method for purifying phenol is to contact hydroxy acetone by contacting acryl chloride with a phenol stream comprising hydroxy acetone, 2-methylbenzofuran, 3-methylbenzofuran and phenol in the presence of organic sulfonic acid. Converting at least one selected from the group consisting of 2-methylbenzofuran and 3-methylbenzofuran to a high boiling point compound having a higher boiling point than the phenol.
  • the phenol stream is obtained by oxidizing an alkylaryl compound to form a reaction mixture comprising an alkylaryl hydroperoxide and an unreacted alkylaryl compound, and cleaving the reaction mixture to fractionally distill the resulting cleavage product.
  • a reaction mixture comprising an alkylaryl hydroperoxide and an unreacted alkylaryl compound
  • the phenol stream oxidizes cumene to form cumene hydroperoxide, and the phenol, acetone, hydroxy acetone, produced by cleaving the reaction mixture comprising cumene hydroperoxide and unreacted cumene in the presence of an acid catalyst, It may be a phenol stream obtained by fractional distillation of a cleavage product mixture comprising 2-methylbenzofuran, 3-methylbenzofuran and other impurities.
  • the oxidation of cumene may be generally performed by automatic oxidation with oxygen-containing gas such as air or oxygen enriched air.
  • the oxidation reaction can be carried out with or without an additive such as alkali.
  • the additives include alkali metal compounds such as sodium hydroxide (NaOH), potassium hydroxide (KOH), alkaline earth metal compounds, alkali metal carbonates such as sodium carbonate (Na 2 CO 3 ), sodium hydrogen carbonate (NaHCO 3 ), ammonia and ammonium carbonate salts. Etc. can be used.
  • the oxidation reaction may be carried out at a temperature of about 50 to 200 °C, atmospheric pressure to a pressure of about 5 MPa.
  • Oxidation of cumene may be carried out through a plurality of oxidation reactors, specifically three oxidation reactors used in a conventional phenol process.
  • a cumene hydroperoxide containing stream can be used by oxidizing a cumene containing stream having a concentration of cumene of at least 80%, specifically 99% by weight, in the presence of an oxygen containing stream.
  • Conventional initiators can be used to promote oxidation of the cumene.
  • cumene hydroperoxide organic hydroperoxide such as t-butyl hydroperoxide, a peroxy free radical initiator or an azo free radical initiator may be used.
  • the reaction mixture comprising cumene hydroperoxide and unreacted cumene may comprise from 60% to 95% by weight of cumene hydroperoxide relative to the total weight of the reaction mixture.
  • an inorganic acid includes sulfuric acid (H 2 SO 4 ), sulfur dioxide (SO 2 ), and the like
  • the organic acid includes toluene sulfonic acid or benzene sulfonic acid.
  • the acidic ion exchange resin includes sulfonated styrene-divinylbenzene resin and the like
  • the solid acid includes zeolite or alumina and the like.
  • the cleavage product mixture may comprise phenol, acetone, hydroxyacetone, 2-methylbenzofuran, 3-methylbenzofuran and byproducts.
  • the byproduct may be produced in the above-described oxidation and cleavage process.
  • the cleavage product mixture is for example selected from the group consisting of cumene, ⁇ -methylstyrene, methanol, acetaldehyde, formaldehyde, cumylphenol, dicumyl peroxide, ⁇ -methylstyrene dimer, mesityl oxide and phenol tar. It may be more than one species.
  • the pH may be very low to efficiently perform the fractional distillation.
  • the pH of the cleavage product mixture is then adjusted to 3 to 10, specifically 4 to 7, using a base so as to be suitable for carrying out the fractional distillation, i.e., not to cause erosion of the purification apparatus such as a distillation column. It may be adjusted to be supplied to the distillation column.
  • the base may be sodium hydroxide solution, NaOH, ammonia, ammonium hydroxide, amine or diamine.
  • the cleavage product mixture may be subjected to one or more fractional distillations to separate the acetone fraction and the phenol fraction.
  • the acetone fraction may refer to a fraction containing the acetone as a main component.
  • the phenol fraction may refer to a fraction containing the phenol as a main component.
  • the temperature of the top of the distillation column when performing the fractional distillation may be lower than the temperature of the bottom of the distillation column.
  • the temperature of the top of the distillation column may be 65 °C to 115 °C, specifically 78 °C to 115 °C.
  • the temperature of the bottom of the distillation column may be 170 °C to 225 °C, specifically 193 °C to 216 °C.
  • the internal pressure, ie the operating pressure, of the distillation column may be 0 kgf / cm 2 g to 1 kgf / cm 2 g. If the above temperature and pressure conditions are satisfied, reflux of the cleavage product mixture occurs efficiently in the distillation column, so that the separation into the acetone fraction and the phenol fraction can be easily performed.
  • the upper end of the distillation column is not a comprehensive representation of the region where the acetone fraction is located in the distillation column, but refers to the upper end of the distillation column.
  • the lower end of the distillation column also means a lower end of the distillation column rather than a comprehensive representation of the region where the phenol fraction is located in the distillation column.
  • the acetone fraction and the phenol fraction may be recovered through the top and bottom of the distillation column.
  • the phenol fraction recovered here may be a phenol stream used in the process for purifying phenol of the present invention.
  • the organic sulfonic acid may serve as a catalyst capable of converting the hydroxy acetone in the phenol stream to a higher boiling compound than phenol.
  • the organic sulfonic acid may serve as a catalyst in the reaction of 2-methylbenzofuran, 3-methylbenzofuran and acyl chloride, specifically, an acylation reaction.
  • the organic sulfonic acid may be mixed with the phenol stream to facilitate the catalyst role.
  • stirring may be carried out after addition into the phenol stream.
  • the ratio of the number of moles of the organic sulfonic acid to the total number of moles of hydroxy acetone, 2-methylbenzofuran and 3-methylbenzofuran is 1: 0.05 to 1: 0.2, specifically 1: 0.07 to 1: 0.1, more specifically 1: 0.08 to 1: 0.09.
  • hydroxy acetone can be easily converted to high boiling compounds having a higher boiling point than phenol and catalyzes the reaction of 2-methylbenzofuran and 3-methylbenzofuran with the acyl chloride. Can be done.
  • Hydroxy acetone can react with phenol to produce 2-methylbenzofuran and 3-methylbenzofuran. This reduces the recovery of phenol and may increase the 2-methylbenzofuran and 3-methylbenzofuran to be removed. Hydroxy acetone reacts with phenol at temperature and acidic conditions where 2-methylbenzofuran and 3-methylbenzofuran are used to convert from phenol to high boiling point compounds that can be removed by fractional distillation, resulting in more 2-methylbenzofuran and 3- Although methylbenzofuran may be produced, the resulting 2-methylbenzofuran and 3-methylbenzofuran may decrease in content over time due to reaction with acyl chloride.
  • the organic sulfonic acid may also be used as a catalyst for the reaction of acyl chloride with 2-methylbenzofuran and 3-methylbenzofuran, and high ratios of hydroxy acetone, 2-methylbenzofuran and 3-methylbenzofuran in one reactor
  • Low molecular organic sulfonic acids may be more suitable, which can serve as catalysts while homogeneously mixing in the phenol stream when conversion to point compounds is carried out.
  • the organic sulfonic acid may include methane sulfonic acid, 3-hydroxypropane-1-sulfonic acid, benzene sulfonic acid, and p-toluene sulfonic acid.
  • sulfonic acid) and camphor sulfonic acid may be one or more selected from the group consisting of, more specifically, methane sulfonic acid.
  • part of the hydroxy acetone can be converted into 2-methylbenzofuran and / or 3-methylbenzofuran in the presence of organic sulfonic acid, thereby increasing the amount of methylbenzofuran. can do.
  • methylbenzofuran derived from hydroxy acetone and methylbenzofuran present in the phenol stream can be removed by reacting with phenol to be converted into a high boiling point compound, which also reduces the purity of phenol.
  • acyl chloride reacts with methylbenzofuran because it is faster to react with methylbenzofuran than phenol. It is possible to maintain the purity of the phenol by reducing the amount of phenol, and further perform the reaction of converting methyl benzofuran to a high boiling point compound through acyl chloride may be improved the removal rate of methyl benzofuran.
  • the removal rate of methylbenzofuran can be significantly increased.
  • the amounts of hydroxy acetone, 2-methylbenzofuran and 3-methylbenzofuran in the phenol stream can be significantly reduced.
  • the acyl chloride was contacted with 2-methylbenzofuran and 3-methylbenzofuran in the presence of the organic sulfonic acid to boiling point 2-methylbenzofuran and 3-methylbenzofuran over phenol, as shown in Schemes 1 to 4 below. It can be converted into this high boiling point compound.
  • the acyl chloride is acetyl chloride, propionyl chloride, benzoyl chloride, benzoyl chloride, malonyl chloride, succinyl chloride, glutaryl chloride , Adipoyl chloride, pimeloyl chloride, suberoyl chloride, azelaic acid dichloride, sebacoyl chloride, dodecanedioyl di It may be at least one selected from the group consisting of chloride (dodecanedioyl dichloride).
  • the ratio of the sum of the moles of acyl chloride and the moles of hydroxy acetone, 2-methylbenzofuran and 3-methylbenzofuran may be 0.5: 1 to 14: 1, specifically 0.7: 1 to 7: 1, more specifically 1: 1 to 6: 1. If the aforementioned range is satisfied, the acylation reaction can be easily initiated, the reaction rate can be maintained appropriately, and the acyl chloride which does not participate in the acylation reaction can be minimized.
  • the contact may be carried out at 50 °C to 90 °C, specifically 60 °C to 80 °C, more specifically 70 °C to 80 °C. If the above conditions are satisfied, the acylation reaction can be easily performed, and the energy efficiency can be improved.
  • the method for purifying phenol according to one embodiment of the present invention includes recovering the high boiling point compound from the phenol stream.
  • Recovering the high boiling point compound may use fractional distillation. Since the high boiling point compound is recovered from the phenol stream, high purity phenol can be obtained.
  • Example 1 to Example 3 Comparative example 1 and Comparative example 2: Purification Method of Phenol
  • 3-MBF average removal rate (maximum concentration of 3-MBF-final concentration of 3-MBF) / (time required to complete purification-time required at maximum concentration)
  • ⁇ HA average removal rate (concentration before purification of HA-concentration after completion of purification of HA) / (time required)
  • Example 3 In the case of Example 3 in which the acyl chloride was added in excess, the removal rate of hydroxy acetone, 2-methylbenzofuran and 3-methylbenzofuran was lowered as compared with Examples 1 and 2, but compared to Comparative Example 1, hydroxy acetone, It was confirmed that the removal rate of the total amount of 2-methylbenzofuran and 3-methylbenzofuran was excellent.

