WO2024095665A1 - 無方向性電磁鋼板およびその製造方法 - Google Patents

無方向性電磁鋼板およびその製造方法 Download PDF

Info

Publication number
WO2024095665A1
WO2024095665A1 PCT/JP2023/036145 JP2023036145W WO2024095665A1 WO 2024095665 A1 WO2024095665 A1 WO 2024095665A1 JP 2023036145 W JP2023036145 W JP 2023036145W WO 2024095665 A1 WO2024095665 A1 WO 2024095665A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
less
steel sheet
group
temperature
Prior art date
Application number
PCT/JP2023/036145
Other languages
English (en)
French (fr)
Inventor
勇人 齋藤
智幸 大久保
善彰 財前
茂宏 丸山
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Publication of WO2024095665A1 publication Critical patent/WO2024095665A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition

Definitions

  • the present invention relates to a non-oriented electrical steel sheet that has low core loss and high strength at practical temperatures, and a method for manufacturing the same.
  • non-oriented electrical steel sheets used in the iron cores of motors are required to have excellent iron loss characteristics as well as high strength from the viewpoint of durability. Furthermore, if there is variation in strength within the steel sheet, the risk of damage to weak parts during use as an iron core increases, so it is also necessary for the strength to be uniform within the steel sheet. Furthermore, since automobile drive motors are required to be small and have high output, the temperature during use of the motor is increasing, and high strength is also being required even at the 150°C level. As described above, it is becoming important for non-oriented electrical steel sheets used in iron cores to not only have excellent magnetic properties, but also have high yield strength at high temperatures and small variation in yield strength.
  • Patent Document 1 proposes a non-oriented electrical steel sheet with high yield strength that has a composition containing Si: 1.5 mass% to 3.5 mass%, Mn: 1.5 mass%, Al: 0.2 mass% to 3.0 mass%, Mg: 0.0003 mass% to 0.0050 mass%, with the balance being Fe and unavoidable impurities, has a crystal grain size d of 5 ⁇ m to 40 ⁇ m, and satisfies the relationship d ⁇ 50 ⁇ (Si+0.5Al-2).
  • Patent Document 2 proposes a method for manufacturing low iron loss non-oriented electrical steel sheet, which is characterized by hot rolling a silicon steel slab containing C: 0.005 mass% or less, Si: 2.5 to 4.0 mass%, S: 0.005 mass% or less, Al: 0.3 to 1.5 mass%, and N: 0.004 mass% or less, followed by hot rolling, annealing the hot rolled sheet, and then cold rolling once or two or more times with intermediate annealing between them to produce the final sheet thickness, soaking at 900 to 1200°C for 5 seconds to 15 minutes, and then finish annealing in which the temperature of the entire width in the sheet width direction is kept within ⁇ 20°C of the sheet width center temperature until the temperature of the sheet width center is cooled to 600°C, followed by insulation treatment.
  • Patent Document 3 describes a composition of (1) C: 0.01 mass% or less, Si: 4 mass% or less, Mn: 0.1 to 0.8 mass%, Al: 0.004 mass% or less or 0.1 to 1 mass%, Cu: 0.05 mass% or less (including 0), S: 0.015 mass% or less (including 0), N: 0.005 mass% or less (including 0), P: 0.2 mass% or less (including 0), with the remainder being essentially Fe and unavoidable impurities.
  • a method for manufacturing a non-oriented electrical steel sheet with excellent low magnetic field properties has been proposed, which is characterized by the steps of: (1) hot rolling a silicon steel slab having the above-mentioned properties to produce a hot-rolled steel sheet; (2) cold rolling the hot-rolled steel sheet once or twice or more to produce a cold-rolled steel sheet; and (3) when subjecting the cold-rolled steel sheet to finish annealing, cooling the cold-rolled steel sheet from the soaking temperature to a quenching start temperature TS within a temperature range of 600°C to 500°C at an average cooling rate VS of 10°C/s or less, and quenching the cold-rolled steel sheet from the quenching start temperature TS to 300°C at an average cooling rate VQ of 10 to 50°C/s.
  • JP 2005-113158 A Japanese Patent Application Laid-Open No. 63-047333 Japanese Patent Application Laid-Open No. 09-302414
  • the present invention was made in consideration of the above problems with the conventional technology, and its purpose is to provide a non-oriented electrical steel sheet that not only has good magnetic properties, but also has high yield strength even at the operating temperature of a motor, and has small variation in the yield strength, and to propose an advantageous manufacturing method for the same.
  • the inventors conducted extensive research, focusing on the composition of steel sheets and their manufacturing methods, and in particular on carbon (C), which is generally considered to need to be reduced because it deteriorates iron loss.
  • C carbon
  • the present invention is a non-oriented electrical steel sheet that contains C: 0.0005-0.0100 mass%, Si: 2.0-4.5 mass%, Mn: 0.1-2.0 mass%, P: 0.050 mass% or less, S: 0.0050 mass% or less, Al: 0.20-2.50 mass%, N: 0.0050 mass% or less, and O: 0.0050 mass% or less, and further contains at least one of Sn and Sb in a total amount of 0.01-0.20 mass%, with the balance being Fe and unavoidable impurities, and has a component composition in which the minimum value of the yield strength in the sheet width direction at 150°C is 300 MPa or more, and the variation of the yield strength in the sheet width direction is 30 MPa or less.
  • the non-oriented electrical steel sheet of the present invention is characterized in that, in addition to the above-mentioned chemical composition, it further contains at least one component selected from the following groups A to F: Group A: At least one of Ca, Mg and REM: 0.0010 to 0.0080 mass% in total Group B: At least one of Cr, Mo, Cu and Ni: 0.01 to 0.60 mass% in total Group C: at least one of Ti, Nb and V: 0.0005 to 0.0050 mass% in total Group D: at least one of B: 0.0001 to 0.0020 mass%, Pb: 0.0001 to 0.0010 mass%, and W: 0.0005 to 0.0050 mass%; Group E: Zn: 0.001 to 0.010 mass% Group F: Co: 0.0010 to 0.0500 mass%
  • the present invention also provides a steel sheet containing C: 0.0005 to 0.0100 mass%, Si: 2.0 to 4.5 mass%, Mn: 0.1 to 2.0 mass%, P: 0.050 mass% or less, S: 0.0050 mass% or less, Al: 0.20 to 2.50 mass%, N: 0.0050 mass% or less, and O: 0.0050 mass% or less, and further containing at least one of Sn and Sb in a total amount of 0.01 to 0.20 mass%.
  • the present invention proposes a method for producing a non-oriented electrical steel sheet, which comprises hot rolling a steel slab having a composition containing s % Cu and the balance consisting of Fe and unavoidable impurities, hot-rolling the slab, annealing the hot-rolled sheet, cold rolling, and finish annealing the slab, characterized in that the soaking temperature in the finish annealing is 700 to 1100°C, the soaking time is 2 s or more, and cooling is performed from the soaking temperature in the finish annealing to 200°C while satisfying the following conditions (1) to (3): (1) Average cooling rate in the temperature range from 700°C to 200°C: 10°C/s or more (2) Hydrogen concentration in the furnace atmosphere gas from the soaking temperature to 700°C: 1 vol% or more (3) Dew point of the furnace atmosphere gas in the temperature range from the soaking temperature to 300°C: -30°C or less (4) Variation in the steel plate temperature in the plate width direction in the temperature range from 500°C to 200°C: 40°C or
  • the manufacturing method of the non-oriented electrical steel sheet of the present invention is characterized in that the difference between the maximum and minimum average cooling rates per 100°C in the temperature range from 700 to 200°C during the final annealing is 20°C/s or less.
