WO2021066116A1 - 点光源型発光ダイオード及びその製造方法 - Google Patents

点光源型発光ダイオード及びその製造方法 Download PDF

Info

Publication number
WO2021066116A1
WO2021066116A1 PCT/JP2020/037477 JP2020037477W WO2021066116A1 WO 2021066116 A1 WO2021066116 A1 WO 2021066116A1 JP 2020037477 W JP2020037477 W JP 2020037477W WO 2021066116 A1 WO2021066116 A1 WO 2021066116A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
type
light emitting
emitting diode
hydrogen ion
Prior art date
Application number
PCT/JP2020/037477
Other languages
English (en)
French (fr)
Inventor
雅年 岩田
成樹 進藤
Original Assignee
Dowaエレクトロニクス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowaエレクトロニクス株式会社 filed Critical Dowaエレクトロニクス株式会社
Priority to KR1020227010420A priority Critical patent/KR20220077910A/ko
Priority to CN202080069775.8A priority patent/CN114503291A/zh
Priority to US17/754,266 priority patent/US12095004B2/en
Publication of WO2021066116A1 publication Critical patent/WO2021066116A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/14Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a carrier transport control structure, e.g. highly-doped semiconductor layer or current-blocking structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/14Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a carrier transport control structure, e.g. highly-doped semiconductor layer or current-blocking structure
    • H01L33/145Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a carrier transport control structure, e.g. highly-doped semiconductor layer or current-blocking structure with a current-blocking structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/38Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes with a particular shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/38Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes with a particular shape
    • H01L33/382Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes with a particular shape the electrode extending partially in or entirely through the semiconductor body