Abstract

본 발명은 유기 술폰산 존재 하에, 하이드록시 아세톤, 2-메틸벤조퓨란, 3-메틸벤조퓨란 및 페놀을 포함하는 페놀 스트림을 아실 클로라이드와 접촉시켜 하이드록시 아세톤, 2-메틸벤조퓨란 및 3-메틸벤조퓨란로 이루어진 군에서 선택되는 1종 이상을 상기 페놀보다 비점이 높은 고비점 화합물로 전환하는 단계; 및 상기 페놀 스트림으로부터 상기 고비점 화합물을 회수하는 단계를 포함하는 페놀의 정제방법에 관한 것이다.

Description

페놀의 정제 방법
[관련출원과의 상호인용]
본 발명은 2017.01.24에 출원된 한국 특허 출원 제10-2017-0011269호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용을 본 명세서의 일부로서 포함한다.
[기술분야]
본 발명은 페놀의 정제방법에 관한 것으로서, 구체적으로는 유기 술폰산 및 아실 클로라이드를 이용하여 페놀 스트림 내 하이드록시 아세톤, 2-메틸벤조퓨란 및 3-메틸벤조퓨란을 제거하는 페놀의 정제방법에 관한 것이다.
페놀은 알킬아릴 화합물을 알킬아릴 하이드로퍼옥사이드로 산화하는 공정, 알킬아릴 하이드로퍼옥사이드를 농축하는 공정, 농축된 알킬아릴 하이드로퍼옥사이드를 산촉매로 페놀과 케톤으로 개열 반응시키는 공정, 산개열 생성물을 중화하는 공정, 및 중화된 산개열 생성물을 분별 증류하는 공정으로 제조된다.
구체적으로는 큐멘 산화에 의해 얻어진 큐멘 하이드로퍼옥사이드를 산분해함으로써 페놀을 제조하는 방법이 알려져 있다. 이 방법에 있어서의 산분해 생성물은, 페놀 및 아세톤을 주성분으로 하고, 이 밖에 α-메틸스티렌, 아세토페논, 4-쿠밀페놀, 2-페닐-2-프로판올, 2-메틸벤조퓨란, 3-메틸벤조퓨란, 미반응 큐멘을 포함하는 각종 부산물과, 미량의 하이드록시 아세톤(HA) 및 α-페닐프로피온알데히드(α-PPA)를 포함하는 각종 카르보닐 화합물을 포함하고 있다.
증류탑을 이용한 증류 공정을 통하여, 산분해 생성물 내 아세톤, 미반응 큐멘, α-메틸스티렌 및 하이드록시 아세톤 등은 탑상으로 분리된다. 페놀과 일부 α-메틸스티렌, 일부 하이드록시 아세톤, 2-메틸벤조퓨란, 3-메틸벤조퓨란 및 기타 불순물 등은 탑저로 분리된다.
탑저로 분리된 하이드록시 아세톤의 경우, 최종 생성물인 페놀을 오염시키나, 증류 공정을 통하여 페놀로부터 완전히 제거하기는 매우 어렵다. 또한 하이드록시 아세톤은 페놀과 반응하여 2-메틸벤조퓨란을 형성할 수 있다. 또한, 탑저로 페놀과 함께 분리된 2-메틸벤조퓨란, 3-메틸벤조퓨란은 페놀과 공비 혼합물을 형성하기 때문에 증류 공정에 의해 페놀로부터 분리하기는 사실상 불가능하다.
이에 따라, 페놀 스트림 내의 하이드록시 아세톤, 2-메틸벤조퓨란 및 3-메틸벤조퓨란을 효과적으로 제거하기 위하여, 설폰화된 스티렌-디비닐벤젠 이온 결합 수지를 페놀 스트림과 접촉시켜 정제하는 방법이 제안되었다. 하지만, 상기 설폰화된 스티렌-디비닐벤젠 이온 결합수지는 하이드록시 아세톤의 제거에는 효율적이지만, 2-메틸벤조퓨란과 3-메틸벤조퓨란의 제거를 위하여 후처리를 해야 하는 단점이 있다. 이에 따라 하나의 반응기에서 페놀 스트림 내 하이드록시 아세톤 뿐만 아니라 2-메틸벤조퓨란과 3-메틸벤조퓨란을 효율적으로 제거하는 방법에 대한 연구가 요구되고 있다.
본 발명의 목적은 분별 증류 공정에서 증류 컬럼의 상부로 분리된 페놀 스트림 내 포함된 하이드록시 아세톤, 2-메틸벤조퓨란 및 3-메틸벤조퓨란을 효율적이고도 신속하게 제거하여 고순도의 페놀을 제공할 수 있는 페놀의 정제방법을 제공하는 것이다.
상기 과제를 해결하기 위하여, 본 발명은 유기 술폰산 존재 하에, 하이드록시 아세톤, 2-메틸벤조퓨란, 3-메틸벤조퓨란 및 페놀을 포함하는 페놀 스트림을 아실 클로라이드와 접촉시켜 하이드록시 아세톤, 2-메틸벤조퓨란 및 3-메틸벤조퓨란으로 이루어진 군에서 선택되는 1종 이상을 상기 페놀보다 비점이 높은 고비점 화합물로 전환하는 단계; 및 상기 페놀 스트림으로부터 상기 고비점 화합물을 회수하는 단계를 포함하는 페놀의 정제방법을 제공한다.
본 발명의 페놀의 정제방법에 따르면, 페놀 스트림 내에 하이드록시 아세톤, 2-메틸벤조퓨란 및 3-메틸벤조퓨란으로 이루어진 군에서 선택되는 1종 이상이 페놀보다 비점이 높은 고비점 화합물로 전환되므로, 분별 증류를 통해 고순도의 페놀을 용이하게 수득할 수 있다.
또한, 본 발명의 페놀의 정제방법에 따르면, 아실 클로라이드를 사용함으로 인해 2-메틸벤조퓨란 및 3-메틸벤조퓨란의 고비점 화합물로의 전환이 빠른 속도로 진행될 수 있어 제거 효율이 우수할 수 있다.
또한, 본 발명의 페놀의 정제방법에 따르면, 하나의 반응기 안에서 페놀 스트림 내 하이드록시 아세톤, 2-메틸벤조퓨란 및 3-메틸벤조퓨란을 모두 페놀보다 높은 비점을 갖는 고비점 화합물로 전환시킬 수 있으므로, 제조 효율 및 비용 측면에서 매우 효과적이다.
이하, 본 발명에 대한 이해를 돕기 위하여 본 발명을 더욱 상세하게 설명한다.
본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
