WO2021065483A1 - 有機溶剤の精製方法及び精製システム - Google Patents

有機溶剤の精製方法及び精製システム Download PDF

Info

Publication number
WO2021065483A1
WO2021065483A1 PCT/JP2020/034926 JP2020034926W WO2021065483A1 WO 2021065483 A1 WO2021065483 A1 WO 2021065483A1 JP 2020034926 W JP2020034926 W JP 2020034926W WO 2021065483 A1 WO2021065483 A1 WO 2021065483A1
Authority
WO
WIPO (PCT)
Prior art keywords
ion exchange
organic solvent
nmp
exchange device
liquid
Prior art date
Application number
PCT/JP2020/034926
Other languages
English (en)
French (fr)
Inventor
亮輔 寺師
響介 山田
Original Assignee
オルガノ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オルガノ株式会社 filed Critical オルガノ株式会社
Priority to EP20872475.7A priority Critical patent/EP4039347A4/en
Priority to KR1020227001220A priority patent/KR20220024534A/ko
Priority to US17/763,088 priority patent/US20220371000A1/en
Priority to CN202080068990.6A priority patent/CN114585440B/zh
Publication of WO2021065483A1 publication Critical patent/WO2021065483A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J47/00Ion-exchange processes in general; Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D17/00Separation of liquids, not provided for elsewhere, e.g. by thermal diffusion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D1/00Evaporating
    • B01D1/02Evaporators with heating coils
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D1/00Evaporating
    • B01D1/30Accessories for evaporators ; Constructional details thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/36Pervaporation; Membrane distillation; Liquid permeation
    • B01D61/362Pervaporation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/36Pervaporation; Membrane distillation; Liquid permeation
    • B01D61/365Osmotic distillation or osmotic evaporation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/36Pervaporation; Membrane distillation; Liquid permeation
    • B01D61/368Accessories; Auxiliary operations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J39/00Cation exchange; Use of material as cation exchangers; Treatment of material for improving the cation exchange properties
    • B01J39/04Processes using organic exchangers
    • B01J39/05Processes using organic exchangers in the strongly acidic form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J41/00Anion exchange; Use of material as anion exchangers; Treatment of material for improving the anion exchange properties
    • B01J41/04Processes using organic exchangers
    • B01J41/05Processes using organic exchangers in the strongly basic form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J47/00Ion-exchange processes in general; Apparatus therefor
    • B01J47/02Column or bed processes
    • B01J47/026Column or bed processes using columns or beds of different ion exchange materials in series
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J47/00Ion-exchange processes in general; Apparatus therefor
    • B01J47/02Column or bed processes
    • B01J47/04Mixed-bed processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J47/00Ion-exchange processes in general; Apparatus therefor
    • B01J47/10Ion-exchange processes in general; Apparatus therefor with moving ion-exchange material; with ion-exchange material in suspension or in fluidised-bed form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J47/00Ion-exchange processes in general; Apparatus therefor
    • B01J47/14Controlling or regulating
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B63/00Purification; Separation; Stabilisation; Use of additives
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D207/00Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D207/02Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D207/18Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having one double bond between ring members or between a ring member and a non-ring member
    • C07D207/22Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having one double bond between ring members or between a ring member and a non-ring member with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D207/24Oxygen or sulfur atoms
    • C07D207/262-Pyrrolidones
    • C07D207/2632-Pyrrolidones with only hydrogen atoms or radicals containing only hydrogen and carbon atoms directly attached to other ring carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D207/00Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D207/02Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D207/18Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having one double bond between ring members or between a ring member and a non-ring member
    • C07D207/22Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having one double bond between ring members or between a ring member and a non-ring member with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D207/24Oxygen or sulfur atoms
    • C07D207/262-Pyrrolidones
    • C07D207/2632-Pyrrolidones with only hydrogen atoms or radicals containing only hydrogen and carbon atoms directly attached to other ring carbon atoms
    • C07D207/2672-Pyrrolidones with only hydrogen atoms or radicals containing only hydrogen and carbon atoms directly attached to other ring carbon atoms with only hydrogen atoms or radicals containing only hydrogen and carbon atoms directly attached to the ring nitrogen atom
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2311/00Details relating to membrane separation process operations and control
    • B01D2311/04Specific process operations in the feed stream; Feed pretreatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2311/00Details relating to membrane separation process operations and control
    • B01D2311/26Further operations combined with membrane separation processes
    • B01D2311/2623Ion-Exchange
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2311/00Details relating to membrane separation process operations and control
    • B01D2311/26Further operations combined with membrane separation processes
    • B01D2311/2673Evaporation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a purification method and a purification system for purifying an organic solvent having a boiling point of more than 100 ° C. at 1 atm (that is, 0.1013 MPa) such as N-methyl-2-pyrrolidone (hereinafter, also referred to as NMP).
  • NMP N-methyl-2-pyrrolidone
  • the present invention relates to a purification method and a purification system suitable for purifying and reusing an organic solvent that is recovered from equipment or a process that uses an organic solvent and contains water.
  • organic solvents have high solubility in water and have a boiling point of more than 100 ° C at 1 atm, that is, a boiling point higher than that of water.
  • a mixed solution of the organic solvent and water is often recovered. Therefore, the organic solvent to be reused is selected from this mixed solution. Must be separated and purified.
  • the recovered mixed liquid contains difficult-to-volatile impurities such as ionic substances and fine particles, and also contains organic substances different from the organic solvent to be reused, that is, organic impurities. There may be.
  • NMP which is one of the organic solvents having high solubility in water and having a boiling point of more than 100 ° C. at 1 atm
  • NMP lithium ion secondary batteries
  • the main constituent materials of each electrode of the lithium ion secondary battery that is, the positive electrode and the negative electrode, are an electrode active material, a current collector, and a binder.
  • the binder it is common to use a binder in which polyvinylidene fluoride (PVDF) is dissolved in NMP, which is a dispersion medium.
  • PVDF polyvinylidene fluoride
  • the electrode is generally manufactured by applying a slurry of a mixture of an electrode active material and a binder onto a current collector and evaporating the NMP by heating in the air, that is, in the presence of oxygen.
  • the vaporized NMP used in the manufacturing process of the lithium ion secondary battery can be recovered in the form of an NMP aqueous solution by a recovery device such as a water scrubber.
  • the recovered NMP can be used again in the manufacturing process of a lithium ion secondary battery or the like by removing water and impurities contained therein.
  • NMP is used in various fields as an organic solvent miscible with water in addition to the manufacturing process of lithium ion secondary batteries, and even in such fields, NMP after use is recovered and reused. Is required.
  • Recovery of NMP from an aqueous NMP solution is one of the applications of a method of separating and recovering an organic solvent from a mixed solution of an organic solvent and water.
  • a pervasion vaporization (PV) method is known as a method for separating and recovering an organic solvent from a mixed solution of an organic solvent and water.
  • the osmotic vaporization method is an excellent method for separating water from an organic solvent having a boiling point higher than that of water.
  • a separation membrane having an affinity for water that is, an osmotic vaporization membrane
  • the NMP aqueous solution is flowed to the supply side of the separation membrane to separate the separation membrane.
  • the pressure is reduced or an inert gas is flowed.
  • separation is performed due to the difference in permeation rate between water and NMP in the separation membrane, and a water-rich component appears on the permeation side of the separation membrane.
  • a separation membrane for allowing water to permeate for example, a zeolite membrane is used. If only the water is moved to the permeation side by the separation membrane, the NMP remains on the side where the mixed solution is supplied, that is, the concentration side in the separation membrane, and the NMP can be recovered from the concentration side.
  • Patent Document 1 describes an NMP purification system in which a permeation vaporizer is used and ion exchange devices are provided in front of and after the permeation vaporizer as a system for obtaining purified NMP by separating NMP from a mixed solution of NMP and water. It is disclosed.
  • Patent Document 2 discloses that an evaporation can is provided after the osmotic vaporizer in order to remove ionic impurities and fine particles from the NMP purified by the osmotic vaporizer to obtain a higher purity NMP.
  • Patent Document 2 also discloses that an ion exchange device is provided in front of the permeation vaporizer when purifying a hydrous NMP containing a large amount of ionic impurities or when the concentration of ionic impurities in the purified NMP is extremely low. doing.
  • a reduced pressure evaporation can such as a liquid film flow type, a flash type or a Calandria type can be used.
  • the organic solvent recovered from the equipment or process that uses the organic solvent may contain organic impurities having a boiling point close to the boiling point of the organic solvent, but the organic impurities should be removed only by using an evaporator or the like. Is difficult.
  • the NMP recovered from the equipment or process using the NMP may contain organic impurities having a boiling point close to the boiling point of the NMP. Since the number of theoretical stages is small, organic impurities having a boiling point close to NMP cannot be sufficiently removed, and the organic impurities remain in the purified NMP. If such purified NMP is reused and recovered, and the recovered NMP is repeatedly purified and reused, the concentration of organic impurities in the purified NMP gradually increases.