  • the steel slab used in the method for producing the non-oriented electrical steel sheet of the present invention is characterized in that it further contains, in addition to the above-mentioned chemical composition, at least one component selected from the following groups A to F: Group A: At least one of Ca, Mg and REM: 0.0010 to 0.0080 mass% in total Group B: At least one of Cr, Mo, Cu and Ni: 0.01 to 0.60 mass% in total Group C: at least one of Ti, Nb and V: 0.0005 to 0.0050 mass% in total Group D: at least one of B: 0.0001 to 0.0020 mass%, Pb: 0.0001 to 0.0010 mass%, and W: 0.0005 to 0.0050 mass%; Group E: Zn: 0.001 to 0.010 mass% Group F: Co: 0.0010 to 0.0500 mass%
  • the present invention makes it possible to stably provide non-oriented electrical steel sheets that not only have good magnetic properties but also have high yield strength across the entire width of the steel sheet at the operating temperature of the motor. Therefore, the present invention makes it possible to provide a material suitable for use in the iron cores of motors, which require high efficiency and high durability.
  • C 0.0005 to 0.0100 mass%
  • C is an element necessary for obtaining a high yield strength at 150°C, which is the practical temperature of a motor.
  • C By being present as solid solution C in the product steel sheet, it contributes to increasing the yield strength by segregating to dislocations and grain boundaries in the steel sheet when heated to 150°C.
  • C must be contained at 0.0005 mass% or more.
  • the preferred range is 0.0008 to 0.0060 mass%.
  • Si 2.0 to 4.5 mass% Since Si has the effect of increasing the resistivity of steel and reducing iron loss, it is contained in an amount of 2.0 mass% or more in the present invention. In addition, Si also has the effect of increasing yield strength, and in order to obtain this effect, it is preferable to add 2.7 mass% or more. Furthermore, in high-grade materials that are strongly required to have low iron loss, it is preferable to add more than 3.0 mass%. However, if Si is added in an amount exceeding 4.5 mass%, not only will the variation in yield strength increase, but the steel will become hard and difficult to roll, so the upper limit is set to 4.5 mass%. The preferred upper limit of the Si content is 4.0 mass%.
  • Mn 0.1 to 2.0 mass%
  • Mn like Si, is an element that is effective in increasing the resistivity of steel and reducing iron loss, so it is added in an amount of 0.1 mass% or more. Preferably, it is added in an amount of 0.3 mass% or more.
  • Mn is set to 2.0 mass% or less. Preferably, it is set to 1.0 mass% or less.
  • P 0.050 mass% or less P segregates at grain boundaries to embrittle steel, reduce rollability, and increase the variation in yield strength, so it is limited to 0.050 mass% or less. It is preferably 0.030 mass% or less, more preferably 0.015 mass% or less.
  • the lower limit of P is not particularly specified, but it is preferably about 0.004 mass% from the viewpoint of suppressing the increase in dephosphorization costs in the steelmaking process.
  • S 0.0050 mass% or less
  • S is a harmful element that impairs the hot workability of steel, forms fine sulfides, refines crystal grains, increases the variation in yield strength, and deteriorates iron loss. Therefore, S is limited to 0.0050 mass% or less. Preferably, it is 0.0020 mass% or less.
  • Al 0.20 to 2.50 mass% Like Si, Al has the effect of increasing the resistivity of steel and reducing iron loss, and also has the effect of increasing yield strength. Therefore, in the present invention, Al is added in an amount of 0.20 mass% or more. It is preferably 0.50 mass% or more. On the other hand, if Al is added in excess, the variation in yield strength increases, and a large amount of alumina is generated, inducing surface defects, so the upper limit of Al is set to 2.50 mass%. It is preferably 2.20 mass% or less.
  • N 0.0050 mass% or less
  • N is a harmful element that forms fine nitrides such as AlN, increases the variation in yield strength, and deteriorates iron loss, so it is limited to 0.0050 mass% or less. It is preferably 0.0030 mass% or less. Although the lower limit is not particularly set, it is preferably about 0.0005 mass% from the viewpoint of suppressing the increase in steelmaking costs.
  • O 0.0050 mass% or less
  • O is a harmful element that forms fine oxides, inhibits the growth of crystal grains, and deteriorates iron loss.
  • the fine oxides make the crystal grains finer, which can cause variations in yield strength. Therefore, O is limited to 0.0050 mass% or less. Preferably, it is 0.0025 mass% or less.
  • At least one of Sn and Sb 0.01 to 0.20 mass% in total Sn and Sb are effective elements for improving the texture of the steel sheet after finish annealing and improving the magnetic properties. For this reason, at least one of Sn and Sb is added in a total amount of 0.01 mass% or more. On the other hand, even if Sn and Sb are added in excess, the above effect is saturated, so at least one of them is limited to a total amount of 0.20 mass% or less. The range is preferably 0.02 to 0.05 mass%.
  • the non-oriented electrical steel sheet of the present invention contains the balance other than the above-mentioned components, namely Fe and unavoidable impurities, but may contain at least one component selected from the following groups A to F in order to further improve the magnetic properties and strength properties.
  • Group A At least one of Ca, Mg and REM: 0.0010 to 0.0080 mass% in total Ca, Mg and REM have the effect of fixing S as sulfides and improving iron loss. Therefore, it is preferable to add at least one of Ca, Mg and REM in a total amount of 0.0010 mass% or more.
  • the content of Ca, Mg and REM is preferably 0.0080 mass% or less in total. More preferably, the total content is in the range of 0.0015 to 0.0060 mass%.
  • Group B At least one of Cr, Mo, Cu, and Ni: 0.01 to 0.60 mass% in total Cr, Mo, Cu, and Ni have the effect of increasing the resistivity of steel and improving iron loss. Therefore, it is preferable to add at least one of Cr, Mo, Cu, and Ni in a total amount of 0.01 mass% or more. On the other hand, if Cr, Mo, Cu, and Ni are added in excess, the surface properties will deteriorate. Therefore, it is preferable to limit at least one of Cr, Mo, Cu, and Ni to a total amount of 0.60 mass% or less. More preferably, the total amount is in the range of 0.03 to 0.50 mass%. Note that Cu has a large effect on the surface properties, so it is preferable to limit it to 0.50 mass% or less, and more preferably to 0.10 mass% or less when strict surface properties are required.
  • Group C at least one of Ti, Nb and V: 0.0005 to 0.0050 mass% in total Ti, Nb and V have the effect of forming precipitates and increasing yield strength. For this reason, it is preferable to add at least one of Ti, Nb and V in a total amount of 0.0005 mass% or more. On the other hand, if the amount of Ti, Nb and V added is excessive, the growth of crystal grains is significantly hindered and iron loss is deteriorated. For this reason, it is preferable to limit at least one of Ti, Nb and V to a total amount of 0.0050 mass% or less. More preferably, the total amount is in the range of 0.0010 to 0.0025 mass%.
  • Group D At least one of B: 0.0001-0.0020 mass%, Pb: 0.0001-0.0010 mass%, and W: 0.0005-0.0050 mass%.
  • B, Pb, and W all have the effect of refining the steel sheet structure after final annealing and increasing the yield strength. In order to obtain this effect, it is preferable to add B and Pb at 0.0001 mass% or more, and W at 0.0005 mass% or more.
  • B and Pb at 0.0001 mass% or more
  • W at 0.0005 mass% or more.
  • the content of the above elements is excessive, not only will the above effect be saturated, but iron loss will also deteriorate, so when added, it is preferable to set B to 0.0020 mass% or less, Pb to 0.0010 mass% or less, and W to 0.0050 mass% or less. More preferably, the ranges are B: 0.0003 to 0.0010 mass%, Pb: 0.0002 to 0.0006 mass%, and W: 0.0020 to 0.0035 mass%.
