JP2009004477A - 半導体発光素子 - Google Patents

半導体発光素子 Download PDF

Info

Publication number
JP2009004477A
JP2009004477A JP2007162402A JP2007162402A JP2009004477A JP 2009004477 A JP2009004477 A JP 2009004477A JP 2007162402 A JP2007162402 A JP 2007162402A JP 2007162402 A JP2007162402 A JP 2007162402A JP 2009004477 A JP2009004477 A JP 2009004477A
Authority
JP
Japan
Prior art keywords
film
gaasp
layer
semiconductor light
contact layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007162402A
Other languages
English (en)
Inventor
Toshihide Izumitani
敏英 泉谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2007162402A priority Critical patent/JP2009004477A/ja
Publication of JP2009004477A publication Critical patent/JP2009004477A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Led Devices (AREA)

Abstract

【課題】光出力の高い半導体発光素子を提供する。
【解決手段】pn接合を有するInGaAlP系の活性層16と、活性層16上に形成され、活性層16に流れる電流を広げるための電流拡散層17と、電流拡散層17上に形成され、膜厚が5nm乃至100nmのGaAs1−x(0.4≦x<1.0)膜を有するコンタクト層18と、コンタクト層18上に形成され、活性層16に通電するための電極19とを具備する。
【選択図】図1