  • An example of an organic impurity having a boiling point close to that of NMP is N-methylsuccinimide. The boiling point at 1 atm is 235 ° C for N-methylsuccinimide, whereas NMP is 202 ° C.
  • An object of the present invention is to provide a purification method and purification system for an organic solvent, which can prevent an increase in the concentration of organic impurities in the purified organic solvent even when the recovery, purification and reuse of the organic solvent are repeated. To do.
  • the present inventors examined treatment with an ion exchange resin as a method for removing organic impurities mixed in an organic solvent. As a result, it was found that various organic impurities in the organic solvent can be removed by the ion exchange resin regardless of the presence or absence of coexisting water. However, it was also found that it takes a longer time to adsorb the organic impurities on the ion exchange resin as compared with the case where the ionic impurities are adsorbed on the ion exchange resin. Since the residence time in the ion exchange resin must be lengthened in order to remove organic impurities, let's remove the organic impurities by passing the entire amount of the mixed solution containing water and the organic solvent to be purified through the ion exchange resin.
  • the purpose of removing organic impurities is to prevent the concentration of organic impurities from increasing when, for example, the organic solvent is repeatedly recovered, purified and reused. From that point of view, when removing organic impurities from an organic solvent, it is sufficient to remove only the amount of organic impurities newly generated by reuse or repurification. Therefore, in order to remove organic impurities, it is not always necessary to use an organic solvent. The entire amount does not have to be ion-exchanged.
  • the purification method of the present invention is a purification method in which an organic solvent is separated and purified from a mixture of an organic solvent having a boiling point of more than 100 ° C. at 1 atm and water, and the mixture is first ion exchanged.
  • Dehydration in which the mixed solution discharged from the first ion exchange step is supplied to the first ion exchange step of passing the liquid through the resin and the permeable vaporizer having the permeable vaporization film to selectively separate water from the mixed solution.
  • the step, the evaporation step of supplying the organic solvent recovered from the concentration side of the permeation vaporization film to the evaporation can and vaporizing it to obtain the purified organic solvent, and the first position after the first ion exchange step.
  • the purification system of the present invention is a purification system that separates and purifies an organic solvent from a mixture of an organic solvent having a boiling point of more than 100 ° C. at 1 atm and water, and is a first ion to which the mixture is supplied.
  • a permeation vaporizer having an exchange device and a permeation vaporization film, to which a mixed solution passed through the first ion exchange device is supplied to selectively separate water from the mixture, and recovery from the concentration side of the permeation vaporization film.
  • a second is supplied with an evaporative can that vaporizes the prepared organic solvent to produce a purified organic solvent, and a part of the liquid containing the organic solvent that flows at the first position after the first ion exchange device.
  • the liquid discharged from the second ion exchange device is returned to the second position, which is a stage before the permeation vaporizer in the purification system.
  • the present invention it is possible to prevent an increase in the concentration of organic impurities contained in the purified organic solvent even when the organic solvent is repeatedly recovered, purified and reused.
  • FIG. 1 shows a basic aspect of a method for purifying an organic solvent based on the present invention.
  • the purification method based on the present invention is to separate and purify an organic solvent from a mixed solution of water and an organic solvent having a boiling point of more than 100 ° C. at 1 atm (0.1013 MPa).
  • NMP discharged from the lithium ion secondary battery (LIB) manufacturing step 10 is recovered, the recovered NMP is purified, and the obtained purified NMP is reused in the lithium ion secondary battery manufacturing step 10.
  • LIB lithium ion secondary battery
  • the recovered NMP is a mixed solution of water and NMP containing, for example, 10 to 20% by mass of water. Therefore, when the purification method based on the present invention is applied to the recovered NMP, the mixed solution which is the recovered NMP is dehydrated and impurities in the NMP are removed.
  • NMP is used as the organic solvent
  • the organic solvent to which the present invention can be applied is not limited to NMP.
  • the present invention can be applied to the organic solvent which is. Table 1 shows examples of such organic solvents. In Table 1, the boiling point is a value at 0.1013 MPa.
  • an organic solvent that does not form an azeotropic mixture with water is more preferable.
  • the organic solvents excluding PGME, PGMEA and pyridine are organic solvents that do not form an azeotropic mixture with water.
  • a new solution of NMP that is, a supplementary NMP may be added to the recovered NMP in order to supplement the NMP lost in the process of purification or reuse of the NMP.
  • the recovered NMP that is, the mixed solution
  • an ion exchange resin such as a styrene-based strongly basic anion exchange resin is used as the first ion exchange.
  • the liquid is passed through the first ion exchange device 20 filled as a resin.
  • the mixed liquid discharged from the first ion exchange device 20 is then supplied to the osmotic vaporizer 30 provided with the osmotic vaporizing membrane as a dehydration step, and the water content is selectively separated.
  • the dehydrated NMP is discharged from the concentrated side of the osmotic vaporization membrane of the osmotic vaporizer 30, and the dehydrated NMP is supplied to the evaporation can 40.
  • NMP is purified by vaporization, and the purified NMP is discharged from the evaporation can 40.
  • the refractory components such as fine particles and ionic impurities (for example, salts) contained in the NMP are removed from the NMP.
  • Colored impurities in NMP can also be removed by the evaporation can 40.
  • a vacuum evaporation can can be used as the evaporation can 40.
  • the purified NMP obtained from the evaporation can 40 can be condensed and then reused, for example, in the lithium ion secondary battery production step 10.
  • a part of the liquid containing NMP that flows at the first position after the first ion exchange device 20 is passed through the second ion exchange device 50. It has a liquiding process.
  • the second ion exchange device 50 also performs an ion exchange process using an ion exchange resin, and the ion exchange resin used in the second ion exchange device 50 is also referred to as a second ion exchange resin.
  • an H-type strong acid cation exchange resin and an OH-type strong basic anion exchange resin are mixed in a mixed bed, or an OH type.
  • the base structure of the second ion exchange resin is preferably styrene-based.
  • the structure of the second ion exchange resin may be any of MR (macro reticular) type, MP (macroporous) type, and gel type.
  • Examples of the ion exchange resin satisfying such requirements include ORLITE (registered trademark) DS-5 and Amberlite (registered trademark) IRA400 (OH). Then, the liquid discharged from the second ion exchange device 50 is returned to the second position, which is the stage before the permeation vaporizer 30 and the stage after the first position.
  • ORLITE registered trademark
  • Amberlite registered trademark
  • the position where the recovered NMP, that is, the mixed solution is supplied to the first ion exchange device 20, is A
  • the position between the first ion exchange device 20 and the permeation vaporizer 30 is B1.
  • B2 the position where the dehydrated NMP flows between the permeation vaporizer 30 and the evaporation can 40 is represented by C
  • the position where the purified NMP discharged from the evaporation can 40 flows is represented by D.
  • the position B1 is upstream from the position B2.
  • a part of the liquid flowing at any of the positions B1, C, and D is supplied to the second ion exchange device 50, and the supplied liquid is passed through the second ion exchange device 50 and then at the position. It is returned to either A or B2.
  • a point at any of the above positions B1, C, and D where a part of the liquid flowing there is sent to the second ion exchange device 50 is called a branch point.
  • the purification system 60 is composed of the first ion exchange device 20, the permeation vaporization device 30, the evaporation can 40, and the second ion exchange device 50.
  • the first ion exchange device 20 mainly removes ionic impurities in the mixed solution, and a part of the NMP-containing liquid flowing downstream of the first ion exchange device 20 is extracted.
  • the organic impurities are removed in the second ion exchange device 50 by leading to the second ion exchange device 50.
  • the second ion exchange device 50 water is generated from the ion exchange resin by the ion exchange reaction caused by the adsorption of organic impurities on the ion exchange resin, and this water is mixed with the NMP, so that the water has passed through the second ion exchange device 50.
  • the liquid needs to be returned to a position before the permeation vaporizer 30 which is a dehydration means.
  • the residence time of the liquid in the second ion exchange device 50 stays in the first ion exchange device 20. It is necessary to set the distribution ratio of the liquid to the second ion exchange device 50 and the amount of the ion exchange resin to be filled in the second ion exchange device 50 so as to be longer than the time.
  • the liquid may be constantly supplied to the second ion exchange device 50 at a constant distribution ratio at the branch point.
  • the production of the purified NMP is stopped, and then the entire amount of the liquid flowing through the branch point is supplied to the second ion exchange device 50 to carry out organic impurities. May be removed, and then the liquid from which the organic impurities have been removed may be returned to either position A or B2.
  • the purification system of the first to third embodiments described below specifically realizes the purification method based on the present invention described with reference to FIG.
  • FIG. 2 shows the purification system of the first embodiment of the present invention.
  • a recovered NMP which is a mixed solution of water and NMP is supplied and the purified NMP is discharged, and the recovered NMP is temporarily stored in the stock solution tank 11 and recovered from the stock solution tank 11.
  • the first ion exchange device (IER) 20 to which the NMP is supplied and the first ion exchange process is performed on the recovered NMP, and the recovered NMP which has been ion-exchanged by the first ion exchange device 20 are supplied.