  • Zn forms oxides or sulfides, and has the effect of refining the steel sheet structure and increasing the yield strength.
  • Zn is preferably added in an amount of 0.001 mass% or more.
  • Zn is preferably 0.010 mass% or less. More preferably, it is in the range of 0.003 to 0.006 mass%.
  • Co 0.0010 to 0.0500 mass%
  • Co has the effect of increasing the resistivity of steel to reduce iron loss and increase yield strength. In order to obtain these effects, it is preferable to add 0.0010 mass% or more. On the other hand, even if Co is added in excess, the above effects are saturated, so if Co is added, it is preferable to add 0.0500 mass% or less. More preferably, it is in the range of 0.0040 to 0.0200 mass%.
  • the mechanical strength properties of the non-oriented electrical steel sheet of the present invention will be described.
  • - Minimum value of yield strength in the sheet width direction at 150°C 300 MPa or more
  • the temperature (practical temperature) during use of motors has been increasing, and durability at the 150°C level has become important. Therefore, it is necessary to maintain a high yield strength even at the above temperature, and from this perspective, the present invention specifies the yield strength at 150°C as 300 MPa or more. It is preferably 340 MPa or more.
  • the yield strength at 150°C is the minimum value of the yield strength (upper yield point, or 0.2% proof stress if there is no upper yield point) measured in accordance with JIS Z 2241 using test pieces taken from 10 or more positions in the sheet width direction of the steel plate.
  • the variation in the width direction of yield strength at 150°C is limited to 30 MPa or less.
  • the variation in the width direction means the difference between the maximum value and the minimum value when the yield strength is measured at 10 or more points in the width direction of the steel sheet.
  • the steel material (slab) used in the manufacture of the non-oriented electrical steel sheet of the present invention needs to have its steel composition adjusted to satisfy the above-mentioned composition.
  • a known refining process using a secondary refining device such as a converter, an electric furnace, or a vacuum degassing device can be adopted, but is not particularly limited.
  • the manufacturing method of the slab is preferably a continuous casting method, but an ingot making-blooming rolling method or a thin slab continuous casting method may also be used.
  • iron scrap or direct reduced iron may be used as the raw material.
  • Hot rolling The steel slab is heated to a predetermined temperature and then hot rolled to obtain a hot rolled sheet having a predetermined thickness.
  • the conditions of this hot rolling are not particularly limited, but the heating temperature of the slab is preferably in the range of 1000°C to 1160°C. Note that direct rolling may be adopted in which the slab after continuous casting is hot rolled immediately without heating.
  • the coil winding temperature after hot rolling is preferably 500°C to 650°C.
  • the hot-rolled steel sheet (hot-rolled sheet) is then subjected to hot-rolled sheet annealing.
  • the conditions for this hot-rolled sheet annealing are not particularly limited, but the annealing temperature is preferably in the range of 800 to 1000°C.
  • the conditions for pickling may be in accordance with conventional methods and are not particularly specified.
  • the steel sheet after the hot-rolled sheet annealing is cold-rolled once or cold-rolled twice or more with intermediate annealing to obtain a cold-rolled sheet having a final thickness (product thickness).
  • the conditions of this cold rolling are not particularly limited as long as the final thickness can be obtained.
  • the final thickness is preferably 0.35 mm or less from the viewpoint of reducing iron loss.
  • finish annealing the cold rolled sheet having the above-mentioned final thickness is subjected to finish annealing in order to impart the desired magnetic properties and strength properties.
  • This finish annealing step is the most important step in the present invention, and it is necessary to perform the step while satisfying the following conditions.
  • Soaking temperature 700 to 1100°C
  • soaking time 2s or more If the soaking temperature for the finish annealing is less than 700°C, recrystallization does not occur sufficiently and good magnetic properties cannot be obtained. It is preferably 800°C or more. On the other hand, if it exceeds 1100°C, the steel sheet structure becomes coarse, the yield strength decreases, and the desired strength cannot be obtained. It is preferably 1050°C or less.
  • the soaking time for holding the soaking temperature needs to be 2s or more in order to heat the sheet width direction uniformly. It is preferably 5s or more, more preferably 10s or more. The upper limit of the soaking time is preferably about 60s from the viewpoint of preventing a decrease in yield strength due to coarsening of the steel sheet structure.
  • ⁇ Cooling rate in the temperature range from 700 ° C. to 200 ° C.: 10 ° C./s or more In the cooling process after soaking, the steel sheet is cooled uniformly in the sheet width direction at a predetermined cooling rate, and the solute C is uniformly left in the entire sheet width direction, thereby increasing the yield strength at 150 ° C. and reducing the variation in the sheet width direction.
  • the cooling rate from 700 ° C. to 200 ° C. is less than 10 ° C./s, C precipitates as Fe carbide during cooling, reducing the amount of solute C, and high yield strength cannot be obtained at 150 ° C. Therefore, the cooling rate from 700 ° C. to 200 ° C. must be 10 ° C./s or more.
  • the upper limit is preferably about 50 ° C./s.
  • Hydrogen concentration in furnace atmosphere gas from soaking temperature to 700°C 1 vol% or more
  • the hydrogen concentration in the furnace atmosphere gas from the soaking temperature to 700°C needs to be 1 vol% or more.
  • the upper limit is preferably about 30 vol%.
  • the variation in the steel sheet temperature in the width direction in the temperature range between 500 and 200°C is large, it may cause the amount of solute C to vary in the width direction, which may result in a large variation in the yield strength at 150°C in the width direction. Therefore, the variation in the steel sheet temperature in the width direction between 500 and 200°C needs to be limited to 40°C or less. It is preferably 30°C or less.
  • the variation in the steel sheet temperature in the width direction refers to the difference between the maximum and minimum values of the steel sheet temperature in the width direction in a portion excluding 10 mm of the width edge of the steel sheet.
  • the steel sheet that has been subjected to the finish annealing as described above is then coated with an insulating coating as necessary to produce the finished sheet.
  • the insulating coating may be inorganic, organic, or a mixture of inorganic and organic, with no particular restrictions.
  • test pieces were taken from the sheet width direction of the sample material with the L direction (rolling direction) as the tensile direction, heated to 150°C in a thermostatic chamber installed in a tensile tester, held for 10 minutes, and then subjected to a tensile test in accordance with JIS Z 2241 to measure the yield strength at 150°C.
  • the upper yield point was taken as the yield strength
  • the 0.2% proof stress was taken as the yield strength
  • the minimum value of the 20 test pieces was taken as the yield strength of the steel sheet.
  • a video extensometer was used to measure the strain (elongation) during the tensile test. The difference between the maximum and minimum values of the yield strength of the 20 test pieces was taken as the variation in yield strength in the sheet width direction.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Power Engineering (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