Description

本発明は、半導体発光素子に関する。
GaAsよりバンドギャップエネルギーの大きい半導体材料をコンタクト層に用いる半導体発光素子がある(例えば特許文献1参照。)。
特許文献1に開示された半導体発光素子は、GaP、GaAsP、InGaP、AlGaInP、AlGaAsからなる群から選択される少なくとも1つの材料をコンタクト層としている。
然しながら、特許文献1に開示された半導体発光素子は、コンタクト層となりうる一連の半導体材料を羅列し、そのひとつとしてGaAsPを記載しているにすぎない。
即ち、コンタクト層として使える品質のGaAsP膜、例えばP(燐)の組成比、膜厚、結晶欠陥レベルや、GaAsと格子整合しないGaAsP膜を電流拡散層上に形成する方法などについては何ら開示していない。
特開2004−158823号公報
本発明は、光出力の高い半導体発光素子を提供する。
本発明の一態様の半導体発光素子は、pn接合を有するInGaAlP系の活性層と、前記活性層上に形成され、前記活性層に流れる電流を広げるための電流拡散層と、前記電流拡散層上に形成され、膜厚が5nm乃至100nmのGaAs1−x(0.4≦x<1.0)膜を有するコンタクト層と、前記コンタクト層上に形成され、前記活性層に通電するための電極と、を具備することを特徴としている。
本発明によれば、光出力の高い半導体発光素子が得られる。
以下、本発明の実施例について図面を参照しながら説明する。
図1は本発明の実施例1に係る半導体発光素子示す断面図である。
図1に示すように、本実施例の半導体発光素子10は、基板、例えばn−GaAs基板11と、n−GaAsバッファ層12を介して基板11上に形成され、n―InAlPクラッド層13、InGaP薄膜とInGaAlP薄膜が交互に積層されたMQW(Multiple Quantum Well)層14、p―InAlPクラッド層15を有する活性層16と、活性層16上に形成され、活性層16に流れる電流を広げるためのp―GaAlAs電流拡散層17と、電流拡散層17上に形成され、膜厚が〜25nm、キャリア濃度が〜2E18/cm、Pの組成比xが0.4のGaAs1−x(以後、GaAsPとも記す)膜を有するコンタクト層18と、GaAsPコンタクト層18上に形成され、活性層16に通電するためのp側電極19、n側電極20を具備している。
p側電極19はGaAsPコンタクト層18上の一部に形成され、n側電極20はn−GaAs基板11の全面に形成されている。
本明細書では、Pの組成比とは、半導体膜中のV族元素におけるPの比率を意味している。
MQW層14は、具体的には膜厚7nmのIn0.5Ga0.5P量子井戸層と、膜厚5nmのIn0.5(Ga0.5Al0.50.5P障壁層が5対形成されている。
p側電極19、n側電極20を電源に接続することにより、活性層16に通電され、半導体発光素子10は、波長〜660nmで赤色発光する。
膜厚が〜25nm、キャリア濃度が〜2E18/cm、0.4のPの組成比xが0.4のGaAsPコンタクト層18は、直接遷移型の半導体で、バンドギャップが〜1.9eVであり、波長〜650nmの赤色光に対して十分な光透過率を有している。
GaAsPコンタクト層18は、比抵抗が〜1×10−3Ω・cm程度であり、電流拡散層17に電流を流すのに十分なコンタクト抵抗を有している。
GaAsPコンタクト層18は、p側電極19、例えばAnZn/Mo/Auに対して、コンタクト抵抗は〜5×10−3Ω・cm程度が得られ、低抵抗のオーミックコンタクトを形成できる。
GaAsPコンタクト層18は、臨界膜厚(推定値〜55nm)以下に設定されているので、GaAsとGaAsPの格子不整合による結晶欠陥の発生が抑制され、結晶欠陥により膜が白濁して光透過率が減少することのない十分に低い結晶欠陥レベルを有している。
従って、GaAsPコンタクト層18は、コンタクト層として使える十分な品質、即ち光学特性、電気特性および結晶性を有している。
次に、半導体発光素子10の製造方法について説明する。周知のMOCVD(Metal Organic Chemical Vapor Deposition)法により、n−GaAs基板11上に、n―GaAsバッファ層12、活性層16、p―GaAlAs電流拡散層17を順次形成する。
次に、同じくMOCVD法により、Ga原料としてトリメチルガリウム(TMG)、砒素原料としてアルシン(AsH)、燐原料としてフォスフィン(PH)、p型ドーパントとしてジメチル亜鉛(DMZ)を用いて、p―GaAlAs電流拡散層17上にPの組成比xが0.4、膜厚が〜25nm、キャリア濃度が〜2E18/cmのGaAsPコンタクト層18を形成する。
GaAsPコンタクト層18のPの組成比xは、アルシンとフォスフィンの流量モル比、即ちPH/(AsH+PH)を調整することにより制御することができる。
以上説明したように、本実施例の半導体発光素子10は、電流拡散層17上に、コンタクト層として使える十分な品質のGaAsPコンタクト層18を形成している。
その結果、従来のGaAsをコンタクト層とした半導体発光素子に比べて、コンタクト層による光吸収を低減することができる。従って、光出力の高い半導体発光素子10が得られる。
ここでは、GaAsPコンタクト層18のPの組成比xが0.4である場合について説明したが、半導体発光素子10の発光波長が〜660nmの赤色より短い場合には、発光波長に応じてPの組成比xを大きくすればよい。
GaAsPのバンドギャップエネルギーは、Pの組成比xに比例してGaAsの1.42eVからGaPの2.26eVまで変化する。
例えば、発光波長が〜620nmの橙赤色の場合、Pの組成比xを〜0.47とし、発光波長が〜590nmの黄色の場合、Pの組成比xを〜0.85とすればよい。
厳密に言うと、GaAsPの吸収端(吸収のおこる最短波長)を発光波長以上にする必要はない。Pの組成比の高いGaAsPのような間接遷移型の半導体材料では、吸収端波長付近での吸収は小さいので、Pの組成はバンドギャップ関係式から求めた値よりも小さくても実用化することができる。
GaAsPコンタクト層18の膜厚が25nmの場合について説明したが、必要な特性、特に電気特性が満たされる範囲内であれば、臨界膜厚以下であればよい。