Definitions

  • the present invention relates to a point light source type light emitting diode and a method for manufacturing the same.
  • LEDs Light Emitting Diodes
  • a light emitting diode when used for a sensor light source application or the like, a point light source type light emitting diode that emits light showing a uniform emission intensity distribution is used.
  • a general light emitting diode emits light from the light emitting region in all directions
  • a point light source type light emitting diode extracts only light in a specific direction.
  • Such a point light source type light emitting diode is disclosed in, for example, Patent Document 1.
  • the point light source type light emitting diode disclosed in Patent Document 1 includes a metal layer, a first conductive type layer, a light emitting layer, a second conductive type layer including a current constricted structure, and the light emitting layer on a support substrate.
  • a top electrode having a light emitting window for taking out the generated light is sequentially provided.
  • a current constriction structure is formed by providing the region. Further, a part of the light from the active layer toward the support substrate side below the active layer is reflected by the metal reflecting surface below the active layer and taken out from the light emission window, and is absorbed by the light reflection reducing surface below the active layer.
  • the point light source type light emitting diode is used in a crystal growth step, a dielectric layer forming step, an intermediate electrode forming step, a metal layer forming step, a diffusion prevention barrier layer forming step, a support substrate joining step, and a growing substrate separation step. It is manufactured by going through a current constriction structure forming step and an electrode forming step.
  • Patent Document 1 the manufacturing process is complicated because the above-mentioned metal reflecting surface and light reflection reducing surface are formed below the light emitting layer. Further, in recent years, there has been a demand for a point light source type light emitting diode capable of reducing light emission from other than the light emission window in the light emission pattern as much as possible.
  • an object of the present invention is to provide a point light source type light emitting diode capable of simplifying the manufacturing process and reducing light emission from other than the light emitting window in the light emitting pattern, and a method for manufacturing the same.
  • an n-type clad layer, a light emitting layer, a p-type clad layer, an n-type current constriction layer having an opening, and a p-type contact layer are sequentially formed on the substrate, and a p-type electrode having a light emission window is provided.
  • a hydrogen ion implanter in a light source type light emitting diode.
  • it was found that the light emission from other than the light emission window in the light emission pattern can be reduced by providing the hydrogen ion implantation portion extending from the p-type contact layer to the light emitting layer in the thickness direction.
  • the present invention has been completed based on the above findings, and its gist structure is as follows.
  • the window opening width of the light emitting window is larger than the opening width of the opening.
  • the point light source type light emitting diode has a hydrogen ion implantation portion extending from the p-type contact layer to the light emitting layer in the thickness direction.
  • the light emitting layer has a non-injection region having the same center as the light emission window and having a region width larger than the window opening width of the light emission window, and a hydrogen ion injection region surrounding the non-injection region.
  • a point light source type light emitting diode characterized by.
  • the hydrogen concentration in the hydrogen ion-implanted region in the light emitting layer is 3.0 times or more the hydrogen concentration in the non-implanted region, and the hydrogen concentration in the hydrogen ion-implanted region is 5.0 ⁇ 10 17 atoms.
  • the mask is removed, and then a window opening width C having the same center as the opening, equal to or larger than the opening width A of the opening, and smaller than the mask width B is provided on the p-type contact layer.
  • a point light source type light emitting diode capable of simplifying the manufacturing process and reducing light emission from other than the light emitting window in the light emitting pattern, and a method for manufacturing the same.
  • FIG. 3 is a schematic cross-sectional view for explaining an example of a manufacturing process of the point light source type light emitting diode of the present invention following FIG.
  • FIG. 4 is a schematic cross-sectional view for explaining an example of a manufacturing process of the point light source type light emitting diode of the present invention following FIG.
  • III-V compound semiconductor its composition is represented by the general formula: (In a Ga b Al c ) (P x As y Sb z ).
  • c 1-ab, 0 ⁇ a ⁇ 1,0 ⁇ b ⁇ 1,0 ⁇ c ⁇ 1
  • z 1-xy, 0 ⁇ x ⁇ 1,0 ⁇ y ⁇ 1,0 ⁇ z ⁇ 1
  • a layer that electrically functions as a p-type is referred to as a p-type semiconductor layer (sometimes abbreviated as "p-type layer"), and a layer that electrically functions as an n-type is called an n-type semiconductor. It is referred to as a layer (sometimes abbreviated as "n-type layer”) or the like.
  • a layer sometimes abbreviated as "n-type layer” or the like.
  • impurities such as Si, Zn, S, Sn, Mg, Se and C are not intentionally added is referred to as "undoped”.
  • the undoped III-V compound semiconductor layer may contain unavoidable impurities in the manufacturing process.
  • the dopant concentration when the dopant concentration is low (for example, less than 7.6 ⁇ 10 15 atoms / cm 3 ), it is treated as “undoped” in the present specification.
  • the value of the impurity concentration of Si, Zn, S, Sn, Mg, Se, C and the like shall be based on SIMS analysis. Since the value of the dopant concentration changes greatly near the boundary of each semiconductor layer, the value of the dopant concentration at the center of each layer in the film thickness direction is used as the value of the dopant concentration.
  • the entire film thickness of each layer to be formed can be measured by using an optical interference type film thickness measuring device. Further, each of the film thicknesses of each layer can be calculated by observing the cross section of the growth layer with a light interference type film thickness measuring device and a transmission electron microscope. Further, when the film thickness of each layer is as small as several nm to the extent that it resembles a superlattice structure, the film thickness can be measured using TEM-EDS. In the cross-sectional view of each layer, even if a predetermined layer has a mesa (inclined surface), the film thickness of the layer does not consider the mesa and uses the maximum height of the layer directly below the layer from the flat surface. And.
  • the hydrogen concentration shall be determined by SIMS (Secondary Ion Mass Spectrometry), and the average concentration in the depth direction in each layer shall be adopted.
  • SIMS Secondary Ion Mass Spectrometry
  • the hydrogen concentration value in the present invention the hydrogen concentration value in the light emitting layer whose position in the depth direction can be easily specified in SIMS shall be used.
  • the entire region where hydrogen ions are implanted is called a hydrogen ion implanter, and the in-plane range of the hydrogen ion implanter in the light emitting layer is called a hydrogen ion implanter.
  • the range other than the hydrogen ion implantation region in the light emitting layer is referred to as a non-implantation region.
  • the hydrogen concentration of the light-emitting layer immediately after the epitaxial growth is not a hydrogen ion implantation (non-injection region) is preferably 2.0 ⁇ 10 17 atoms / cm 3 or less.
  • the point light emitting diode 100 includes a substrate 10, an n-type clad layer 31 on the substrate 10, a light emitting layer 35 on the n-type clad layer 31, a p-type clad layer 37 on the light emitting layer 35, and a p-type clad.
  • n-type current constriction layer 42 provided on the layer 37 and having an opening 42A that exposes a part of the p-type clad layer 37, and on the exposed surface 37A of the p-type clad layer 37 and on the n-type current constriction layer 42.
  • It includes at least a p-type contact layer 60 provided and a p-type electrode 91 provided on the p-type contact layer 60 and having a light emitting window 92 having the same center as the opening 42A.
  • a layer other than the above, which is not shown in FIG. 1, may be provided between the layers on the substrate 10.
  • it may have an initial growth layer, an n-type DBR layer, a spacer layer, a p-type DBR layer, etc., which will be described later. Further, it may have an n-type electrode (not shown).
  • the light emitting window 92 in the point light source type light emitting diode 100 includes a window opening width C having a size equal to or larger than the opening width A of the opening 42A (hence, C ⁇ A). Further, the point light source type light emitting diode 100 has a hydrogen ion implantation unit 80 extending from the p-type contact layer 60 to the light emitting layer 35 in the thickness direction. The hydrogen ion implantation unit 80 divides the light emitting layer 35 into a hydrogen ion implantation region 33 and a non-implantation region 34. The light emitting layer 35 has a hydrogen ion implantation region 33 and a non-implantation region 34.
  • the non-injection region 34 includes a region width B that is centered on the light emission window 92 and is larger than the window opening width C of the light emission window 92 (hence, B> C). Further, the hydrogen ion implantation region 33 surrounds the non-implantation region 34.
  • the relationship between the opening width A of the opening 42A, the area width B of the non-injection region 34, and the window opening width C of the light emitting window 92 is A ⁇ C ⁇ B.
  • the shape of the opening 42A, the light emission window 92, and the non-injection region 34 from a bird's-eye view can be a circle, an ellipse, a polygon, or a rectangle with rounded corners, and each has the same center (geometric center). Further, it is preferable that the shapes of the opening 42A, the light emission window 92, and the non-injection region 34 are similar to each other.
  • the values of A, B, and C of each width mean the diameter in the case of a circle, the major axis in the case of an ellipse, and the diameter of the circumscribed circle in the case of a polygon or a rectangle with rounded corners.
  • the point light source type light emitting diode 100 has the above configuration and particularly has the hydrogen ion implantation unit 80 constituting the hydrogen ion implantation region 33 in the light emitting layer 35, it is possible to reduce light emission from other than the light emission window 92 in the light emission pattern. Can be done.
  • each width has a relationship of A ⁇ C ⁇ B
  • the current flows from the vicinity of the inner circumference of the p-type electrode 91 surrounded by the region width B and the window opening width C in FIG. 1 through the p-type contact layer 60. It flows toward the light emitting layer 35 through the opening 42A of the n-type current constriction layer 42 of A, and the region immediately below the opening 42A in the light emitting layer 35 becomes a substantial light emitting region.
  • the hydrogen ion implantation unit 80 does not have the effect of current stenosis as disclosed in Patent Document 1 described above. That is, if the purpose of hydrogen ion implantation is the effect of current constriction, the hydrogen ion implantation unit 80 in the configuration of the present invention having the n-type current constriction layer 42 between the light emitting layer 35 and the p-type electrode 91 having the light emission window 92. There was no need to provide.
  • the reason why the hydrogen ion implantation unit 80 reduces the light emission from other than the light emission window 92 in the light emission pattern is unknown, but by intentionally providing the hydrogen ion implantation unit 80, the light emission from other than the light emission window 92 is effectively reduced. It turns out that it can be done.
  • the hydrogen concentration in the hydrogen ion injection region 33 in the light emitting layer 35 is 3.0 times or more the hydrogen concentration in the non-injection region 34.
  • the hydrogen concentration in the hydrogen ion injection region 33 is preferably 5.0 ⁇ 10 17 atoms / cm 3 or more, and more preferably 6.0 ⁇ 10 17 atoms / cm 3 or more.
  • the hydrogen concentration in the hydrogen ion implantation region 33 is preferably 2.0 ⁇ 10 19 atoms / cm 3 or less.
  • the method for manufacturing the point light emitting diode 200 is a semiconductor layer forming step of sequentially forming an n-type clad layer 31, a light emitting layer 35, a p-type clad layer 37, and an n-type semiconductor layer 41 on a substrate 10 (S10 in FIG. 2). And S20), and an n-type current constriction layer 42 is formed by forming an opening 42A having an opening width A in the n-type semiconductor layer 41 to expose a part of the p-type clad layer 37.