본 발명에서 고비점 화합물은 하이드록시 아세톤 유래의 고비점 화합물, 2-메틸벤조퓨란 유래의 고비점 화합물 및 3-메틸벤조퓨란 유래의 고비점 화합물을 모두 포함하는 개념일 수 있다. 상기 하이드록시 아세톤 유래의 고비점 화합물, 상기 2-메틸벤조퓨란 유래의 고비점 화합물 및 상기 3-메틸벤조퓨란 유래의 고비점 화합물은 서로 다른 화합물일 수 있고, 서로 다른 비점을 가진 화합물일 수 있다. 하지만 본 발명에서 고비점 화합물은 페놀 보다 비점이 높을 뿐만 아니라 페놀과 분별 증류로 분리 가능한 비점 차이를 가진 화합물일 수 있다.
본 발명의 일실시예를 따른 페놀의 정제방법은 유기 술폰산 존재 하에, 하이드록시 아세톤, 2-메틸벤조퓨란, 3-메틸벤조퓨란 및 페놀을 포함하는 페놀 스트림을 아실 클로라이드와 접촉시켜 하이드록시 아세톤, 2-메틸벤조퓨란 및 3-메틸벤조퓨란로 이루어진 군에서 선택되는 1종 이상을 상기 페놀보다 비점이 높은 고비점 화합물로 전환하는 단계를 포함한다.
상기 페놀 스트림은 알킬아릴 화합물을 산화시켜 알킬아릴 하이드로퍼옥사이드 및 미반응된 알킬아릴 화합물을 포함하는 반응 혼합물을 형성하고, 상기 반응 혼합물을 개열 반응시켜 생성된 개열 생성물을 분별 증류하여 수득된 페놀 스트림일 수 있다.
구체적으로는 상기 페놀 스트림은 큐멘을 산화시켜 큐멘 하이드로퍼옥사이드를 형성하고, 상기 큐멘 하이드로퍼옥사이드 및 미반응 큐멘을 포함하는 반응 혼합물을 산 촉매 존재 하에 개열시켜 생성된 페놀, 아세톤, 하이드록시 아세톤, 2-메틸벤조퓨란, 3-메틸벤조퓨란 및 기타 불순물을 포함하는 개열 생성물 혼합물을 분별 증류하여 수득된 페놀 스트림일 수 있다.
한편, 상기 큐멘의 산화는 일반적으로 공기나 산소 농축 공기 등의 함-산소 가스에 의한 자동 산화로 수행될 수 있다. 또한, 상기 산화 반응은 알칼리와 같은 첨가제를 이용하거나 첨가제 없이 수행될 수 있다. 상기 첨가제로는 수산화나트륨(NaOH), 수산화칼륨(KOH)과 같은 알칼리 금속 화합물, 알칼리 토금속 화합물, 탄산나트륨(Na2CO3), 탄산수소나트륨(NaHCO3)과 같은 알칼리 금속 탄산염, 암모니아, 탄산암모늄염 등을 사용할 수 있다. 또한, 상기 산화 반응은 약 50 내지 200℃의 온도, 대기압 내지 약 5㎫의 압력조건에서 수행될 수 있다.
상기 큐멘의 산화는 통상의 페놀 공정에 사용되는 다수의 산화반응기, 구체적으로는 3개의 산화반응기를 통해 진행될 수 있다. 상기 큐멘의 농도가 80% 이상, 구체적으로는 99중량% 이상인 큐멘 함유 스트림을 산소 함유 스트림의 존재 하에 산화시켜 큐멘 하이드로퍼옥사이드 함유 스트림을 사용할 수 있다. 상기 큐멘의 산화를 촉진하기 위해 통상의 개시제가 사용될 수 있다. 상기 개시제로는 큐멘 하이드로퍼옥사이드, t-부틸 하이드로퍼옥사이드 등의 유기 하이드로퍼옥사이드, 퍼옥시계 자유 라디칼 개시제 또는 아조계 자유 라디칼 개시제 등이 사용될 수 있다.
상기 큐멘 하이드로퍼옥사이드 및 미반응 큐멘을 포함하는 반응 혼합물은 반응 혼합물 총 중량에 대하여, 60중량% 내지 95중량%의 쿠멘 하이드로퍼옥사이드를 포함할 수 있다. 상기 개열 반응시 사용되는 산촉매로는 무기산, 유기산, 산성 이온 교환 수지 및 고체산 등이 사용될 수 있다. 상기 무기산은 황산(H2SO4), 이산화황(SO2) 등을 포함하며, 상기 유기산은 톨루엔 술폰산 또는 벤젠 술폰산 등을 포함한다. 상기 산성 이온 교환 수지는 술폰화스티렌-디비닐벤젠 수지 등을 포함하며, 상기 고체산은 제올라이트 또는 알루미나 등을 포함한다.
상기 개열 생성물 혼합물은 페놀, 아세톤, 하이드록시아세톤, 2-메틸벤조퓨란, 3-메틸벤조퓨란 및 부산물을 포함할 수 있다. 상기 부산물은 상술한 산화 및 개열 공정에서 생성된 것일 수 있다. 상기 개열 생성물 혼합물은 예를 들어 큐멘, α-메틸스티렌, 메탄올, 아세트알데하이드, 포름알데하이드, 쿠밀페놀, 디쿠밀 퍼옥사이드, α-메틸스티렌 다이머, 메시틸 옥사이드 및 페놀 타르로 이루어진 군에서 선택되는 1종 이상일 수 있다.
한편, 상기 개열 생성물 혼합물은 산 촉매를 이용한 개열 반응을 거치므로, 상기 분별 증류를 효율적으로 수행하기에는 pH가 매우 낮을 수 있다. 이에 따라 상기 분별 증류를 수행하기 적절하도록, 즉 증류 컬럼 등의 정제 장치에 무리, 즉 정제 장치가 부식되지 않도록, 염기를 이용하여 상기 개열 생성물 혼합물의 pH가 3 내지 10, 구체적으로는 4 내지 7이 되도록 조절하여, 증류 컬럼에 공급할 수 있다. 상기 염기는 수산화나트륨 용액, NaOH, 암모니아, 수산화암모늄, 아민 또는 디아민일 수 있다.
상기 개열 생성물 혼합물은 아세톤 분획 및 페놀 분획으로 분리하기 위하여 1회 이상의 분별 증류가 수행될 수 있다.
상기 아세톤 분획은 상기 아세톤을 주성분으로 포함하는 분획을 의미할 수 있다. 상기 페놀 분획은 상기 페놀을 주성분으로 포함하는 분획을 의미할 수 있다.