  • It includes a permeation vaporizer 30 that separates water and NMP, and a vacuum evaporation can 41 to which the NMP separated by the permeation vaporizer 30 is supplied.
  • this purification system also includes a second ion exchange device 50 that performs a second ion exchange process.
  • the first ion exchange device 20 is filled with an ion exchange resin such as a styrene-based strong basic anion exchange resin, as in the one shown in FIG.
  • a heat exchanger 32 is provided between the first ion exchange device 20 and the permeation vaporizer 30 to heat the recovered NMP to, for example, 120 ° C., and steam is supplied to the heat exchanger 32 as a heat medium.
  • the osmotic vaporizer 30 includes, for example, a osmotic vaporizing membrane 31 made of zeolite, and the water discharged through the osmotic vaporizing membrane 31 is condensed by a condenser 34 to which cold water is supplied as a refrigerant.
  • the NMP separated from the recovered NMP is discharged from the concentration side outlet of the permeation vaporizer 30, cooled by the heat exchanger 33 to which cold water is supplied as a refrigerant, and then supplied to the vacuum evaporation can 41.
  • the reduced pressure evaporation can 41 removes refractory components such as fine particles and residual ionic impurities from the NMP, and steam is supplied as a heat medium to maintain the operating temperature at, for example, 120 ° C.
  • the inside is depressurized by a depressurizing means (not shown). As a result, the NMP is vaporized to remove the refractory components from the NMP, and the purified NMP is discharged.
  • the second ion exchange device 50 removes organic impurities such as N-methylsuccinimide contained in the recovered NMP by an ion exchange treatment.
  • a part of the recovered NMP flowing between the outlet of the first ion exchange device 20 and the heat exchanger 32 (B) A part of the NMP flowing between the outlet on the concentration side of the permeation vaporizer 30 and the inlet of the vacuum distillation can 41, and (c) a part of the purified NMP discharged from the vacuum distillation can 41 and condensed. Is supplied. It can be said that the liquid supplied to the second ion exchange device 50 is a liquid containing NMP in any of the cases (a) to (c).
  • the second ion exchange device 50 includes a tank 51 and an ion exchange unit (IER) 52, and the ion exchange unit 52 is filled with the second ion exchange device 50 described with reference to FIG. It is filled with an ion exchange resin similar to the ion exchange resin.
  • the liquid supplied to the second ion exchange device 50 is temporarily stored in the tank 51 and circulates between the tank 51 and the ion exchange unit 52 to undergo a second ion exchange process and undergo an ion exchange process.
  • the received liquid is returned to the stock solution tank 11 or the front stage side of the stock solution tank 11.
  • a buffer tank (not shown) provided upstream of the stock solution tank 11 with respect to the flow of the recovered NMP can be mentioned.
  • Both the stock solution tank 11 and the front side of the stock solution tank 11 correspond to the position A in the example shown in FIG.
  • the overall action of the second ion exchange device 50 in the embodiment shown in FIG. 2 is the same as the action of the second ion exchange device 50 in the purification system 60 shown in FIG. Therefore, the residence time in the ion exchange unit 52 is set to be longer than the residence time in the first ion exchange device 20.
  • the liquid containing NMP supplied to the second ion exchange device 50 is stored in the tank 51, and the liquid is repeatedly circulated between the tank 51 and the ion exchange unit 52 to generate ions.
  • the effective residence time in the exchange unit 52 is lengthened so that a desired residence time is secured.
  • Such a treatment method is a batch-type treatment method. For example, when the purity of the purified NMP decreases, the production of the purified NMP is temporarily stopped, and then from the undiluted solution tank 11 to the vacuum evaporation can 41 at that time.
  • the liquid containing NMP When the liquid containing NMP is constantly supplied to the second ion exchange device 50 at a relatively low flow rate, the liquid is guided between the tank 51 and the ion exchange unit 52 while guiding the liquid to the tank 51.
  • the circulation may be continued, and the liquid may be withdrawn from the tank 51 at the same flow rate as the flow rate of the liquid supplied to the second ion exchange device 50 and returned to the stock solution tank 11 or the previous stage thereof.
  • Such a processing method is a flow type or continuous type processing method.
  • a resistivity meter for measuring the conductivity of the liquid supplied to the second ion exchange device 50 may be provided at the inlet of the second ion exchange device 50. By providing the resistivity meter, it is possible to confirm whether or not the ionic impurities have been removed in the first ion exchange device 20.
  • FIG. 3 shows a purification system according to a second embodiment of the present invention.
  • the purification system shown in FIG. 3 is similar to the purification system of the first embodiment shown in FIG. 2, but differs from that shown in FIG. 2 in the configuration of the second ion exchange device 50.
  • the second ion exchange device 50 of the purification system shown in FIG. 3 includes a tank 53 for storing a liquid containing NMP supplied to the second ion exchange device 50, and the tank 53 contains, for example, granular ions. Replacement resin (IER) is charged.
  • IER granular ions. Replacement resin
  • As the ion exchange resin charged into the tank 53 the same one as that filled in the ion exchange unit 52 in the first embodiment is used.
  • the tank 53 is provided with a filter (not shown) so that the ion exchange resin in the tank 53 does not flow out.
  • the tank 53 is also provided with a stirring device 54 for stirring the liquid in the tank 53 together with the ion exchange resin.
  • the liquid is stirred together with the ion exchange resin in the tank 53 to be between the tank 51 and the ion exchange unit 52 in the purification system of the first embodiment shown in FIG.
  • the same effect as circulating the liquid in is obtained.
  • the entire amount of the supplied liquid is stored in the tank 53 as a batch type process.
  • the liquid may be stirred together with the ion exchange resin in the tank 53 for a predetermined time, and then the entire amount of the liquid in the tank 53 may be returned to the stock solution tank 11 or the previous stage thereof.
  • the liquid containing NMP When the liquid containing NMP is constantly supplied to the second ion exchange device 50 at a relatively low flow rate, the liquid is guided to the tank 53 and the liquid is stirred together with the ion exchange resin in the tank 53. , The liquid may be withdrawn from the tank 53 at the same flow rate as the flow rate of the liquid supplied to the second ion exchange device 50 and returned to the undiluted solution tank 11 or the previous stage thereof.
  • the residence time is determined by the volume of the tank 53 and the flow rate of the liquid to the tank 53. Also in the second embodiment, the residence time in the second ion exchange device 50 is longer than the residence time in the first ion exchange device 20.
  • a resistivity meter may be provided at the inlet of the second ion exchange device 50 to measure the conductivity of the liquid supplied to the second ion exchange device 50.
  • the resistivity meter By providing the resistivity meter, it is possible to confirm whether or not the ionic impurities have been removed in the first ion exchange device 20.
  • the ion exchange is charged into the tank 53 based on the value measured by the specific resistance meter so as to obtain the desired purity. By increasing or decreasing the amount of the resin, impurities can be reliably removed by the second ion exchange device 50.
  • Increasing or decreasing the amount of ion exchange resin charged into the tank 53 based on the measured value of the resistivity meter is a batch method in which a relatively large amount of liquid is intermittently supplied to the second ion exchange device 50.
  • the target purity in the purified NMP can be easily achieved.
  • FIG. 4 shows a purification system according to a third embodiment of the present invention.
  • the purification system shown in FIG. 4 is similar to the purification system shown in FIGS. 2 and 3, but the second ion exchange device 50 is composed of only the ion exchange unit 52, and the first A part of the recovered NMP discharged from the ion exchange device 20 is supplied to the second ion exchange device 50, and the recovered NMP processed by the second ion exchange device 50 is supplied to the inlet of the heat exchanger 32.
  • the second ion exchange device 50 is composed of only the ion exchange unit 52, and the first A part of the recovered NMP discharged from the ion exchange device 20 is supplied to the second ion exchange device 50, and the recovered NMP processed by the second ion exchange device 50 is supplied to the inlet of the heat exchanger 32.
  • FIGS. 2 and 3 That is, in the purification system of the present embodiment, a part of the recovered NMP flowing through the position B1 in the purification system 60 shown in FIG.
  • the recovered NMP is constantly supplied to the second ion exchange device 50 at a low flow rate.
  • the ion exchange resin filled in the ion exchange unit 52 of the second ion exchange device 50 is the same as that filled in the ion exchange unit 52 in the first embodiment. used.
  • the recovered NMP supplied to the second ion exchange device 50 is directly supplied to the ion exchange unit 52, and the recovered NMP passed through the ion exchange unit 52 exchanges heat with the first ion exchange device 20. It joins the pipe connecting the vessel 32 as it is.
  • the ratio of the amount directly supplied to the heat exchanger 32 to the amount supplied to the second ion exchange device 50 is filled in the ion exchange unit 52.
  • the amount of the ion exchange resin to be formed is set so as not to be excessive and a sufficient residence time in the ion exchange unit 52 is secured. Also in this third embodiment, organic impurities such as N-methylsuccinimide contained in the recovered NMP are removed by the second ion exchange device 50.
  • N-methylsuccinimide in the NMP solution is also adsorbed and removed by the ion exchange resin, and if the concentration of N-methylsuccinimide is, for example, 0.1% by mass or less, 100 hours is required. It was found that the adsorption still continued even if it exceeded. It was also found that the adsorption of N-methylsuccinimide was hardly affected by the amount of water in the NMP solution.
  • Reference Example 2 corresponds to the case where the concentration of N-methylsuccinimide in the NMP solution is higher than that of Reference Example 1. Even when the N-methylsuccinimide concentration was relatively high, such as exceeding 0.1% by mass, the adsorption of N-methylsuccinimide continued even after 5 hours.
  • Lithium-ion secondary battery (LIB) manufacturing process 11 Stock solution tank 20, 50 Ion exchanger 30 Permeation vaporizer 31 Permeation vaporizer 32, 33 Heat exchanger 34 Condenser 40 Evaporation can 41 Vacuum evaporation can 51, 53 Tank 52 Ion Exchange unit 54 Stirrer 60 Purification system