  • a step (see S30 in FIG.
  • a mask forming step (see S60 in FIG. 3) of forming a mask 70 having a mask width B on the p-type contact layer 60 having the same center as the opening 42A, and hydrogen ions from the surface of the p-type contact layer 60. Is injected to form a hydrogen ion injection section 80 extending from the p-type contact layer 60 to the light emitting layer 35 in the thickness direction (see S70 and S80 in FIG.
  • a p-type having a light emitting window 92 on the p-type contact layer 60 which has the same center as the opening 42A and has a window opening width C equal to or larger than the opening width A of the opening 42A and smaller than the mask width B. It includes at least a p-type electrode forming step (see S90 and S100 in FIG. 5) for forming the electrode 91. As shown in S20 of FIG. 2, in the semiconductor layer forming step, the initial growth layer 21 and the n-type DBR (Distributed Bragg Reflector) layer 23 are formed alone or both between the substrate 10 and the n-type clad layer 31, respectively. It is also preferable to do so.
  • DBR Distributed Bragg Reflector
  • the method of manufacturing the point light source type light emitting diode 200 is that the exposed surface 37A and the n-type current constriction layer 42 of the p-type clad layer 37 and the p-type contact layer 60 are used. It is also preferable to include a p-type DBR layer forming step of forming the p-type DBR layer 50 in between.
  • a p-type DBR layer forming step of forming the p-type DBR layer 50 in between.
  • the initial growth layer 21, the n-type DBR layer 23, the n-type clad layer 31, the light emitting layer 35, the p-type clad layer 37, and the n-type semiconductor layer 41 are sequentially formed on the substrate 10.
  • the formation of the initial growth layer 21 and the n-type DBR layer 23 may be omitted.
  • Each layer formed on the substrate 10 in this step is a group III-V compound semiconductor layer.
  • Each of these layers can be formed by a known thin film growth method such as a metalorganic vapor deposition (MOCVD) method, a molecular beam epitaxy (MBE) method, or a sputtering method.
  • MOCVD metalorganic vapor deposition
  • MBE molecular beam epitaxy
  • sputtering method a known thin film growth method
  • MOCVD metalorganic vapor deposition
  • MBE molecular beam epitaxy
  • sputtering method a known thin film growth method
  • AlInGaAsP-based semiconductor layer for example, trimethylaluminum (TMA) as an Al source, trimethylgallium (TMIn) as an In source, trimethylgallium (TMGa) as a Ga source, and arsine (AsH 3 ) as an As source.
  • Phosphine (PH 3 ) or the like is used as the P source at a predetermined mixing ratio, and these raw material gases are vapor-deposited while using the carrier gas to form an AlInGaAsP-based semiconductor layer with a desired film thickness according to the growth time. Can be epitaxially grown with. Further, when Sb is used as the group V element, TMSb (trimethylantimony) or the like may be used as the Sb source. When each semiconductor layer is p-type or n-type dopant, a dopant source containing p-type dopant (Zn, C, Mg, etc.) or n-type dopant (Te, Si, Se, etc.) as a constituent element, if desired. The semiconductor layer may be grown in combination with the gas of. Further, the composition of each layer may be constant in the crystal growth direction, the composition may be inclined in the crystal growth direction, or the composition may be modulated (including non-continuous changes).
  • the substrate 10 is prepared.
  • the substrate 10 may be appropriately adopted from a GaAs substrate, an InP substrate, a GaSb substrate, an InSb substrate, or the like, depending on the composition of the semiconductor layer to be grown on the substrate and the lattice constant.
  • the n-type clad layer 31 is formed on the substrate 10, it is preferable to use an n-type semiconductor substrate, but the conductive type of the substrate 10 may be undoped or p-type. May be good.
  • the composition of each semiconductor layer will be described by taking the case where the substrate 10 is a GaAs substrate as an example.
  • the initial growth layer 21 can prevent the influence of the oxide film and contamination on the substrate surface of the substrate 10, and is also used as a buffer layer for buffering the lattice strain between the initial growth layer 21 and the semiconductor layer formed above the oxide film. be able to.
  • the initial growth layer 21 may be an n-type GaAs layer, and the composition ratios of the group III element and the group V element may be adjusted within the range of lattice matching with the substrate 10. Good.
  • the initial growth layer 21 may be a single layer or a composite layer with another layer (for example, a superlattice layer).
  • the film thickness of the initial growth layer 21 is arbitrary, and can be, for example, 10 nm to 100 nm.
  • n-type DBR layer 23 It is preferable to form the n-type DBR layer 23 on the substrate 10.
  • S20 of FIG. 2 an example in which the n-type DBR layer 23 is formed on the initial growth layer 21 is shown.
  • the n-type DBR layer 23 is a reflective layer that can be formed by repeatedly laminating a low-refractive layer and a high-refractive layer.
  • the film thickness of each of the low refractive index layer and the high low refractive index layer constituting the n-type DBR layer 23 may be appropriately determined according to the respective refractive index and emission wavelength.
  • One end of the laminated structure may be a low refractive index layer, a repeating structure of a high low refractive index layer and a low refractive index layer may be provided, and the other end may be a low refractive index layer.
  • both ends may be high and low refractive index layers.
  • the number of pairs of the low refractive index layer and the high low refractive index layer is expressed as n (n is a natural number), and n. It is called 5 sets.
  • the number of sets of each of the low refractive index layer and the high low refractive index layer may be about 5 to 40, and the layer film thickness can be about 500 nm to 4000 nm.
  • the composition of the low refractive index layer and the high low refractive index layer is arbitrary, and for example, two types of n-type AlGaAs layers having different composition ratios may be used.
  • the n-type clad layer 31 is formed on the substrate 10.
  • S20 of FIG. 2 an example in which the n-type clad layer 31 is formed on the n-type DBR layer 23 is shown.
  • the composition of the III-V compound semiconductor constituting the n-type clad layer 31 may be appropriately determined according to the composition of the III-V compound semiconductor of the light emitting layer 35, and n-type AlInP can be exemplified.
  • the n-type clad layer 31 may have a single-layer structure or may be a composite layer in which a plurality of layers are laminated.
  • the film thickness of the n-type clad layer 31 is not particularly limited, and can be, for example, 50 nm to 500 nm.
  • a light emitting layer 35 is formed on the n-type clad layer 31.
  • the light emitting layer 35 may have a single layer structure, a single quantum well structure (SQW) in which a well layer and a barrier layer are laminated, or a multiple quantum well (MQW) structure. It is more preferable that the light emitting layer 35 has a quantum well structure in order to improve the light output by suppressing crystal defects.
  • the emission wavelength can be, for example, in the range of 580 to 4000 nm, and the emission wavelength is preferably in the range of 630 to 1100 nm.
  • the composition ratio a 1 of In in the light emitting layer is 0.0 to 1.0
  • Al composition ratio c 1 is 0.0 to 0.5
  • P composition ratio x 1 is 0.0 to 1.0
  • the composition ratio z 1 of Sb may be 0.0 and 0.5.
  • the well layer can be composed of InGaP and the barrier layer can be composed of AlGaInP.
  • the film thickness of the light emitting layer 35 is not particularly limited, and can be, for example, 10 to 500 nm. Further, the film thickness of the well layer of the quantum well structure can be set to 3 nm to 17 nm, and the film thickness of the barrier layer can be set to 5 to 20 nm.
  • the number of sets in the case of a multiple quantum well structure is not particularly limited, and may be about 5 to 50 sets, and both ends of the multiple quantum well structure may be used as barrier layers.
  • a p-type clad layer 37 is formed on the light emitting layer 35.
  • the composition of the III-V compound semiconductor constituting the p-type clad layer 37 may be appropriately determined according to the composition of the III-V compound semiconductor of the light emitting layer 35, and p-type AlInP can be exemplified.
  • the p-type clad layer 37 may have a single-layer structure or may be a composite layer in which a plurality of layers are laminated.
  • the film thickness of the p-type clad layer 37 is not particularly limited, and can be, for example, 50 nm to 500 nm.
  • the n-type semiconductor layer 41 is formed on the p-type clad layer 37.
  • the n-type semiconductor layer 41 becomes the n-type current constriction layer 42 after forming the opening 42A in the next step.
  • the composition of the III-V compound semiconductor constituting the n-type semiconductor layer 41 may be appropriately determined according to the composition of the III-V compound semiconductor of the light emitting layer 35, and n-type AlInP can be exemplified.
  • the film thickness of the n-type semiconductor layer 41 is not particularly limited as long as the opening 42A can be formed in the next step, and can be, for example, 10 nm to 200 nm.
  • an undoped spacer layer may be formed between the light emitting layer 35 and the n-type clad layer 31 and between the light emitting layer 35 and the p-type clad layer 37, respectively, or both. By providing the spacer layer, it is possible to prevent the diffusion of unnecessary dopants.
  • the film thickness of the spacer layer is not limited, but may be, for example, 5 to 500 nm.
  • an opening 42A having an opening width A is formed in the n-type semiconductor layer 41 to form an n-type current constriction layer 42 that exposes a part of the p-type clad layer 37.
  • An exposed surface 37A may be provided on the p-type clad layer 37 by forming a mask on the surface of the n-type semiconductor layer 41 and then etching the n-type semiconductor layer 41.
  • the opening width A of the opening 42A is not particularly limited and may be appropriately determined according to the intended use, and may be, for example, 10 ⁇ m to 300 ⁇ m.
  • the opening width A corresponds to the exposed width of the exposed surface 37A.
  • the opening 42A is preferably formed in a circular shape in a plan view, but is not particularly limited, and may be an elliptical shape, a polygonal shape, or a rectangular shape with rounded corners.
  • the side surface of the n-type current constriction layer 42 to be exposed may be a vertical surface or a mesa (inclined surface).
  • FIG. 2 exemplifies a forward mesa in which the inclined surface faces the growth direction, but the mesa may be a forward mesa or a reverse mesa. If there is a mesa, the opening width A shall be measured with respect to the minimum shape when the opening 42A is viewed from a bird's-eye view.
  • the p-type DBR layer 50 is formed on the exposed surface 37A of the p-type clad layer 37 and the n-type current constriction layer 42.
  • the p-type DBR layer 50 may be omitted if necessary.
  • the p-type DBR layer 50 is a reflective layer that can be formed by repeatedly laminating a low-refractive layer and a high-refractive layer, and the p-type DBR layer 50 is described above except that the dopant is different from that of the n-type DBR layer 23.
  • the adjustable range of the laminated structure, the number of sets, and the composition is the same as that of the above, and it may be appropriately determined within the range in which the DBR structure can be formed.
  • a resonator can also be obtained between the light emitting layer and the p-type DBR layer 50 and the n-type DBR layer 23.
  • a vertical resonator type light emitting diode may be obtained by appropriately determining the number of sets or the like for adjusting the reflection force for light emission.
  • ⁇ P-type contact layer forming process> See S50 in FIG.
  • the p-type contact layer 60 is formed on the exposed surface 37A of the p-type clad layer 37 and on the n-type current constriction layer 42.
  • a p-type contact layer 60 was formed on the p-type DBR layer 50.
  • the p-type contact layer 60 is a p-type semiconductor layer that makes ohmic contact with the p-type electrode 91 formed on the p-type contact layer 60.
  • the composition of the III-V compound semiconductor constituting the p-type contact layer 60 may be appropriately determined according to the composition of the III-V compound semiconductor of the light emitting layer 35, and p-type GaAs can be exemplified.
  • the p-type contact layer 60 may have a single-layer structure or may be a composite layer in which a plurality of layers are laminated.