한편, 상기 분별 증류를 수행시 증류 컬럼의 상단의 온도는 증류 컬럼의 하단의 온도보다 낮을 수 있다. 구체적으로는 증류 컬럼의 상단의 온도는 65℃ 내지 115℃, 구체적으로는 78℃ 내지 115℃일 수 있다. 증류 컬럼의 하부의 온도는 170℃ 내지 225℃, 구체적으로는 193℃ 내지 216℃일 수 있다. 증류 컬럼의 내부 압력, 즉 운전 압력은 0kgf/㎠g 내지 1kgf/㎠g일 수 있다. 상술한 온도 및 압력 조건을 만족하면, 증류 컬럼 내에서 상기 개열 생성물 혼합물의 환류가 효율적으로 일어나, 상기 아세톤 분획 및 페놀 분획으로의 분리가 용이하게 수행될 수 있다.
여기서, 증류 컬럼의 상단은 증류 컬럼 내 아세톤 분획이 위치한 구역을 상부로 포괄적으로 표현한 것이 아니라, 상기 증류 컬럼의 상부 끝단을 의미한다. 상기 증류 컬럼의 하단도 상기 증류 컬럼 내 페놀 분획이 위치한 구역을 하부로 포괄적으로 표현한 것이 아니라, 증류 컬럼의 하부 끝단을 의미한다.
상기 아세톤 분획과 페놀 분획은 증류 컬럼의 상단과 하단을 통해 회수될 수 있다. 여기서 회수된 페놀 분획이 본 발명의 페놀의 정제방법에 사용되는 페놀 스트림일 수 있다.
상기 유기 술폰산은 상기 페놀 스트림 내 상기 하이드록시 아세톤을 페놀 보다 높은 고비점 화합물로 전환시킬 수 있는 촉매 역할을 할 수 있다. 또한 상기 유기 술폰산은 2-메틸벤조퓨란과 3-메틸벤조퓨란 및 아실 클로라이드의 반응, 구체적으로는 아실레이션 반응에서 촉매 역할을 할 수 있다.
상기 유기 술폰산은 상기 촉매 역할을 용이하게 수행하기 위하여 상기 페놀 스트림과 혼합될 수 있다. 균일한 혼합을 위하여, 상기 페놀 스트림 내에 투입 후 교반을 수행할 수 있다.
상기 유기 술폰산의 몰수와 하이드록시 아세톤, 2-메틸벤조퓨란 및 3-메틸벤조퓨란의 총 몰수의 비는 1:0.05 내지 1:0.2, 구체적으로는 1:0.07 내지 1:0.1, 보다 구체적으로는 1:0.08 내지 1:0.09일 수 있다. 상술한 몰비를 만족하면, 하이드록시 아세톤은 페놀보다 높은 비점을 갖는 고비점 화합물로 용이하게 전환될 수 있고, 2-메틸벤조퓨란 및 3-메틸벤조퓨란과 상기 아실 클로라이드와의 반응에서 촉매역할을 수행할 수 있다.
한편, 하이드록시 아세톤은 페놀과 반응하여 2-메틸벤조퓨란 및 3-메틸벤조퓨란을 생성할 수 있다. 이로 인해 페놀의 회수량이 감소되고, 제거되어야 하는 2-메틸벤조퓨란 및 3-메틸벤조퓨란은 증가할 수 있다. 하이드록시 아세톤은 2-메틸벤조퓨란 및 3-메틸벤조퓨란이 페놀로부터 분별 증류로 제거가능한 고비점 화합물로 전환하는데 사용되는 온도 및 산성 조건에서 페놀과 반응하여 더 많은 2-메틸벤조퓨란과 3-메틸벤조퓨란을 생성할 수 있지만, 생성된 2-메틸벤조퓨란과 3-메틸벤조퓨란은 아실 클로라이드와의 반응으로 인해 시간이 경과됨에 따라 함량이 감소될 수 있다.
상기 유기 술폰산으로는 아실 클로라이드와 2-메틸벤조퓨란 및 3-메틸벤조퓨란의 반응에 촉매로도 사용될 수 있고, 하나의 반응기에서 하이드록시 아세톤, 2-메틸벤조퓨란 및 3-메틸벤조퓨란의 고비점 화합물로의 전환이 수행될 때 페놀 스트림 내에서 균일하게 혼합되면서 촉매 역할을 할 수 있는 저분자 유기 술폰산이 보다 적합할 수 있다.
이에 따라 상기 유기 술폰산은 메탄 술폰산(methane sulfonic acid), 3-하이드록시프로판-1-술폰산(3-hydroxypropane-1-sulfonic acid), 벤젠 술폰산(benzene sulfonic acid), p-톨루엔 술폰산(p-tolunene sulfonic acid) 및 캠포 술폰산(camphor sulfonic acid)으로 이루어진 군에서 선택되는 1종 이상일 수 있고, 보다 구체적으로는 메탄 술폰산일 수 있다.
한편, 페놀의 정제방법을 수행하는 중에는 유기 술폰산의 존재 하에서 하이드록시 아세톤의 일부가 페놀과 반응하여 2-메틸벤조퓨란 및/또는 3-메틸벤조퓨란으로 전환될 수 있어 메틸벤조퓨란의 양이 증가할 수 있다. 하지만, 하이드록시 아세톤으로부터 유래된 메틸벤조퓨란과, 페놀 스트림 내에서 존재하던 메틸벤조퓨란은 페놀과 반응하여 고비점 화합물로 전환되어 제거될 수 있는데, 페놀과 반응하게 되면 페놀의 순도를 낮추는 문제도 있고, 반응하는 속도도 빠르지 않아 메틸벤조퓨란의 제거 효율도 좋지 못하다는 문제가 있을 수 있다.
이에, 아실 클로라이드를 첨가하여, 페놀뿐만 아니라 아실 클로라이드도 메틸벤조퓨란과의 반응에 추가적으로 참여시킬 수 있고, 아실 클로라이드는 페놀에 비하여 메틸벤조퓨란과 반응하는 속도가 더 빠르기 때문에 메틸벤조퓨란과 반응하는 페놀의 양을 저감하여 페놀의 순도를 유지할 수 있으며, 아실 클로라이드를 통하여 메틸벤조퓨란을 고비점 화합물로 전환하는 반응을 추가적으로 수행하게 되어 메틸벤조퓨란의 제거 속도가 향상될 수 있다.
따라서, 페놀의 정제시에 아실 클로라이드를 사용하지 않을 때와 비교한다면, 메틸벤조퓨란의 제거 속도가 현저하게 증가될 수 있다. 이에 따라, 정제가 완료된 후에는 페놀 스트림 내 하이드록시 아세톤, 2-메틸벤조퓨란 및 3-메틸벤조퓨란의 양이 현저하게 감소될 수 있다.
상기 아실 클로라이드는 하기 반응식 1 내지 반응식 4에 나타낸 바와 같이, 상기 유기 술폰산 존재 하에서, 2-메틸벤조퓨란 및 3-메틸벤조퓨란과 접촉하여 2-메틸벤조퓨란 및 3-메틸벤조퓨란을 페놀보다 비점이 높은 고비점 화합물로 전환시킬 수 있다.
<반응식 1>
Figure PCTKR2018000545-appb-I000001
