WO2021065555A1 - 無方向性電磁鋼板およびその製造方法 - Google Patents

無方向性電磁鋼板およびその製造方法 Download PDF

Info

Publication number
WO2021065555A1
WO2021065555A1 PCT/JP2020/035362 JP2020035362W WO2021065555A1 WO 2021065555 A1 WO2021065555 A1 WO 2021065555A1 JP 2020035362 W JP2020035362 W JP 2020035362W WO 2021065555 A1 WO2021065555 A1 WO 2021065555A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel sheet
content
average
oriented electrical
mass
Prior art date
Application number
PCT/JP2020/035362
Other languages
English (en)
French (fr)
Inventor
幸乃 宮本
善彰 財前
尾田 善彦
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to KR1020227008618A priority Critical patent/KR20220045223A/ko
Priority to CN202080066999.3A priority patent/CN114514332B/zh
Priority to CA3151160A priority patent/CA3151160C/en
Priority to JP2021507723A priority patent/JP7218794B2/ja
Priority to EP20871054.1A priority patent/EP4039832A4/en
Priority to US17/754,146 priority patent/US20220290287A1/en
Publication of WO2021065555A1 publication Critical patent/WO2021065555A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C10/00Solid state diffusion of only metal elements or silicon into metallic material surfaces
    • C23C10/06Solid state diffusion of only metal elements or silicon into metallic material surfaces using gases
    • C23C10/08Solid state diffusion of only metal elements or silicon into metallic material surfaces using gases only one element being diffused
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/004Very low carbon steels, i.e. having a carbon content of less than 0,01%
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1277Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a particular surface treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/74Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
    • C21D1/76Adjusting the composition of the atmosphere
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1255Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest with diffusion of elements, e.g. decarburising, nitriding
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/008Ferrous alloys, e.g. steel alloys containing tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C10/00Solid state diffusion of only metal elements or silicon into metallic material surfaces
    • C23C10/06Solid state diffusion of only metal elements or silicon into metallic material surfaces using gases
    • C23C10/16Solid state diffusion of only metal elements or silicon into metallic material surfaces using gases more than one element being diffused in more than one step
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C10/00Solid state diffusion of only metal elements or silicon into metallic material surfaces
    • C23C10/60After-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/02Pretreatment of the material to be coated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/24Nitriding
    • C23C8/26Nitriding of ferrous surfaces
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/80After-treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/14766Fe-Si based alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/14766Fe-Si based alloys
    • H01F1/14775Fe-Si based alloys in the form of sheets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/16Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2201/00Treatment for obtaining particular effects
    • C21D2201/05Grain orientation
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C2202/00Physical properties
    • C22C2202/02Magnetic

Definitions

  • the present invention relates to non-oriented electrical steel sheets, and particularly to non-oriented electrical steel sheets having low iron loss in a high frequency region.
  • the present invention also relates to a method for manufacturing the non-oriented electrical steel sheet.
  • Patent Document 1 proposes to control the Si concentration distribution in the plate thickness direction by subjecting a steel sheet to silica-annealing.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a non-oriented electrical steel sheet in which iron loss in a frequency range of about 400 Hz is further reduced.
  • the present inventors reduced the stress caused by the difference in lattice constant between the surface layer portion and the inner layer portion of the steel sheet in order to reduce the iron loss in the frequency range of about 400 Hz. It was found that it is important to reduce the average content of N contained in steel as an unavoidable impurity.
  • the present invention has been made based on the above findings, and its gist structure is as follows.
  • An inner layer portion where the Si content is defined as a region where the Si content is less than the average Si content of the total plate thickness, and a region where the Si content is defined as a region where the Si content is equal to or more than the average Si content of the total plate thickness provided on both sides of the inner layer portion.
  • It is a non-oriented electrical steel sheet composed of a surface layer portion to be formed. Si and Average content of all plate thickness C: 0.020% by mass or less, It contains Mn: 0.010% by mass to 2.0% by mass, and S: 0.0100% by mass or less, and the balance is composed of Fe and unavoidable impurities.
  • the average Si content [Si] 1 in the surface layer portion is 2.5 to 7.0% by mass.
  • the non-oriented electrical steel sheet has a thickness t of 0.01 to 0.35 mm.
  • the ratio t 1 / t of the total thickness t 1 of the surface layer portion to the plate thickness t is 0.10 to 0.70.
  • the average N content [N] in the total thickness of the non-oriented electrical steel sheet is 40 ppm or less.
  • the component composition is the average content in the total plate thickness.
  • Al 0.10% by mass or less
  • P 0.10% by mass or less
  • the ratio of the ⁇ 100 ⁇ plane integration degree to the ⁇ 111 ⁇ plane integration degree in the ⁇ 2 45 ° cross section of the orientation distribution function on the surface of the non-oriented electrical steel sheet at a depth of 1/4 of the plate thickness.
  • a steel sheet having a Si content of 1.5 to 5.0% by mass is subjected to a siliceous treatment in a SiCl 4 atmosphere at a siliceous treatment temperature of 1000 ° C. or higher and 1300 ° C. or lower.
  • the steel sheet after the siliceous treatment is subjected to diffusion treatment in an N 2 atmosphere at a temperature of 950 ° C. or higher and 1300 ° C. or lower.
  • the average cooling rate v 1 in the temperature range up 900 ° C. from the diffusion treatment temperature: 5 ⁇ 20 °C / s
  • the average cooling rate in the temperature range from 900 ° C. to 100 °C v 2 30 ⁇
  • FIG. 1 is a schematic view showing the structure of a non-oriented electrical steel sheet according to an embodiment of the present invention.
  • FIG. 2 is a schematic view showing an example of the Si content profile in the thickness direction of the non-oriented electrical steel sheet.
  • the vertical axis in FIG. 2 indicates the position in the plate thickness direction, where 0 represents one surface of the non-oriented electrical steel sheet and t represents the other surface of the non-oriented electrical steel sheet.
  • the non-oriented electrical steel sheet 1 of the present invention (hereinafter, may be simply referred to as “steel sheet”) has Si whose Si content continuously decreases from the surface toward the center of the sheet thickness. It has a content distribution.
  • the Si content distribution may be a distribution in which the Si content continuously changes over the entire plate thickness direction of the steel sheet, but for example, the Si content continuously changes on the surface side of the steel sheet, and the central portion of the plate thickness. Then, the Si content distribution may be constant. Further, the amount of Si near the surface of the steel sheet may be slightly reduced, that is, the inner layer portion having an average Si content of less than the average Si content of the total plate thickness and the Si content provided on both sides of the inner layer portion are all plates. It may be composed of a surface layer portion having an average Si content or more of the thickness.
  • the non-oriented electrical steel sheet 1 of the present invention is composed of an inner layer portion 10 and surface layer portions 20 provided on both sides of the inner layer portion 10.
  • the non-oriented electrical steel sheet according to the embodiment of the present invention has a component composition containing Si, C, Mn, and S, and the balance is Fe and unavoidable impurities.
  • “%” representing the content of each element shall represent “mass%” unless otherwise specified.
  • the content of each element other than Si refers to the average content of the element in the total thickness of the steel sheet.
  • C 0.020% or less C is an element harmful to magnetic properties, and if the C content exceeds 0.020%, iron loss will increase significantly due to magnetic aging. Therefore, the C content is 0.020% or less.
  • the lower limit of the C content is not particularly limited. However, since excessive reduction causes an increase in manufacturing cost, the C content is preferably 0.0001% or more, and more preferably 0.001% or more.
  • Mn 0.010% to 2.0%
  • Mn is an element effective for improving hot workability. Further, Mn has the effect of increasing the intrinsic resistance of the steel sheet and, as a result, reducing the iron loss. In order to obtain the above effect, the Mn content is set to 0.010% or more. On the other hand, if the Mn content exceeds 2.0%, the manufacturability is lowered and the cost is increased. Therefore, the Mn content is set to 2.0% or less.
  • S 0.0100% or less S increases iron loss due to the formation of fine precipitates and segregation at grain boundaries. Therefore, the S content is set to 0.0100% or less. On the other hand, from the viewpoint of iron loss, the lower the S content is, the more preferable it is. Therefore, the lower limit of the S content is not particularly limited. However, since excessive reduction causes an increase in manufacturing cost, the S content is preferably 0.0001% or more.
  • Si is an element that has the effect of increasing the electrical resistance of the steel sheet and reducing the eddy current loss. If the average Si content ([Si] 1 ) of the surface layer portion is less than 2.5%, the eddy current loss cannot be effectively reduced. Therefore, the average Si content in the surface layer portion is 2.5% or more, preferably 3.0% or more, and more preferably more than 3.5%. On the other hand, when the average Si content in the surface layer portion exceeds 7.0%, the magnetic flux density is lowered due to the decrease in saturation magnetization, and the manufacturability of the non-oriented electrical steel sheet is lowered.
  • the average Si content in the surface layer portion is 7.0% or less, preferably less than 6.5%, and more preferably 6.0% or less.
  • the average Si content in the surface layer portion is 2.5 to 7.0%, which means that the average Si content in the surface layer portion (first surface layer portion) on one surface of the non-oriented electrical steel sheet is 2. It means that it is 5 to 7.0% and the average Si content in the surface layer portion (second surface layer portion) on the other surface of the non-oriented electrical steel sheet is 2.5 to 7.0%. ..
  • the average Si content in the first surface layer portion and the average Si content in the second surface layer portion may be the same or different.
  • the non-oriented electrical steel sheet has a component composition containing the above elements and the balance being Fe and unavoidable impurities.
  • the component composition can further optionally contain at least one selected from the group consisting of Al, P, Sn, and Sb in the content described below. ..
  • the content of each element described below shall refer to the average content of the element in the total thickness of the steel sheet.
  • Al 0.10% or less
  • Al is an element having an action of increasing the intrinsic resistance of the steel sheet, and the iron loss can be further reduced by adding Al.
  • the Al content exceeds 0.10%, the manufacturability is lowered and the cost is increased. Therefore, when Al is added, the Al content is set to 0.10% or less.
  • the lower limit of the Al content is not particularly limited, but when Al is added, the Al content is preferably 0.01% or more from the viewpoint of enhancing the addition effect.
  • P 0.10% or less
  • the texture can be greatly improved, the magnetic flux density can be further improved, and the hysteresis loss can be further reduced.
  • P nitriding of the steel sheet at the time of high temperature annealing can be suppressed, and an increase in iron loss can be further suppressed.
  • the P content exceeds 0.10%, the effect is saturated and the manufacturability is lowered. Therefore, when P is added, the P content is set to 0.10% or less.
  • the lower limit of the P content is not particularly limited, but from the viewpoint of enhancing the effect of adding P, the P content is preferably 0.001% or more.
  • Sn 0.10% or less
  • Sn 0.10% or less
  • the texture can be greatly improved, the magnetic flux density can be further improved, and the hysteresis loss can be further reduced.
  • Sn nitriding of the steel sheet at the time of high temperature annealing can be suppressed, and an increase in iron loss can be further suppressed. If the Sn content exceeds 0.10%, the effect is saturated, and in addition, the manufacturability is lowered and the cost is increased. Therefore, when Sn is added, the Sn content is set to 0.10% or less.
  • the lower limit of the Sn content is not particularly limited, but from the viewpoint of enhancing the effect of adding Sn, the Sn content is preferably 0.001% or more.
  • Sb 0.10% or less Similar to P and Sn, the addition of Sb can greatly improve the texture, further improve the magnetic flux density, and further reduce the hysteresis loss. Further, by adding Sb, nitriding of the steel sheet at the time of high temperature annealing can be suppressed, and an increase in iron loss can be further suppressed. If the Sb content exceeds 0.10%, the effect will be saturated, and in addition, the manufacturability will decrease and the cost will increase. Therefore, when Sb is added, the Sb content is set to 0.10% or less. On the other hand, the lower limit of the Sb content is not particularly limited, but from the viewpoint of obtaining the effect of adding Sb, the Sb content is preferably 0.001% or more.
  • MnS [Mn] [S] ⁇ 0.0030
  • MnS precipitates during annealing at a relatively low temperature of less than 1000 ° C. Then, the crystal grain growth is inhibited by the precipitated MnS, and the crystal grain size of the finally obtained non-oriented electrical steel sheet becomes small, and as a result, the hysteresis loss increases.
  • the siliceous treatment is performed at a relatively high temperature of 1000 ° C. or higher, MnS can be solid-solved to promote grain growth.
  • the product [Mn] [S] of the average content of Mn and the average content of S exceeds 0.0030, the grain growth during the siliceous treatment is hindered by the precipitated MnS, and the hysteresis loss increases. To do. Therefore, from the viewpoint of suppressing an increase in hysteresis loss due to the precipitation of MnS during the siliceous treatment, it is preferable that the above-mentioned component composition further satisfies the condition of the following formula. [Mn] [S] ⁇ 0.0030
  • [Mn] and [S] are average contents (mass%) of Mn and S in the total plate thickness, respectively.
  • the lower limit of [Mn] [S] is not particularly limited, but is preferably 0.000005 or more from the viewpoint of manufacturability and cost.
  • the thickness t of the non-oriented electrical steel sheet is 0.01 mm or more.
  • the eddy current loss becomes large and the total iron loss increases. Therefore, t is set to 0.35 mm or less.
  • t 1 / t is different.
  • a non-oriented electrical steel sheet was prepared by the following procedure, and its magnetic properties were evaluated.
  • the "total thickness of the surface layer portion” refers to the sum of the thicknesses of the surface layer portions provided on both sides of the non-oriented electrical steel sheet.
  • the surface layer portion is defined as a region in which the Si content is equal to or higher than the average Si content of the total plate thickness.
  • a steel slab having a composition was hot-rolled to obtain a hot-rolled steel sheet.
  • the hot-rolled steel sheet was annealed at 950 ° C. ⁇ 30 s, and then the steel sheet after the hot-rolled sheet was annealed was cold-rolled to obtain a cold-rolled steel sheet having a plate thickness of 0.2 mm.
  • the average Si content [Si] 1 of the surface layer portion was set to 4.0%
  • the average Si content [Si] 0 of the inner layer portion was set to 2.2%.
  • the ratio t 1 / t of the obtained non-oriented electrical steel sheet was 0.05 to 0.80.
  • Test pieces were collected from each of the obtained non-oriented electrical steel sheets, and an Epstein test was performed to evaluate iron loss W 10/400 (W / kg) at a maximum magnetic flux density of 1.0 T and a frequency of 400 Hz.
  • the specific evaluation method was the same as the method described in the examples.
  • FIG. 3 shows the correlation between t 1 / t and W 10/400 (W / kg). From this result, it can be seen that the iron loss is significantly reduced when t 1 / t is 0.10 to 0.70. This decrease in iron loss is considered to be due to the following reasons. First, when t 1 / t is less than 0.10, the proportion of the surface layer portion having high resistance is low, so that the eddy current concentrated on the surface layer portion cannot be effectively reduced. On the other hand, when t 1 / t exceeds 0.70, the magnetic permeability difference between the surface layer portion and the inner layer portion becomes small, so that the magnetic flux permeates into the inner layer portion and eddy current loss is also generated from the inner layer portion.
  • the ratio t 1 / t of the total thickness t 1 of the surface layer portion to the plate thickness t is set to 0.10 to 0.70.
  • a steel slab having a component composition consisting of Fe and unavoidable impurities was hot-rolled to obtain a hot-rolled steel sheet.
  • the hot-rolled steel sheet was annealed at 950 ° C. ⁇ 30 s, and then the steel sheet after the hot-rolled sheet was annealed was cold-rolled to obtain a cold-rolled steel sheet having a plate thickness of 0.2 mm.
  • the average Si content [Si] 1 in the surface layer portion is 3.0 to 7.0%
  • the average Si content [Si] 1 in the inner layer portion is 2.2 to 2.7%
  • t. 1 / t was 0.30.
  • Test pieces were collected from each of the obtained non-oriented electrical steel sheets, and an Epstein test was performed to evaluate iron loss W 10/400 (W / kg) at a maximum magnetic flux density of 1.0 T and a frequency of 400 Hz.
  • the specific evaluation method was the same as the method described in the examples.
  • the in-plane tensile stress was measured by the following procedure.
  • chemical polishing with hydrofluoric acid is performed from one side of the obtained non-oriented electrical steel sheet, and the plate thickness t S of the sample becomes 0.1 mm so that the surface of the polished sample becomes the surface layer portion and the inner layer portion. Polished to. Since the sample after chemical polishing warps so that the surface layer portion is on the inside, it can be seen that the sample before polishing has a tensile stress in the surface of the surface layer portion. Therefore, the in-plane tensile stress of the non-oriented electrical steel sheet was calculated from the radius of curvature r, which is an index of the amount of warpage of the obtained sample, using the following formula.
  • FIG. 4 shows the correlation between the in-plane tensile stress (MPa) and W 10/400 (W / kg). From this result, it can be seen that the iron loss is reduced when the in-plane tensile stress is 5 to 50 MPa. This is considered to be due to the following reasons. That is, the tensile stress generated in the surface of the surface layer portion causes the easy axis of magnetization to be in the in-plane direction, so that the magnetic flux is concentrated on the surface layer and the eddy current loss is reduced. However, if the internal stress is excessively large, the magnetic flux is concentrated on the surface layer portion and the eddy current loss is reduced, but the hysteresis loss is significantly increased, and as a result, the iron loss is increased.
  • the in-plane tensile stress of the surface layer portion is set to 5 to 5. It is set to 50 MPa.
  • the in-plane tensile stress of the surface layer portion is mainly caused by the difference in Si concentration between the surface layer portion and the inner layer portion: ⁇ Si ([Si] 1- [Si] 0 ), in order to obtain the internal stress of the present invention. It is preferable that ⁇ Si is 1.0% or more. In general, [Si] 1 is higher than [Si] 0 , so in other words, it is preferable that [Si] 1 ⁇ ⁇ [Si] 0 + 1.0 mass% ⁇ .
  • the average N content [N] in the total thickness of the non-oriented electrical steel sheet is 40 ppm or less. The reason for the limitation will be described later.
  • the iron loss in the present invention was evaluated by the iron loss (total iron loss) W 10/400 (W / kg) at a maximum magnetic flux density of 1.0 T and a frequency of 400 Hz.
  • W 10/400 (W / kg) and plate thickness t (mm) satisfy the following formulas. This is because if the relationship of the following equation is not satisfied, the heat generated by the stator core becomes very large, and the motor efficiency is significantly reduced. Since the iron loss depends on the plate thickness, the upper limit of the iron loss is specified in the following formula in consideration of the influence of the plate thickness.
  • the non-oriented electrical steel sheet of the present invention has contradictory properties by controlling the component composition, in-plane tensile stress and multi-layer ratio of the surface layer portion and the inner layer portion of the steel sheet as described above. It achieves both magnetic flux density and low iron loss.
  • the average rate of temperature rise from 200 ° C. to the siliceous temperature during the siliceous treatment should be 20 ° C./s or more, or segregation. It is effective to add at least one of the elements P, Sn, and Sb in an appropriate amount.
  • the non-oriented electrical steel sheet of the present invention is not particularly limited, but can be produced by using a silencing method.
  • the Si content of the surface layer on both sides of the steel sheet can be increased by subjecting the steel sheet having a constant Si content in the thickness direction to the siliceous treatment and the diffusion treatment.
  • the non-oriented electrical steel sheet produced by the silica dipping method has, for example, a Si content profile as shown in FIG. 2 (a).
  • the grain-oriented electrical steel sheet is manufactured by sequentially performing the following steps (1) to (3) on the steel sheet.
  • a steel sheet having a Si content of 1.5 to 5.0% may be used.
  • the steel sheet it is preferable to use a steel sheet having a substantially uniform composition in the plate thickness direction.
  • the component composition of the steel sheet other than Si is not particularly limited, but can be the same as the component composition of the non-oriented electrical steel sheet described above.
  • the steel sheet to be processed is the steel sheet to be processed.
  • Si 1.5-5.0%
  • C 0.020% or less
  • the component composition of the steel sheet is determined.
  • Al 0.10% by mass or less
  • P 0.1% by mass or less
  • It can further contain at least one selected from the group consisting of Sn: 0.10% by mass or less and Sb: 0.10% by mass or less.
  • composition of the steel sheet preferably further satisfies the following formula.
  • [Mn] and [S] are average contents (mass%) of Mn and S in the total plate thickness, respectively.
  • siliceous treatment is carried out in a SiCl 4 atmosphere at a siliceous treatment temperature of 1000 ° C. or higher and 1300 ° C. or lower.
  • a siliceous treatment temperature 1000 ° C. or higher and 1300 ° C. or lower.
  • the silica immersion treatment temperature is less than 1000 ° C.
  • the reaction between SiCl 4 and the base material is slowed down, so that the manufacturability is lowered and the cost is increased.
  • the Si content of the surface layer of the steel sheet is increased by the siliceous treatment, the melting point is lowered. Therefore, when the siliceous treatment is performed at a high temperature exceeding 1300 ° C., the steel sheet is broken in the furnace and the manufacturability is lowered. Therefore, the siliceous treatment temperature is set to 1000 ° C. or higher and 1300 ° C. or lower.
  • the steel sheet after the siliceous treatment is subjected to a diffusion treatment.
  • the diffusion treatment is carried out in an N 2 atmosphere at a temperature of 950 ° C. or higher and 1300 ° C. or lower.
  • Diffusion treatment can be performed in an Ar atmosphere, but it is not realistic because of the cost increase, and it is performed in an N 2 atmosphere from an industrial point of view. Further, if the diffusion treatment is performed at a temperature lower than 950 ° C., the diffusion rate becomes slow, so that the manufacturability is lowered. On the other hand, when the Si content of the surface layer of the steel sheet is increased by the siliceous treatment, the melting point is lowered.
  • the temperature of the diffusion treatment is set to 950 ° C. or higher and 1300 ° C. or lower.
  • the steel sheet after the diffusion treatment is cooled averagely in a temperature range from the diffusion treatment temperature to 900 ° C. v 1 : 5 to 20 ° C./s and 900 ° C. to 100 ° C. Cool at a speed v 2 : 30 to 100 ° C./s.
  • C 0.005%, Si: 2.5%, Mn: 0.06%, S: 0.003%, Sn: 0.06%, and P: 0.06% are contained, and the balance is
  • a steel slab having a component composition consisting of Fe and unavoidable impurities was hot-rolled to obtain a hot-rolled steel sheet.
  • the hot-rolled steel sheet was annealed at 950 ° C. ⁇ 30 s, and then the steel sheet after the hot-rolled sheet was annealed was cold-rolled to obtain a cold-rolled steel sheet having a plate thickness of 0.2 mm.
  • the average Si content [Si] 1 in the surface layer portion was set to 4.5%.
  • the average cooling rate in the temperature range from the diffusion treatment temperature to 900 ° C. v 1 : 5 to 35 ° C./s, and the average cooling rate in the temperature range from 900 ° C. to 100 ° C. v 2 : 5 to 120 ° C./s. Under the conditions, it was cooled to 100 ° C. or lower.
  • the ratio t 1 / t of the obtained non-oriented electrical steel sheet was 0.30.
  • Test pieces were collected from each of the obtained non-oriented electrical steel sheets, and an Epstein test was performed to evaluate iron loss W 10/400 (W / kg) at a maximum magnetic flux density of 1.0 T and a frequency of 400 Hz.
  • the specific evaluation method was the same as the method described in the examples.
  • FIG. 5 shows the correlation between the average cooling rate v 1 (° C./s ) and the iron loss W 10/400 (W / kg) when the average cooling rate v 2 is constant at 45 ° C./s.
  • the iron loss increases when the average cooling rate v 1 exceeds 20 ° C./s. It is considered that this is because when the average cooling rate v 1 exceeds 20 ° C./s, the steel sheet is distorted due to rapid cooling, and as a result, the hysteresis loss increases. Therefore, in the present invention, the average cooling rate v 1 is set to 20 ° C./s or less. On the other hand, if v 1 is less than 5 ° C./s, the production efficiency is lowered and the cost is increased. Therefore, v 1 is set to 5 ° C./s or higher.
  • FIG. 6 shows the correlation between the average cooling rate v 2 (° C./s) and the iron loss W 10/400 (W / kg) when the average cooling rate v 1 is constant at 10 ° C./s. .. As can be seen from this result , the iron loss increased when the average cooling rate v 2 was less than 30 ° C./s.
  • the average N content [N] in the total thickness of the non-oriented electrical steel sheets obtained under each condition was measured.
  • the correlation between the average cooling rate v 2 (° C./s) and the measured average N content [N] (ppm) is shown in FIG.
  • the average N content [N] was measured by the method described in Examples. From the results shown in FIG. 7, it was found that when the average cooling rate v 2 was less than 30 ° C./s, [N] was higher than when v 2 was 30 ° C./s or more. From this result, it is considered that the iron loss increased due to the nitriding of the steel sheet when the average cooling rate v 2 was less than 30 ° C./s.
  • the average N content [N] in the total thickness is 40 ppm or less.
  • the average cooling rate v 2 is set to 30 ° C./s or more.
  • the average cooling rate v 2 exceeds 100 ° C./s, the iron loss increases even though the amount of nitrogen in the steel is 30 ppm or less. .. It is considered that this is because when the average cooling rate v 2 exceeds 100 ° C./s, the iron loss increases due to the cooling strain. Therefore, in the present invention, the average cooling rate v 2 is set to 100 ° C./s or less.
  • Example 1 In order to confirm the effect of the present invention, a non-oriented electrical steel sheet was manufactured by the procedure described below, and its magnetic characteristics were evaluated.
  • a steel slab containing Si: 2.0 to 4.0% was prepared.
  • the composition of the steel slab was adjusted by degassing after blowing in a converter.
  • the steel slab was heated at 1140 ° C. for 1 hour and then hot-rolled to obtain a hot-rolled steel sheet having a plate thickness of 2 mm.
  • the hot rolling finish temperature in the hot rolling was 800 ° C.
  • the hot-rolled steel sheet was wound at a winding temperature of 610 ° C., and then annealed at 900 ° C. for 30 s to obtain a hot-rolled annealed sheet.
  • the hot-rolled annealed sheet was pickled and cold-rolled to obtain a cold-rolled steel sheet.
  • the obtained cold-rolled steel sheet was subjected to a siliceous treatment in a SiCl 4 atmosphere at a siliceous treatment temperature of 1200 ° C.
  • the rate of temperature rise from 200 ° C. to the siliceous treatment temperature was changed between 10 and 40 ° C./s.
  • diffusion treatment and cooling were carried out in an N 2 atmosphere under the conditions shown in Tables 1 and 2 to obtain non-oriented electrical steel sheets having a plate thickness t shown in Tables 1 and 2.
  • the average cooling rate v 1 represents the average cooling rate from the diffusion treatment temperature to 900 ° C.
  • the average cooling rate v 2 represents the average cooling rate from 900 ° C. to 100 ° C.
  • composition The obtained non-oriented electrical steel sheet was embedded in a carbon mold, and the Si content distribution in the cross section in the plate thickness direction was measured using EPMA (Electron Probe Micro Analyzer). The average value of the Si content in the thickness of the steel sheet was calculated, and the portion where the Si concentration was higher than the average value was defined as the surface layer portion and the portion where the Si concentration was lower than the average value was defined as the inner layer portion. From the obtained results, the ratio of the total thickness t 1 of the surface layer portion to the plate thickness t 1 / t, the average Si content in the surface layer portion: [Si] 1 , and the average Si content in the inner layer portion: [Si]. I asked for 0. Moreover, the average N content: [N] of the total thickness of the non-oriented electrical steel sheet was measured by using the ICP emission spectrometry method. The measurement results are also shown in Tables 1 and 2.
  • the average content in the total plate thickness was measured by using the ICP emission spectrometry method. The measurement results are shown in Tables 1 and 2.
  • the non-oriented electrical steel sheet satisfying the conditions of the present invention had an excellent characteristic that the iron loss at 400 Hz was low.
  • the iron loss was inferior.
  • the steel sheet was broken during manufacturing, so that the iron loss could not be evaluated.
  • Example 2 A steel slab containing the components shown in Table 3 was heated at 1140 ° C. for 1 hour and then hot-rolled at a hot-rolled finishing temperature of 800 ° C. to obtain a hot-rolled steel sheet having a plate thickness of 2 mm.
  • the obtained hot-rolled steel sheet was wound at 610 ° C., and then annealed at 950 ° C. ⁇ 30 s to obtain a hot-rolled annealed sheet. Then, the hot-rolled annealed sheet was pickled and cold-rolled to obtain a cold-rolled steel sheet having the plate thickness shown in Table 3.
  • the obtained cold-rolled steel sheet was subjected to a silica-dip treatment in a SiCl 4 + N 2 atmosphere at a silica-dip treatment temperature of 1200 ° C.
  • diffusion treatment is performed at 1150 ° C. in an N 2 atmosphere, and the average cooling rate is v 1 : 20 ° C./s from 1150 ° C. to 900 ° C., and the average cooling rate v 2 : 6 ° C./s is from 900 ° C. to 100 ° C. Cooled with.
  • the siliceous treatment was carried out so that the plate thickness ratio t 1 / t of the surface layer and the inner layer was 0.40.
  • the non-oriented electrical steel sheets having [Mn] [S] of 0.0030 or less are non-oriented electrical steel sheets having [Mn] [S] of more than 0.0030. Compared with, the iron loss was further reduced.
  • Non-oriented electrical steel sheet 10 Inner layer 20 Surface layer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Electromagnetism (AREA)
  • Dispersion Chemistry (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Soft Magnetic Materials (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)

Abstract

内層部と表層部とからなる無方向性電磁鋼板であって、Siと、全板厚における平均含有量で、C:0.020質量%以下、Mn:0.010質量%~2.0質量%、およびS:0.0100質量%以下とを含有し、残部がFeおよび不可避不純物からなり、前記表層部における平均Si含有量[Si]1が2.5~7.0質量%であり、前記内層部における平均Si含有量[Si]0が1.5~5.0質量%である成分組成を有し、前記表層部が5~50MPaの面内引張応力を有し、前記無方向性電磁鋼板の板厚tが0.01~0.35mmであり、前記板厚tに対する前記表層部の合計厚さt1の比t1/tが0.10~0.70であり、前記無方向性電磁鋼板の全板厚における平均N含有量[N]が40ppm以下であり、鉄損W10/400(W/kg)と、前記板厚t(mm)とが下記(1)式を満たす無方向性電磁鋼板。 W10/400≦8+30t …(1)

Description

無方向性電磁鋼板およびその製造方法
 本発明は、無方向性電磁鋼板に関し、特に、高周波域における鉄損が低い無方向性電磁鋼板に関する。また、本発明は前記無方向性電磁鋼板の製造方法に関する。
 電気自動車やハイブリッド電気自動車用などに用いられるモータは、小型化、高効率化の観点より高周波域での駆動が行われている。そのため、このようなモータのコア材として使用される無方向性電磁鋼板には、高周波域における鉄損が低いことが求められる。
 そこで、高周波域における低鉄損化のために、SiやAlなどの合金元素の添加や、板厚の低減など、様々な手法が検討されてきた。
 例えば、特許文献1では、鋼板に対して浸珪焼鈍を施すことにより、板厚方向におけるSi濃度分布を制御することが提案されている。
特開平11-293422号公報
 しかし、特許文献1で提案されているような従来の方法によれば、高周波域における鉄損に一定の改善が見られるが、依然として十分とはいえなかった。具体的には、前記従来の方法で得られる無方向性電磁鋼板を、ヒステリシス損の影響が大きい400Hz程度の周波数で駆動される電気機器の鉄心材料として使用した場合、鉄損を十分に低減できないという問題があった。
 本発明は、上記実状に鑑みてなされたものであり、400Hz程度の周波数域における鉄損がさらに低減された無方向性電磁鋼板を提供することを目的とする。
 本発明者らは、上記課題を解決する方法について鋭意検討した結果、400Hz程度の周波数域における鉄損を低減するためには、鋼板の表層部と内層部の格子定数差によって生じる応力を低減すること、および不可避不純物として鋼中に含有されるNの平均含有量を低減することが重要であることを見出した。本発明は前記知見に基づいてなされたものであり、その要旨構成は以下のとおりである。
1.Si含有量が全板厚の平均Si含有量未満の領域として定義される内層部と、前記内層部の両側に設けられた、Si含有量が全板厚の平均Si含有量以上の領域として定義される表層部とからなる無方向性電磁鋼板であって、
 Siと、
 全板厚における平均含有量で、
 C :0.020質量%以下、
 Mn:0.010質量%~2.0質量%、および
 S :0.0100質量%以下とを含有し、残部がFeおよび不可避不純物からなり、
 前記表層部における平均Si含有量[Si]1が2.5~7.0質量%であり、
 前記内層部における平均Si含有量[Si]0が1.5~5.0質量%である成分組成を有し、
 前記表層部が5~50MPaの面内引張応力を有し、
 前記無方向性電磁鋼板の板厚tが0.01~0.35mmであり、
 前記板厚tに対する前記表層部の合計厚さt1の比t1/tが0.10~0.70であり、
 前記無方向性電磁鋼板の全板厚における平均N含有量[N]が40ppm以下であり、
 最大磁束密度:1.0T、周波数400Hzにおける鉄損W10/400(W/kg)と、前記板厚t(mm)とが下記(1)式を満たす無方向性電磁鋼板。
 W10/400≦8+30t …(1)
2.前記成分組成が、全板厚における平均含有量で、
 Al:0.10質量%以下、
 P :0.10質量%以下、
 Sn:0.10質量%以下、および
 Sb:0.10質量%以下からなる群より選択される少なくとも1つをさらに含有する、上記1に記載の無方向性電磁鋼板。
3.さらに、前記無方向性電磁鋼板の表面から板厚の1/4の深さの面における方位分布関数のΦ2=45°断面において、{111}面集積度に対する{100}面集積度の比{100}/{111}が55~90%である集合組織を有する、上記1または2に記載の無方向性電磁鋼板。
4.前記成分組成が、さらに下記(2)式を満たす、上記1~3のいずれか一項に記載の無方向性電磁鋼板。
 [Mn][S]≦0.0030 …(2)
ただし、[Mn]、[S]はそれぞれMn、Sの全板厚における平均含有量(質量%)である。
5.上記1~4のいずれか一項に記載の無方向性電磁鋼板を製造する方法であって、
 Si含有量が1.5~5.0質量%である鋼板に、SiCl4雰囲気中、1000℃以上、1300℃以下の浸珪処理温度で浸珪処理を施し、
 前記浸珪処理後の鋼板にN2雰囲気中、950℃以上、1300℃以下の温度で拡散処理を施し、
 前記拡散処理後の鋼板を、拡散処理温度から900℃までの温度域における平均冷却速度v1:5~20℃/s、900℃から100℃までの温度域における平均冷却速度v2:30~100℃/sの条件で冷却する、無方向性電磁鋼板の製造方法。
 本発明によれば、400Hz程度の周波数域における鉄損がさらに低減された無方向性電磁鋼板を提供することが出来る。
本発明の一実施形態における無方向性電磁鋼板の構造を示す模式図である。 無方向性電磁鋼板の板厚方向における、Si含有量プロファイルの例を示す模式図である。 板厚tに対する前記表層部の合計厚さt1の比t1/tと鉄損W10/400(W/kg)との相関を示すグラフである。 面内引張応力(MPa)と鉄損W10/400(W/kg)との相関を示すグラフである。 冷却工程における拡散処理温度から900℃までの温度域における平均冷却速度v1(℃/s)と鉄損W10/400(W/kg)との相関を示すグラフである。 冷却工程における900℃から100℃までの温度域における平均冷却速度v2(℃/s)と鉄損W10/400(W/kg)との相関を示すグラフである。 冷却工程における900℃から100℃までの温度域における平均冷却速度v2(℃/s)と無方向性電磁鋼板の全板厚における平均N含有量[N](ppm)との相関を示すグラフである。
 以下、本発明を実施する方法について具体的に説明する。なお、以下の説明は、本発明の好適な実施形態の例を示すものであって、本発明はこれに限定されない。
[無方向性電磁鋼板]
 図1は、本発明の一実施形態における無方向性電磁鋼板の構造を示す模式図である。また、図2は、無方向性電磁鋼板の板厚方向における、Si含有量プロファイルの例を示す模式図である。図2における縦軸は板厚方向の位置を示しており、0が無方向性電磁鋼板の一方の表面を、tが該無方向性電磁鋼板の他方の表面を、それぞれ表している。
 図2に示した例では、本発明の無方向性電磁鋼板1(以下、単に「鋼板」という場合がある)は、表面から板厚中心方向に向かってSi含有量が連続的に減少するSi含有量分布を有している。なお、前記Si含有量分布は、鋼板の板厚方向全域にわたってSi含有量が連続的に変化する分布であってもよいが、例えば、鋼板の表面側において連続的に変化し、板厚中央部では一定であるSi含有量分布であってもよい。また、鋼板表面付近のSi量が若干低下していてもよく、つまり、全板厚の平均Si含有量未満となる内層部と、前記内層部の両側に設けられた、Si含有量が全板厚の平均Si含有量以上となる表層部とからなればよい。
 ここで、Si含有量が全板厚の平均Si含有量以上の領域を表層部、Si含有量が全板厚の平均Si含有量未満の領域を内層部と定義すると、図1に示すように、本発明の無方向性電磁鋼板1は、内層部10と、内層部10の両側に設けられた表層部20からなるということができる。
[成分組成]
 まず、本発明の無方向性電磁鋼板の成分組成について説明する。本発明の一実施形態における無方向性電磁鋼板は、Si、C、Mn、およびSを含有し、残部がFeおよび不可避不純物からなる成分組成を有する。なお、以下の説明において、各元素の含有量を表す「%」は、特に断らない限り「質量%」を表すものとする。また、以下の説明において、Siを除く各元素の含有量は、鋼板の全板厚における当該元素の平均含有量を指すものとする。
C:0.020%以下
 Cは磁気特性に対して有害な元素であり、C含有量が0.020%を超えると磁気時効により鉄損が著しく増大する。したがって、C含有量は0.020%以下とする。一方、磁気特性の観点からはC含有量が低ければ低いほど好ましいため、C含有量の下限はとくに限定されない。しかし、過度の低減は製造コストの増加を招くことから、C含有量は0.0001%以上とすることが好ましく、0.001%以上とすることがより好ましい。
Mn:0.010%~2.0%
 Mnは熱間加工性を改善するのに有効な元素である。また、Mnは鋼板の固有抵抗を増加させ、その結果、鉄損を低減する効果を有する。前記効果を得るために、Mn含有量を0.010%以上とする。一方、Mn含有量が2.0%を超えると製造性の低下およびコストの上昇を招く。そのため、Mn含有量は2.0%以下とする。
S:0.0100%以下
 Sは、微細な析出物の形成および粒界への偏析により、鉄損を増大させる。そのため、S含有量は0.0100%以下とする。一方、鉄損の観点からはS含有量が低ければ低いほど好ましいため、S含有量の下限はとくに限定されない。しかし、過度の低減は製造コストの増加を招くことから、S含有量は0.0001%以上とすることが好ましい。
[Si]1:2.5~7.0%
 Siは、鋼板の電気抵抗を高め、渦電流損を低減する作用を有する元素である。表層部の平均Si含有量([Si]1)が2.5%未満であると、効果的に渦電流損を低減することができない。そのため、表層部における平均Si含有量は2.5%以上、好ましくは3.0%以上、より好ましくは3.5%超とする。一方、表層部における平均Si含有量が7.0%を超えると、飽和磁化の低下により磁束密度が低下することに加え、無方向性電磁鋼板の製造性が低下する。そのため、表層部における平均Si含有量は7.0%以下、好ましくは6.5%未満、より好ましくは6.0%以下とする。なお、表層部における平均Si含有量が2.5~7.0%であるとは、無方向性電磁鋼板の一方の面における表層部(第1の表層部)における平均Si含有量が2.5~7.0%であり、かつ該無方向性電磁鋼板の他方の面における表層部(第2の表層部)における平均Si含有量が2.5~7.0%であることを意味する。第1の表層部における平均Si含有量と第2の表層部における平均Si含有量とは同じであっても、異なっていてもよい。
[Si]0:1.5~5.0%
 内層部における平均Si含有量([Si]0)が1.5%未満であると渦電流損が増加する。そのため、内層部における平均Si含有量は1.5%以上とする。一方、内層部における平均Si含有量が5.0%を超えると、モータコアの打ち抜き時にコアが割れるといった問題が生じる。そのため、内層部における平均Si含有量は5.0%以下、好ましくは4.0%以下とする。
 本発明の一実施形態では、無方向性電磁鋼板が、上記元素を含み、残部がFeおよび不可避不純物からなる成分組成を有する。
[任意添加成分]
 本発明の他の実施形態においては、上記成分組成が、さらに任意に、Al、P、Sn、およびSbからなる群より選択される少なくとも1つを、以下に記す含有量で含有することができる。なお、以下に記す各元素の含有量は、鋼板の全板厚における当該元素の平均含有量を指すものとする。
Al:0.10%以下
 Alは鋼板の固有抵抗を増加させる作用を有する元素であり、Alを添加することにより鉄損をさらに低減することができる。しかし、Al含有量が0.10%を超えると製造性の低下およびコストの上昇を招く。そのため、Alを添加する場合、Al含有量は0.10%以下とする。一方、Al含有量の下限はとくに限定されないが、Alを添加する場合、添加効果を高めるという観点からは、Al含有量を0.01%以上とすることが好ましい。
P:0.10%以下
 Pを添加することにより、集合組織を大きく改善し、磁束密度をさらに向上させるとともにヒステリシス損をさらに低下させることができる。また、Pを添加することにより、高温焼鈍時における鋼板の窒化を抑制し、鉄損の増加をさらに抑制することができる。しかし、P含有量が0.10%を超えると効果が飽和することに加えて、製造性の低下を招く。そのため、Pを添加する場合、P含有量は0.10%以下とする。一方、P含有量の下限はとくに限定されないが、Pの添加効果を高めるという観点からは、P含有量を0.001%以上とすることが好ましい。
Sn:0.10%以下
 Pと同様に、Snを添加することにより、集合組織を大きく改善し、磁束密度をさらに向上させるとともにヒステリシス損をさらに低下させることができる。また、Snを添加することにより、高温焼鈍時における鋼板の窒化を抑制し、鉄損の増加をさらに抑制することができる。Sn含有量が0.10%を超えると効果が飽和することに加えて、製造性の低下およびコストの上昇を招く。そのため、Snを添加する場合、Sn含有量は0.10%以下とする。一方、Sn含有量の下限はとくに限定されないが、Snの添加効果を高めるという観点からは、Sn含有量を0.001%以上とすることが好ましい。
Sb:0.10%以下
 PおよびSnと同様に、Sbを添加することにより、集合組織を大きく改善し、磁束密度をさらに向上させるとともにヒステリシス損をさらに低下させることができる。また、Sbを添加することにより、高温焼鈍時における鋼板の窒化を抑制し、鉄損の増加をさらに抑制することができる。Sb含有量が0.10%を超えると効果が飽和することに加えて、製造性の低下およびコストの上昇を招く。そのため、Sbを添加する場合、Sb含有量は0.10%以下とする。一方、Sb含有量の下限はとくに限定されいないが、Sbの添加効果を得るという観点からは、Sb含有量を0.001%以上とすることが好ましい。
[Mn][S]≦0.0030
 MnとSを含有する鋼では、1000℃未満といった比較的低温での焼鈍中にMnSが析出する。そして、析出したMnSにより結晶粒成長が阻害され、最終的に得られる無方向性電磁鋼板の結晶粒サイズが小さくなり、その結果、ヒステリシス損が増加する。これに対して、本発明では1000℃以上の比較的高温で浸珪処理を行うため、MnSが固溶して粒成長を促すことができる。しかし、Mnの平均含有量とSの平均含有量の積[Mn][S]が0.0030を超えると、析出したままのMnSによって浸珪処理時の粒成長が阻害され、ヒステリシス損が増加する。したがって、浸珪処理中のMnSの析出に起因するヒステリシス損の増加を抑制するという観点からは、上記成分組成が、さらに下記の式の条件を満たすことが好ましい。
 [Mn][S]≦0.0030
ただし、[Mn]、[S]はそれぞれMn、Sの全板厚における平均含有量(質量%)である。一方、[Mn][S]の下限は特に限定されないが、製造性およびコストの観点から、0.000005以上とすることが好ましい。
[板厚]
 無方向性電磁鋼板が薄すぎると、冷間圧延や焼鈍などの製造過程における取り扱いが困難となり、製造コストが増大する。そのため、無方向性電磁鋼板の板厚tは0.01mm以上とする。一方、無方向性電磁鋼板が厚すぎると渦電流損が大きくなり、全鉄損が増加する。そのため、tは0.35mm以下とする。
[t1/t]
 次に、無方向性電磁鋼板の板厚tに対する表層部の合計厚さt1の比t1/t(複層比)が磁気特性に与える影響について検討するために、t1/tが異なる無方向性電磁鋼板を以下の手順で作製し、その磁気特性を評価した。ここで、「表層部の合計厚さ」とは、無方向性電磁鋼板の両面に設けられている表層部の厚さの和を指す。また、表層部とは、上述したように、Si含有量が全板厚の平均Si含有量以上の領域として定義される。
 まず、C:0.005%、Si:2.0%、Mn:0.05%、S:0.001%、Sn:0.04%を含有し、残部がFeおよび不可避的不純物からなる成分組成を有する鋼スラブを熱間圧延して熱延鋼板とした。前記熱延鋼板に対して、950℃×30sの熱延板焼鈍を施し、その後、前記熱延板焼鈍後の鋼板を冷間圧延し、板厚:0.2mmの冷延鋼板とした。次に、前記冷延鋼板に、SiCl4雰囲気中、浸珪処理温度1200℃で浸珪処理を施し、鋼板表面にSiを堆積させた後に、N2雰囲気中、拡散処理温度1200℃で拡散処理を行って表層部平均Si含有量[Si]1を4.0%、内層部平均Si含有量[Si]0を2.2%とした。その後、前記拡散処理温度から900℃までの温度域における平均冷却速度v1:15℃/s、900℃から100℃までの温度域における平均冷却速度v2:40℃/sの条件で、100℃以下まで冷却した。得られた無方向性電磁鋼板における比t1/tは0.05~0.80であった。
 得られた無方向性電磁鋼板のそれぞれから試験片を採取し、エプスタイン試験を行って最大磁束密度:1.0T、周波数400Hzにおける鉄損W10/400(W/kg)を評価した。具体的な評価方法は、実施例に記載した方法と同様とした。
 図3に、t1/tとW10/400(W/kg)との相関を示す。この結果より、t1/tが0.10~0.70の場合に鉄損が大きく低下していることがわかる。この鉄損の低下は、以下の理由によると考えられる。まず、t1/tが0.10未満である場合、高抵抗である表層部の割合が低いため、表層部に集中する渦電流を効果的に低減することができない。一方、t1/tが0.70を超える場合には表層部と内層部の透磁率差が小さくなるため、内層部にまで磁束が浸透し、内層部からも渦電流損が発生する。したがって、t1/tを0.10~0.70とすることによって鉄損を低減できる。以上の理由から、本願発明では板厚tに対する表層部の合計厚さt1の比t1/tを0.10~0.70とする。
[面内引張応力]
 無方向性電磁鋼板のさらなる低鉄損化を図るべく検討したところ、無方向性電磁鋼板には内部応力として、面内引張応力が生じていることがわかった。前記面内引張応力が無方向性電磁鋼板の磁気特性に及ぼす影響について検討するために以下の試験を行った。
 まず、C:0.004%、Si:2.5%、Mn:0.07%、S:0.002%、Sn:0.04%、およびP:0.01%を含有し、残部がFeおよび不可避的不純物からなる成分組成を有する鋼スラブを熱間圧延して熱延鋼板とした。前記熱延鋼板に対して、950℃×30sの熱延板焼鈍を施し、その後、前記熱延板焼鈍後の鋼板を冷間圧延し、板厚:0.2mmの冷延鋼板とした。次に、前記冷延鋼板に、SiCl4雰囲気中、浸珪処理温度1250℃で浸珪処理を施し、鋼板表面にSiを堆積させた後に、N2雰囲気中、拡散処理温度1100℃で拡散処理を行ってその後、前記拡散処理温度から900℃までの温度域における平均冷却速度v1:15℃/s、900℃から100℃までの温度域における平均冷却速度v2:40℃/sの条件で、100℃以下まで冷却した。得られた無方向性電磁鋼板における表層部平均Si含有量[Si]1は3.0~7.0%、内層部平均Si含有量[Si]1は2.2~2.7%、t1/tは0.30であった。
 得られた無方向性電磁鋼板のそれぞれから試験片を採取し、エプスタイン試験を行って最大磁束密度:1.0T、周波数400Hzにおける鉄損W10/400(W/kg)を評価した。具体的な評価方法は、実施例に記載した方法と同様とした。
 次に、面内引張応力の測定を以下の手順で行った。まず、得られた無方向性電磁鋼板の片面からフッ酸による化学研磨を施し、研磨後のサンプルの表面が表層部と内層部になるよう、前記サンプルの板厚tSが0.1mmになるまで研磨した。化学研磨後のサンプルは、表層部が内側になるように反ることから、研磨前のサンプルには表層部の面内に引張応力が生じていることが分かる。そこで、得られたサンプルの反り量の指標である曲率半径rから、下記の式を用いて前記無方向性電磁鋼板の面内引張応力を算出した。
 面内引張応力(MPa)=tS×E/(4×r)
ここで、
S:サンプルの板厚=0.1mm
E:ヤング率=190GPa
r:曲率半径(mm)である。
 図4に、面内引張応力(MPa)とW10/400(W/kg)との相関を示す。この結果より、面内引張応力が5~50MPaの場合に鉄損が低下していることがわかる。これは次のような理由によると考えられる。すなわち、表層部の面内に生じている引張応力によって、磁化容易軸が面内方向となることで、表層に磁束が集中し、渦電流損が減少する。しかし、内部応力が過度に大きいと、表層部へ磁束が集中して渦電流損は低下するが、ヒステリシス損が大幅に増加するため、結果的に鉄損が増加する。400Hz程度の周波数域における鉄損には、渦電流損だけでなくヒステリシス損も大きく影響するため、本願発明では400Hz程度の周波数域における鉄損低減のため、表層部の面内引張応力を5~50MPaとする。
 なお、表層部の面内引張応力は主として表層部と内層部のSi濃度差:ΔSi([Si]1-[Si]0)によって生じていると考えられるため、本願発明の内部応力を得るためにはΔSiを1.0%以上とすることが好ましい。一般的には、[Si]1が[Si]0より高いため、言い換えると、[Si]1≧{[Si]0+1.0質量%}とすることが好ましい。
[平均N含有量]
 本発明においては、無方向性電磁鋼板の全板厚における平均N含有量[N]を40ppm以下とする。その限定理由については後述する。
[鉄損]
 本発明における鉄損は、最大磁束密度1.0T、周波数400Hzにおける鉄損(全鉄損)W10/400(W/kg)で評価した。本発明の無方向性電磁鋼板は、W10/400(W/kg)と、板厚t(mm)とが、下記の式を満たす。これは、下記の式の関係を満たさない場合、ステータコアの発熱が非常に大きくなり、モータ効率が著しく低下してしまうためである。なお、鉄損は板厚に依存するため、下記の式では板厚の影響を考慮して鉄損の上限値を規定した。
 W10/400≦8+30t
 電磁鋼板では、通常、磁束密度を高くすると鉄損が増大してしまうため、一般的なモータコアは磁束密度が1.0T程度となるように設計される。これに対して、本発明の無方向性電磁鋼板は、上述したように鋼板の表層部と内層部の成分組成、面内引張応力および複層比を制御することにより、相反する性質である高磁束密度と低鉄損とを両立させている。
[集合組織]
 無方向性電磁鋼板において{100}面を増やし、{111}面を減らすことで該無方向性電磁鋼板の面内に磁化しやすくなるため、磁束密度がさらに向上するとともにヒステリシス損を一層低下させることができる。そのため、前記無方向性電磁鋼板の表面から板厚tの1/4の深さの面における方位分布関数(ODF)のΦ2=45°断面において、{111}面集積度に対する{100}面集積度の比{100}/{111}を55%以上とすることが好ましい。一方、前記{100}/{111}が過度に大きくなるとコアの加工性が低下するおそれがある。そのため、{100}/{111}は90%以下とすることが好ましい。
 なお、{100}面の割合を増加させるためには、浸珪処理の際に昇温過程での200℃から浸珪温度までの平均昇温速度を20℃/s以上とすることや、偏析元素であるP、Sn、Sbの少なくとも1つを適量添加することが有効である。
[製造方法]
 本発明の無方向性電磁鋼板は、特に限定されることないが、浸珪法を用いて製造することができる。浸珪法を用いる場合は、Si含有量が厚さ方向に一定である鋼板に対して浸珪処理および拡散処理を施すことにより、鋼板両面の表層部のSi含有量を高めることができる。浸珪法により製造される無方向性電磁鋼板は、例えば、図2(a)に示したようなSi含有量プロファイルを有する。
 以下、本発明の一実施形態における、浸珪法を用いた無方向性電磁鋼板の製造方法について説明する。
 本発明の一実施形態における無方向性電磁鋼板の製造方法においては、鋼板に対して次の(1)~(3)の工程を順次施すことにより、無方向性電磁鋼板を製造する。
(1)浸珪処理
(2)拡散処理
(3)冷却
 前記処理を施す対象である鋼板としては、Si含有量が1.5~5.0%である鋼板を用いればよい。前記鋼板は、板厚方向に略均一な組成を有する鋼板を用いることが好ましい。前記鋼板のSi以外の成分組成は、とくに限定されないが、上述した無方向性電磁鋼板と成分組成と同様とすることができる。
 本発明の一実施形態においては、前記処理対象の鋼板としては、
 Si:1.5~5.0%、
 C :0.020%以下、
 Mn:0.010~2.0%、および
 S :0.0100%以下を含有し、残部がFeおよび不可避不純物からなる成分組成を有する鋼板を用いることが好ましい。
 また、本発明の他の実施形態においては、前記鋼板の成分組成は、
 Al:0.10質量%以下、
 P :0.1質量%以下、
 Sn:0.10質量%以下、および
 Sb:0.10質量%以下からなる群より選択される少なくとも1つをさらに含有することができる。
 前記鋼板の成分組成は、さらに下記の式を満たすことが好ましい。
 [Mn][S]≦0.0030
ただし、[Mn]、[S]はそれぞれMn、Sの全板厚における平均含有量(質量%)である。
(1)浸珪処理
 まず、前記鋼板に対して浸珪処理を施す。前記浸珪処理は、SiCl4雰囲気中、1000℃以上、1300℃以下の浸珪処理温度で行う。浸珪処理温度が1000℃未満である場合、SiCl4と母材の反応が遅くなるため、製造性が低下し、コストが増加する。また、浸珪処理によって鋼板表層部のSi含有量が増加すると融点が低下するため、1300℃を超える高温で浸珪処理を施すと、鋼板が炉内で破断し、製造性が低下する。したがって、浸珪処理温度は1000℃以上、1300℃以下とする。
(2)拡散処理
 次に、前記浸珪処理後の鋼板に拡散処理を施す。前記拡散処理はN2雰囲気中、950℃以上、1300℃以下の温度で行う。拡散処理はAr雰囲気で行うこともできるが、コストが上がるため現実的ではなく、工業的な観点からN2雰囲気下で行うこととする。また、拡散処理を950℃未満の温度で行うと、拡散速度が遅くなるため、製造性が低下する。一方、浸珪処理によって鋼板表層部のSi含有量が増加すると融点が低下するため、1300℃を超える高温で拡散処理を施すと、鋼板が炉内で破断し、製造性が低下する。したがって、拡散処理の温度は950℃以上、1300℃以下とする。
(3)冷却
 次いで、前記拡散処理後の鋼板を、拡散処理温度から900℃までの温度域における平均冷却速度v1:5~20℃/s、900℃から100℃までの温度域における平均冷却速度v2:30~100℃/sの条件で冷却する。
 ここで、前記冷却工程における平均冷却速度を決定するために行った実験について説明する。
 まず、C:0.005%、Si:2.5%、Mn:0.06%、S:0.003%、Sn:0.06%、およびP:0.06%を含有し、残部がFeおよび不可避的不純物からなる成分組成を有する鋼スラブを熱間圧延して熱延鋼板とした。前記熱延鋼板に対して、950℃×30sの熱延板焼鈍を施し、その後、前記熱延板焼鈍後の鋼板を冷間圧延し、板厚:0.2mmの冷延鋼板とした。次に、前記冷延鋼板に、SiCl4雰囲気中、浸珪処理温度1200℃で浸珪処理を施し、鋼板表面にSiを堆積させた後に、N2雰囲気中、拡散処理温度1100℃で拡散処理を行って表層部平均Si含有量[Si]1を4.5%とした。その後、前記拡散処理温度から900℃までの温度域における平均冷却速度v1:5~35℃/s、900℃から100℃までの温度域における平均冷却速度v2:5~120℃/sの条件で、100℃以下まで冷却した。得られた無方向性電磁鋼板における比t1/tは0.30であった。
 得られた無方向性電磁鋼板のそれぞれから試験片を採取し、エプスタイン試験を行って最大磁束密度:1.0T、周波数400Hzにおける鉄損W10/400(W/kg)を評価した。具体的な評価方法は、実施例に記載した方法と同様とした。
 図5に、平均冷却速度v2を45℃/sで一定とした際の、平均冷却速度v1(℃/s)と鉄損W10/400(W/kg)との相関を示す。この結果から分かるように、平均冷却速度v1が20℃/sを超えると鉄損が増加する。これは、平均冷却速度v1が20℃/sを超える場合、急速な冷却により鋼板に歪が生じ、その結果、ヒステリシス損が増加したためと考えられる。そのため、本発明では平均冷却速度v1を20℃/s以下とする。一方、v1が5℃/s未満であると、製造効率が低下し、コストが増加する。そのため、v1は5℃/s以上とする。
 また、図6に、平均冷却速度v1を10℃/sで一定とした際の、平均冷却速度v2(℃/s)と鉄損W10/400(W/kg)との相関を示す。この結果から分かるように、平均冷却速度v2が30℃/s未満では鉄損が増加した。
 この原因を調査するため、各条件で得られた無方向性電磁鋼板の全板厚における平均N含有量[N]を測定した。平均冷却速度v2(℃/s)と測定された平均N含有量[N](ppm)との相関を、図7に示す。なお、前記平均N含有量[N]は、実施例に記載した方法で測定した。図7に示した結果から、平均冷却速度v2が30℃/s未満の条件では、v2が30℃/s以上の場合に比べて[N]が高いことがわかった。この結果より、平均冷却速度v2が30℃/s未満では鋼板の窒化によって鉄損が増加したと考えられる。そのため、本発明の一実施形態における無方向性電磁鋼板においては、全板厚における平均N含有量[N]を40ppm以下とする。また、本発明の一実施形態における無方向性電磁鋼板の製造方法においては、平均冷却速度v2を30℃/s以上とする。
 一方、図6、7に示した結果から、平均冷却速度v2が100℃/sを超えると、鋼中窒素量は30ppm以下であるにも関わらず、鉄損が増加していることが分かる。これは、平均冷却速度v2が100℃/sを超える場合、冷却歪によって鉄損が増加したためと考えられる。そのため、本発明においては、平均冷却速度v2を100℃/s以下とする。
(実施例1)
 本発明の効果を確認するために、以下に述べる手順で無方向性電磁鋼板を製造し、その磁気特性を評価した。
 まず、Si:2.0~4.0%を含有する鋼スラブを用意した。前記鋼スラブの成分組成は、転炉で吹錬した後に脱ガス処理を行うことによって調整した。次いで、前記鋼スラブを1140℃で1時間加熱した後、熱間圧延を行って板厚2mmの熱延鋼板とした。前記熱間圧延における熱延仕上げ温度は800℃とした。前記熱延鋼板を巻取り温度:610℃で巻取り、次いで、900℃×30sの熱延板焼鈍を施して熱延焼鈍板とした。その後、前記熱延焼鈍板に、酸洗および冷間圧延を施して、冷延鋼板とした。
 次いで、得られた冷延鋼板に、SiCl4雰囲気中、浸珪処理温度1200℃で浸珪処理を施した。なお、浸珪処理の昇温過程では200℃から浸珪処理温度までの昇温速度を10~40℃/sの間で変更した。その後、N2雰囲気中で表1、2に示す条件で拡散処理、冷却を行い、表1、2に示した板厚tを有する無方向性電磁鋼板を得た。ここで、平均冷却速度v1は拡散処理温度から900℃までの平均冷却速度を表し、平均冷却速度v2は900℃から100℃までの平均冷却速度を表す。
(組成)
 得られた無方向性電磁鋼板をカーボンモールドに埋め込み、EPMA(Electron Probe Micro Analyzer)を用いて板厚方向断面におけるSi含有量分布を測定した。鋼板の板厚におけるSi含有量の平均値を算出し、前記平均値よりもSi濃度が高い部分を表層部、低い部分を内層部とした。得られた結果から、板厚tに対する表層部の合計厚さt1の比t1/t、表層部における平均Si含有量:[Si]1、および内層部における平均Si含有量:[Si]0を求めた。また、ICP発光分析法を用いて無方向性電磁鋼板の全板厚の平均N含有量:[N]を測定した。測定結果を表1、2に併記する。
 また、得られた無方向性電磁鋼板に含まれるSi、N以外の成分についても、ICP発光分析法を用いて全板厚における平均含有量を測定した。測定結果を表1、2に示す。
(内部応力)
 内部応力の測定には幅30mm、長さ180mmの試験片を使用し、サンプルを片面からフッ酸による化学研磨を施し、研磨後のサンプルの表面が表層部と内層部になるよう、該サンプルの板厚tSがt/2になるまで研磨した。その後、サンプルの反り量から、下記(2)式を使用して面内引張応力を算出した。
 面内引張応力(MPa)=tS×E/(4×r)…(2)
ここで、
S:サンプルの板厚
E:ヤング率=190GPa
r:曲率半径(mm)である。
(集合組織)
 また、得られた無方向性電磁鋼板の集合組織を調査するため、無方向性電磁鋼板の表面から板厚1/4まで化学研磨し、X線を用いてODF解析を行って、方位分布関数のΦ2=45°断面における{111}面集積度に対する{100}面集積度の比{100}/{111}を求めた。測定結果を表1、2に併記する。
(鉄損)
 得られた無方向性電磁鋼板のそれぞれから、幅30mm、長さ180mmの試験片を採取し、エプスタイン試験を行って、最大磁束密度:1.0T、周波数:400Hzにおける鉄損:W10/400(W/kg)を測定した。前記エプスタイン試験は、JIS C 2550-1に準じて、25cmエプスタイン枠を用いて行った。また、前記エプスタイン試験では、試験片の長さ方向が圧延方向(L方向)となるように採取したL方向試験片と、試験片の長さ方向が圧延直角方向(C方向)となるように採取したC方向試験片を等量用い、L方向とC方向における磁気特性の平均値を評価した。測定結果を表1、2に併記する。
 表1、2に示した結果から分かるように、本発明の条件を満たす無方向性電磁鋼板は、400Hzにおける鉄損が低くいという、優れた特性を有していた。これに対し、本発明の条件を満たさない比較例においては、鉄損が劣っていた。なお、一部の比較例では、製造途中に鋼板が破断したため、鉄損の評価を行えなかった。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
(実施例2)
 表3に示す成分を含有する鋼スラブを1140℃で1時間加熱した後、熱延仕上温度が800℃の熱間圧延を施し、板厚2mmの熱延鋼板とした。得られた熱延鋼板を610℃で巻き取り、次いで、950℃×30sの熱延板焼鈍を施して、熱延焼鈍板とした。その後、熱延焼鈍板に酸洗および冷間圧延を施して、表3に示した板厚を有する冷延鋼板とした。
 次いで、得られた冷延鋼板に、SiCl4+N2雰囲気中、浸珪処理温度1200℃で浸珪処理を施した。その後、N2雰囲気中、1150℃で拡散処理を施し、1150℃から900℃までを平均冷却速度v1:20℃/s、900℃から100℃までを平均冷却速度v2:6℃/sで冷却した。また、浸珪処理は表層と内層の板厚比t1/tが0.40となるように処理を施した。
 得られた無方向性電磁鋼板のそれぞれについて、組成、内部応力、集合組織、および鉄損を、上記実施例1と同様の方法で評価した。評価結果を表3に併記する。
 表3に示した結果からわかるように、[Mn][S]が0.0030以下である無方向性電磁鋼板は、[Mn][S]が0.0030を超えている無方向性電磁鋼板に比べ、さらに鉄損が低減されていた。
Figure JPOXMLDOC01-appb-T000003
  1 無方向性電磁鋼板
 10 内層部
 20 表層部

Claims (5)

  1.  Si含有量が全板厚の平均Si含有量未満の領域として定義される内層部と、前記内層部の両側に設けられた、Si含有量が全板厚の平均Si含有量以上の領域として定義される表層部とからなる無方向性電磁鋼板であって、
     Siと、
     全板厚における平均含有量で、
     C :0.020質量%以下、
     Mn:0.010質量%~2.0質量%、および
     S :0.0100質量%以下とを含有し、残部がFeおよび不可避不純物からなり、
     前記表層部における平均Si含有量[Si]1が2.5~7.0質量%であり、
     前記内層部における平均Si含有量[Si]0が1.5~5.0質量%である成分組成を有し、
     前記表層部が5~50MPaの面内引張応力を有し、
     前記無方向性電磁鋼板の板厚tが0.01~0.35mmであり、
     前記板厚tに対する前記表層部の合計厚さt1の比t1/tが0.10~0.70であり、
     前記無方向性電磁鋼板の全板厚における平均N含有量[N]が40ppm以下であり、
     最大磁束密度:1.0T、周波数400Hzにおける鉄損W10/400(W/kg)と、前記板厚t(mm)とが下記(1)式を満たす無方向性電磁鋼板。
     W10/400≦8+30t …(1)
  2.  前記成分組成が、全板厚における平均含有量で、
     Al:0.10質量%以下、
     P :0.10質量%以下、
     Sn:0.10質量%以下、および
     Sb:0.10質量%以下からなる群より選択される少なくとも1つをさらに含有する、請求項1に記載の無方向性電磁鋼板。
  3.  さらに、前記無方向性電磁鋼板の表面から板厚の1/4の深さの面における方位分布関数のΦ2=45°断面において、{111}面集積度に対する{100}面集積度の比{100}/{111}が55~90%である集合組織を有する、請求項1または2に記載の無方向性電磁鋼板。
  4.  前記成分組成が、さらに下記(2)式を満たす、請求項1~3のいずれか一項に記載の無方向性電磁鋼板。
     [Mn][S]≦0.0030 …(2)
    ただし、[Mn]、[S]はそれぞれMn、Sの全板厚における平均含有量(質量%)である。
  5.  請求項1~4のいずれか一項に記載の無方向性電磁鋼板を製造する方法であって、
     Si含有量が1.5~5.0質量%である鋼板に、SiCl4雰囲気中、1000℃以上、1300℃以下の浸珪処理温度で浸珪処理を施し、
     前記浸珪処理後の鋼板にN2雰囲気中、950℃以上、1300℃以下の温度で拡散処理を施し、
     前記拡散処理後の鋼板を、拡散処理温度から900℃までの温度域における平均冷却速度v1:5~20℃/s、900℃から100℃までの温度域における平均冷却速度v2:30~100℃/sの条件で冷却する、無方向性電磁鋼板の製造方法。
PCT/JP2020/035362 2019-10-03 2020-09-17 無方向性電磁鋼板およびその製造方法 WO2021065555A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020227008618A KR20220045223A (ko) 2019-10-03 2020-09-17 무방향성 전기 강판 및 그 제조 방법
CN202080066999.3A CN114514332B (zh) 2019-10-03 2020-09-17 无取向性电磁钢板及其制造方法
CA3151160A CA3151160C (en) 2019-10-03 2020-09-17 Non-oriented electrical steel sheet and method of producing same
JP2021507723A JP7218794B2 (ja) 2019-10-03 2020-09-17 無方向性電磁鋼板およびその製造方法
EP20871054.1A EP4039832A4 (en) 2019-10-03 2020-09-17 NON-ALIGNED ELECTROMAGNETIC STEEL SHEET AND METHOD OF MANUFACTURE THEREOF
US17/754,146 US20220290287A1 (en) 2019-10-03 2020-09-17 Non-oriented electrical steel sheet and method of producing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019183100 2019-10-03
JP2019-183100 2019-10-03

Publications (1)

Publication Number Publication Date
WO2021065555A1 true WO2021065555A1 (ja) 2021-04-08

Family

ID=75338218

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/035362 WO2021065555A1 (ja) 2019-10-03 2020-09-17 無方向性電磁鋼板およびその製造方法

Country Status (7)

Country Link
US (1) US20220290287A1 (ja)
EP (1) EP4039832A4 (ja)
JP (1) JP7218794B2 (ja)
KR (1) KR20220045223A (ja)
CN (1) CN114514332B (ja)
CA (1) CA3151160C (ja)
WO (1) WO2021065555A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023132198A1 (ja) * 2022-01-07 2023-07-13 Jfeスチール株式会社 無方向性電磁鋼板
WO2023132197A1 (ja) * 2022-01-07 2023-07-13 Jfeスチール株式会社 無方向性電磁鋼板

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH059705A (ja) * 1991-06-28 1993-01-19 Nkk Corp 均質で優れた磁気特性をもつ高珪素鋼板の製造方法
JPH05125496A (ja) * 1991-10-31 1993-05-21 Nkk Corp Si拡散浸透処理法により製造される磁気特性および機械特性の優れた高珪素鋼板およびその製造方法
JPH11199988A (ja) * 1998-01-13 1999-07-27 Nkk Corp シリコンの濃度勾配を有するけい素鋼板
JPH11307352A (ja) * 1998-04-17 1999-11-05 Nkk Corp 高効率モータ
JPH11307353A (ja) * 1998-04-17 1999-11-05 Nkk Corp 高効率リラクタンスモータ
JP2000045053A (ja) * 1998-07-29 2000-02-15 Nkk Corp 鉄損の低い方向性珪素鋼板
JP2012251191A (ja) * 2011-06-01 2012-12-20 Jfe Steel Corp 電磁鋼板およびその製造方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10140298A (ja) * 1996-11-07 1998-05-26 Nkk Corp 低騒音・低残留磁束密度の無方向性けい素鋼板
JP3948112B2 (ja) 1998-04-07 2007-07-25 Jfeスチール株式会社 珪素鋼板
JP4073075B2 (ja) * 1998-03-12 2008-04-09 Jfeスチール株式会社 高周波鉄損W1/10kの低い珪素鋼板
JP2005120403A (ja) * 2003-10-15 2005-05-12 Jfe Steel Kk 高周波域の鉄損が低い無方向性電磁鋼板
CN101122022A (zh) * 2007-09-12 2008-02-13 河北理工大学 一种Fe-6.5Wt%Si软磁钢片的制备方法
CN102199721B (zh) * 2010-03-25 2013-03-13 宝山钢铁股份有限公司 高硅无取向冷轧薄板的制造方法
JP5867713B2 (ja) * 2012-01-27 2016-02-24 Jfeスチール株式会社 電磁鋼板
KR101945132B1 (ko) * 2014-07-31 2019-02-01 제이에프이 스틸 가부시키가이샤 무방향성 전기 강판과 그 제조 방법 그리고 모터 코어와 그 제조 방법
CN108026621B (zh) * 2015-09-17 2020-08-04 杰富意钢铁株式会社 高硅钢板及其制造方法
US20190112697A1 (en) * 2016-03-31 2019-04-18 Jfe Steel Corporation Electrical steel sheet and method of producing the same
CN110249063A (zh) * 2017-02-07 2019-09-17 杰富意钢铁株式会社 无取向性电磁钢板的制造方法和马达铁芯的制造方法及马达铁芯
JP7334673B2 (ja) 2019-05-15 2023-08-29 Jfeスチール株式会社 無方向性電磁鋼板およびその製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH059705A (ja) * 1991-06-28 1993-01-19 Nkk Corp 均質で優れた磁気特性をもつ高珪素鋼板の製造方法
JPH05125496A (ja) * 1991-10-31 1993-05-21 Nkk Corp Si拡散浸透処理法により製造される磁気特性および機械特性の優れた高珪素鋼板およびその製造方法
JPH11199988A (ja) * 1998-01-13 1999-07-27 Nkk Corp シリコンの濃度勾配を有するけい素鋼板
JPH11307352A (ja) * 1998-04-17 1999-11-05 Nkk Corp 高効率モータ
JPH11307353A (ja) * 1998-04-17 1999-11-05 Nkk Corp 高効率リラクタンスモータ
JP2000045053A (ja) * 1998-07-29 2000-02-15 Nkk Corp 鉄損の低い方向性珪素鋼板
JP2012251191A (ja) * 2011-06-01 2012-12-20 Jfe Steel Corp 電磁鋼板およびその製造方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023132198A1 (ja) * 2022-01-07 2023-07-13 Jfeスチール株式会社 無方向性電磁鋼板
WO2023132197A1 (ja) * 2022-01-07 2023-07-13 Jfeスチール株式会社 無方向性電磁鋼板
JP7375985B1 (ja) * 2022-01-07 2023-11-08 Jfeスチール株式会社 無方向性電磁鋼板
JP7388597B1 (ja) 2022-01-07 2023-11-29 Jfeスチール株式会社 無方向性電磁鋼板

Also Published As

Publication number Publication date
CN114514332B (zh) 2023-03-14
EP4039832A1 (en) 2022-08-10
EP4039832A4 (en) 2023-03-08
US20220290287A1 (en) 2022-09-15
JP7218794B2 (ja) 2023-02-07
CA3151160A1 (en) 2021-04-08
KR20220045223A (ko) 2022-04-12
JPWO2021065555A1 (ja) 2021-11-25
CA3151160C (en) 2023-10-31
CN114514332A (zh) 2022-05-17

Similar Documents

Publication Publication Date Title
US9466411B2 (en) Non-oriented electrical steel sheet
JP5446377B2 (ja) 方向性電磁鋼板およびその製造方法
JP6436316B2 (ja) 方向性電磁鋼板の製造方法
JPWO2020136993A1 (ja) 無方向性電磁鋼板およびその製造方法
CN110678568A (zh) 无方向性电磁钢板及其制造方法
CA1333988C (en) Ultra-rapid annealing of nonoriented electrical steel
WO2019182022A1 (ja) 無方向性電磁鋼板
WO2021065555A1 (ja) 無方向性電磁鋼板およびその製造方法
JP2020190026A (ja) 無方向性電磁鋼板およびその製造方法
JP5428188B2 (ja) 方向性電磁鋼板の製造方法
JP2018165383A (ja) 無方向性電磁鋼板
JP2000129410A (ja) 磁束密度の高い無方向性電磁鋼板
JP7173286B2 (ja) 無方向性電磁鋼板
KR950004934B1 (ko) 투자율이 우수한 무방향성 전기 강판 및 그 제조방법
JP7331802B2 (ja) 無方向性電磁鋼板およびその製造方法
JP2003293101A (ja) 歪取焼鈍後の磁気特性および耐食性に優れた無方向性電磁鋼板
JPH055126A (ja) 無方向性電磁鋼板の製造方法
JP3357602B2 (ja) 磁気特性に優れる方向性電磁鋼板の製造方法
JP2560579B2 (ja) 高透磁率を有する高珪素鋼板の製造方法
JP6870791B2 (ja) 無方向性電磁鋼板
JP4258163B2 (ja) 歪取焼鈍後の磁気特性に優れた無方向性電磁鋼板
KR102483634B1 (ko) 무방향성 전기강판 및 그 제조 방법
KR102483636B1 (ko) 무방향성 전기강판 및 그 제조 방법
WO2024095665A1 (ja) 無方向性電磁鋼板およびその製造方法
JP2003027139A (ja) 方向性電磁鋼板の製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021507723

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20871054

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3151160

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 20227008618

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020871054

Country of ref document: EP

Effective date: 20220503