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Pyrrole Compounds (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

1気圧での沸点が100℃を超える有機溶剤と水との混合液から有機溶剤を分離して精製する精製方法は、混合液を第1のイオン交換装置(20)に通液する工程と、浸透気化装置(30)に、第1のイオン交換装置(20)から排出された混合液を供給して水分を選択的に分離する工程と、浸透気化装置(30)の濃縮側から回収された有機溶剤を蒸発缶(40)に供給して精製有機溶剤を得る工程と、第1のイオン交換装置(20)よりも後段の第1の位置において流れる有機溶剤を含む液の一部を第2のイオン交換装置(50)に通液する第2のイオン交換工程と、を有する。第2のイオン交換装置(50)から排出される液を浸透気化装置(30)よりも前段である第2の位置に戻す。

Description

有機溶剤の精製方法及び精製システム
 本発明は、N-メチル-2-ピロリドン(以下、NMPとも呼ぶ)などの1気圧(すなわち0.1013MPa)での沸点が100℃を超える有機溶剤を精製する精製方法及び精製システムに関する。特に本発明は、有機溶剤を使用する設備や工程などから回収されて水を含んでいる有機溶剤を精製して再利用することに適した精製方法及び精製システムに関する。
 有機溶剤の中には水に対して高い溶解度を有するとともに1気圧での沸点が100℃を超えるもの、すなわち水よりも高い沸点を有するものがある。このような水溶性の有機溶剤を使用したのち回収して再利用する場合、有機溶剤と水との混合液が回収されることが多いため、この混合液から、再利用対象となる有機溶剤を分離して精製する必要がある。回収される混合液は、有機溶剤と水のほかに、例えばイオン性物質や微粒子などの難揮発性の不純物、さらには、再利用対象となる有機溶剤とは異なる有機物質すなわち有機不純物を含んでいる可能性がある。
 水に対する高い溶解度を有し、かつ、1気圧での沸点が100℃を超える有機溶剤の1つであるNMPは、例えば、リチウムイオン二次電池(LIB)の電極、特に正極を製造する際に分散媒として広く用いられている。リチウムイオン二次電池の各電極すなわち正極や負極の主要な構成材料は、電極活物質、集電体及びバインダーである。バインダーとしては、ポリフッ化ビニリデン(PVDF)を分散媒であるNMPに溶解させたものを使用するのが一般的である。電極は、一般に、電極活物質とバインダーとを混合したスラリーを集電体上に塗布し、空気中すなわち酸素の存在下で、加熱によってNMPを蒸発させることによって製造される。リチウムイオン二次電池の製造工程で使用されて気化したNMPは、例えば水スクラバーなどの回収装置によってNMP水溶液の形態で回収することができる。回収されたNMPは、そこに含まれる水や不純物を除去することによって、再度、リチウムイオン二次電池の製造工程などで使用することができる。NMPは、リチウムイオン二次電池の製造工程以外においても、水と混和する有機溶剤として、各種の分野で用いられており、そのような分野においても、使用後のNMPを回収して再利用することが求められている。
 NMP水溶液からのNMPの回収は、有機溶剤と水との混合液から有機溶剤を分離して回収する方法の応用の一つである。有機溶剤と水との混合液から有機溶剤を分離して回収する方法として、浸透気化(Pervaporation:PV)法が知られている。浸透気化法は、沸点が水よりも高い有機溶剤から水を分離するための優れた方法である。浸透気化法を用いてNMP水溶液からNMPを回収する場合には、水分に対して親和性を有する分離膜(すなわち浸透気化膜)を使用し、NMP水溶液を分離膜の供給側に流し、分離膜の透過側では減圧にしたり不活性ガスを流す。その結果、分離膜における水とNMPとの透過速度差により分離が行われ、水分に富んだ成分が分離膜の透過側に現れる。水分を透過させるための分離膜としては、例えば、ゼオライト膜が使用される。分離膜によって水分のみが透過側に移動するとすれば、NMPは、分離膜において混合液を供給した側、すなわち濃縮側に残存することとなり、濃縮側からNMPを回収することができる。
 特許文献1は、NMPと水との混合液からNMPを分離することにより精製NMPを得るシステムとして、浸透気化装置を用いるとともに浸透気化装置の前段及び後段にイオン交換装置を設けたNMP精製システムを開示している。特許文献2は、浸透気化装置を用いて精製したNMPからイオン性不純物や微粒子を取り除いてさらに高純度のNMPを得るために、浸透気化装置の後段に蒸発缶を設けることを開示している。特許文献2は、さらに、イオン性不純物を多く含む含水NMPを精製する場合や、精製NMP中のイオン性不純物濃度を極めて低くする場合に、浸透気化装置の前段にイオン交換装置を設けることも開示している。NMPからイオン性不純物や微粒子を取り除くために用いられる蒸発缶としては、例えば、液膜流下式、フラッシュ式あるいはカランドリア式などの減圧蒸発缶を用いることができる。
特開2013-18747号公報 特開2016-30233号公報
 有機溶剤を使用する設備や工程から回収した有機溶剤には、その有機溶剤の沸点と近い沸点を有する有機不純物が含まれることがあるが、蒸発缶などを用いるだけではその有機不純物を除去することは難しい。例えば、NMPを使用する設備や工程から回収したNMPには、NMPの沸点と近い沸点を有する有機不純物が含まれていることがあるが、特許文献2に示される精製システムでは、減圧蒸発缶の理論段数が小さいので、NMPに近い沸点を有する有機不純物を十分に除去することができず、精製NMP中にその有機不純物が残存する。そのような精製NMPを再利用して回収し、その回収したNMPを精製して再利用することを繰り返せば、精製NMP中の有機不純物の濃度が徐々に上昇する。NMPの沸点に近い沸点を有する有機不純物の例として、N-メチルスクシンイミドがある。1気圧での沸点は、NMPが202℃であるのに対し、N-メチルスクシンイミドは235℃である。
 本発明の目的は、有機溶剤の回収、精製及び再利用を繰り返したときであっても、精製有機溶剤における有機不純物の濃度の上昇を防ぐことができる、有機溶剤の精製方法及び精製システムを提供することにある。
 本発明者らは、有機溶剤に混入する有機不純物を除去する方法として、イオン交換樹脂による処理について検討した。その結果、共存する水分の有無に係わらず有機溶剤中の各種の有機不純物をイオン交換樹脂によって除去できることを見出した。しかしながら、イオン性不純物をイオン交換樹脂に吸着させる場合と比べ、有機不純物をイオン交換樹脂に吸着させるためには長時間を要することも分かった。有機不純物の除去のためにはイオン交換樹脂における滞留時間を長くしなければならないので、水と精製対象の有機溶剤とを含む混合液の全量をイオン交換樹脂に通液して有機不純物を除去しようとすると、イオン性不純物だけを除去する場合に比べ、大量のイオン交換樹脂を用いてかつ滞留時間を長くする必要が生じてしまう。有機不純物を除去することの目的は、例えば有機溶剤の回収、精製及び再利用を繰り返したときに有機不純物濃度が高くなることを防ぐことにある。その観点からすると、有機溶剤から有機不純物を除去する際には、再利用や再精製によって新たに生じた分の有機不純物だけを除去できればよく、したがって、有機不純物の除去のために必ずしも有機溶剤の全量をイオン交換処理しなくてもよいことになる。