<반응식 2>
Figure PCTKR2018000545-appb-I000002
<반응식 3>
Figure PCTKR2018000545-appb-I000003
<반응식 4>
Figure PCTKR2018000545-appb-I000004
상기 아실 클로라이드는 아세틸 클로라이드(acetyl chloride), 프로피오닐 클로라이드(propionyl chloride), 벤조일 클로라이드(benzoyl chloride), 말로닐 클로라이드(Malonyl chloride), 숙시닐 클로라이드(succinyl chloride), 글루타릴 클로라이드(glutaryl chloride), 아디포일 클로라이드(adipoyl chloride), 피메로일 클로라이드(pimeloyl chloride), 수베로일 클로라이드(suberoyl chloride), 아젤라인산 디클로라이드(Azelaic acid dichloride), 세바코일 클로라이드(Sebacoyl chloride), 도데카네디오일 디클로라이드(dodecanedioyl dichloride)로 이루어진 군에서 선택되는 1종 이상일 수 있다. 상기 2-메틸벤조퓨란 및 3-메틸벤조퓨란을 반응시킬 때에는
Figure PCTKR2018000545-appb-I000005
를 2종 이상 포함하는 아실 클로라이드를 이용하면, 상기 2-메틸벤조퓨란 및 3-메틸벤조퓨란을 페놀의 비점보다 훨씬 높은 고비점 화합물로 전환할 수 있다.
또한, 상기 아실 클로라이드의 몰수와 상기 하이드록시 아세톤, 2-메틸벤조퓨란 및 3-메틸벤조퓨란의 몰수의 합의 비는 0.5:1 내지 14:1일 수 있고, 구체적으로는 0.7:1 내지 7:1, 보다 구체적으로는 1:1 내지 6:1일 수 있다. 상술한 범위를 만족하면, 아실레이션 반응이 용이하게 개시되고, 반응속도가 적절하게 유지되며, 아실레이션 반응에 참여하지 못한 아실 클로라이드를 최소화할 수 있다.
상기 접촉은 50℃ 내지 90℃, 구체적으로는 60℃ 내지 80℃, 보다 구체적으로는 70℃ 내지 80℃에서 수행될 수 있다. 상술한 조건을 만족하면, 아실레이션 반응이 용이하게 수행되고, 에너지 효율도 개선될 수 있다.
본 발명의 일실시예를 따른 페놀의 정제방법은, 상기 페놀 스트림으로부터 상기 고비점 화합물을 회수하는 단계를 포함한다.
상기 고비점 화합물을 회수하는 것은 분별 증류를 이용할 수 있다. 상기 고비점 화합물이 상기 페놀 스트림으로부터 회수되므로, 고순도의 페놀이 수득될 수 있다.
이하, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본 발명의 실시예에 대하여 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다.
실시예 1 내지 실시예 3, 비교예 1 및 비교예 2: 페놀의 정제방법
반응기에 하기 표 1에 기재된 양으로 하이드록시 아세톤, 2-메틸벤조퓨란 및 3-메틸벤조퓨란 등의 불순물이 포함된 페놀 스트림 140g을 투입하고 50℃로 가열하였다. 여기에 표 1에 기재된 양으로 메탄 술폰산을 투입하고 15분 동안 교반하였다. 이후 하기 표 1에 기재된 양으로 아실 클로라이드를 투입하고 외부 온도를 70℃로 한 후 6시간 동안 반응시켜 페놀을 정제시켰다.
구분 페놀 스트림 메탄 술폰산(g) 아실 클로라이드
하이드록시 아세톤(ppm) 2-메틸 벤조퓨란(ppm) 3-메틸벤조퓨란(ppm) 불순물총량(ppm) 종류 함량(g)
실시예 1 1,175.8 26.9 5.7 1,208.4 2.44 아디포일 클로라이드 0.45
실시예 2 1,085.4 24.8 5.4 1,115.6 2.41 아디포일 클로라이드 2.25
실시예 3 586.4 18.3 1.9 606.6 1.17 아디포일 클로라이드 3.36
비교예 1 984.5 24.5 4.5 1,013.5 2.13 - -
비교예 2 586.4 18.3 1.9 606.6 1.17 아디포일 클로라이드 0.06
실험예 1: 페놀 스트림 내 성분 분석
반응 시간에 따른 실시예 및 비교예의 페놀 스트림 내 하이드록시 아세톤, 2-메틸벤조퓨란 및 3-메틸벤조퓨란의 양을 가스크로마토그래피를 이용하여 분석하였다. 그 결과를 하기 표 2 내지 표 6에 나타내었다.
시간 실시예 1
하이드록시 아세톤 2-메틸벤조퓨란 3-메틸벤조퓨란 불순물
함량(ppm) 제거율(%) 함량(ppm) 제거율(%) 함량(ppm) 제거율(%) 총량(ppm) 제거율(%)
0 1,175.8 - 26.9 - 5.7 - 1,208.4 -
1시간 253.9 87.41 12.1 55.02 242.4 - 508.4 57.93
2시간 61.0 94.81 7.3 72.86 276.5 - 344.8 71.47
3시간 24.4 97.92 7.3 72.86 266.1 3.76 297.8 75.36
4시간 5.8 99.51 7.4 72.49 253.0 8.50 266.2 77.97
5시간 4.3 99.63 6.5 75.83 221.6 19.86 232.4 80.77
6시간 3.2 99.72 6.3 76.57 202.4 26.80 211.9 82.46
평균 제거 속도 195.4 ppm/시간 3.4ppm/시간 18.5ppm/시간 166.1 ppm/시간