質量%で、C:0.0005~0.0100%、Si:2.0~4.5%、Mn:0.1~2.0%を含有し、さらに、SnおよびSbのうちの少なくとも1種を合計で0.01~0.20%含有する鋼スラブを熱間圧延し、熱延板焼鈍し、冷間圧延し、仕上焼鈍して製造する際、上記仕上焼鈍の均熱温度を700~1100℃、均熱時間を2s以上とし、上記仕上焼鈍の均熱温度から200℃までの冷却過程における冷却速度、雰囲気ガスの組成および露点、板幅方向温度のバラツキを所定が条件を満たすよう制御することで、150℃における降伏強度が300MPa以上で、上記降伏強度の板幅方向のバラツキが30MPa以下である無方向性電磁鋼板を得る。

Description

無方向性電磁鋼板およびその製造方法
 本発明は、低鉄損かつ実用温度で高強度の無方向性電磁鋼板とその製造方法に関するものである。
 近年、省エネルギーならびに二酸化炭素排出量の低減に対する要求が高まっており、各種自動車や電気機器の分野においても高効率化が強く求められるようになってきている。そのため、モータの鉄心に使用されている無方向性電磁鋼板に対しても、鉄損特性に優れていることに加え、耐久性の観点から高強度であることが要求されるようになってきている。また、鋼板内で強度にバラツキがあると、鉄心として使用中に強度の弱い部分の破損リスクが高まるため、鋼板内で強度が均一であることも必要である。さらに、自動車の駆動用モータには、小型で大出力が要求されるため、モータ使用時の温度が高温化しており、150℃レベルでも高強度であることも要求されつつある。以上のように、鉄心に用いられる無方向性電磁鋼板には、磁気特性に優れるだけでなく、高温度域で高い降伏強度を有し、かつ、そのバラツキが小さいことが重要となってきている。
 高い降伏強度を有する無方向性電磁鋼板としては、例えば、特許文献1には、Si:1.5mass%以上3.5mass%以下、Mn:1.5mass%以下、Al:0.2mass%以上3.0mass%以下、Mg:0.0003mass%以上0.0050mass%以下を含有し、残部がFeおよび不可避不純物からなる成分組成を有し、結晶粒径dが5μm以上40μm以下で、かつ、d≦50×(Si+0.5Al-2)の関係を満たすことを特徴とする高い降伏強度を有する無方向性電磁鋼が提案されている。
 また、板幅方向の鉄損を均一化した無方向性電磁鋼板の製造方法として、例えば特許文献2には、C:0.005mass%以下、Si:2.5~4.0mass%、S:0.005mass%以下、Al:0.3~1.5mass%、N:0.004mass%以下を含有する珪素鋼スラブを熱間圧延した後、熱延板焼鈍し、1回の冷間圧延または中間焼鈍を挟む2回以上の冷間圧延により最終板厚とし、900~1200℃で5秒~15分間均熱し、その後、板幅中央部の温度が600℃に冷却されるまで、板幅方向全幅の温度を(板幅中央温度±20℃)以内に保ちながら冷却する仕上焼鈍した後、絶縁処理を施すことを特徴とする低鉄損の無方向性電磁鋼板の製造方法が提案されている。
 また、良好な磁気特性を有する無方向性電磁鋼板の製造方法として、例えば特許文献3には、(1)C:0.01mass%以下、Si:4mass%以下、Mn:0.1~0.8mass%、Al:0.004mass%以下または0.1~1mass%を含有し、Cu:0.05mass%以下(0を含む)、S:0.015mass%以下(0を含む)、N:0.005mass%以下(0を含む)、P:0.2mass%以下(0を含む)で、残部が実質的にFeおよび不可避的不純物である成分組成を有する珪素鋼スラブを熱間圧延して熱延鋼板を製造する工程、(2)前記熱延鋼板を1回または2回以上の冷間圧延によって冷延鋼板を製造する工程、(3)前記冷延鋼板に仕上焼鈍を施す際に、均熱温度から600℃~500℃の温度域内にある急冷開始温度TSまでを10℃/s以下の平均冷却速度VSで冷却し、上記急冷開始温度TSから300℃までの間を10~50℃/sの平均冷却速度VQで急冷する工程、を有することを特徴とする低磁場特性に優れた無方向性電磁鋼板の製造方法が提案されている。
特開2005-113158号公報 特開昭63-047333号公報 特開平09-302414号公報
 しかしながら、発明者らの調査した結果によると、上記した従来技術には、以下のような問題があることが明らかとなった。特許文献1に開示された技術では、室温での降伏強度は十分に高いものの、150℃での降伏強度が必ずしも十分ではなく、また良好な鉄損が得られない。また、特許文献2に開示された技術では、板幅方向の鉄損のバラツキは低減できるものの、150℃での降伏強度にバラツキが発生し易い。また、特許文献3に開示された技術では、良好な磁気特性は得られるものの、150℃での降伏強度が低下してしまう。
 本発明は、従来技術が抱える上記の問題点に鑑みて成されたものであり、その目的は、良好な磁気特性を有するだけでなく、モータの実用温度でも高い降伏強度を有し、かつ該降伏強度のバラツキが小さい無方向性電磁鋼板を提供するとともに、その有利な製造方法を提案することにある。
 発明者らは、上記の課題を解決するため、鋼板の成分組成とその製造方法、特に、鉄損を劣化させることから通常は低減する必要があるとされている炭素Cに着目し、鋭意検討を重ねた。その結果、仕上焼鈍工程の冷却過程において、所定の温度域における冷却速度と、炉内雰囲気ガスの組成および露点を適正に制御して鋼板を全幅で均一に冷却し、固溶炭素を鋼板の板幅方向で均一に残存させることによって、良好な鉄損を有するだけでなく、モータの実用温度である150℃での降伏強度を高め、かつその板幅方向のバラツキを低減することができることを見出し、本発明を開発するに至った。
 すなわち、本発明は、C:0.0005~0.0100mass%、Si:2.0~4.5mass%、Mn:0.1~2.0mass%、P:0.050mass%以下、S:0.0050mass%以下、Al:0.20~2.50mass%、N:0.0050mass%以下およびO:0.0050mass%以下を含有し、さらに、SnおよびSbのうちの少なくとも1種を合計で0.01~0.20mass%含有し、残部がFeおよび不可避的不純物からなる成分組成を有し、150℃における降伏強度の板幅方向の最小値が300MPa以上で、上記降伏強度の板幅方向のバラツキが30MPa以下である無方向性電磁鋼板である。
 本発明の上記無方向性電磁鋼板は、上記成分組成に加えてさらに、下記A~F群のうちの少なくとも1群の成分を含有することを特徴とする。
                記
 ・A群;Ca、MgおよびREMのうちの少なくとも1種:合計で0.0010~0.0080mass%
 ・B群;Cr、Mo、CuおよびNiのうちの少なくとも1種:合計で0.01~0.60mass%
 ・C群;Ti、NbおよびVのうちの少なくとも1種:合計で0.0005~0.0050mass%