 そこでの本発明の精製方法は、1気圧での沸点が100℃を超える有機溶剤と水との混合液から有機溶剤を分離して精製する精製方法であって、混合液を第1のイオン交換樹脂に通液する第1のイオン交換工程と、浸透気化膜を有する浸透気化装置に、第1のイオン交換工程から排出された混合液を供給して混合液から水分を選択的に分離する脱水工程と、浸透気化膜の濃縮側から回収された有機溶剤を蒸発缶に供給して気化させ、精製された有機溶剤を得る蒸発工程と、第1のイオン交換工程よりも後段の第1の位置において流れる、有機溶剤を含む液の一部を第2のイオン交換樹脂によって処理する第2のイオン交換工程と、を有し、第2のイオン交換工程から排出される液を脱水工程よりも前段である第2の位置に戻す。
 本発明の精製システムは、1気圧での沸点が100℃を超える有機溶剤と水との混合液から有機溶剤を分離して精製する精製システムであって、混合液が供給される第1のイオン交換装置と、浸透気化膜を有し、第1のイオン交換装置を通液した混合液が供給されて混合液から水分を選択的に分離する浸透気化装置と、浸透気化膜の濃縮側から回収された有機溶剤を気化し、精製された有機溶剤を生成する蒸発缶と、第1のイオン交換装置よりも後段の第1の位置において流れる有機溶剤を含む液の一部が供給される第2のイオン交換装置と、を有し、第2のイオン交換装置から排出される液が、精製システムにおいて浸透気化装置よりも前段である第2の位置に戻される。
 本発明によれば、有機溶剤の回収、精製及び再利用を繰り返したときであっても、精製有機溶剤に含まれる有機不純物の濃度の上昇を防ぐことができるようになる。
本発明に基づく有機溶剤の精製方法の基本的な態様を示す図である。 第1の実施形態の精製システムを示す図である。 第2の実施形態の精製システムを示す図である。 第3の実施形態の精製システムを示す図である。 参考例1の結果を示すグラフである。 参考例2の結果を示すグラフである。 参考例3の結果を示すグラフである。
 次に、本発明の好ましい実施の形態について、図面を参照して説明する。図1は、本発明に基づく有機溶剤の精製方法の基本的な態様を示している。本発明に基づく精製方法は、1気圧(0.1013MPa)における沸点が100℃を超える有機溶剤と水との混合液から有機溶剤を分離して精製するものである。この精製方法は、例えばリチウムイオン二次電池(LIB)製造工程10から排出されるNMPを回収し、この回収NMPを精製し、得られた精製NMPをリチウムイオン二次電池製造工程10で再利用するときに、好ましく使用できる。NMPの回収では例えば水スクラバーを使用するので、回収NMPは、水を例えば10~20質量%含有する、水とNMPとの混合液である。したがって、本発明に基づく精製方法を回収NMPに適用した場合には、回収NMPである混合液に対して脱水が行なわれるとともに、NMP中の不純物が除去されることとなる。以下では有機溶剤としてNMPを用いる場合を説明するが、本発明が適用可能な有機溶剤はNMPに限定されるものではない。1気圧(0.1013Mpa)での沸点が水の沸点(100℃)よりも高い有機溶剤、好ましくは1気圧での沸点が浸透気化装置の一般的な運転温度である120℃であるかそれ以上である有機溶剤に対して、本発明を適用することができる。このような有機溶剤の例を表1に示す。表1において沸点は0.1013MPaでの値である。
Figure JPOXMLDOC01-appb-T000001
 本発明が適用可能な有機溶剤としては、水との共沸混合物をつくらない有機溶剤がより好ましい。表1に示した有機溶剤においては、PGME、PGMEA及びピリジンを除いた有機溶剤が、水との共沸混合物をつくらない有機溶剤である。
 図1に示す態様において、回収NMPには、NMPの精製や再利用の過程で損失となった分のNMPを補充するために、NMPの新液すなわち補充用NMPを追加してもよい。そして回収NMPすなわち混合液は、そこに含まれるイオン性不純物を除去するために、第1のイオン交換工程として、例えばスチレン系の強塩基性アニオン交換樹脂などのイオン交換樹脂が第1のイオン交換樹脂として充填された第1のイオン交換装置20に通液される。第1のイオン交換装置20から排出された混合液は、次に、脱水工程として、浸透気化膜を備える浸透気化装置30に供給され、水分が選択的に分離される。その結果、浸透気化装置30の浸透気化膜の濃縮側から脱水NMPが排出し、この脱水NMPは蒸発缶40に供給される。蒸発缶40では、蒸発工程として、気化することによってNMPが精製され、精製NMPが蒸発缶40から排出される。すなわち蒸発缶40では、NMPに含まれていた微粒子やイオン性不純物(例えば塩類)などの難揮発性成分がNMPから除去される。NMPにおける着色不純物も蒸発缶40によって除去することができる。蒸発缶40としては、例えば減圧蒸発缶を用いることができる。蒸発缶40から得られた精製NMPは、凝縮させたのち、例えばリチウムイオン二次電池生産工程10において、再利用することができる。
 さらにこの精製方法は、第2のイオン交換工程として、第1のイオン交換装置20よりも後段の第1の位置において流れる、NMPを含む液の一部を、第2のイオン交換装置50に通液する工程を有する。第2のイオン交換装置50もイオン交換樹脂を用いてイオン交換処理を行うものであり、第2のイオン交換装置50において用いられるイオン交換樹脂を第2のイオン交換樹脂とも呼ぶ。第2のイオン交換樹脂として、NMPの精製を行う場合であれば、例えば、H形の強酸性カチオン交換樹脂とOH形の強塩基性アニオン交換樹脂とを混床にしたもの、あるいは、OH形の強塩基性アニオン交換樹脂を単床にしたものを好ましく用いることができる。第2のイオン交換樹脂の母体構造はスチレン系であることが好ましい。第2のイオン交換樹脂の構造は、MR(マクロレティキュラー)型、MP(マクロポーラス)型、ゲル型のいずれであってもよい。このような要件を満たすイオン交換樹脂として、例えば、ORLITE(登録商標) DS-5やアンバーライト(登録商標)IRA400(OH)がある。そして、第2のイオン交換装置50から排出される液は、浸透気化装置30よりも前段であってかつ第1の位置よりも後段である第2の位置に戻される。図1では、NMPの流れる経路に関し、回収NMPすなわち混合液が第1のイオン交換装置20に供給される位置をA、第1のイオン交換装置20と浸透気化装置30との間の位置をB1,B2、浸透気化装置30と蒸発缶40との間の脱水NMPが流れる位置をC、蒸発缶40から排出される精製NMPが流れる位置をDで表している。ただし、NMPの流れに関して、位置B1の方が位置B2よりも上流にある。第2のイオン交換装置50へは、位置B1,C,Dのいずれかにおいて流れる液の一部が供給され、この供給された液は、第2のイオン交換装置50を通液した後、位置A、B2のいずれかに戻される。上記の位置B1,C,Dのいずれかであってそこを流れる液の一部が第2のイオン交換装置50に送られる点を分岐点と呼ぶ。
 図1に示した例では、第1のイオン交換装置20、浸透気化装置30、蒸発缶40及び第2のイオン交換装置50によって、精製システム60が構成されている。
 後述の参考例からも明らかになるように、共存する水分の有無に係わらずNMP中の各種の有機不純物をイオン交換樹脂によって除去できるが、イオン性不純物をイオン交換樹脂に吸着させる場合と比べ、有機不純物をイオン交換樹脂に吸着させるためには長時間を要する。そこでこの態様では、第1のイオン交換装置20においては主として混合液中のイオン性不純物が除去されるようにし、第1のイオン交換装置20よりも下流側を流れるNMP含有液の一部を抜き出して第2のイオン交換装置50に導くことにより、有機不純物を第2のイオン交換装置50において除去している。第2のイオン交換装置50においてイオン交換樹脂に有機不純物が吸着することによるイオン交換反応によりイオン交換樹脂から水が発生し、この水がNMPに混じるので、第2のイオン交換装置50を通過した液は、脱水手段である浸透気化装置30よりも前段となる位置に戻す必要がある。
 有機不純物をイオン交換樹脂に吸着させるためにはイオン性不純物を吸着させる場合よりも長時間を要するので、第2のイオン交換装置50における液の滞留時間が第1のイオン交換装置20での滞留時間よりも長くなるように、分岐点における第2のイオン交換装置50への液の分配比や第2のイオン交換装置50に充填されるイオン交換樹脂の量を設定する必要がある。第2のイオン交換装置50に液を流す場合、分岐点において第2のイオン交換装置50に対して一定の分配比で定常的に液が供給されるようにしてもよい。あるいは、一定の時間ごとにあるいは精製NMPにおける純度低下を検出するごとに、精製NMPの生成を停止した上で、分岐点を流れる液の全量を第2のイオン交換装置50に供給して有機不純物を取り除き、その後、有機不純物が取り除かれた液を位置A、B2のいずれかに戻すようにしてもよい。
 次に、具体的な実施形態により、本発明をさらに詳しく説明する。以下に説明する第1乃至第3の実施形態の精製システムは、図1を用いて説明した本発明に基づく精製方法を具体的に実現するものである。
 [第1の実施形態]
 図2は、本発明の第1の実施形態の精製システムを示している。図2に示される精製システムは、水とNMPとの混合液である回収NMPが供給されて精製NMPを排出するものであり、回収NMPを一時的に貯える原液タンク11と、原液タンク11から回収NMPが供給されて回収NMPに対して第1のイオン交換処理を行う第1のイオン交換装置(IER)20と、第1のイオン交換装置20によってイオン交換処理がなされた回収NMPが供給されて水とNMPとを分離する浸透気化装置30と、浸透気化装置30で分離されたNMPが供給される減圧蒸発缶41とを備えている。さらにこの精製システムは、第2のイオン交換処理を行う第2のイオン交換装置50も備えている。
 第1のイオン交換装置20には、図1に示したものと同様に、例えばスチレン系の強塩基性アニオン交換樹脂などのイオン交換樹脂が充填されている。第1のイオン交換装置20と浸透気化装置30との間には、回収NMPを例えば120℃にまで加熱するために熱交換器32が設けられ、熱交換器32には熱媒として蒸気が供給されている。浸透気化装置30は、例えばゼオライトによって構成される浸透気化膜31を備えており、浸透気化膜31を透過して排出された水分は、冷媒として冷水が供給される凝縮器34によって凝縮される。回収NMPから分離されたNMPは、浸透気化装置30の濃縮側出口から排出され、冷水が冷媒として供給される熱交換器33によって冷却されたのちに減圧蒸発缶41に供給される。減圧蒸発缶41は、微粒子や残存しているイオン性不純物などの難揮発性成分をNMPから除去するものであり、熱媒として蒸気が供給されて例えば120℃の動作温度に維持されるとともに、不図示の減圧手段によって内部が減圧される。その結果、NMPが気化してNMPから難揮発性成分が除去され、精製NMPが排出される。
 第2のイオン交換装置50は、回収NMP中に含まれる例えばN-メチルスクシンイミドなどの有機不純物をイオン交換処理により取り除くものである。第2のイオン交換装置50に対しては、
 (a)第1のイオン交換装置20の出口と熱交換器32との間を流れる回収NMPの一部、
 (b)浸透気化装置30の濃縮側出口と減圧蒸発缶41の入口との間を流れるNMPの一部、及び
 (c)減圧蒸発缶41から排出されて凝縮した精製NMPの一部、
 のいずれかが供給される。第2イオン交換装置50に供給される液は、(a)~(c)のいずれの場合であっても、NMPを含む液であるといえる。すなわち、図1に示した例に即して説明すれば、この第1の実施形態においても、位置B1,C,Dのいずれかを流れるNMPを含む液の一部が第2のイオン交換装置50に供給されることになる。第2のイオン交換装置50は、タンク51とイオン交換ユニット(IER)52とを備えており、イオン交換ユニット52には、図1を用いて説明した第2のイオン交換装置50に充填されるイオン交換樹脂と同様のイオン交換樹脂が充填されている。第2のイオン交換装置50に供給された液は、タンク51に一時的に貯えられるとともに、タンク51とイオン交換ユニット52との間で循環して第2のイオン交換処理を受け、イオン交換処理を受けた液は、原液タンク11か、原液タンク11の前段側に戻される。原液タンク11の前段側としては、例えば、回収NMPの流れに関して原液タンク11よりも上流に設けられる不図示のバッファータンクが挙げられる。原液タンク11も原液タンク11の前段側も、図1に示した例における位置Aに相当する。
 図2に示す実施形態における第2のイオン交換装置50の全体としての作用は、図1に示した精製システム60における第2のイオン交換装置50の作用と同じである。したがって、イオン交換ユニット52における滞留時間は、第1のイオン交換装置20での滞留時間よりも長くなるように設定される。特に本実施形態では、第2のイオン交換装置50に供給された、NMPを含む液をタンク51に貯え、タンク51とイオン交換ユニット52との間で液を繰り返し循環させることにより、液がイオン交換ユニット52に滞留する実効的な時間を長くして、所望の滞留時間が確保されるようにしている。
 NMPを含む比較的多量の液が間欠的に第2のイオン交換装置50に供給される場合には、供給された液の全量をタンク51に貯え、タンク51とイオン交換ユニット52との間で液を循環させたのち、タンク51内の液の全量を原液タンク11かその前段に戻すようにすればよい。このような処理方法は、バッチ式の処理方法であり、例えば、精製NMPにおける純度が低下したときに精製NMPの生成をいったん中止した上で、その時点で原液タンク11から減圧蒸発缶41までの経路にある液体の全部をタンク51に供給して第2のイオン交換処理を行い、処理後の液を原液タンク11などに戻して再び精製NMPの生成を開始することに適したものである。バッチ式の処理方法では、精製NMPを生成している期間も含めて通算すれば間欠的な動作が行われることとなり、全体としてみれば、第2のイオン交換処理工程において、第1のイオン交換工程よりも後段の第1の位置において流れるNMPを含む液の全部ではなくて一部が処理される。
 NMPを含む液が比較的低流量で恒常的に第2のイオン交換装置50に供給される場合には、その液をタンク51に導きつつタンク51とイオン交換ユニット52との間での液の循環を継続させ、第2のイオン交換装置50に供給される液の流量と同じ流量でタンク51から液を抜き出して原液タンク11かその前段に戻すようにすればよい。このような処理方法は、フロー式あるいは連続式の処理方法である。
 図2に示す精製システムでは、第2のイオン交換装置50の入口に、第2のイオン交換装置50に供給される液における導電率を計測する比抵抗計が設けられるようにしてもよい。比抵抗計を設けることにより、第1のイオン交換装置20においてイオン性不純物が除去されたかどうかの確認を行うことができる。
 [第2の実施形態]
 図3は、本発明の第2の実施形態の精製システムを示している。図3に示される精製システムは、図2に示した第1の実施形態の精製システムと同様のものであるが、第2のイオン交換装置50の構成において、図2に示したものと異なっている。図3に示す精製システムの第2のイオン交換装置50は、第2のイオン交換装置50に供給された、NMPを含む液を貯えるタンク53を備えており、タンク53には、例えば粒状のイオン交換樹脂(IER)が投入される。タンク53に投入されるイオン交換樹脂としては、第1の実施形態においてイオン交換ユニット52に充填されるものと同様のものが使用される。タンク53内のイオン交換樹脂が外部に流出しないように、タンク53には不図示のフィルターが設けられる。タンク53には、タンク53内の液をイオン交換樹脂とともに撹拌する撹拌装置54も設けられている。
 図3に示す本実施形態の精製システムでは、タンク53において液をイオン交換樹脂とともに撹拌することで、図2に示した第1の実施形態の精製システムにおけるタンク51とイオン交換ユニット52との間で液を循環させることと同じ効果が得られる。本実施形態において、NMPを含む比較的多量の液が間欠的に第2のイオン交換装置50に供給される場合には、バッチ式の処理として、供給された液の全量をタンク53に貯え、タンク53内でその液をイオン交換樹脂とともに所定の時間にわたって撹拌し、その後、タンク53内の液の全量を原液タンク11かその前段に戻せばよい。また、NMPを含む液が比較的低流量で恒常的に第2のイオン交換装置50に供給される場合には、その液をタンク53に導きつつタンク53においてイオン交換樹脂ともにその液を撹拌し、第2のイオン交換装置50に供給される液の流量と同じ流量でタンク53から液を抜き出して原液タンク11かその前段に戻せばよい。この場合、タンク53の容積とタンク53への液の流量によって滞留時間が定まることとなる。第2の実施形態においても第2のイオン交換装置50での滞留時間は、第1のイオン交換装置20での滞留時間よりも長くされる。
 図3に示す精製システムにおいても、第2のイオン交換装置50の入口に、第2のイオン交換装置50に供給される液における導電率を計測する比抵抗計が設けられてもよい。比抵抗計を設けることにより、第1のイオン交換装置20においてイオン性不純物が除去されたかどうかの確認を行うことができる。さらに、イオン交換樹脂における飽和のためにイオン交換樹脂が吸着できる不純物量には限りがあるが、所望の純度が得られるように比抵抗計での測定値に基づいてタンク53に投入するイオン交換樹脂の量を増減することにより、第2のイオン交換装置50での不純物除去を確実に行うことができる。比抵抗計の測定値に基づいてタンク53へのイオン交換樹脂の投入量を増減させることは、特に、間欠的に比較的多量の液が第2のイオン交換装置50に供給されてバッチ式で処理を行う場合に、精製NMPにおける目標純度を容易に達成できるようにする。
 [第3の実施形態]
 図4は、本発明の第3の実施形態の精製システムを示している。図4に示される精製システムは、図2及び図3に示した精製システムと同様のものであるが、第2のイオン交換装置50がイオン交換ユニット52のみで構成されている点と、第1のイオン交換装置20から排出される回収NMPの一部が第2のイオン交換装置50に供給され、第2のイオン交換装置50で処理された回収NMPが熱交換器32の入口に供給される点で、図2及び図3に示したものとは異なっている。すなわち本実施形態の精製システムは、図1に示す精製システム60における位置B1を流れる回収NMPの一部を抜き出して第2のイオン交換装置50に導いて第2のイオン交換処理を実行し、第2のイオン交換処理を経た回収NMPを位置B2に戻して浸透気化装置30に供給する構成を具体化したものである。第2のイオン交換装置50へは、低流量で恒常的に回収NMPが供給される。
 この第3の実施形態において、第2のイオン交換装置50のイオン交換ユニット52に充填されるイオン交換樹脂としては、第1の実施形態におけるイオン交換ユニット52に充填されるものと同様のものが使用される。本実施形態では、第2のイオン交換装置50に供給された回収NMPはそのままイオン交換ユニット52に供給され、イオン交換ユニット52を通液した回収NMPは、第1のイオン交換装置20と熱交換器32とを接続する配管にそのまま合流する。第1のイオン交換装置20から排出された回収NMPのうち、熱交換器32に直接供給される分と第2のイオン交換装置50に供給される分との比率は、イオン交換ユニット52に充填されるイオン交換樹脂の量が過大とならず、かつ、イオン交換ユニット52での十分な滞留時間が確保されるように設定される。この第3の実施形態においても、回収NMPに含まれる例えばN-メチルスクシンイミドなどの有機不純物が第2のイオン交換装置50において除去される。
 [参考例]
 以下、本発明を完成させるにあたって本発明者らが行った実験について説明する。本発明者らは、NMPに含まれる例えばN-メチルスクシンイミドなどの有機不純物がイオン交換樹脂によって除去できることを検証した。以下では、N-メチルスクシンイミドを有機不純物として含むNMP溶液を対象として行った実験の結果を説明する。水分とは、NMP溶液全体に対する水の質量比をいう。また、NMS比とは、NMP溶液におけるNMPとN-メチルスクシンイミドとの質量の和に対するN-メチルスクシンイミドの質量の比率をいう。すなわちNMS比は、水分を除いて考えたときのNMP溶液におけるN-メチルスクシンイミドの質量比をいう。
 [参考例1]
 NMS比が0.058%であるN-メチルスクシンイミドを含有するNMP溶液100gを調製し、これに、スチレン系のMR型強塩基性アニオン交換樹脂であるオルガノ株式会社製のORLITE(登録商標) DS-5を1g添加し、撹拌を続けた。NMP溶液としては、水分が0%のものと10%のものとを用意した。そして、各々のNMP溶液におけるN-メチルスクシンイミドの質量濃度をガスクロマトグラフによって定量し、その時間変化を調べた。結果を図5に示す。
 図5に示されるように、NMP溶液中のN-メチルスクシンイミドもイオン交換樹脂に吸着されて除去されること、N-メチルスクシンイミドの濃度が例えば0.1質量%以下であれば、100時間を超えてもなお吸着が継続することが分かった。また、N-メチルスクシンイミドの吸着には、NMP溶液中の水分量の影響はほとんど見られないことも分かった。
 [参考例2]
 NMS比が0.39%、水分が10%であるNMP溶液と、NMS比が0.18%、水分が10%であるNMP溶液と、NMS比が0.35%、水分が0%であるNMP溶液と、NMS比が0.16%、水分が0%であるNMP溶液との4種類のNMP溶液を調製し、各々のNMP溶液について、参考例1と同様にイオン交換樹脂を添加して撹拌し、さらに、NMP溶液におけるN-メチルスクシンイミド濃度の時間変化を調べた。結果を図6に示す。参考例2は、参考例1に比べてNMP溶液中のN-メチルスクシンイミド濃度が高い場合に該当する。N-メチルスクシンイミド濃度が0.1質量%を超えるような比較的高濃度の場合であっても、5時間を超えてもなお、N-メチルスクシンイミドの吸着は継続した。
 [参考例3]
 NMS比が0.19%であるN-メチルスクシンイミドを含有するNMP溶液100gを調製し、これに、スチレン系のゲル型強塩基性アニオン交換樹脂であるオルガノ株式会社から入手できるアンバーライト(登録商標) IRA400(OH)1g添加し、撹拌を続けた。NMP溶液の水分は10%とした。そして、このNMP溶液におけるN-メチルスクシンイミドの質量濃度をガスクロマトグラフによって定量し、その時間変化を調べた。これを参考例3-1とする。結果を図7に示す。比較のため、図7には、参考例3-2として、MR型の強塩基性アニオン交換樹脂を使用した参考例2におけるNMS比が0.18、水分が10%であるNMP溶液に対する結果も付記している。図7から分かるように、イオン交換樹脂の構造がMR型であるかゲル型であるかによっては大きな差は生じなかった。
 10  リチウムイオン二次電池(LIB)製造工程
 11  原液タンク
 20,50  イオン交換装置
 30  浸透気化装置
 31  浸透気化膜
 32,33  熱交換器
 34  凝縮器
 40  蒸発缶
 41  減圧蒸発缶
 51,53  タンク
 52  イオン交換ユニット
 54  撹拌装置
 60  精製システム
 

Claims (10)

  1.  1気圧での沸点が100℃を超える有機溶剤と水との混合液から前記有機溶剤を分離して精製する精製方法であって、
     前記混合液を第1のイオン交換樹脂に通液する第1のイオン交換工程と、
     浸透気化膜を有する浸透気化装置に、前記第1のイオン交換工程から排出された前記混合液を供給して前記混合液から水分を選択的に分離する脱水工程と、
     前記浸透気化膜の濃縮側から回収された前記有機溶剤を蒸発缶に供給して気化させ、精製された前記有機溶剤を得る蒸発工程と、
     前記第1のイオン交換工程よりも後段の第1の位置において流れる前記有機溶剤を含む液の一部を第2のイオン交換樹脂によって処理する第2のイオン交換工程と、
     を有し、
     前記第2のイオン交換工程から排出される液を前記脱水工程よりも前段である第2の位置に戻す、精製方法。
  2.  前記第2のイオン交換工程において、前記第2のイオン交換工程に供給された液を、前記第2のイオン交換樹脂が充填されたイオン交換ユニットとタンクとの間で循環させる、請求項1に記載の精製方法。
  3.  前記第2のイオン交換工程において、前記第2のイオン交換工程に供給された液を、前記第2のイオン交換樹脂が投入されたタンクにおいて前記第2のイオン交換樹脂とともに撹拌する、請求項1に記載の精製方法。
  4.  前記第2のイオン交換工程において、前記第2のイオン交換工程に供給された液を、前記第2のイオン交換樹脂が充填されたイオン交換ユニットに通液させ、前記イオン交換ユニットから排出される液を前記第2の位置に戻す、請求項1に記載の精製方法。
  5.  前記第2のイオン交換工程に供給される液の導電率を測定する工程を有する、請求項1乃至4のいずれか1項に記載の精製方法。
  6.  1気圧での沸点が100℃を超える有機溶剤と水との混合液から前記有機溶剤を分離して精製する精製システムであって、
     前記混合液が供給される第1のイオン交換装置と、
     浸透気化膜を有し、前記第1のイオン交換装置を通液した前記混合液が供給されて前記混合液から水分を選択的に分離する浸透気化装置と、
     前記浸透気化膜の濃縮側から回収された前記有機溶剤を気化し、精製された前記有機溶剤を生成する蒸発缶と、
     前記第1のイオン交換装置よりも後段の第1の位置において流れる前記有機溶剤を含む液の一部が供給される第2のイオン交換装置と、
     を有し、
     前記第2のイオン交換装置から排出される液が、前記精製システムにおいて前記浸透気化装置よりも前段である第2の位置に戻される、精製システム。
  7.  前記第2のイオン交換装置は、タンクと、イオン交換樹脂が充填されたイオン交換ユニットと、を備え、前記第2のイオン交換装置に供給された液が前記タンクと前記イオン交換ユニットとの間で循環する、請求項6に記載の精製システム。
  8.  前記第2のイオン交換装置は、イオン交換樹脂が投入されるタンクと、前記タンクの内部を撹拌する撹拌装置と、を備え、前記第2のイオン交換工程に供給された液は、前記タンクにおいて前記イオン交換樹脂とともに撹拌される、請求項6に記載の精製システム。
  9.  前記第2のイオン交換装置は、イオン交換樹脂が充填されて前記イオン交換装置に供給された液が通液されるイオン交換ユニットを備え、前記イオン交換ユニットから排出された液が、前記第2の位置に戻される、請求項6に記載の精製システム。
  10.  前記第2のイオン交換装置の入口に、前記第2のイオン交換装置に供給される液の導電率を測定する手段を有する、請求項6乃至9のいずれか1項に記載の精製システム。
     
PCT/JP2020/034926 2019-09-30 2020-09-15 有機溶剤の精製方法及び精製システム WO2021065483A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP20872475.7A EP4039347A4 (en) 2019-09-30 2020-09-15 ORGANIC SOLVENT PURIFICATION METHOD AND PURIFICATION SYSTEM
KR1020227001220A KR20220024534A (ko) 2019-09-30 2020-09-15 유기용제의 정제 방법 및 정제 시스템
US17/763,088 US20220371000A1 (en) 2019-09-30 2020-09-15 Organic solvent purification method and purification system
CN202080068990.6A CN114585440B (zh) 2019-09-30 2020-09-15 有机溶剂纯化方法及纯化系统

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019179841A JP7328859B2 (ja) 2019-09-30 2019-09-30 有機溶剤の精製方法及び精製システム
JP2019-179841 2019-09-30

Publications (1)

Publication Number Publication Date
WO2021065483A1 true WO2021065483A1 (ja) 2021-04-08

Family

ID=75272995

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/034926 WO2021065483A1 (ja) 2019-09-30 2020-09-15 有機溶剤の精製方法及び精製システム

Country Status (6)

Country Link
US (1) US20220371000A1 (ja)
EP (1) EP4039347A4 (ja)
JP (1) JP7328859B2 (ja)
KR (1) KR20220024534A (ja)
CN (1) CN114585440B (ja)
WO (1) WO2021065483A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7462499B2 (ja) 2020-07-16 2024-04-05 オルガノ株式会社 有機溶剤の精製方法及び精製システム

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62193652A (ja) * 1986-02-21 1987-08-25 Nippon Paint Co Ltd 電着塗料浴のイオン交換処理方法
JPH115090A (ja) * 1997-06-17 1999-01-12 Fujitsu Ltd 洗浄水の供給方法
JP2005247770A (ja) * 2004-03-05 2005-09-15 Nippon Kayaku Co Ltd 微量金属イオンの除去方法
JP2013018747A (ja) 2011-07-12 2013-01-31 Japan Organo Co Ltd 電極製造工程におけるnmp精製システム
JP2014144938A (ja) * 2013-01-30 2014-08-14 Japan Organo Co Ltd Nmp精製システム
JP2015071139A (ja) * 2013-10-03 2015-04-16 オルガノ株式会社 液体有機物と水の分離システム及び分離方法
JP2016030233A (ja) 2014-07-29 2016-03-07 オルガノ株式会社 有機溶剤精製システム及び方法
JP2019141793A (ja) * 2018-02-21 2019-08-29 オルガノ株式会社 液体有機物と水の分離システム及び分離方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB860695A (en) * 1958-07-09 1961-02-08 Permutit Co Ltd Improvements relating to ion-exchange processes
JP5762860B2 (ja) * 2011-07-15 2015-08-12 オルガノ株式会社 アルコールの精製方法及び装置
JP6088268B2 (ja) * 2013-01-30 2017-03-01 オルガノ株式会社 Nmp精製システム
JP6088266B2 (ja) * 2013-01-30 2017-03-01 オルガノ株式会社 Nmp精製システム
JP6088265B2 (ja) * 2013-01-30 2017-03-01 オルガノ株式会社 Nmp精製システムおよびnmp精製方法
CN108863887A (zh) * 2017-05-10 2018-11-23 奥加诺株式会社 Nmp水溶液的纯化系统及纯化方法
JP6636111B2 (ja) * 2018-09-14 2020-01-29 オルガノ株式会社 有機溶剤精製システム及び方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62193652A (ja) * 1986-02-21 1987-08-25 Nippon Paint Co Ltd 電着塗料浴のイオン交換処理方法
JPH115090A (ja) * 1997-06-17 1999-01-12 Fujitsu Ltd 洗浄水の供給方法
JP2005247770A (ja) * 2004-03-05 2005-09-15 Nippon Kayaku Co Ltd 微量金属イオンの除去方法
JP2013018747A (ja) 2011-07-12 2013-01-31 Japan Organo Co Ltd 電極製造工程におけるnmp精製システム
JP2014144938A (ja) * 2013-01-30 2014-08-14 Japan Organo Co Ltd Nmp精製システム
JP2015071139A (ja) * 2013-10-03 2015-04-16 オルガノ株式会社 液体有機物と水の分離システム及び分離方法
JP2016030233A (ja) 2014-07-29 2016-03-07 オルガノ株式会社 有機溶剤精製システム及び方法
JP2019141793A (ja) * 2018-02-21 2019-08-29 オルガノ株式会社 液体有機物と水の分離システム及び分離方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4039347A4

Also Published As

Publication number Publication date
KR20220024534A (ko) 2022-03-03
US20220371000A1 (en) 2022-11-24
EP4039347A1 (en) 2022-08-10
JP7328859B2 (ja) 2023-08-17
CN114585440A (zh) 2022-06-03
EP4039347A4 (en) 2024-01-31
JP2021053588A (ja) 2021-04-08
CN114585440B (zh) 2024-05-14

Similar Documents

Publication Publication Date Title
JP5911228B2 (ja) 電極製造工程におけるnmp精製システム
JP6440156B2 (ja) 有機溶剤精製システム及び方法
JP5762860B2 (ja) アルコールの精製方法及び装置
JP6088265B2 (ja) Nmp精製システムおよびnmp精製方法
CN107082522A (zh) 一种磷酸铁废水的处理工艺及处理装置
JP6636111B2 (ja) 有機溶剤精製システム及び方法
JP2013018748A (ja) 電極製造工程におけるnmp精製システム
JP2670154B2 (ja) 逆浸透膜分離プロセスを有する希土類の分離精製システム
WO2021065483A1 (ja) 有機溶剤の精製方法及び精製システム
JP6088267B2 (ja) Nmp精製システム
JP5762863B2 (ja) アルコールの精製方法及び装置
JP6088266B2 (ja) Nmp精製システム
JP7106474B2 (ja) N-メチル-2-ピロリドンの精製方法、精製装置、回収精製方法、及び回収精製システム
JP3270244B2 (ja) 廃液処理方法及び廃液処理装置
JP6970280B2 (ja) 有機溶剤精製システム及び方法
CN211660014U (zh) 精制装置及回收精制系统
CN205386413U (zh) 一种脱除有机胺液中钠盐的胺液结晶罐
WO2021162125A1 (ja) 水と有機溶媒とを分離する方法及びシステム、並びにイオン交換型ゼオライトの製造方法
CN114455771B (zh) 污酸的处理系统和方法
WO2022224768A1 (ja) 電極活物質の洗浄方法、電池、電極及び電極活物質の製造方法、並びに混合物製造システム
JP2020193177A (ja) N−メチル−2−ピロリドンの精製方法及び精製システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20872475

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20227001220

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020872475

Country of ref document: EP

Effective date: 20220502