  • the film thickness of the p-type contact layer 60 is not particularly limited, and can be, for example, 10 nm to 100 nm.
  • a mask 70 having a mask width B is formed on the p-type contact layer 60 so as to have the same center as the opening 42A.
  • the mask 70 may be formed by using a photosensitive resin or the like.
  • the mask width B determines the formation position of the hydrogen ion-implanted portion formed in the next step in the in-plane direction. Therefore, the mask width B is made larger than the light emitting window 92 including the opening width A of the opening 42A and the window opening width C to be formed later. Since the opening 42A can be confirmed in the exposure machine, the positioning of the photomask at the time of mask formation is easy.
  • the thickness of the mask to be formed is arbitrary, and may be, for example, 1 ⁇ m to 5 ⁇ m. Further, if the mask width B is larger than the light emitting window 92 including the opening width A of the opening 42A and the window opening width C formed later, the size of the mask width B is not limited. As a guideline for the upper limit of the mask width B, the chip size is not exceeded, and considering the electrode width and the alignment width, for example, C + 5 ⁇ m ⁇ B ⁇ chip size ⁇ 5 ⁇ m can be set. In order to reliably reduce light emission from other than the light emission window 92 in the light emission pattern, the hydrogen ion implantation region is preferably 5 ⁇ m or more from the outer circumference of the chip size, and more preferably 10 ⁇ m or more.
  • ⁇ Hydrogen ion implantation process> See S70 and S80 in FIG.
  • hydrogen ions are implanted from the surface of the p-type contact layer 60 to form a hydrogen ion implantation portion 80 extending from the p-type contact layer 60 to the light emitting layer 35 in the thickness direction. Since hydrogen ions pass straight through the gaps in the lattice, they penetrate deeply into regular atomic arrangements such as semiconductor layers, but the atomic arrangement cannot pass through the random mask 70. Therefore, the hydrogen ion implantation portion 80 is formed in the portion where the mask 70 is not formed in the in-plane direction.
  • the hydrogen ion implantation section 80 Since the hydrogen ion implantation section 80 extends from the p-type contact layer 60 to the light emitting layer 35 in the thickness direction, the hydrogen ion implantation section 80 divides the light emitting layer 35 into a hydrogen ion implantation region 33 and a non-implantation region 34. Since the hydrogen ions travel straight and do not bend in the middle, the non-implanted region 34 has a region width B that has the same center as the opening 42A and has the same width as the mask width B, and the hydrogen ion implantation region 33 has a width that matches the mask width B. It will surround the non-implanted region 34. As shown in the figure, the hydrogen ion implanter 80 may extend beyond the light emitting layer 35 to the n-type clad layer 31 and beyond in the thickness direction.
  • the dose amount of hydrogen ions in this step is preferably 1.0 ⁇ 10 13 atoms / cm 2 or more, and 1.9 ⁇ 10 More preferably, it is 13 atoms / cm 2 or more.
  • the dose amount of the mask 70 hydrogen ions is preferably 2.0 ⁇ 10 15 atoms / cm 2 or less, and 1.0 ⁇ 10 15 It is more preferable to use atoms / cm 2 or less.
  • the dose amount may be appropriately adjusted such as the irradiation time at the time of hydrogen ion implantation.
  • the hydrogen ion acceleration voltage affects the hydrogen ion implantation depth, it may be appropriately determined according to the formation range in the thickness direction of the hydrogen ion implantation portion 80 and the film thickness of each layer. For example, it may be 10 keV to 300 keV. Good.
  • ⁇ P-type electrode forming process> See S90 and S100 in FIG.
  • the mask 70 is removed (S90).
  • p has a light emitting window 92 having the same center as the opening 42A and having a window opening width C equal to or larger than the opening width A of the opening 42A and smaller than the mask width B.
  • the mold electrode 91 is formed (S100).
  • the p-type electrode 91 may be formed by a sputtering method, an electron beam deposition method, a resistance heating method, or the like while forming a photoresist or the like. In S100 of FIG.
  • the p-type electrode 91 is formed so as to surround the recess of the p-type contact layer 60 formed along with the opening 42A, but the relationship between the above-mentioned opening width A, mask width B, and window opening width C.
  • the formation position is not limited to the example in this figure as long as the above is satisfied.
  • the window opening width C is not particularly limited as long as it is equal to or larger than the opening width A of the opening 42A and smaller than the mask width B, but can be, for example, 10 ⁇ m to 310 ⁇ m.
  • the n-type electrode 99 may be formed if necessary.
  • the n-type electrode 99 is formed on the back surface of the substrate 10, but this is only an example, and the formation position may be appropriately set according to the conductive type of the substrate 10 and the like.
  • the n-type electrode 99 can also be formed by a sputtering method or the like.
  • the hydrogen ion implantation unit 80 is formed by using the mask width B of the mask 70, and the hydrogen ion implantation unit 80 can be formed relatively easily. Then, the point light source type light emitting diode thus obtained can reduce the light emission from other than the light emission window 92 in the light emission pattern.
  • the embodiment of the method for manufacturing the point light source type light emitting diode 200 described above is only an example for manufacturing the point light source type light emitting diode 100.
  • a method other than the above-described embodiment of the method for manufacturing the point light source type light emitting diode 200 may be applied as long as the structure can be embodied.
  • Example 1 The point light source type light emitting diode according to the first embodiment was produced in the order of referring to FIGS. 2 to 5. Specifically, it is as follows.
  • n-type GaAs layer (thickness 75 nm, initial growth layer) was formed on the (100) surface of an n-type GaAs substrate (substrate thickness: 350 ⁇ m).
  • substrate thickness 350 ⁇ m.
  • An n-type DBR layer (total film thickness 2068 nm) laminated with ( 0.55 As layer) was formed.
  • a Se-doped n-type Al 0.5 In 0.5 P clad layer (film thickness 148 nm) and an undoped In 0.5 Ga 0.5 P layer (film thickness 8 nm, film thickness 8 nm,)
  • Light emitting layer (total film thickness 43 nm) having a three-layer quantum well (3QW) structure with a main emission wavelength of 650 nm including a well layer) and an Al 0.35 Ga 0.15 In 0.5 P layer (thickness 5 nm, barrier layer).
  • a Mg-doped p-type Al 0.5 In 0.5 P layer (thickness 250 nm, p-type clad layer) were sequentially formed by the MOCVD method.
  • an n-type Al 0.5 In 0.5 P layer (thickness 20 nm) is formed on the p-type clad layer, a resist pattern is formed, and etching is performed to expose a part of the p-type clad layer to open an opening.
  • a p-type DBR layer (total film thickness of 1180 nm) was formed by laminating 10.5 pairs of 05 As layers (thickness 63 nm) (p-type Al 0.45 Ga 0.55 As layers at both ends).
  • a p-type contact layer made of a Zn-doped p-type GaAs layer (thickness 20 nm) was formed on the p-type DBR layer.
  • a circular resist mask having a mask width of 180 ⁇ m (diameter 180 ⁇ m) was formed on the p-type contact layer on the concentric axis of the opening of the n-type current constriction layer.
  • hydrogen ions were implanted from the surface of the p-type contact layer at an acceleration voltage of 145 keV and a dose amount of 2.0 ⁇ 10 14 atoms / cm 2 to form a hydrogen ion implantation portion.
  • the hydrogen ion-implanted portion extended from the p-type contact layer to the n-type clad layer in the thickness direction.
  • a p-type electrode (electrode material AuZn) having a light emitting window having a window opening width of 160 ⁇ m (diameter 160 ⁇ m) on the concentric axis of the opening of the n-type current constriction layer on the p-type contact layer.
  • the alloy was formed in a size of 200 ⁇ m ⁇ 350 ⁇ m.
  • a mask was applied in an area of 220 ⁇ m ⁇ 370 ⁇ m so as to completely cover the p-type electrode while protruding from the width of 10 ⁇ m, and the semiconductor layer on the substrate other than the masked region was removed by etching.
  • n-type electrode electrode material AuGe alloy
  • the substrate at the position where the semiconductor layer was removed was cut by dicing so as to have a chip size (250 ⁇ m ⁇ 400 ⁇ m), and separated into individual chips.
  • the width of 10 ⁇ m from the outer circumference of the p-contact layer on the upper surface of the obtained chip is not covered with the p-type electrode. In this way, the point light source type light emitting diode according to the first embodiment was manufactured.
  • Example 2 In Example 1, when the mask width for ion implantation was 180 ⁇ m, the window opening width of the light emitting window was 160 ⁇ m, and the hydrogen ion dose amount was 2.0 ⁇ 10 14 atoms / cm 2 , the mask width was 100 ⁇ m and the window opening.
  • a point light emitting diode according to Example 2 was produced in the same manner as in Example 1 except that the width was 80 ⁇ m and the hydrogen ion dose amount was changed to 2.0 ⁇ 10 13 atoms / cm 2.
  • Comparative Example 1 When the hydrogen ion implantation portion was formed in Example 1, the point light source type light emitting diode according to Comparative Example 1 was produced in the same manner as in Example 1 except that the hydrogen ion implantation portion was not formed.
  • Comparative Example 2 When the hydrogen ion implantation portion was formed in Example 2, the point light source type light emitting diode according to Comparative Example 2 was produced in the same manner as in Example 2 except that the hydrogen ion implantation portion was not formed.
  • Example 2 ⁇ Evaluation of hydrogen concentration> The hydrogen concentration in the depth direction of the hydrogen ion-implanted portion in Example 1 was measured by SIMS. The results are shown in the graph of FIG. The horizontal axis of FIG. 6 is the relative depth, and a note is added to each semiconductor layer in the depth range corresponding to the p-type clad layer, the light emitting layer, and the n-type clad layer. Further, in Example 2 and Comparative Examples 1 and 2, the hydrogen concentration at the same position as in Example 1 was measured by SIMS. The results of Example 2 and Comparative Example 1 are also shown in the graph of FIG.
  • the hydrogen concentration of the light emitting layer of Comparative Example 1 and Comparative Example 2 in which hydrogen ions were not injected was 2.0 ⁇ 10 17 atoms / cm 3 . Since the hydrogen concentration of the light emitting layer is the same, the graph of Comparative Example 2 in FIG. 6 is omitted.
  • the hydrogen concentration in the hydrogen ion implantation region of the light emitting layer was 5.0 ⁇ 10 18 atoms / cm 3
  • the hydrogen concentration in the hydrogen ion implantation region of the light emitting layer was 6.0 ⁇ 10 17 atoms. It was / cm 3. Further, separately from FIG.
  • the point light source type light emitting diode according to the first embodiment was operated by pulse drive (pulse forward current Ifp: 300 mA, frequency: 10 kHz, duty ratio: 1.0%).
  • the emission intensity distribution of the cross section including the opening at this time is shown in FIG.
  • a photograph was taken when the point light source type light emitting diode according to the first embodiment was made to emit light with a DC current of 1 mA.
  • the photographed photograph is shown together with FIG. 7 in correspondence with the relative position in the graph of FIG.
  • the vertical axis indicates the emission intensity (relative intensity)
  • the horizontal axis indicates an arbitrary relative position in the cross section.
  • Example 2 the emission intensity distribution of the point light source type light emitting diode according to Comparative Example 1 was measured, and a photograph was taken at the time of emission. The results are shown in FIG. Further, in Example 2 and Comparative Example 2, a luminescence photograph at the time of luminescence when the DC current was set to 1 mA was taken. The results are shown in FIGS. 9 and 10, respectively.
  • a point light source type light emitting diode capable of simplifying the manufacturing process and reducing light emission from other than the light emitting window in the light emitting pattern, and a method for manufacturing the same.
  • Substrate 21 Buffer layer 23 n-type DBR layer 31 n-type clad layer 33 Hydrogen ion injection area 34 Non-injection area 35
  • Light emitting layer 37 p-type clad layer 37A Exposed surface of p-type clad layer 41 n-type current constriction layer 42 n-type current Narrowing layer 42A Opening 50 p-type DBR layer 60 p-type contact layer 70
  • Mask 80 Hydrogen ion injection part 91 p-type electrode 92 Light emission window 99 n-type electrode 100-point light source Light emitting diode 200 point light source light emitting diode