시간 실시예 2
하이드록시 아세톤 2-메틸벤조퓨란 3-메틸벤조퓨란 불순물
함량(ppm) 제거율(%) 함량(ppm) 제거율(%) 함량(ppm) 제거율(%) 총량(ppm) 제거율(%)
0 1,085.4 - 24.8 - 5.4 - 1,115.6 -
1시간 70.0 93.55 6.2 75.00 245.7 - 321.9 71.15
2시간 7.0 99.35 5.3 78.62 245.6 0.04 257.9 76.88
3시간 2.8 99.74 4.4 82.25 216.9 11.72 224.1 79.91
4시간 1.7 99.84 4.6 81.45 187.0 23.89 193.3 82.67
5시간 1.4 99.87 5.3 78.62 173.8 29.26 180.5 83.82
6시간 1.1 99.89 4.9 80.24 163.2 33.58 114.9 89.70
평균 제거 속도 180.7 ppm/시간 3.3ppm/시간 16.5ppm/시간 166.8 ppm/시간
시간 실시예 3
하이드록시 아세톤 2-메틸벤조퓨란 3-메틸벤조퓨란 불순물
함량(ppm) 제거율(%) 함량(ppm) 제거율(%) 함량(ppm) 제거율(%) 총량(ppm) 제거율(%)
0 586.4 - 18.3 - 1.9 - 606.6 -
1시간 32.8 94.41 13.7 25.14 107.3 - 153.8 74.65
2시간 33.0 94.37 10.7 41.53 106.5 0.75 150.2 75.24
3시간 22.0 96.25 7.9 56.83 74.6 30.48 104.5 82.77
4시간 25.4 95.67 6.8 62.84 76.8 28.42 109.0 82.03
5시간 27.7 95.28 5.6 69.40 79.1 26.28 112.4 81.47
6시간 25.9 95.58 3.9 78.69 69.5 35.23 99.3 83.63
평균 제거 속도 93.4 ppm/시간 2.4 ppm/시간 7.6 ppm/시간 84.6 ppm/시간
시간 비교예 1
하이드록시 아세톤 2-메틸벤조퓨란 3-메틸벤조퓨란 불순물
함량(ppm) 제거율(%) 함량(ppm) 제거율(%) 함량(ppm) 제거율(%) 총량(ppm) 제거율(%)
0 984.5 - 24.5 - 4.5 - 1,013.5
1시간 197.0 79.99 16.5 32.65 185.5 - 399.0 60.63
2시간 21.3 97.84 16.0 34.69 248.7 - 286.0 71.78
3시간 4.7 99.52 17.6 28.16 240.9 3.14 263.2 74.03
4시간 0 100 16.5 32.65 216.3 13.03 232.8 77.03
5시간 0 100 13.1 46.53 204.2 17.89 217.3 78.56
6시간 0 100 10.5 57.14 192.8 22.48 203.3 79.94
평균 제거 속도 328.2ppm/시간 2.3ppm/시간 14ppm/시간 135.0 ppm/시간
시간 비교예 2
하이드록시 아세톤 2-메틸벤조퓨란 3-메틸벤조퓨란 불순물
함량(ppm) 제거율(%) 함량(ppm) 제거율(%) 함량(ppm) 제거율(%) 총량(ppm) 제거율(%)
0 586.4 - 18.3 - 1.9 - 606.6 -
1시간 138.6 76.36 10.3 43.72 12.7 - 161.6 73.36
2시간 142.4 75.72 9.5 48.09 116.0 - 267.9 55.84
3시간 40.5 93.09 6.4 65.03 131.4 - 178.3 70.61
4시간 45.2 92.29 6.5 64.48 127.4 - 179.1 70.47
5시간 51.7 91.18 6.5 64.48 129.8 - 188.0 69.01
6시간 30.3 94.83 5.0 72.68 132.6 - 167.9 72.32
평균 제거 속도 92.7 ppm/시간 2.2 ppm/시간 - 73.2 ppm/시간
※ 3-MBF 평균 제거 속도: (3-MBF의 최고 농도 - 3-MBF의 마지막 농도)/(정제 완료 시의 소요 시간 - 최고 농도시 소요 시간)
※ HA 평균 제거 속도: (HA의 정제 전 농도 - HA의 정제 완료 후 농도)/(소요시간)
※ 2-MBF 평균 제거 속도: (2-MBF의 정제 전 농도 - 2-MBF의 정제 완료 후 농도)/(소요시간)
표 2 내지 표 6을 참조하면, 실시예 1 및 실시예 2의 경우, 하이드록시 아세톤 및 2-메틸벤조퓨란의 양이 반응 시간이 경과됨에 따라 현저하게 감소되었다. 그리고, 3-메틸벤조퓨란의 경우, 하이드록시 아세톤과 페놀의 반응으로 인해 추가 생성된 3-메틸벤조퓨란으로 인해, 정제 전에 포함된 양보다 현저하게 증가하였지만, 시간이 경과함에 따라 3-메틸벤조퓨란의 양이 감소되는 것을 확인할 수 있었다.
아실 클로라이드를 과량 투입한 실시예 3의 경우, 실시예 1 및 실시예 2에 비하여 하이드록시 아세톤, 2-메틸벤조퓨란 및 3-메틸벤조퓨란의 제거율이 저하되었으나, 비교예 1 대비 하이드록시 아세톤, 2-메틸벤조퓨란 및 3-메틸벤조퓨란의 총량의 제거율은 우수한 것을 확인할 수 있었다.
아실 클로라이드를 소량 투입한 비교예 2의 경우, 비교예 1 보다 하이드록시 아세톤, 2-메틸벤조퓨란 및 3-메틸벤조퓨란의 총 량의 제거율이 오히려 떨어지는 것을 확인할 수 있었다.