これは、GaAsPはGaAsに比べて、金属電極とのアロイ化処理中に溶けにくい性質を有しているため、オーミックコンタクト形成に必要な厚さ以上に、厚くする必要がないためである。
但し、膜厚が薄すぎると、MOCVD成長時の膜厚のバラツキや、素子化工程でのエッチングストップ機能を考慮すると、5nm以上が適当であり、好ましい。
基板がn―GaAs基板11である場合について説明したが、発光波長に対して透明な基板であっても構わない。
即ち、図2に示すように、半導体発光素子30は、n―GaP基板31と、n―GaP基板31上面に形成された活性層16、電流拡散層17、p―GaAsPコンタクト層18と、n―GaP基板31の下面に形成されたn―GaAsPコンタクト層32とを具備している。
p―GaAsPコンタクト層18上の一部にp側電極19が形成され、n―GaAsPコンタクト層32上の一部にn側電極33が形成されている。
これにより、n―GaAs基板11に吸収されていた光も外部に取り出すことができるので、更に光出力が向上する利点がある。
半導体発光素子30の製造方法は、大きく異なる。MOCVD法により、p−GaAs基板(図示せず)上にp―GaAsPコンタクト層18、電流拡散層17、活性層16の順に形成する。
次に、n―クラッド層13上に中間組成のn−In0.5(Ga0.3Al0.70.5P層(図示せず)を0.5μm程度形成する。
次に、成長温度を、例えば50℃高くし、Ga原料であるTMGの供給量を、例えば20倍に増加させて、n―GaP層31を〜100μm成長させる。
次に、成長温度を元に戻して、n―GaP層31上に膜厚〜10nmのn―GaAsPコンタクト層32を形成する。
次に、p−GaAs基板をエッチングで除去し、p―GaAsPコンタクト層18上にp側電極19を形成し、n―GaAsPコンタクト層32上にn側電極33を形成する。
GaAsPコンタクト層18上にp側電極19を形成する場合について説明したが、透明電極を介してp側電極を形成しても構わない。
即ち、図3に示すように、半導体発光素子40は、GaAsPコンタクト層18上に、例えばスパッタリング法により形成されたITO(Indium Tin Oxide)膜41と、ITO膜41上に形成されたp側電極42を具備している。
導電性のITO膜41とp側電極42のコンタクト抵抗は、GaAsPコンタクト層18とp側電極42のコンタクト抵抗より小さいので、p側電極42のサイズL1をp側電極19のサイズL2より小さくすることが可能である。
その結果、p側電極42により遮られ、外部に取り出せない光が減少するので、半導体発光素子40の光出力が増加する利点がある。
基板11が半導体基板である場合について説明したが、光を反射する導電体であっても構わない。
即ち、図4に示すように、半導体発光素子50は、金属基板51、例えばステンレス板上に金属膜52、例えばAuGe/Ni/Au膜を介して形成されたn−GaAsPコンタクト層53、n−GaAlAs通電容易層54、活性層16、電流拡散層17、p−GaAsPコンタクト層18を具備している。
n−GaAsPコンタクト層53は、金属膜52と全面で接触しオーミックコンタクトを形成しているので、十分に低いコンタクト抵抗が得られるとともに、金属基板51側へ向かう光は、アロイ化された金属膜52により上方に反射されるので、基板側に出た光が吸収されてしまう場合に比べて、例えば30%程度光出力が増大する利点がある。
また、n―GaAsPコンタクト層53を離散的に形成し、n―GaAsPコンタクト層の周りを発光波長に対して透明な部材で囲うようにしても構わない。
即ち、図5に示すように、半導体発光素子60は、金属膜52上に島状に形成されたn―GaAsPコンタクト層61と、n―GaAsPコンタクト層61の周りを囲うように形成された透明部材62、例えばシリコン酸化膜を具備している。
n―GaAsPコンタクト層61と接触している金属膜52は、アロイ化されオーミックコンタクトを形成している。一方、透明部材62と接触している金属膜52はアロイ化されておらず鏡のような構造を形成しているので、アロイ化された領域より本来の金属としての高い反射率が維持されている。
n―GaAsPコンタクト層61と透明部材62の面積比は、目的のオーミックコンタクトと光出力が得られる範囲内であれば、自由に設定することができる。
これにより、十分なオーミックコンタクトを維持しながら、透明部材62とアロイ化されていない金属膜52の反射構造体により、更に光出力が増大する利点がある。
n―GaAsPコンタクト層61を島状に形成する場合について説明したが、ライン状に形成しても構わない。
n―GaAsPコンタクト層61を島状またはライン状に形成するには、n―GaAsPコンタクト層に、島状またはライン状のパターンを有するレジスト膜を形成する。
次に、レジスト膜をマスクとして、n―GaAsPコンタクト層を、例えば硫酸と過酸化水素の混合液でウエットエッチングする。
次に、例えばCVD法により、透明部材62としてシリコン酸化膜をn―GaAsPコンタクト層61よりも厚く形成する。
次に、CMP(Chemical Mechanical Polishing)法により、n―GaAsPコンタクト層61をストッパーとしてシリコン酸化膜を研磨し、n―GaAsPコンタクト層61を露出させる。
図6は本発明の実施例2に係る半導体発光素子の要部を示す断面図である。本実施例において、上記実施例1と同一の構成部分には同一符号を付してその部分の説明は省略し、異なる部分について説明する。
本実施例が実施例1と異なる点は、GaAsPコンタクト層が電流拡散層側から第1のGaAsP膜と第1の膜上に形成された第2のGaAsP膜を有し、第2のGaAsP膜のPの組成比が第1のGaAsP膜のPの組成比より大きいことにある。
即ち、図6に示すように、本実施例の半導体発光素子70は、発光波長が黄色(〜590nm)の活性層(図示せず)を有し、電流拡散層17上に形成され、第1のGaAs1−y(以後、単にGaAsPという)膜71と第2のGaAs1−x(以後、単にGaAsPという)膜72とを有するGaAsPコンタクト層73を具備している。
第1のGaAsP膜71は、電流拡散層17側から第2のGaAsP膜72側に向かってPの組成yが0から0.8まで徐々に大きくなる、所謂グレーデッドなGaAsP膜である。Pの組成の平均値は、0.4である。
第2のGaAsP膜72は、Pの組成比xが0.8と一定であり、第1のGaAsP膜71のPの組成yより大きく設定されている。
電流拡散層17上に、Pの組成比xが、例えば0.8と大きな第2のGaAsP膜72を直接成長させると、格子不整合による歪が大きくなるので、結晶欠陥の少ないGaAsP膜を得ることが難しくなる。
然し、第1のGaAsP膜71のPの組成比yが徐々に大きくなるように成長させることにより、格子不整合による転位等欠陥発生が抑えられ、Pの組成比xが大きくても結晶欠陥の少ない第2のGaAsP膜72を得ることが可能である。
これにより、第2のGaAsP膜72は、臨界膜厚(〜55nm)を超える膜厚、例えば〜100nm程度と厚くして、コンタクト抵抗を下げることができる。
ちなみに、第1のGaAsP膜71を有しない場合は、第2のGaAsP膜(x=0.8)の厚さは20nm程度が限界である。
一方、第1のGaAsP膜71は、Pの組成比yが半導体発光素子70の発光波長に相当するバンドギャップエネルギーより小さい領域で光の吸収が生じるので、薄いほうが好ましい。
これにより、GaAsPコンタクト層73はコンタクト層として使用できる十分な品質を有している。
第1のGaAsP膜71のPの組成比yを徐々に変えるには、アルシンとフォスフィンの流量モル比:PH/(AsH+PH)を、0から徐々に増加させることにより容易に実現することができる。
以上説明したように、本実施例の半導体発光素子70は、Pの組成比yが徐々に大きくなる第1のGaAsP膜71と、Pの組成比xが一定の第2のGaAsP膜72とを有するGaAsPコンタクト層73を具備している。
その結果、Pの組成比xが大きくても結晶欠陥の少ないGaAsPコンタクト層73が得られるので、黄色から黄緑色の波長の短い半導体発光素子のコンタクト層として適している。
ここでは、第1のGaAsP膜71のPの組成比yが直線的に大きくなる場合について説明したが、下凸状の曲線に沿って大きくなるようにしても構わない。
第1のGaAsP膜71のPの組成比yが徐々に大きくなる場合について説明したが、Pの組成比yが階段状に大きくなるようにしても構わない。
即ち、図7に示すように、半導体発光素子75は、電流拡散層17上に形成され、Pの組成比yが階段状に大きくなる第1のGaAsP膜76と、Pの組成比xが一定な第2のGaAsP膜72とを有するGaAsPコンタクト層77を具備している。
図8は本発明の実施例3に係る半導体発光素子の要部を示す断面図である。本実施例において、上記実施例1と同一の構成部分には同一符号を付してその部分の説明は省略し、異なる部分について説明する。
本実施例が実施例1と異なる点は、GaAsPコンタクト層の第1の膜を、Pの含有量が異なる複数の半導体薄膜を繰り返し積層した構造体としたことにある。
即ち、図8に示すように、本実施例の半導体発光素子80は、電流拡散層17上に、Pの組成比が少ない第3の膜81としてPの組成比zが0.4のGaAs1−z(以後、単にGaAsPという)膜と、Pの組成比が大きい第4の膜82としてPの組成比が1のInGaP膜とが、2対積層された第1の膜83と、第2のGaAsP膜72とを有するGaAsPコンタクト層84を具備している。
第1の膜83のPの組成比(平均)は0.7であり、第2のGaAsP膜72のPの組成比x=0.8より小さく設定されている。これは、半導体発光素子80の発光色が黄色の場合である。
半導体発光素子80の発光色が黄色より長波長の橙色など場合は、Pの組成比は0.5〜0.6程度が適している。これは、Pの組成比が低い方が、第2のGaAsP膜72の製造が容易なためである。
格子定数の異なる第3の膜81と第4の膜82とを繰り返し積層した構造体とすることにより、積層界面で結晶欠陥の伝播方向が曲げられ、結晶欠陥が上方に伝播するのをブロックする効果が得られる。
これにより、上方に伝播する結晶欠陥が低減し、結晶欠陥の少ない第2のGaAsP膜を72得ることが可能である。
本実施例は、半導体発光素子80の発光色が黄色から黄緑色(590〜575nm)で、第2のGaAsP膜72のPの組成比が0.8以上と高い場合に、歪による欠陥発生を低減させるために非常に有効である。
第3の膜81と第4の膜82の膜厚、および第3の膜81と第4の膜82の積層回数は、実験的に適宜定めることができる。
例えば、積層回数が2〜10程度で、良好な結果が得られるので、必要以上に積層回数数を増やす必要はない。
以上説明したように、本実施例の半導体発光素子80は、Pの含有量が異なる第3の膜81と第4の膜82とを繰り返して積層した第1の膜83と、Pの組成比xが一定の第2のGaAsP膜72とを有するGaAsPコンタクト層84を具備している。
その結果、Pの組成比xが大きい範囲でも結晶欠陥の少ないGaAsPコンタクト層84が得られるので、黄色から黄緑色の波長の短い半導体発光素子のコンタクト層として適している。
本発明の実施例1に係る半導発光素子を示す断面図。 本発明の実施例1に係る他の半導発光素子を示す断面図。 本発明の実施例1に係る他の半導発光素子を示す断面図。 本発明の実施例1に係る他の半導発光素子を示す断面図。 本発明の実施例1に係る他の半導発光素子を示す断面図。 本発明の実施例2に係る半導発光素子の要部を示す断面図。 本発明の実施例2に係る他の半導発光素子の要部を示す断面図。 本発明の実施例3に係る半導発光素子の要部を示す断面図。
符号の説明
10、30、40、50、60、70、75、80 半導体発光素子
11 基板
12 n−GaAsバッファ層
13 n―InAlPクラッド層
14 InGaP/InGaAlPMQW層
15 p―InAlPクラッド層
16 活性層
17 p―GaAlAs電流拡散層
18、73、77、84 p―GaAsPコンタクト層
19、42 p側電極
20、33 n側電極
31 n―GaP層
32、53、61 n―GaAsPコンタクト層
41 ITO膜
51 金属基板
52 金属膜
54 n―GaAlAs通電容易層
62 透明部材
71、76、83 第1の膜
72 第2の膜
81 第3の膜
82 第4の膜

Claims (5)

  1. pn接合を有するInGaAlP系の活性層と、
    前記活性層上に形成され、前記活性層に流れる電流を広げるための電流拡散層と、
    前記電流拡散層上に形成され、膜厚が5nm乃至100nmのGaAs1−x(0.4≦x<1)膜を有するコンタクト層と、
    前記コンタクト層上に形成され、前記活性層に通電するための電極と、
    を具備することを特徴とする半導体発光素子。
  2. 前記コンタクト層が前記電流拡散層側から第1の膜と前記第1の膜上に形成された第2の膜とを有し、前記第1の膜がGaAs1−y膜であり、前記第2の膜が前記GaAs1−x膜であり、前記第1の膜のPの組成比yが、前記第2の膜のPの組成比xより小さいことを特徴とする請求項1に記載の半導体発光素子。
  3. 前記第1の膜のPの組成比yが、前記電流拡散層側から前記電極側に向かって徐々に、または階段状に大きくなっていることを特徴とする請求項2に記載の半導体発光素子。
  4. 前記コンタクト層が前記電流拡散層側から第1の膜と前記第1の膜上に形成された第2の膜とを有し、前記第1の膜がPの組成比が異なる複数の半導体膜を繰り返し積層した膜であり、前記第2の膜が前記GaAs1−x膜であることを特徴とする請求項1に記載の半導体発光素子。
  5. 前記Pの組成比が異なる複数の半導体薄膜が、GaAsとGaAs1−z(0<z<1)、またはInGaPとGaAs1−z(0<z<1)であることを特徴とする請求項4に記載の半導体発光素子。
JP2007162402A 2007-06-20 2007-06-20 半導体発光素子 Pending JP2009004477A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007162402A JP2009004477A (ja) 2007-06-20 2007-06-20 半導体発光素子

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007162402A JP2009004477A (ja) 2007-06-20 2007-06-20 半導体発光素子

Publications (1)

Publication Number Publication Date
JP2009004477A true JP2009004477A (ja) 2009-01-08

Family

ID=40320565

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007162402A Pending JP2009004477A (ja) 2007-06-20 2007-06-20 半導体発光素子

Country Status (1)

Country Link
JP (1) JP2009004477A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102473804A (zh) * 2009-06-30 2012-05-23 飞利浦拉米尔德斯照明设备有限责任公司 用于III族磷化物半导体发光器件的p接触层

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102473804A (zh) * 2009-06-30 2012-05-23 飞利浦拉米尔德斯照明设备有限责任公司 用于III族磷化物半导体发光器件的p接触层
JP2012532438A (ja) * 2009-06-30 2012-12-13 フィリップス ルミレッズ ライティング カンパニー リミテッド ライアビリティ カンパニー Iii−p半導体発光デバイスのpコンタクト層
US8816368B2 (en) 2009-06-30 2014-08-26 Koninklijke Philips N.V. P-contact layer for a III-P semiconductor light emitting device
JP2016034036A (ja) * 2009-06-30 2016-03-10 フィリップス ルミレッズ ライティング カンパニー リミテッド ライアビリティ カンパニー Iii−p半導体発光デバイスのpコンタクト層
KR101750397B1 (ko) * 2009-06-30 2017-06-23 루미레즈 엘엘씨 Ⅲ-p 반도체 발광 장치용 p-콘택층
JP2017118150A (ja) * 2009-06-30 2017-06-29 ルミレッズ リミテッド ライアビリティ カンパニー Iii−p半導体発光デバイスのpコンタクト層
KR20170075018A (ko) * 2009-06-30 2017-06-30 루미레즈 엘엘씨 Ⅲ-p 반도체 발광 장치용 p-콘택층
KR101886733B1 (ko) 2009-06-30 2018-08-09 루미리즈 홀딩 비.브이. Ⅲ-p 반도체 발광 장치용 p-콘택층

Similar Documents

Publication Publication Date Title
US7692203B2 (en) Semiconductor light emitting device
US6169296B1 (en) Light-emitting diode device
US9318656B2 (en) Light-emitting diode and method of manufacturing the same
US20150048304A1 (en) Nitride semiconductor element and method for producing same
JP2008288248A (ja) 半導体発光素子
JP5169012B2 (ja) 半導体発光素子
JP2007096152A (ja) 透明導電膜を備えた半導体発光素子
JP2007042751A (ja) 半導体発光素子
WO2006126516A1 (ja) 窒化物半導体発光素子
JP2011082233A (ja) 発光素子
JP2012109436A (ja) 発光ダイオード
JP4831107B2 (ja) 半導体発光素子
US7230281B2 (en) Semiconductor light emitting device
WO2014167773A1 (ja) 半導体発光素子及びその製造方法
JP2011054862A (ja) エピタキシャルウエハ、発光素子、エピタキシャルウエハの製造方法、及び発光素子の製造方法
TWI437729B (zh) 發光二極體
TW404077B (en) Light emitting semiconductor element capable of suppressing change of driving current
JP5298927B2 (ja) 発光素子
JP4710764B2 (ja) 半導体発光素子
JP2007096162A (ja) 半導体発光素子
JP2007095857A (ja) 半導体レーザ
JP4569858B2 (ja) 発光素子の製造方法
JP4341623B2 (ja) 発光素子及びその製造方法
US11411141B2 (en) Micro semiconductor device
JP2011176001A (ja) 発光素子及び発光素子の製造方法