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Led Devices (AREA)

Abstract

製造工程を簡略化でき、かつ、発光パターンにおける光放出窓以外からの発光を低減できる点光源型発光ダイオード及びその製造方法を提供する。本発明による点光源型発光ダイオードは、基板と、n型クラッド層と、発光層と、p型クラッド層と、開口部を有するn型電流狭窄層と、前記n型電流狭窄層上に設けられるp型コンタクト層と、前記開口部と中心を同じくする光放出窓を有するp型電極と、を備え、前記光放出窓の窓開口幅は、前記開口部の開口幅以上の大きさであり、前記点光源型発光ダイオードは、厚さ方向において前記p型コンタクト層から前記発光層に渡る水素イオン注入部を有し、前記発光層は、前記光放出窓と中心を同じくして前記光放出窓の開口幅よりも大きい領域幅を具える非注入領域と、前記非注入領域を取り囲む水素イオン注入領域とを有する。

Description

点光源型発光ダイオード及びその製造方法
 本発明は、点光源型発光ダイオード及びその製造方法に関する。
 近年、発光ダイオード(LED;Light Emitting Diode)は、その発光波長に応じてセンサー、ガス分析、車載カメラ、照明、信号、殺菌、樹脂硬化などの様々な用途で用いられている。これらの中でも、センサー光源用途等で発光ダイオードを用いる場合、均一な発光強度分布を示す光を発光する点光源型発光ダイオードが用いられている。一般的な発光ダイオードでは発光領域から光が全方向に放出されるところ、点光源型発光ダイオードでは特定の方向への光だけを取り出す。このような点光源型発光ダイオードが、例えば特許文献1に開示されている。
 特許文献1に開示される点光源型発光ダイオードは、支持基板上に、金属層と、第1導電型層と、発光層と、電流狭窄構造を含む第2導電型層と、この発光層で発生した光を取り出する光放出窓が形成された上面電極と、を順次有する。特許文献1の点光源型発光ダイオードでは、発光層における通電領域をその面内の一部に制限するために、活性層よりも上方の第2導電型層内に水素イオン注入により形成した電流ブロック領域を設けることで電流狭窄構造を形成する。さらに、活性層からその下方の支持基板側へ向かう光のうちの一部を活性層下方の金属反射面によって反射させて光放出窓から取り出しつつ、活性層下方の光反射低減面により吸収させる。
 特許文献1では、上記点光源型発光ダイオードを、結晶成長工程、誘電体層形成工程、中間電極形成工程、金属層形成工程、拡散防止バリヤ層形成工程、支持基板接合工程、成長基板分離工程、電流狭窄構造形成工程及び電極形成工程を経ることで製造する。
特開2015-170717号公報
 特許文献1の技術では上述した金属反射面及び光反射低減面を発光層下方に形成するために製造工程が複雑化する。また、近年、発光パターンにおける光放出窓以外からの発光をできる限り低減できる点光源型発光ダイオードが求められている。
 そこで本発明は、製造工程を簡略化でき、かつ、発光パターンにおける光放出窓以外からの発光を低減できる点光源型発光ダイオード及びその製造方法を提供することを目的とする。
 本発明者らは上記の課題を解決すべく鋭意検討を重ねた。そして、基板上にn型クラッド層、発光層、p型クラッド層、開口部を有するn型電流狭窄層、p型コンタクト層を順次形成し、さらに光放出窓を有するp型電極を設けた点光源型発光ダイオードにおいて水素イオン注入部を形成することを想起した。そして、厚さ方向においてp型コンタクト層から発光層に渡る水素イオン注入部を設けることで発光パターンにおける光放出窓以外からの発光を低減できることを知見した。本発明は、上記知見に基づいて完成されたものであり、その要旨構成は以下のとおりである。
(1)基板と、
 前記基板上のn型クラッド層と、
 前記n型クラッド層上の発光層と、
 前記発光層上のp型クラッド層と、
 前記p型クラッド層上に設けられ、前記p型クラッド層の一部を露出させる開口部を有するn型電流狭窄層と、
 前記p型クラッド層の露出面上及び前記n型電流狭窄層上に設けられるp型コンタクト層と、
 前記p型コンタクト層上に設けられ、前記開口部と中心を同じくする光放出窓を有するp型電極と、を備える点光源型発光ダイオードであって、
 前記光放出窓の窓開口幅は、前記開口部の開口幅以上の大きさであり、
 前記点光源型発光ダイオードは、厚さ方向において前記p型コンタクト層から前記発光層に渡る水素イオン注入部を有し、
 前記発光層は、前記光放出窓と中心を同じくして前記光放出窓の窓開口幅よりも大きい領域幅を具える非注入領域と、前記非注入領域を取り囲む水素イオン注入領域とを有することを特徴とする点光源型発光ダイオード。
(2)前記発光層における前記水素イオン注入領域の水素濃度が前記非注入領域の水素濃度の3.0倍以上であり、かつ、前記水素イオン注入領域の水素濃度が5.0×1017atoms/cm以上である、前記(1)に記載の点光源型発光ダイオード。
(3)前記水素イオン注入領域における水素濃度が2.0×1019atoms/cm以下である、前記(2)に記載の点光源型発光ダイオード。
(4)基板上に、n型クラッド層、発光層、p型クラッド層及びn型半導体層を順次形成する半導体層形成工程と、
 前記n型半導体層に開口幅Aの開口部を形成して、前記p型クラッド層の一部を露出させるn型電流狭窄層を形成するn型電流狭窄層形成工程と、
 前記p型クラッド層の露出面上及び前記n型電流狭窄層上にp型コンタクト層を形成するp型コンタクト層形成工程と、
 前記p型コンタクト層上に、前記開口部と中心を同じくし、マスク幅Bのマスクを形成するマスク形成工程と、
 前記p型コンタクト層の表面から水素イオンを注入して、厚さ方向において前記p型コンタクト層から前記発光層に渡る水素イオン注入部を形成する水素イオン注入工程と、
 前記マスクを除去し、次いで前記p型コンタクト層の上に、前記開口部と中心を同じくし、前記開口部の開口幅A以上、かつ、前記マスク幅Bよりも小さい窓開口幅Cを具える光放出窓を有するp型電極を形成するp型電極形成工程と、
を含むことを特徴とする点光源型発光ダイオードの製造方法。
(5)前記水素イオン注入工程における水素イオンのドーズ量が1.0×1013atoms/cm以上である、前記(4)に記載の点光源型発光ダイオードの製造方法。
(6)前記水素イオン注入工程における水素イオンのドーズ量が2.0×1015atoms/cm以下である、前記(5)に記載の点光源型発光ダイオードの製造方法。
 本発明によれば、製造工程を簡略化でき、かつ、発光パターンにおける光放出窓以外からの発光を低減できる点光源型発光ダイオード及びその製造方法を提供することができる。
本発明の点光源型発光ダイオードの一例を示す模式断面図である。 本発明の点光源型発光ダイオードの製造工程の一例を説明するための模式断面図である。 図2に引き続く、本発明の点光源型発光ダイオードの製造工程の一例を説明するための模式断面図である。 図3に引き続く、本発明の点光源型発光ダイオードの製造工程の一例を説明するための模式断面図である。 図4に引き続く、本発明の点光源型発光ダイオードの製造工程の一例を説明するための模式断面図である。 実施例1~2及び比較例1において、SIMSにより得た深さ方向の水素濃度及びGa、Al、In強度プロファイルである。 実施例1の点光源型発光ダイオードを発光させたときの発光強度分布のグラフ及び発光写真を併せ示した図である。 比較例1の点光源型発光ダイオードを発光させたときの発光強度分布のグラフ及び発光写真を併せ示した図である。である。 実施例2の点光源型発光ダイオードを発光させたときの発光写真である。 比較例2の点光源型発光ダイオードを発光させたときの発光写真である。
 本発明による実施形態の説明に先立ち、本明細書における諸定義について説明する。
(諸定義)
<III-V族化合物半導体>
 まず、本明細書において単に「III-V族化合物半導体」と称する場合、その組成は一般式:(InGaAl)(PAsSb)により表される。ここで、各元素の組成比については以下の関係が成立する。
 III族元素について、c=1-a-b,0≦a≦1,0≦b≦1,0≦c≦1
 V族元素について、z=1-x-y,0≦x≦1,0≦y≦1,0≦z≦1
<p型、n型及びアンドープ並びにドーパント濃度>
 本明細書において、電気的にp型として機能する層をp型半導体層(「p型層」と略称する場合もある。)などと称し、電気的にn型として機能する層をn型半導体層(「n型層」と略称する場合もある。)などと称する。一方、Si、Zn、S、Sn、Mg、Se、C等の不純物を意図的には添加していない場合を「アンドープ」という。アンドープのIII-V族化合物半導体層には、製造過程における不可避的な不純物の混入はあってよい。具体的には、ドーパント濃度が低い(例えば7.6×1015atoms/cm未満)場合、「アンドープ」であるとして、本明細書では取り扱うものとする。Si、Zn、S、Sn、Mg、Se、C等の不純物濃度の値は、SIMS分析によるものとする。なお、各半導体層の境界付近においてドーパント濃度の値は大きく変移するため、各層の膜厚方向の中央におけるドーパント濃度の値をドーパント濃度の値とする。
<各層の膜厚及び組成>
 また、形成される各層の膜厚全体は、光干渉式膜厚測定器を用いて測定することができる。さらに、各層の膜厚のそれぞれは、光干渉式膜厚測定器及び透過型電子顕微鏡による成長層の断面観察から算出できる。また、超格子構造に類する程度に各層の膜厚が数nm程度で小さい場合にはTEM-EDSを用いて膜厚を測定することができる。なお、各層の断面図において、所定の層がメサ(傾斜面)を有する場合でも、その層の膜厚はメサを考慮せず、当該層の直下層の平坦面からの最大高さを用いるものとする。
<水素濃度>
 水素濃度はSIMS(二次イオン質量分析法、Secondary Ion Mass Spectrometry)により定めるものとし、各層における深さ方向の平均濃度を採用する。なお、本発明における水素濃度の値は、SIMSにおいて深さ方向の位置を特定することが容易な発光層における水素濃度の値を使用するものとする。水素イオン注入された全領域を水素イオン注入部といい、水素イオン注入部のうち発光層における面内方向の範囲を水素イオン注入領域という。そして、発光層における上記水素イオン注入領域以外の範囲を非注入領域という。エピタキシャル成長直後の発光層には水素濃度のウエハ面内方向における差異はほとんどない。マスクを形成して水素イオン注入を行うことで面内方向における水素濃度の差異が発生し、水素イオン注入領域の水素濃度が、マスク直下で水素イオンが注入されていない非注入領域の水素濃度の3.0倍以上となることにより、水素濃度の面内分布測定から水素イオン注入領域と非注入領域とを区別することができるものとする。水素イオン注入をしていないエピタキシャル成長直後の発光層(非注入領域)の水素濃度は、2.0×1017atoms/cm以下であることが好ましい。
 以下、図面を参照して本発明に従う点光源型発光ダイオード及びその製造方法を順次説明する。なお、同一の構成要素には原則として同一の参照番号を付して、重複する説明を省略する。各図において、説明の便宜上、基板及び各層の縦横の比率を実際の比率から誇張して示している。また、本明細書でいう「同じ」とは、数学的な意味での厳密な等しさを意味するものではなく、製造工程上生ずる不可避な誤差をはじめ、本発明の作用効果を奏する範囲で許容される誤差を含むことを意味することは当然に理解される。
(点光源型発光ダイオード)
 図1を参照して、本発明の点光源型発光ダイオード100の一例を説明する。点光源型発光ダイオード100は、基板10と、基板10上のn型クラッド層31と、n型クラッド層31上の発光層35と、発光層35上のp型クラッド層37と、p型クラッド層37上に設けられ、p型クラッド層37の一部を露出させる開口部42Aを有するn型電流狭窄層42と、p型クラッド層37の露出面37A上及びn型電流狭窄層42上に設けられるp型コンタクト層60と、p型コンタクト層60上に設けられ、開口部42Aと中心を同じくする光放出窓92を有するp型電極91と、を少なくとも備える。
 なお、基板10上の各層の間には、図1には図示しない上記以外の層を有していて良い。例えば、後述する初期成長層、n型DBR層、スペーサ層やp型DBR層などを有していても良い。また、図示しないn型電極を有していても良い。
 そして、点光源型発光ダイオード100における光放出窓92は、開口部42Aの開口幅A以上の大きさの窓開口幅Cを具える(したがって、C≧Aである)。また、点光源型発光ダイオード100は、厚さ方向においてp型コンタクト層60から発光層35に渡る水素イオン注入部80を有する。この水素イオン注入部80は、発光層35を水素イオン注入領域33と非注入領域34とに区分する。発光層35は水素イオン注入領域33と、非注入領域34とを有する。このうち、非注入領域34は、光放出窓92と中心を同じくして光放出窓92の窓開口幅Cよりも大きい領域幅Bを具える(したがって、B>Cである)。また、水素イオン注入領域33は、非注入領域34を取り囲む。開口部42Aの開口幅A、非注入領域34の領域幅B及び光放出窓92の窓開口幅Cの関係を整理すると、A≦C<Bである。