Claims (8)

  1. 유기 술폰산 존재 하에, 하이드록시 아세톤, 2-메틸벤조퓨란, 3-메틸벤조퓨란 및 페놀을 포함하는 페놀 스트림을 아실 클로라이드와 접촉시켜 하이드록시 아세톤, 2-메틸벤조퓨란 및 3-메틸벤조퓨란으로 이루어진 군에서 선택되는 1종 이상을 상기 페놀보다 비점이 높은 고비점 화합물로 전환하는 단계; 및
    상기 페놀 스트림으로부터 상기 고비점 화합물을 회수하는 단계를 포함하는 페놀의 정제방법.
  2. 청구항 1에 있어서,
    상기 유기 술폰산은 상기 페놀 스트림과 혼합된 상태로 존재하는 것인 페놀의 정제방법.
  3. 청구항 1에 있어서,
    상기 유기 술폰산의 몰수와 하이드록시 아세톤, 2-메틸벤조퓨란 및 3-메틸벤조퓨란의 총 몰수의 비는 1:0.05 내지 1:0.2인 것인 페놀의 정제방법.
  4. 청구항 1에 있어서,
    상기 유기 술폰산은 메탄 술폰산(methane sulfonic acid), 3-하이드록시프로판-1-술폰산(3-hydroxypropane-1-sulfonic acid), 벤젠 술폰산(benzene sulfonic acid), p-톨루엔 술폰산(p-tolunene sulfonic acid) 및 캠포 술폰산(camphor sulfonic acid)으로 이루어진 군에서 선택되는 1종 이상인 것을 특징으로 하는 페놀의 정제방법.
  5. 청구항 1에 있어서,
    상기 접촉은 50 내지 90℃에서 수행되는 것인 페놀의 정제방법.
  6. 청구항 1에 있어서,
    상기 아실 클로라이드의 몰수와 상기 하이드록시 아세톤, 2-메틸벤조퓨란 및 3-메틸벤조퓨란의 몰수의 합의 비는 0.5:1 내지 14:1인 페놀의 정제방법.
  7. 청구항 1에 있어서,
    상기 아실 클로라이드는 아세틸 클로라이드(acetyl chloride), 프로피오닐 클로라이드(propionyl chloride), 벤조일 클로라이드(benzoyl chloride), 말로닐 클로라이드(Malonyl chloride), 숙시닐 클로라이드(succinyl chloride), 글루타릴 클로라이드(glutaryl chloride), 아디포일 클로라이드(adipoyl chloride), 피메로일 클로라이드(pimeloyl chloride), 수베로일 클로라이드(suberoyl chloride), 아젤라인산 디클로라이드(Azelaic acid dichloride), 세바코일 클로라이드(Sebacoyl chloride), 도데카네디오일 디클로라이드(dodecanedioyl dichloride)로 이루어진 군에서 선택되는 1종 이상인 것을 특징으로 하는 페놀의 정제방법.
  8. 청구항 1에 있어서,
    상기 고비점 화합물을 회수하는 것은 분별 증류를 이용하는 것인 페놀의 정제방법.
PCT/KR2018/000545 2017-01-24 2018-01-11 페놀의 정제 방법 WO2018139787A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP18722376.3A EP3381885B1 (en) 2017-01-24 2018-01-11 Method for purifying phenol
US15/778,584 US11084771B2 (en) 2017-01-24 2018-01-11 Method for purifying phenol
JP2018562264A JP6616530B2 (ja) 2017-01-24 2018-01-11 フェノールの精製方法
CN201880000621.6A CN108633275B (zh) 2017-01-24 2018-01-11 用于纯化酚的方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2017-0011269 2017-01-24
KR1020170011269A KR102021114B1 (ko) 2017-01-24 2017-01-24 페놀의 정제 방법