 ・D群;B:0.0001~0.0020mass%、Pb:0.0001~0.0010mass%およびW:0.0005~0.0050mass%のうちの少なくとも1種
 ・E群;Zn:0.001~0.010mass%
 ・F群;Co:0.0010~0.0500mass%
 また、本発明は、C:0.0005~0.0100mass%、Si:2.0~4.5mass%、Mn:0.1~2.0mass%、P:0.050mass%以下、S:0.0050mass%以下、Al:0.20~2.50mass%、N:0.0050mass%以下およびO:0.0050mass%以下を含有し、さらに、SnおよびSbのうちの少なくとも1種を合計で0.01~0.20mass%含有し、残部がFeおよび不可避的不純物からなる成分組成を有する鋼スラブを熱間圧延し、熱延板焼鈍し、冷間圧延し、仕上焼鈍して無方向性電磁鋼板を製造する方法において、上記仕上焼鈍の均熱温度を700~1100℃、均熱時間を2s以上とし、上記仕上焼鈍の均熱温度から200℃までを、下記(1)~(3)の条件を満たして冷却することを特徴とする無方向性電磁鋼板の製造方法を提案する。
              記
 (1)700℃から200℃までの温度域における平均冷却速度:10℃/s以上
 (2)均熱温度から700℃までの炉内雰囲気ガス中の水素濃度:1vol%以上
 (3)均熱温度から300℃までの温度域における炉内雰囲気ガスの露点:-30℃以下
 (4)500℃から200℃までの温度域における鋼板温度の板幅方向のバラツキ:40℃以下
 本発明の上記無方向性電磁鋼板の製造方法は、上記仕上焼鈍の700から200℃までの温度域における100℃ごとの平均冷却速度の最大値と最小値の差が20℃/s以下となるよう冷却することを特徴とする。
 また、本発明の上記無方向性電磁鋼板の製造方法に用いる上記鋼スラブは、上記成分組成に加えてさらに、下記A~F群のうちの少なくとも1群の成分を含有することを特徴とする。
                記
 ・A群;Ca、MgおよびREMのうちの少なくとも1種:合計で0.0010~0.0080mass%
 ・B群;Cr、Mo、CuおよびNiのうちの少なくとも1種:合計で0.01~0.60mass%
 ・C群;Ti、NbおよびVのうちの少なくとも1種:合計で0.0005~0.0050mass%
 ・D群;B:0.0001~0.0020mass%、Pb:0.0001~0.0010mass%およびW:0.0005~0.0050mass%のうちの少なくとも1種
 ・E群;Zn:0.001~0.010mass%
 ・F群;Co:0.0010~0.0500mass%
 本発明によれば、良好な磁気特性を有するだけでなく、モータの実用温度において鋼板の全幅で高い降伏強度を有する無方向性電磁鋼板を安定して提供することが可能となる。したがって、本発明によれば、高効率で高耐久性が要求されるモータの鉄心に用いて好適な素材を提供することが可能となる。
 まず、本発明の無方向性電磁鋼板が有すべき成分組成の限定理由について説明する。
C:0.0005~0.0100mass%
 Cは、本発明においては、モータの実用温度である150℃で高い降伏強度を得るために必要な元素であり、製品鋼板中に固溶Cとして存在することで、150℃に加熱されたときに鋼板内の転位や粒界に偏析して降伏強度を高めるのに寄与する。上記効果を得るには、Cは0.0005mass%以上含有している必要がある。一方、過剰に含有すると、降伏強度のバラツキが大きくなったり、鉄損が劣化したりするため、0.0100mass%以下に制限する。好ましくは0.0008~0.0060mass%の範囲である。
Si:2.0~4.5mass%
 Siは、鋼の比抵抗を高めて、鉄損を低減する効果があるため、本発明では2.0mass%以上含有させる。なお、Siは、降伏強度を高める効果もあり、この効果を得るためには2.7mass%以上添加するのが好ましい。さらに、低鉄損であることが強く要求されるハイグレード材では、3.0mass%超添加するのが好ましい。しかし、Siを4.5mass%を超えて添加すると、降伏強度のバラツキが大きくなることに加え、鋼が硬質化して圧延することが困難になるため、上限は4.5mass%とする。好ましいSi含有量の上限は4.0mass%である。
Mn:0.1~2.0mass%
 Mnは、Siと同様、鋼の比抵抗を高めて、鉄損を低減するのに有効な元素であるため、0.1mass%以上添加する。好ましくは0.3mass%以上である。一方、Mnが2.0mass%を超えると、微細なMn炭化物を形成して固溶Cが低下するため、150℃での降伏強度が低下するようになる。そのため、Mnは2.0mass%以下とする。好ましくは1.0mass%以下である。
P:0.050mass%以下
 Pは、粒界に偏析して鋼を脆化し、圧延性を低下したり、降伏強度のバラツキを大きくしたりするため、0.050mass%以下に制限する。好ましくは0.030mass%以下、より好ましくは0.015mass%以下である。なお、Pの下限値は特に規定しないが、製鋼工程での脱Pコストの上昇を抑制する観点から、0.004mass%程度とするのが好ましい。
S:0.0050mass%以下
 Sは、鋼の熱間加工性を害したり、微細な硫化物を形成し、結晶粒を微細化して、降伏強度のバラツキを増大させたり、鉄損を劣化させたりする有害元素である。そのため、Sは0.0050mass%以下に制限する。好ましくは0.0020mass%以下である。
Al:0.20~2.50mass%
 Alは、Siと同様に、鋼の比抵抗を高めて鉄損を低減する効果がある他、降伏強度を高める効果もある。そのため、本発明では、Alを0.20mass%以上添加する。好ましくは0.50mass%以上である。一方、Alを過剰に添加すると、降伏強度のバラツキが大きくなったり、アルミナが多量に生成して表面欠陥を誘発したりするようになるため、Alの上限は2.50mass%とする。好ましくは2.20mass%以下である。
N:0.0050mass%以下
 Nは、AlNなどの微細な窒化物を形成し、降伏強度のバラツキを増大したり、鉄損を劣化させたりする有害元素であるため0.0050mass%以下に制限する。好ましくは0.0030mass%以下である。なお、下限値は特に定めないが、製鋼コストの上昇を抑制する観点から、0.0005mass%程度とするのが好ましい。
O:0.0050mass%以下
 Oは、微細な酸化物を形成して、結晶粒の成長を阻害し、鉄損を劣化させる有害元素である。また、上記微細な酸化物は、結晶粒を微細化して、降伏強度のバラツキの原因ともなる。そのため、Oは0.0050mass%以下に制限する。好ましくは0.0025mass%以下である。
SnおよびSbのうちの少なくとも1種:合計で0.01~0.20mass%
 SnおよびSbは、仕上焼鈍後の鋼板の集合組織を改善して磁気特性を向上するのに有効な元素である。このため、SnおよびSbは少なくとも1種を合計で0.01mass%以上添加する。一方、SnおよびSbを過剰に添加しても、上記効果が飽和するため、少なくとも1種を合計で0.20mass%以下に制限する。好ましくは0.02~0.05mass%の範囲である。
 本発明の無方向性電磁鋼板は、上記成分以外の残部は、Feおよび不可避的不純物である。ただし、磁気特性や強度特性をさらに向上するため、下記A~F群のうちから選ばれる少なくとも1群の成分を含有してもよい。
A群;Ca、MgおよびREMのうちの少なくとも1種:合計で0.0010~0.0080mass%
 Ca、MgおよびREMは、Sを硫化物として固定し、鉄損を改善する効果がある。そのため、Ca、MgおよびREMは、少なくとも1種を合計で0.0010mass%以上添加するのが好ましい。一方、Ca、MgおよびREMを過剰に添加すると、介在物を形成して製造性が低下するようになる。そのため、Ca、MgおよびREMの含有量は、合計で0.0080mass%以下とするのが好ましい。より好ましくは合計で0.0015~0.0060mass%の範囲である。
B群;Cr、Mo、CuおよびNiのうちの少なくとも1種:合計で0.01~0.60mass%
 Cr、Mo、CuおよびNiは、鋼の比抵抗を高めて、鉄損を改善する効果がある。そのため、Cr、Mo、CuおよびNiは、少なくとも1種を合計で0.01mass%以上添加するのが好ましい。一方、Cr、Mo、CuおよびNiは、過剰に添加すると表面性状が劣化するようになる。そのため、Cr、Mo、CuおよびNiは、少なくとも1種を合計で0.60mass%以下に制限するのが好ましい。より好ましくは合計で0.03~0.50mass%の範囲である。なお、Cuに関しては、表面性状への影響が大きいため、0.50mass%以下とするのが好ましく、厳格な表面性状が要求される場合は0.10mass%以下とするのがより好ましい。
C群;Ti、NbおよびVのうちの少なくとも1種:合計で0.0005~0.0050mass%
 Ti、NbおよびVは、析出物を形成して、降伏強度を高める効果がある。このため、Ti、NbおよびVは、少なくとも1種を合計で0.0005mass%以上添加するのが好ましい。一方、Ti、NbおよびVの添加量が過剰になると、結晶粒の成長を著しく阻害し、鉄損が劣化するようになる。そのため、Ti、NbおよびVは、少なくとも1種を合計で0.0050mass%以下に制限するのが好ましい。より好ましくは合計で0.0010~0.0025mass%の範囲である。
D群;B:0.0001~0.0020mass%、Pb:0.0001~0.0010mass%およびW:0.0005~0.0050mass%のうちの少なくとも1種
 B、PbおよびWは、いずれも仕上焼鈍後の鋼板組織を細粒化して降伏強度を高める効果がある。この効果を得るためには、BおよびPbは0.0001mass%以上、Wは0.0005mass%以上添加するのが好ましい。一方、上記元素の含有量が過剰になると、上記効果が飽和するだけでなく、鉄損が劣化するようになるため、添加する場合、Bは0.0020mass%以下、Pbは0.0010mass%以下、Wは0.0050mass%以下とするのが好ましい。より好ましくは、B:0.0003~0.0010mass%、Pb:0.0002~0.0006mass%およびW:0.0020~0.0035mass%の範囲である。
E群;Zn:0.001~0.010mass%
 Znは、酸化物あるいは硫化物を形成し、鋼板組織を細粒化して降伏強度を高める効果がある。この効果を得るためには、Znは0.001mass%以上添加するのが好ましい。一方、Znを過剰に添加すると、鉄損が低下するようになるので、添加する場合は、0.010mass%以下とするのが好ましい。より好ましくは0.003~0.006mass%の範囲である。
F群;Co:0.0010~0.0500mass%
 Coは、鋼の固有抵抗を高めて鉄損を低減したり、降伏強度を高めたりする効果がある。これらの効果を得るためには、0.0010mass%以上添加するのが好ましい。一方、Coを過剰に添加しても上記効果が飽和するだけであるため、添加する場合は0.0500mass%以下とするのが好ましい。より好ましくは0.0040~0.0200mass%の範囲である。
 次に本発明の無方向性電磁鋼板の機械的強度特性について説明する。
・150℃での降伏強度の板幅方向の最小値:300MPa以上
 近年、モータ使用時の温度(実用温度)が高温化してきており、150℃レベルでの耐久性が重要になってきている。したがって、上記温度でも高い降伏強度を維持していることが必要であり、斯かる観点から、本発明では150℃における降伏強度を300MPa以上と規定する。好ましくは340MPa以上である。ここで、上記150℃での降伏強度とは、鋼板の板幅方向の10箇所以上から試験片を採取し、JIS Z 2241に準拠して測定した降伏強度(上降伏点、上降伏点がない場合は0.2%耐力)の最小値である。
・150℃での降伏強度の板幅方向のバラツキ:30MPa以下
 また、たとえ上記の板幅方向の降伏強度の最小値が高くとも、降伏強度のバラツキが大きいと、降伏強度が弱い場所が破損の起点となる虞がある。そのため、本発明では150℃での降伏強度の板幅方向のバラツキは30MPa以下に制限する。ここで、上記板幅方向のバラツキとは、鋼板幅方向の10箇所以上で降伏強度を測定したときの最大値と最小値の差を意味する。
 次に、本発明の無方向性電磁鋼板の製造方法について説明する。
鋼素材(スラブ)
 本発明の無方向性電磁鋼板の製造に用いる鋼素材(スラブ)は、上述した成分組成を満たすよう鋼成分を調整する必要がある。上記成分組成を有する鋼の溶製方法としては、転炉や電気炉あるいはさらに真空脱ガス装置等の二次精錬装置を用いた公知の精錬プロセスを採用することができるが、特に限定はしない。また、上記スラブの製造方法は、連続鋳造法が好ましいが、造塊-分塊圧延法や薄スラブ連鋳法等を用いてもよい。また、原料として鉄スクラップや直接還元鉄を用いてもよい。
熱間圧延
 上記鋼スラブは、所定の温度に加熱した後、熱間圧延して所定の板厚の熱延板とする。この熱間圧延の条件は特に限定しないが、スラブの加熱温度は1000℃以上1160℃以下の範囲とするのが好ましい。なお、連続鋳造後のスラブを、加熱することなく直ちに熱間圧延する直接圧延を採用してもよい。熱間圧延後のコイルの巻取温度は500℃以上650℃以下とするのが好ましい。
熱延板焼鈍
 上記熱間圧延した鋼板(熱延板)は、その後、熱延板焼鈍を施す。この熱延板焼鈍の条件は特に限定しないが、焼鈍温度は800~1000℃の範囲とするのが好ましい。また、熱延板焼鈍の前工程あるいは後工程で酸洗し、鋼板表面に形成されたスケールを除去することが好ましい。酸洗の条件は、常法に従えばよく、特に規定しない。
冷間圧延
 次いで、上記熱延板焼鈍後の鋼板は、1回の冷間圧延または中間焼鈍を挟む2回以上の冷間圧延をして最終板厚(製品板厚)の冷延板とする。この冷間圧延の条件は、最終板厚とすることができれば、特に限定しない。なお、最終板厚は、鉄損を低減する観点から0.35mm以下とするのが好ましい。
仕上焼鈍
 次いで、上記最終板厚とした冷延板に所望の磁気特性と強度特性を付与するための仕上焼鈍を施す。この仕上焼鈍の工程は、本発明において最も重要な工程であり、以下の条件を満たして行うことが必要である。
・均熱温度:700~1100℃、均熱時間:2s以上
 仕上焼鈍の均熱温度が700℃未満では、再結晶が十分に起こらず、良好な磁気特性が得られない。好ましくは800℃以上である。一方、1100℃を超えると、鋼板組織が粗大化し、降伏強度が低下して所望の強度を得られなくなる。好ましくは1050℃以下である。また、上記均熱温度に保持する均熱時間は、板幅方向を均一に加熱するため、2s以上とする必要がある。好ましくは5s以上、より好ましくは10s以上である。なお、均熱時間の上限は、鋼板組織の粗大化による降伏強度の低下を防止する観点から60s程度とするのが好ましい。
・700℃から200℃までの温度域での冷却速度:10℃/s以上
 均熱後の冷却過程において、鋼板を、所定の冷却速度でかつ板幅方向で均一に冷却し、固溶Cを板幅方向全体で均一に残存させることによって、150℃での降伏強度を高め、かつ、板幅方向のバラツキを低減することができる。しかし、700℃から200℃までの冷却速度が10℃/sを下回ると、冷却中にCがFe炭化物として析出して固溶C量が低下するため、150℃で高い降伏強度が得られなくなる。そこで、700℃から200℃までの冷却速度は10℃/s以上とする必要がある。なお、150℃での降伏強度をより高めるためには、15℃/s以上とするのが好ましい。一方、冷却速度が大き過ぎると、板幅方向の温度を均一に制御することが困難となり、板幅方向の降伏強度のバラツキが大きくなったり、冷却歪みによって磁気特性が劣化したりするようになるため、上限は50℃/s程度とするのが好ましい。
・均熱温度から700℃までの炉内雰囲気ガス中の水素濃度:1vol%以上
 加えて、鋼板温度が均熱温度から700℃までの高温域では、炉内雰囲気ガス中の水素濃度が1vol%未満だと鋼板表面が不均一に酸化して酸化膜を形成するため、冷却ガスとの熱交換に差異が生じて、板幅方向の温度のバラツキを助長するようになる。斯かる観点から、本発明では、均熱温度から700℃までの炉内雰囲気ガス中の水素濃度は1vol%以上とする必要がある。雰囲気ガスの熱伝導を高めて鋼板の板幅方向の温度バラツキを低減する観点からは5vol%以上とするのが好ましく、8vol%以上とするのがより好ましい。しかし、水素濃度を過剰に高くしても、上記効果が飽和するだけでなく、雰囲気ガスのコストが増大するため、上限は30vol%程度とするのが好ましい。
・均熱温度から300℃までの温度域の炉内雰囲気ガスの露点:-30℃以下
 鋼板温度が均熱温度から300℃までの温度域の炉内雰囲気ガスの露点が高いと、鋼板表層が不均一に酸化して酸化膜を形成するため、冷却ガスとの熱交換に差異が生じて、板幅方向の温度のバラツキを助長するようになる。このため、均熱温度から300℃までの温度域の炉内雰囲気ガスの露点は-30℃以下とする必要がある。好ましくは-40℃以下である。なお、炉内雰囲気ガスの露点の下限は、低すぎても上記の効果が飽和することや、工業的に使用できる雰囲気ガスの露点を考慮し、-70℃程度とするのが好ましい。
・500℃から200℃までの温度域における鋼板温度の板幅方向のバラツキ:40℃以下
 500~200℃間の温度域での鋼板温度の板幅方向のバラツキが大きいと、板幅方向で固溶C量が変動する原因となり、結果として150℃での降伏強度の板幅方向のバラツキが大きくなる虞がある。そのため、500~200℃間での鋼板温度の板幅方向のバラツキは40℃以下に制限する必要がある。好ましくは30℃以下である。ここで上記鋼板温度の板幅方向のバラツキとは、鋼板の板幅エッジ10mmを除いた部分における板幅方向の鋼板温度の最大値と最小値の差のことをいう。
・700℃から200℃までの温度域における100℃ごとの平均冷却速度の最大値と最小値の差:20℃/s以下
 また、仕上焼鈍の均熱後の冷却過程において100℃ごとの平均冷却速度が大きく変化すると、板幅方向の温度のバラツキが助長される虞がある。そのため、700~200℃間の冷却過程での冷却速度はできる限り均一とすることが好ましい。具体的には、鋼板温度が700℃から200℃までの温度域における100℃ごとの平均冷却速度の最大値と最小値の差は20℃/s以下に制御するのが好ましい。より好ましくは10℃/s以下である。
 上記のようにして仕上焼鈍を施した鋼板は、その後、必要に応じて絶縁被膜を被成して製品板とする。上記絶縁被膜は、無機、有機、無機と有機の混合のいずれでもよく、特に制限はない。
 表1に示した種々の成分を含有し、残部がFeおよび不可避的不純物からなる成分組成を有する鋼を、常法の精錬プロセスで溶製した後、連続鋳造法で鋼素材(スラブ)とした。次いで、上記スラブを加熱炉にて1130℃の温度に60min間加熱した後、粗圧延と仕上圧延からなる熱間圧延をして板厚1.8mmの熱延板とした後、550℃でコイルに巻き取った。この熱延板に均熱温度960℃で熱延板焼鈍を施し、冷間圧延して最終板厚0.30mmの冷延板とした後、この冷延板に、表2に示す種々の条件で仕上焼鈍を施して製品板とした。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 斯くして得た上記製品板からサンプル材を採取し、以下の評価試験に供した。
<磁気特性>
 上記サンプル材の板幅中央部から、長さ方向をL方向(圧延方向)およびC方向(圧延方向と直角方向)とする幅30mm×長さ280mmの試験片を採取し、JIS C 2550-1に準拠して鉄損W10/400を測定した。
<150℃での降伏強度>
 上記サンプル材の板幅方向から、L方向(圧延方向)を引張方向とするJIS5号試験片を20本採取し、引張試験機に設置した恒温槽で150℃に加熱し、10分間保持した後、JIS Z 2241に準拠して引張試験を行い、150℃での降伏強度を測定した。上降伏点を示した試験片については上降伏点を降伏強度とし、上降伏点を示さなかった試験片については0.2%耐力を降伏強度とし、試験片20本の最小値を該鋼板の降伏強度とした。引張試験中のひずみ(伸び)の測定にはビデオ式伸び計を用いた。また、試験片20本の降伏強度の最大値と最小値の差を板幅方向の降伏強度のバラツキとした。
 上記評価試験の結果を表2に併記した。この結果から、本発明に適合した条件で製造した発明例の鋼板は、いずれも、150℃の降伏強度が300MPa以上で、上記降伏強度の板幅方向のバラツキが30MPa以下であり、しかも、鉄損W10/400が15.0W/kg以下と良好な磁気特性を有していることがわかる。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 

Claims (5)

  1. C:0.0005~0.0100mass%、Si:2.0~4.5mass%、Mn:0.1~2.0mass%、P:0.050mass%以下、S:0.0050mass%以下、Al:0.20~2.50mass%、N:0.0050mass%以下およびO:0.0050mass%以下を含有し、さらに、SnおよびSbのうちの少なくとも1種を合計で0.01~0.20mass%含有し、残部がFeおよび不可避的不純物からなる成分組成を有し、
    150℃における降伏強度の板幅方向の最小値が300MPa以上で、
    上記降伏強度の板幅方向のバラツキが30MPa以下である無方向性電磁鋼板。
  2. 上記成分組成に加えてさらに、下記A~F群のうちの少なくとも1群の成分を含有することを特徴とする請求項1に記載の無方向性電磁鋼板。
                    記
     ・A群;Ca、MgおよびREMのうちの少なくとも1種:合計で0.0010~0.0080mass%
     ・B群;Cr、Mo、CuおよびNiのうちの少なくとも1種:合計で0.01~0.60mass%
     ・C群;Ti、NbおよびVのうちの少なくとも1種:合計で0.0005~0.0050mass%
     ・D群;B:0.0001~0.0020mass%、Pb:0.0001~0.0010mass%およびW:0.0005~0.0050mass%のうちの少なくとも1種
     ・E群;Zn:0.001~0.010mass%
     ・F群;Co:0.0010~0.0500mass%
  3. C:0.0005~0.0100mass%、Si:2.0~4.5mass%、Mn:0.1~2.0mass%、P:0.050mass%以下、S:0.0050mass%以下、Al:0.20~2.50mass%、N:0.0050mass%以下およびO:0.0050mass%以下を含有し、さらに、SnおよびSbのうちの少なくとも1種を合計で0.01~0.20mass%含有し、残部がFeおよび不可避的不純物からなる成分組成を有する鋼スラブを熱間圧延し、熱延板焼鈍し、冷間圧延し、仕上焼鈍して無方向性電磁鋼板を製造する方法において、
    上記仕上焼鈍の均熱温度を700~1100℃、均熱時間を2s以上とし、
    上記仕上焼鈍の均熱温度から200℃までを、下記(1)~(3)の条件を満たして冷却することを特徴とする無方向性電磁鋼板の製造方法。
                  記
     (1)700℃から200℃までの温度域における平均冷却速度:10℃/s以上
     (2)均熱温度から700℃までの炉内雰囲気ガス中の水素濃度:1vol%以上
     (3)均熱温度から300℃までの温度域における炉内雰囲気ガスの露点:-30℃以下
     (4)500℃から200℃までの温度域における鋼板温度の板幅方向のバラツキ:40℃以下
  4. 上記仕上焼鈍の700から200℃までの温度域における100℃ごとの平均冷却速度の最大値と最小値の差が20℃/s以下となるよう冷却することを特徴とする請求項3に記載の無方向性電磁鋼板の製造方法。
  5. 上記鋼スラブは、上記成分組成に加えてさらに、下記A~F群のうちの少なくとも1群の成分を含有することを特徴とする請求項3または4に記載の無方向性電磁鋼板の製造方法。
                    記
     ・A群;Ca、MgおよびREMのうちの少なくとも1種:合計で0.0010~0.0080mass%
     ・B群;Cr、Mo、CuおよびNiのうちの少なくとも1種:合計で0.01~0.60mass%
     ・C群;Ti、NbおよびVのうちの少なくとも1種:合計で0.0005~0.0050mass%
     ・D群;B:0.0001~0.0020mass%、Pb:0.0001~0.0010mass%およびW:0.0005~0.0050mass%のうちの少なくとも1種
     ・E群;Zn:0.001~0.010mass%
     ・F群;Co:0.0010~0.0500mass%
PCT/JP2023/036145 2022-10-31 2023-10-04 無方向性電磁鋼板およびその製造方法 WO2024095665A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-174022 2022-10-31
JP2022174022 2022-10-31

Publications (1)

Publication Number Publication Date
WO2024095665A1 true WO2024095665A1 (ja) 2024-05-10

Family

ID=90930357

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/036145 WO2024095665A1 (ja) 2022-10-31 2023-10-04 無方向性電磁鋼板およびその製造方法

Country Status (1)

Country Link
WO (1) WO2024095665A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6347333A (ja) * 1986-08-14 1988-02-29 Nippon Steel Corp 鉄損の著しく低い無方向性電磁鋼板の製造法
JPH04128318A (ja) * 1990-09-18 1992-04-28 Kobe Steel Ltd 低磁場特性の優れた無方向性電磁鋼板の製造方法
JP2002294414A (ja) * 2001-03-29 2002-10-09 Nkk Corp 加工性に優れた無方向性電磁鋼板およびその製造方法
WO2019017426A1 (ja) * 2017-07-19 2019-01-24 新日鐵住金株式会社 無方向性電磁鋼板
JP2020509184A (ja) * 2016-12-19 2020-03-26 ポスコPosco 無方向性電磁鋼板およびその製造方法
KR20230094463A (ko) * 2021-12-21 2023-06-28 주식회사 포스코 무방향성 전기강판 및 그 제조방법

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6347333A (ja) * 1986-08-14 1988-02-29 Nippon Steel Corp 鉄損の著しく低い無方向性電磁鋼板の製造法
JPH04128318A (ja) * 1990-09-18 1992-04-28 Kobe Steel Ltd 低磁場特性の優れた無方向性電磁鋼板の製造方法
JP2002294414A (ja) * 2001-03-29 2002-10-09 Nkk Corp 加工性に優れた無方向性電磁鋼板およびその製造方法
JP2020509184A (ja) * 2016-12-19 2020-03-26 ポスコPosco 無方向性電磁鋼板およびその製造方法
WO2019017426A1 (ja) * 2017-07-19 2019-01-24 新日鐵住金株式会社 無方向性電磁鋼板
KR20230094463A (ko) * 2021-12-21 2023-06-28 주식회사 포스코 무방향성 전기강판 및 그 제조방법

Similar Documents

Publication Publication Date Title
JP4126479B2 (ja) 無方向性電磁鋼板の製造方法
JP5668460B2 (ja) 無方向性電磁鋼板の製造方法
RU2771133C1 (ru) Лист из нетекстурированной электротехнической стали и способ его производства
KR102164329B1 (ko) 방향성의 전기강판 및 그 제조 방법
JP4032162B2 (ja) 方向性電磁鋼板およびその製造方法
JPH0686631B2 (ja) 磁束密度の高い一方向性電磁鋼板の製造方法
JP4272557B2 (ja) 磁気特性に優れた一方向性電磁鋼板の製造方法
JP5206017B2 (ja) 高珪素鋼板の製造方法
JP2951852B2 (ja) 磁気特性に優れる一方向性珪素鋼板の製造方法
CN111417737A (zh) 低铁损取向性电磁钢板及其制造方法
JP4240736B2 (ja) 鉄損が低くかつ磁束密度が高い無方向性電磁鋼板およびその製造方法
JP4205816B2 (ja) 磁束密度の高い一方向性電磁鋼板の製造方法
WO2024095665A1 (ja) 無方向性電磁鋼板およびその製造方法
JP4701669B2 (ja) 無方向性電磁鋼板の製造方法
WO2021167063A1 (ja) 無方向性電磁鋼板用熱延鋼板
JPH09302414A (ja) 低磁場特性に優れた無方向性電磁鋼板の製造方法
JP4013262B2 (ja) 無方向性電磁鋼板およびその製造方法
TW202419640A (zh) 無方向性電磁鋼板及其製造方法
WO2024080140A1 (ja) 無方向性電磁鋼板とその製造方法
JP4613611B2 (ja) 無方向性電磁鋼板の製造方法
JP7081725B1 (ja) 方向性電磁鋼板の製造方法
JPH08931B2 (ja) 連続焼鈍による粒子加速器用鋼板の製造方法
US20240102122A1 (en) Non-oriented electrical steel sheet, and method for manufacturing same
JPS60190521A (ja) 無方向性電磁鋼板の製造方法
JP2003027139A (ja) 方向性電磁鋼板の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23885428

Country of ref document: EP

Kind code of ref document: A1