 ここで、開口部42A、光放出窓92、非注入領域34を俯瞰した形状は、円形、楕円形、多角形や角の丸い矩形とすることができ、それぞれ中心(幾何中心)を同じくする。また、開口部42A、光放出窓92、非注入領域34それぞれの形状は相似形であることが好ましい。各幅であるA、B及びCの値は、円形の場合は直径、楕円形の場合は長径、多角形や角の丸い矩形の場合は外接円の直径を意味するものとする。
 点光源型発光ダイオード100は上記構成を有し、特に発光層35において水素イオン注入領域33を構成する水素イオン注入部80を有するため、発光パターンにおける光放出窓92以外からの発光を低減することができる。各幅がA≦C<Bの関係であると、電流は図1において領域幅B及び窓開口幅Cに囲まれるp型電極91の内周近傍から、p型コンタクト層60を介して開口幅Aのn型電流狭窄層42の開口部42Aを通って発光層35に向かって流れ、発光層35における開口部42A直下の領域が実質的な発光領域となる。n型電流狭窄層42が電流狭窄の効果を担っているため、水素イオン注入部80には、前掲の特許文献1に開示されるような電流狭窄の効果はない。すなわち、水素イオン注入の目的が電流狭窄の効果ならば、発光層35と光放出窓92を有するp型電極91の間にn型電流狭窄層42を有する本発明の構成において水素イオン注入部80を設ける必要性はなかった。水素イオン注入部80が発光パターンにおける光放出窓92以外からの発光を低減させる理由は不明であるが、敢えて水素イオン注入部80を設けることで、光放出窓92以外からの発光を有効に低減することができることが分かった。
 上述の発光パターンにおける光放出窓以外からの発光の低減効果をより確実に得るため、発光層35における水素イオン注入領域33の水素濃度が非注入領域34の水素濃度の3.0倍以上であり、かつ、水素イオン注入領域33の水素濃度が5.0×1017atoms/cm以上であることが好ましく、6.0×1017atoms/cm以上であることがより好ましい。さらに、水素イオン注入領域33における水素濃度が2.0×1019atoms/cm以下であることが好ましい。
 以下、図2~図5を参照しつつ、上記した点光源型発光ダイオード100が含んで好ましい構成をさらに備える点光源型発光ダイオード200の製造方法の実施形態の一例の説明を通じて、本発明に従う点光源型発光ダイオードに適用可能な各構成を説明する。数字二桁の符号及びそれに付随する符号は図1~図5において共通する構成を参照し、重複する説明を省略する。
(点光源型発光ダイオードの製造方法)
 点光源型発光ダイオード200の製造方法は、基板10上に、n型クラッド層31、発光層35、p型クラッド層37及びn型半導体層41を順次形成する半導体層形成工程(図2のS10及びS20参照)と、n型半導体層41に開口幅Aの開口部42Aを形成して、p型クラッド層37の一部を露出させるn型電流狭窄層42を形成するn型電流狭窄層形成工程(図2のS30参照)と、p型クラッド層37の露出面37A上及びn型電流狭窄層42上にp型コンタクト層60を形成するp型コンタクト層形成工程(図3のS50参照)と、p型コンタクト層60上に、開口部42Aと中心を同じくし、マスク幅Bのマスク70を形成するマスク形成工程(図3のS60参照)と、p型コンタクト層60の表面から水素イオンを注入して、厚さ方向においてp型コンタクト層60から発光層35に渡る水素イオン注入部80を形成する水素イオン注入工程(図4のS70及びS80参照)と、マスク70を除去し、次いでp型コンタクト層60の上に、開口部42Aと中心を同じくし、開口部42Aの開口幅A以上、かつ、マスク幅Bよりも小さい窓開口幅Cを具える光放出窓92を有するp型電極91を形成するp型電極形成工程(図5のS90、S100参照)と、を少なくとも含む。図2のS20に図示したように、半導体層形成工程において、基板10とn型クラッド層31との間に、初期成長層21及びn型DBR(Distributed Bragg Reflector)層23をそれぞれ単独又は両方形成することも好ましい。また、図3のS40及びS50に図示したように、点光源型発光ダイオード200の製造方法は、p型クラッド層37の露出面37A及びn型電流狭窄層42と、p型コンタクト層60との間にp型DBR層50を形成するp型DBR層形成工程を含むことも好ましい。以下、各工程及び各構成の詳細を順次説明する。
<半導体層形成工程>
 図2のS10及びS20を参照する。半導体層形成工程において、基板10上に、初期成長層21、n型DBR層23、n型クラッド層31、発光層35、p型クラッド層37及びn型半導体層41を順次形成する。なお、初期成長層21及びn型DBR層23の形成を省略してもよい。
 本工程において基板10上に形成する各層はIII-V族化合物半導体層である。これら各層は、例えば、有機金属気相成長(MOCVD:Metal Organic Chemical Vapor Deposition)法、分子線エピタキシ(MBE:Molecular Beam Epitaxy)法、スパッタ法などの公知の薄膜成長方法により形成することができ、本工程より後に形成するIII-V族化合物半導体層についても同様である。AlInGaAsP系の半導体層を形成するのであれば、例えば、Al源としてトリメチルアルミニウム(TMA)、In源としてトリメチルインジウム(TMIn)、Ga源としてトリメチルガリウム(TMGa)、As源としてアルシン(AsH)、P源としてホスフィン(PH)などを所定の混合比で用い、これらの原料ガスを、キャリアガスを用いつつ気相成長させることにより、成長時間に応じてAlInGaAsP系の半導体層を所望の膜厚でエピタキシャル成長させることができる。さらにV族元素としてSbを用いる場合、Sb源としてTMSb(トリメチルアンチモン)などを用いればよい。また、各半導体層をp型又はn型にドーパントする場合は、所望に応じp型ドーパント(Zn、C、Mg等)又はn型ドーパント(Te、Si、Se等)を構成元素に含むドーパント源のガスを併用して半導体層を成長させればよい。また、各層の組成は結晶成長方向に一定であってもよいし、結晶成長方向に組成傾斜させてもよいし、組成を変調(連続的でない変化を含む)させてもよい。
<<基板>>
 まず、基板10を用意する。基板10はその上に成長させる半導体層の組成及び格子定数に応じてGaAs基板、InP基板、GaSb基板、InSb基板等から適宜採用すればよい。本実施形態では基板10上にはn型クラッド層31を形成するため、n型の半導体基板を用いることが好ましいが、基板10の導電型はアンドープであってもよいし、p型であってもよい。以下では説明の便宜上、基板10がGaAs基板である場合を例に、各半導体層の組成を説明する。
<<初期成長層>>
 基板10上に初期成長層21を形成することが好ましい。初期成長層21は基板10の基板表面の酸化膜及び汚染などの影響を防止することができるし、その上方に形成する半導体層との間の格子歪みを緩衝させるためのバッファ層としても利用することができる。例えば基板10がn型のGaAs基板である場合は、初期成長層21をn型GaAs層としてもよく、基板10と格子整合する範囲でIII族元素及びV族元素の組成比を調整してもよい。初期成長層21は、単層であってもよいし、あるいは、他層との複合層(例えば超格子層)であってもよい。初期成長層21の膜厚は任意であり、例えば10nm~100nmとすることができる。
<<n型DBR層>>
 基板10上にn型DBR層23を形成することが好ましい。図2のS20では、初期成長層21上にn型DBR層23を形成した例を示している。n型DBR層23は低屈折層及び高屈折層を繰り返し積層することで形成することができる反射層である。n型DBR層23を構成する低屈折率層及び高低屈折率層の各層の膜厚は、それぞれの屈折率及び発光波長に応じて適宜定めればよい。積層構造の一端を低屈折率層とし、高低屈折率層及び低屈折率層の繰り返し構造を設けて他端を低屈折率層としてもよい。あるいはその逆に両端を高低屈折率層としてもよい。この場合、低屈折率層及び高低屈折率層の組数をn(nは自然数である)と表記し、n.5組であると称する。低屈折率層及び高低屈折率層の各層の組数は5~40組程度とすればよく、層膜厚を500nm~4000nm程度とすることができる。低屈折率層及び高低屈折率層の組成は任意であり、例えば組成比の異なる2種のn型AlGaAs層を用いればよい。
<<n型クラッド層>>
 基板10上にn型クラッド層31を形成する。図2のS20では、n型DBR層23上n型クラッド層31を形成した例を示している。発光層35のIII-V族化合物半導体の組成に応じてn型クラッド層31を構成するIII-V族化合物半導体の組成を適宜定めればよく、n型AlInPを例示することができる。n型クラッド層31は単層構造であってもよいし、複数層が積層された複合層であっても構わない。n型クラッド層31の膜厚は特に制限されず、例えば50nm~500nmとすることができる。
<<発光層>>
 n型クラッド層31上に発光層35を形成する。発光層35は単層構造であってもよいし、井戸層と障壁層を積層した単一量子井戸構造(SQW)であってもよいし、多重量子井戸(MQW)構造であってもよい。結晶欠陥抑制による光出力向上のため、発光層35が量子井戸構造を有することがより好ましい。発光波長は例えば580~4000nmの範囲とすることができ、発光波長を630~1100nmの範囲とすることが好ましい。
 発光層35はIII-V族化合物半導体で構成することができ、以下では発光層35のIII-V族化合物半導体の組成を(Ina1Gab1Alc1)(Px1Asy1Sbz1);c=1-a-b,z=1-x-y,0≦a≦1,0≦b≦1,0≦c≦1,0≦x≦1,0≦y≦1,0≦z≦1と表記する。例えば発光中心波長を630~1100nmとする場合、発光層(井戸層及び障壁層を含む形態の場合は各層)におけるInの組成比aを0.0~1.0、Gaの組成比bを0.0~1.0、Alの組成比cを0.0~0.5、Pの組成比xを0.0~1.0、Asの組成比yを0.0~1.0、Sbの組成比zを0.0~0.5とすればよい。例えば、井戸層をInGaP、障壁層をAlGaInPによって構成することができる。
 発光層35の膜厚は特に制限されず、例えば10~500nmとすることができる。また、量子井戸構造の井戸層の膜厚を3nm~17nmとすることができ、障壁層の膜厚を5~20nmとすることができる。多重量子量井戸構造とする場合の組数も特に制限されず、5~50組程度とすればよく、多重量子井戸構造の両端を障壁層としてもよい。
<<p型クラッド層>>
 発光層35上にp型クラッド層37を形成する。発光層35のIII-V族化合物半導体の組成に応じてp型クラッド層37を構成するIII-V族化合物半導体の組成を適宜定めればよく、p型AlInPを例示することができる。p型クラッド層37は単層構造であってもよいし、複数層が積層された複合層であっても構わない。p型クラッド層37の膜厚は特に制限されず、例えば50nm~500nmとすることができる。
<<n型半導体層>>
 p型クラッド層37上にn型半導体層41を形成する。n型半導体層41は、次工程において開口部42Aを形成した後、n型電流狭窄層42となる。発光層35のIII-V族化合物半導体の組成に応じてn型半導体層41を構成するIII-V族化合物半導体の組成を適宜定めればよく、n型AlInPを例示することができる。n型半導体層41の膜厚は、次工程において開口部42Aを形成できる限りは特に制限されず、例えば10nm~200nmとすることができる。
<<スペーサ層>>
 なお、図示しないが、アンドープのスペーサ層を発光層35とn型クラッド層31との間及び発光層35とp型クラッド層37との間のそれぞれ一方又は両方に形成してもよい。スペーサ層を設けることで、不要なドーパントの拡散を防止することができる。スペーサ層の膜厚は制限されないが、例えば5~500nmとすればよい。
<n型電流狭窄層形成工程>
 図2のS30を参照する。半導体層形成工程に続き、n型半導体層41に開口幅Aの開口部42Aを形成してp型クラッド層37の一部を露出させるn型電流狭窄層42を形成する。n型半導体層41の表面にマスクを形成してから、n型半導体層41をエッチングするなどして、p型クラッド層37に露出面37Aを設ければよい。開口部42Aの開口幅Aは特に制限されず用途に応じて適宜定めればよく、例えば10μm~300μmとすることができる。なお、上記開口幅Aは、露出面37Aの露出幅に相当する。開口部42Aは平面視して円形に形成することが好ましいが、特に制限されず、楕円形であってもよいし、多角形や角の丸い矩形であっても構わない。なお、露出させるn型電流狭窄層42の側面は、垂直面であってもメサ(傾斜面)であっても良い。図2は傾斜面が成長方向を向く順メサを例示したものであるが、メサは順メサであっても逆メサであってもよい。なお、メサがある場合には、開口幅Aは開口部42Aを俯瞰したときの最小形状について測るものとする。
<p型DBR層形成工程>
 図3のS40を参照する。p型クラッド層37の露出面37A及びn型電流狭窄層42上にp型DBR層50を形成する。p型DBR層50は必要性に応じて省略してもよい。p型DBR層50は低屈折層及び高屈折層を繰り返し積層することで形成することができる反射層であって、n型DBR層23とドーパントが異なること以外は、上記のp型DBR層50とは積層構造、組数及び組成の調整可能範囲は同様であり、DBR構造を形成できる範囲で適宜定めればよい。発光層とp型DBR層50およびn型DBR層23との間で共振器を得ることもできる。光放出のための反射力調整に適宜組数などを定めることで、垂直共振器型の発光ダイオードとしてもよい。
<p型コンタクト層形成工程>
 図3のS50を参照する。p型クラッド層37の露出面37A上及びn型電流狭窄層42上にp型コンタクト層60を形成する。図3のS50では、p型DBR層50上にp型コンタクト層60を形成した。p型コンタクト層60は、その上に形成されるp型電極91とオーミックコンタクトを取るp型半導体層である。発光層35のIII-V族化合物半導体の組成に応じてp型コンタクト層60を構成するIII-V族化合物半導体の組成を適宜定めればよく、p型GaAsを例示することができる。p型コンタクト層60は単層構造であってもよいし、複数層が積層された複合層であっても構わない。p型コンタクト層60の膜厚は特に制限されず、例えば10nm~100nmとすることができる。
<マスク形成工程>
 図3のS60を参照する。p型コンタクト層60上に、開口部42Aと中心を同じくし、マスク幅Bのマスク70を形成する。感光性樹脂などを用いてマスク70を形成すればよい。マスク幅Bは、次工程によって形成される水素イオン注入部の面内方向における形成位置を決定する。そのため、マスク幅Bを開口部42Aの開口幅A及び後に形成する窓開口幅Cを具える光放出窓92よりも大きくする。なお、露光機において開口部42Aを確認することができるため、マスク形成時のフォトマスクの位置決めは容易である。形成するマスクの厚みは任意であり、例えば1μm~5μmとすればよい。また、マスク幅Bが開口部42Aの開口幅A及び後に形成する窓開口幅Cを具える光放出窓92よりも大きければ、マスク幅Bの大きさは制限されない。なお、マスク幅Bの上限の目安としては、チップサイズを超えることはなく、電極幅やアライメント幅を考慮すると、例えば、C+5μm≦B<チップサイズ-5μmの範囲とすることができる。発光パターンにおける光放出窓92以外からの発光を確実に低減するため、水素イオン注入領域は、チップサイズの外周から5μm以上とすることが好ましく、10μm以上とすることがより好ましい。
<水素イオン注入工程>
 図4のS70及びS80を参照する。上述したマスク70を形成した後、p型コンタクト層60の表面から水素イオンを注入して、厚さ方向においてp型コンタクト層60から発光層35に渡る水素イオン注入部80を形成する。水素イオンは格子の隙間を直進して通過するので半導体層などの規則性のある原子配列には深く侵入する一方、原子配列がランダムなマスク70を通過することができない。そのため、水素イオン注入部80は面内方向においてマスク70が形成されていない部分に形成される。水素イオン注入部80は厚さ方向においてp型コンタクト層60から発光層35に渡るため、この水素イオン注入部80は、発光層35を水素イオン注入領域33と非注入領域34とに区分する。そして、水素イオンは直進して途中で曲がらないので、非注入領域34は、開口部42Aと中心を同じくしてマスク幅Bと幅が一致する領域幅Bを具え、水素イオン注入領域33は、非注入領域34を取り囲むこととなる。なお、図示したように、水素イオン注入部80は厚さ方向において、発光層35を超えてn型クラッド層31以降にまで及んでもよい。
 発光パターンにおける光放出窓以外からの発光を確実に低減するためには、本工程における水素イオンのドーズ量は1.0×1013atoms/cm以上であることが好ましく、1.9×1013atoms/cm以上であることがより好ましい。また、水素イオンの注入に伴うマスク70の変質を防止するためには、マスク70水素イオンのドーズ量を2.0×1015atoms/cm以下とすることが好ましく、1.0×1015atoms/cm以下とすることがより好ましい。ドーズ量は、水素イオン注入時の照射時間などを適宜調整すればよい。水素イオンの加速電圧は水素イオンの注入深さに影響するため、水素イオン注入部80の厚さ方向の形成範囲及び各層の膜厚に応じて適宜定めればよく、例えば10keV~300keVとすればよい。
<p型電極形成工程>
 図5のS90及びS100を参照する。水素イオン注入部80を形成した後、マスク70を除去する(S90)。次いでp型コンタクト層60の上に、開口部42Aと中心を同じくし、開口部42Aの開口幅A以上、かつ、マスク幅Bよりも小さい窓開口幅Cを具える光放出窓92を有するp型電極91を形成する(S100)。p型電極91はフォトレジストなどを形成しつつ、スパッタ法、電子ビーム蒸着法、抵抗加熱法などにより形成すればよい。図5のS100においてp型電極91は開口部42Aに伴い形成されるp型コンタクト層60の凹部を取り囲んで形成されているが、上述の開口幅A、マスク幅B及び窓開口幅Cの関係を満足する限りは、形成位置はこの図の例に制限されない。窓開口幅Cは、開口部42Aの開口幅A以上、かつ、マスク幅Bよりも小さければ特に制限されないが、例えば10μm~310μmとすることができる。
 また、必要に応じてn型電極99を形成してもよい。図5のS100では基板10の裏面にn型電極99を形成しているが、これは一例にすぎず、基板10の導電型等に応じて形成位置を適宜設定すればよい。n型電極99もスパッタ法などにより形成することができる。
 以上説明した点光源型発光ダイオード200ではマスク70のマスク幅Bを利用して水素イオン注入部80を形成しており、比較的簡易に水素イオン注入部80を形成することができる。そして、こうして得られた点光源型発光ダイオードは、発光パターンにおける光放出窓92以外からの発光を低減することができる。
 なお、上述した点光源型発光ダイオード200の製造方法の実施形態は、点光源型発光ダイオード100を作製するための一例にすぎない。点光源型発光ダイオード100を作製するためには、その構造を具現化できさえすれば、上述した点光源型発光ダイオード200の製造方法の実施形態以外の手法を適用しても構わない。
 以下、実施例を用いて本発明をさらに詳細に説明するが、本発明は以下の実施例に何ら限定されるものではない。
(実施例1)
 図2~図5を参照する順序により、実施例1に係る点光源型発光ダイオードを作製した。具体的には以下のとおりである。
 n型GaAs基板(基板厚:350μm)の(100)面上に、n型GaAs層(膜厚75nm、初期成長層)を形成した。次に、ともにSeドープのn型Al0.45Ga0.55As層(膜厚48nm)とn型AlAs層(膜厚53nm)とを20.5組(両端がn型Al0.45Ga0.55As層)積層したn型DBR層(総膜厚2068nm)を形成した。次いで、n型DBR層上に、Seドープのn型Al0.5In0.5Pクラッド層(膜厚148nm)と、ともにアンドープのIn0.5Ga0.5P層(膜厚8nm、井戸層)及びAl0.35Ga0.15In0.5P層(膜厚5nm、障壁層)を含む主発光波長650nmの三層量子井戸(3QW)構造の発光層(合計膜厚43nm)と、Mgドープのp型Al0.5In0.5P層(膜厚250nm、p型クラッド層)と、をMOCVD法により順次形成した。
 次に、p型クラッド層上にn型Al0.5In0.5P層(膜厚20nm)を形成し、レジストパターン形成してエッチングしてp型クラッド層の一部を露出させて開口幅80μm(直径80μm)の円形開口部を形成し、n型電流狭窄層を得た。
 引き続き、p型クラッド層の露出面上及びn型電流狭窄層上に、ともにCドープのp型Al0.45Ga0.55As層(膜厚50nm)とp型Al0.95Ga0.05As層(膜厚63nm)とを10.5組(両端がp型Al0.45Ga0.55As層)積層したp型DBR層(総膜厚1180nm)を形成した。
 さらに、p型DBR層上にZnドープのp型GaAs層(膜厚20nm)からなるp型コンタクト層を形成した。
 次いで、p型コンタクト層上に、n型電流狭窄層の開口部の同心軸上にマスク幅180μm(直径180μm)の円形レジストマスクを形成した。そして、p型コンタクト層の表面から水素イオンを加速電圧145keV、ドーズ量2.0×1014atoms/cmで注入して水素イオン注入部を形成した。水素イオン注入部は厚み方向において、p型コンタクト層からn形クラッド層に及んだ。
 さらに、マスクを除去してからp型コンタクト層の上に、n型電流狭窄層の開口部の同心軸上に窓開口幅160μm(直径160μm)の光放出窓を有するp型電極(電極材料AuZn合金)を200μm×350μmの大きさで形成した。その後、幅10μmはみ出しながらp型電極を完全に覆うように220μm×370μmの範囲にマスクを行い、マスク領域以外の基板上の半導体層をエッチングにより除去した。また、n型GaAs基板の裏面の全面にn型電極(電極材料AuGe合金)を形成した。オーミックコンタクト形成のための熱処理を行った後、チップサイズ(250μm×400μm)となるように半導体層を除去した位置の基板をダイシングによって切断し、個々のチップに分離した。得られたチップ上面のpコンタクト層の外周から幅10μmはp型電極に覆われていない。こうして、実施例1に係る点光源型発光ダイオードを作製した。
(実施例2)
 実施例1ではイオン注入のためのマスク幅を180μm、光放出窓の窓開口幅を160μm、水素イオンドーズ量を2.0×1014atoms/cmとしたところ、マスク幅を100μm、窓開口幅を80μmとし、水素イオンドーズ量を2.0×1013atoms/cmに変えた以外は実施例1と同様にして、実施例2に係る点光源型発光ダイオードを作製した。
(比較例1)
 実施例1では水素イオン注入部を形成したところ、これを形成しなかった以外は実施例1と同様にして、比較例1に係る点光源型発光ダイオードを作製した。
(比較例2)
 実施例2では水素イオン注入部を形成したところ、これを形成しなかった以外は実施例2と同様にして、比較例2に係る点光源型発光ダイオードを作製した。
<水素濃度の評価>
 実施例1における水素イオン注入部の深さ方向の水素濃度をSIMSにより測定した。結果を図6のグラフに示す。図6の横軸は相対深さであり、p型クラッド層、発光層及びn型クラッド層に相当する深さ範囲に各半導体層の注記を付した。さらに、実施例2及び比較例1、2についても実施例1と同様の位置の水素濃度をSIMSにより測定した。実施例2及び比較例1の結果を図6のグラフに併せて示す。なお、水素イオンを注入していない比較例1及び比較例2の発光層の水素濃度は2.0×1017atoms/cmであった。発光層の水素濃度が同じであるため、図6での比較例2のグラフは割愛した。実施例1では発光層の水素イオン注入領域における水素濃度が5.0×1018atoms/cmであり、実施例2では発光層の水素イオン注入領域における水素濃度が6.0×1017atoms/cmであった。また、図6とは別に、実施例1、2の発光層における水素イオンの非注入領域における水素濃度をSIMSにより測定したところ、実施例1、2の非注入領域における水素濃度は、水素イオン注入を行わなかった比較例1、2の水素濃度と同程度であった。
<発光強度分布の評価>
 実施例1に係る点光源型発光ダイオードをパルス駆動(パルス順電流Ifp:300mA、周波数:10kHz、デューティ比:1.0%)で動作させた。このときの開口部を含む横断面の発光強度分布を図7に示す。また、発光を強調するため、DC電流1mAにして実施例1に係る点光源型発光ダイオードを発光させたときの写真を撮影した。撮影写真を図7のグラフ中の相対位置と対応させて、図7に併せて示す。なお、図7のグラフにおける縦軸は発光強度(相対強度)を示し、横軸は横断面の任意の相対位置を示す。同様に、比較例1に係る点光源型発光ダイオードについても発光強度分布を測定するとともに、発光時に写真を撮影した。結果を図8に示す。さらに、実施例2及び比較例2については、DC電流1mAにしたときの発光時の発光写真を撮影した。結果を図9、図10のそれぞれに示す。
 図7~図10を対比すると、実施例1、2では開口部からほとんどの発光が出射されている一方、比較例1、2では開口部以外(p電極に覆われていないpコンタクト層の外周)からも僅かに光が漏れていることが確認された。水素イオン注入部を設けることにより、点光源型発光ダイオードにおいて発光パターンにおける光放出窓以外からの発光を低減できることが確認された。
 本発明によれば、製造工程を簡略化でき、かつ、発光パターンにおける光放出窓以外からの発光を低減できる点光源型発光ダイオード及びその製造方法を提供することができる。
 10  基板
 21  バッファ層
 23  n型DBR層
 31  n型クラッド層
 33  水素イオン注入領域
 34  非注入領域
 35  発光層
 37  p型クラッド層
 37A p型クラッド層の露出面
 41  n型電流狭窄層
 42  n型電流狭窄層
 42A 開口部
 50  p型DBR層
 60  p型コンタクト層
 70  マスク
 80  水素イオン注入部
 91  p型電極
 92  光放出窓
 99  n型電極
100  点光源発光ダイオード
200  点光源発光ダイオード

Claims (6)

  1.  基板と、
     前記基板上のn型クラッド層と、
     前記n型クラッド層上の発光層と、
     前記発光層上のp型クラッド層と、
     前記p型クラッド層上に設けられ、前記p型クラッド層の一部を露出させる開口部を有するn型電流狭窄層と、
     前記p型クラッド層の露出面上及び前記n型電流狭窄層上に設けられるp型コンタクト層と、
     前記p型コンタクト層上に設けられ、前記開口部と中心を同じくする光放出窓を有するp型電極と、を備える点光源型発光ダイオードであって、
     前記光放出窓の窓開口幅は、前記開口部の開口幅以上の大きさであり、
     前記点光源型発光ダイオードは、厚さ方向において前記p型コンタクト層から前記発光層に渡る水素イオン注入部を有し、
     前記発光層は、前記光放出窓と中心を同じくして前記光放出窓の窓開口幅よりも大きい領域幅を具える非注入領域と、前記非注入領域を取り囲む水素イオン注入領域とを有することを特徴とする点光源型発光ダイオード。
  2.  前記発光層における前記水素イオン注入領域の水素濃度が前記非注入領域の水素濃度の3.0倍以上であり、かつ、前記水素イオン注入領域の水素濃度が5.0×1017atoms/cm以上である、請求項1に記載の点光源型発光ダイオード。
  3.  前記水素イオン注入領域における水素濃度が2.0×1019atoms/cm以下である、請求項2に記載の点光源型発光ダイオード。
  4.  基板上に、n型クラッド層、発光層、p型クラッド層及びn型半導体層を順次形成する半導体層形成工程と、
     前記n型半導体層に開口幅Aの開口部を形成して、前記p型クラッド層の一部を露出させるn型電流狭窄層を形成するn型電流狭窄層形成工程と、
     前記p型クラッド層の露出面上及び前記n型電流狭窄層上にp型コンタクト層を形成するp型コンタクト層形成工程と、
     前記p型コンタクト層上に、前記開口部と中心を同じくし、マスク幅Bのマスクを形成するマスク形成工程と、
     前記p型コンタクト層の表面から水素イオンを注入して、厚さ方向において前記p型コンタクト層から前記発光層に渡る水素イオン注入部を形成する水素イオン注入工程と、
     前記マスクを除去し、次いで前記p型コンタクト層の上に、前記開口部と中心を同じくし、前記開口部の開口幅A以上、かつ、前記マスク幅Bよりも小さい窓開口幅Cを具える光放出窓を有するp型電極を形成するp型電極形成工程と、
    を含むことを特徴とする点光源型発光ダイオードの製造方法。
  5.  前記水素イオン注入工程における水素イオンのドーズ量が1.0×1013atoms/cm以上である、請求項4に記載の点光源型発光ダイオードの製造方法。
  6.  前記水素イオン注入工程における水素イオンのドーズ量が2.0×1015atoms/cm以下である、請求項5に記載の点光源型発光ダイオードの製造方法。
     
     
PCT/JP2020/037477 2019-10-02 2020-10-01 点光源型発光ダイオード及びその製造方法 WO2021066116A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020227010420A KR20220077910A (ko) 2019-10-02 2020-10-01 점광원형 발광 다이오드 및 그 제조 방법
CN202080069775.8A CN114503291A (zh) 2019-10-02 2020-10-01 点光源型发光二极管及其制造方法
US17/754,266 US12095004B2 (en) 2019-10-02 2020-10-01 Point source light-emitting diode and method of producing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019182352A JP7027385B2 (ja) 2019-10-02 2019-10-02 点光源型発光ダイオード及びその製造方法
JP2019-182352 2019-10-02

Publications (1)

Publication Number Publication Date
WO2021066116A1 true WO2021066116A1 (ja) 2021-04-08

Family

ID=75271147

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/037477 WO2021066116A1 (ja) 2019-10-02 2020-10-01 点光源型発光ダイオード及びその製造方法

Country Status (6)

Country Link
US (1) US12095004B2 (ja)
JP (1) JP7027385B2 (ja)
KR (1) KR20220077910A (ja)
CN (1) CN114503291A (ja)
TW (1) TWI734623B (ja)
WO (1) WO2021066116A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61166186A (ja) * 1985-01-18 1986-07-26 Oki Electric Ind Co Ltd 半導体光素子
JPH1126810A (ja) * 1997-07-02 1999-01-29 Sharp Corp 半導体発光素子
JP2002111051A (ja) * 2000-09-29 2002-04-12 Toshiba Corp 垂直共振器型半導体発光素子
JP2002124699A (ja) * 2000-10-13 2002-04-26 Sharp Corp 発光素子およびその製造方法
JP2002280602A (ja) * 2001-03-21 2002-09-27 Toshiba Corp 垂直共振器型発光ダイオード及びその発光ダイオードを用いた光送信モジュール
US20070153857A1 (en) * 2005-12-15 2007-07-05 Palo Alto Research Center Incorporated High power semiconductor device to output light with low-absorbtive facet window

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3421515B2 (ja) * 1996-09-20 2003-06-30 株式会社東芝 面型光半導体素子及びその製造方法
JPH1174616A (ja) * 1997-08-28 1999-03-16 Sony Corp 半導体発光装置とその製造方法
JP2002111054A (ja) 2000-09-29 2002-04-12 Toshiba Corp 垂直共振器型半導体発光素子及び垂直共振器型半導体発光装置
JP4184769B2 (ja) 2002-11-26 2008-11-19 株式会社東芝 面発光型半導体レーザ及びその製造方法
JP2005019801A (ja) 2003-06-27 2005-01-20 Sony Corp 水蒸気酸化方法
JP2007042943A (ja) * 2005-08-04 2007-02-15 Sumitomo Electric Ind Ltd 半導体光素子
JP4484886B2 (ja) 2007-01-23 2010-06-16 シャープ株式会社 積層型光電変換装置の製造方法
JP4948451B2 (ja) 2008-03-07 2012-06-06 古河電気工業株式会社 面発光レーザ素子および面発光レーザ素子の製造方法
JP6208051B2 (ja) 2014-03-06 2017-10-04 大同特殊鋼株式会社 点光源発光ダイオード
JP6591758B2 (ja) 2015-02-16 2019-10-16 旭化成エレクトロニクス株式会社 赤外線発光素子及び赤外線発光素子の製造方法
JP2017112292A (ja) 2015-12-18 2017-06-22 キヤノン株式会社 発光素子及びそれを有する光干渉断層計

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61166186A (ja) * 1985-01-18 1986-07-26 Oki Electric Ind Co Ltd 半導体光素子
JPH1126810A (ja) * 1997-07-02 1999-01-29 Sharp Corp 半導体発光素子
JP2002111051A (ja) * 2000-09-29 2002-04-12 Toshiba Corp 垂直共振器型半導体発光素子
JP2002124699A (ja) * 2000-10-13 2002-04-26 Sharp Corp 発光素子およびその製造方法
JP2002280602A (ja) * 2001-03-21 2002-09-27 Toshiba Corp 垂直共振器型発光ダイオード及びその発光ダイオードを用いた光送信モジュール
US20070153857A1 (en) * 2005-12-15 2007-07-05 Palo Alto Research Center Incorporated High power semiconductor device to output light with low-absorbtive facet window

Also Published As

Publication number Publication date
US20220328717A1 (en) 2022-10-13
US12095004B2 (en) 2024-09-17
JP2021057557A (ja) 2021-04-08
TW202115925A (zh) 2021-04-16
TWI734623B (zh) 2021-07-21
CN114503291A (zh) 2022-05-13
KR20220077910A (ko) 2022-06-09
JP7027385B2 (ja) 2022-03-01

Similar Documents

Publication Publication Date Title
US6841409B2 (en) Group III-V compound semiconductor and group III-V compound semiconductor device using the same
JP6947386B2 (ja) 半導体発光素子および半導体発光素子の製造方法
US7608859B2 (en) Semiconductor light-emitting device with transparent conductive film
EP0911887A2 (en) Light-emitting diode device and method for fabricating the same
US20150270445A1 (en) Semiconductor light emitting device having a p-type semiconductor layer with a p-type impurity
US8796711B2 (en) Light-emitting element
JP2011082233A (ja) 発光素子
US11942762B2 (en) Surface-emitting laser device and light emitting device including the same
WO2020196411A1 (ja) 点光源型発光ダイオード及びその製造方法
US7230281B2 (en) Semiconductor light emitting device
US6777257B2 (en) Method of fabricating a light emitting device and light emitting device
US9583673B2 (en) Semiconductor light emitting device including GaAs substrate
KR100679235B1 (ko) 반도체 발광소자 및 그 제조방법
WO2021066116A1 (ja) 点光源型発光ダイオード及びその製造方法
JPH07176788A (ja) 発光ダイオード
US5862166A (en) Semiconductor laser with light emitting slant plane and method of manufacturing the same
JP6858899B2 (ja) 点光源型発光ダイオード及びその製造方法
JPH0715035A (ja) 半導体発光装置
JP3146501B2 (ja) 半導体レーザ及びその製造方法
JP2006210430A (ja) 半導体レーザ
JP2006216707A (ja) 半導体発光素子の製造方法
DE112021001065T5 (de) Lichtemissionsvorrichtung und verfahren zum herstellen einer lichtemissionsvorrichtung
JP2000150954A (ja) 半導体発光素子
JP2009004477A (ja) 半導体発光素子
JP2012190905A (ja) 半導体発光素子の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20872425

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20872425

Country of ref document: EP

Kind code of ref document: A1