Publications (1)

Publication Number Publication Date
WO2018139787A1 true WO2018139787A1 (ko) 2018-08-02

Family

ID=62978565

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/000545 WO2018139787A1 (ko) 2017-01-24 2018-01-11 페놀의 정제 방법

Country Status (6)

Country Link
US (1) US11084771B2 (ko)
EP (1) EP3381885B1 (ko)
JP (1) JP6616530B2 (ko)
KR (1) KR102021114B1 (ko)
CN (1) CN108633275B (ko)
WO (1) WO2018139787A1 (ko)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6486365B1 (en) * 2002-04-04 2002-11-26 General Electric Company Production and purification of phenol: hydroxyacetone removal by hydrotalcite
US20050222466A1 (en) * 2004-03-31 2005-10-06 Tatake Prashant A Process for producing phenol
WO2007118600A1 (en) * 2006-04-18 2007-10-25 Ineos Phenol Gmbh & Co. Kg Method for treating phenol
KR20080093463A (ko) * 2004-03-24 2008-10-21 수노코, 인코포레이티드(알앤드엠) 페놀에서 아세톨을 제거하는 방법
CN101993427A (zh) * 2009-08-26 2011-03-30 成都伊诺达博医药科技有限公司 一种制备决奈达隆(Dronedarone)的新方法
KR101378274B1 (ko) * 2010-06-08 2014-04-01 주식회사 엘지화학 페놀 불순물 제거 방법

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3029294A (en) * 1959-02-27 1962-04-10 Hercules Powder Co Ltd Purification of phenol
US3965187A (en) * 1970-07-02 1976-06-22 Allied Chemical Corporation Hydrogenation of phenol
CA935441A (en) * 1971-03-11 1973-10-16 Union Carbide Corporation Process for the purification and recovery of an aromatic hydroxyl compound
US8436043B2 (en) 2008-03-05 2013-05-07 Takeda Pharmaceutical Company Limited Heterocyclic compound
SA113340468B1 (ar) 2012-04-13 2015-07-07 ميتسوي كيميكالز، انك. عملية لتنقية الفينول

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6486365B1 (en) * 2002-04-04 2002-11-26 General Electric Company Production and purification of phenol: hydroxyacetone removal by hydrotalcite
KR20080093463A (ko) * 2004-03-24 2008-10-21 수노코, 인코포레이티드(알앤드엠) 페놀에서 아세톨을 제거하는 방법
US20050222466A1 (en) * 2004-03-31 2005-10-06 Tatake Prashant A Process for producing phenol
WO2007118600A1 (en) * 2006-04-18 2007-10-25 Ineos Phenol Gmbh & Co. Kg Method for treating phenol
CN101993427A (zh) * 2009-08-26 2011-03-30 成都伊诺达博医药科技有限公司 一种制备决奈达隆(Dronedarone)的新方法
KR101378274B1 (ko) * 2010-06-08 2014-04-01 주식회사 엘지화학 페놀 불순물 제거 방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3381885A4 *

Also Published As

Publication number Publication date
JP2019521970A (ja) 2019-08-08
CN108633275B (zh) 2021-07-27
US11084771B2 (en) 2021-08-10
US20210198170A1 (en) 2021-07-01
KR102021114B1 (ko) 2019-09-11
JP6616530B2 (ja) 2019-12-04
CN108633275A (zh) 2018-10-09
EP3381885B1 (en) 2019-08-14
EP3381885A1 (en) 2018-10-03
EP3381885A4 (en) 2019-01-16
KR20180087054A (ko) 2018-08-01

Similar Documents

Publication Publication Date Title
WO2019098501A1 (ko) 페놀 제조 공정에서의 부산물 분해방법
WO2020130313A1 (ko) 페놀계 부산물 분해 방법
WO2018139787A1 (ko) 페놀의 정제 방법
ATE323064T1 (de) Herstellung und reinigung von phenol
WO2018088846A1 (ko) 페놀의 정제 방법
WO2022139117A1 (ko) 알파-메틸스타이렌의 제조방법
WO2017111357A1 (ko) 비스페놀-a 잔사물 분해 반응 생성물로부터 페놀 및 아세톤을 회수하기 위한 방법
WO2022014876A1 (ko) 페놀계 부산물 분해방법
WO2024053935A1 (ko) 네오펜틸 글리콜의 제조 방법
WO2022010102A1 (ko) 페놀계 부산물 분해방법
WO2021261681A1 (ko) 페놀계 부산물 분해방법
WO2023063549A1 (ko) 아크릴산 제조방법
KR20000053661A (ko) 하이드록시아세톤-함유 페놀로부터 하이드록시아세톤을제거하는 방법
WO2022092655A1 (ko) 티오메틸페놀 유도체의 제조방법
WO2023063526A1 (ko) 아크릴산 제조방법
WO2019168276A1 (ko) 1,3-부타디엔의 제조방법
CN108602743B (zh) 纯化苯酚的方法
JP2004536100A5 (ko)
WO2021054608A1 (ko) 페놀계 부산물 분해 방법
WO2016060488A2 (ko) 무증발 촉매를 이용한 무수당 알코올의 제조방법
WO2024101650A1 (ko) 알파-메틸스타이렌의 제조방법
SK14342000A3 (sk) Spôsob výroby fenolu
JP2007106747A (ja) アルキルベンゼンハイドロパーオキサイドの製造方法
JP3751394B2 (ja) ブチル基含有ビフェノール類の脱ブチル化方法
WO2019240396A1 (ko) 에폭시 반응성 희석제 및 그 제조방법

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018722376

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2018562264

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE