WO2021060000A1 - 燃料電池用接合体、及び積層体 - Google Patents

燃料電池用接合体、及び積層体 Download PDF

Info

Publication number
WO2021060000A1
WO2021060000A1 PCT/JP2020/034328 JP2020034328W WO2021060000A1 WO 2021060000 A1 WO2021060000 A1 WO 2021060000A1 JP 2020034328 W JP2020034328 W JP 2020034328W WO 2021060000 A1 WO2021060000 A1 WO 2021060000A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel cell
group
adhesive
acid
mgkoh
Prior art date
Application number
PCT/JP2020/034328
Other languages
English (en)
French (fr)
Inventor
真哉 渡邊
愛 小金丸
久雄 奥村
友哉 杉木
伊藤 隆浩
誠 今堀
祐介 新名
研二 佐藤
卓也 栗原
Original Assignee
東洋紡フイルムソリューション株式会社
東亞合成株式会社
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋紡フイルムソリューション株式会社, 東亞合成株式会社, トヨタ自動車株式会社 filed Critical 東洋紡フイルムソリューション株式会社
Priority to JP2021548787A priority Critical patent/JP7404379B2/ja
Priority to KR1020227008395A priority patent/KR102696762B1/ko
Priority to US17/640,971 priority patent/US20220340781A1/en
Priority to EP20867068.7A priority patent/EP4037042A4/en
Priority to CN202080067157.XA priority patent/CN114450827B/zh
Publication of WO2021060000A1 publication Critical patent/WO2021060000A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/50Adhesives in the form of films or foils characterised by a primer layer between the carrier and the adhesive
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/10Adhesives in the form of films or foils without carriers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/085Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/18Layered products comprising a layer of metal comprising iron or steel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/20Layered products comprising a layer of metal comprising aluminium or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/302Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising aromatic vinyl (co)polymers, e.g. styrenic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/308Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/34Layered products comprising a layer of synthetic resin comprising polyamides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/40Layered products comprising a layer of synthetic resin comprising polyurethanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J109/00Adhesives based on homopolymers or copolymers of conjugated diene hydrocarbons
    • C09J109/06Copolymers with styrene
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J123/00Adhesives based on homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Adhesives based on derivatives of such polymers
    • C09J123/26Adhesives based on homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Adhesives based on derivatives of such polymers modified by chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J151/00Adhesives based on graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Adhesives based on derivatives of such polymers
    • C09J151/06Adhesives based on graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Adhesives based on derivatives of such polymers grafted on to homopolymers or copolymers of aliphatic hydrocarbons containing only one carbon-to-carbon double bond
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J153/00Adhesives based on block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Adhesives based on derivatives of such polymers
    • C09J153/02Vinyl aromatic monomers and conjugated dienes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J5/00Adhesive processes in general; Adhesive processes not provided for elsewhere, e.g. relating to primers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/30Adhesives in the form of films or foils characterised by the adhesive composition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0223Composites
    • H01M8/0228Composites in the form of layered or coated products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • H01M8/028Sealing means characterised by their material
    • H01M8/0284Organic resins; Organic polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/022 layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/10Coating on the layer surface on synthetic resin layer or on natural or synthetic rubber layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/26Polymeric coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2274/00Thermoplastic elastomer material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/308Heat stability
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/732Dimensional properties
    • B32B2307/737Dimensions, e.g. volume or area
    • B32B2307/7375Linear, e.g. length, distance or width
    • B32B2307/7376Thickness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/18Fuel cells
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2203/00Applications of adhesives in processes or use of adhesives in the form of films or foils
    • C09J2203/33Applications of adhesives in processes or use of adhesives in the form of films or foils for batteries or fuel cells
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/40Additional features of adhesives in the form of films or foils characterized by the presence of essential components
    • C09J2301/416Additional features of adhesives in the form of films or foils characterized by the presence of essential components use of irradiation
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2400/00Presence of inorganic and organic materials
    • C09J2400/10Presence of inorganic materials
    • C09J2400/16Metal
    • C09J2400/166Metal in the pretreated surface to be joined
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2423/00Presence of polyolefin
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2423/00Presence of polyolefin
    • C09J2423/10Presence of homo or copolymers of propene
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2425/00Presence of styrenic polymer
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2467/00Presence of polyester
    • C09J2467/003Presence of polyester in the primer coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • This disclosure relates to a fuel cell joint and a laminate.
  • the hot melt type adhesive composition is processed into a film form or a sheet form, and is used as an adhesive film or sheet laminated on the surface of a member in various industrial fields such as an electric field, an automobile field, and other industrial fields. It's being used.
  • An olefin-based thermoplastic resin modified with an acid to bond metal members such as iron, aluminum, titanium and other metals used in these fields, and their alloys hereinafter referred to as "acid-modified polyolefin”). It is known that a bonded body having relatively good adhesive strength can be obtained by using a hot melt type composition containing the above as a main component.
  • Patent Document 1 discloses an adhesive sealing member using an adhesive composition containing a specific acid-modified polyolefin, a thermoplastic elastomer not modified with an acid, and a silane coupling agent having an epoxy group. .. This is to obtain an adhesive force by a chemical bond between a silane coupling agent and a hydroxyl group on a metal surface, and a bonded body using the sealing member has excellent water resistance.
  • Patent Document 2 relates to a method for producing a bonded body of a metal member and a thermoplastic resin member by heat welding using polyolefin under specific conditions, and the metal member is subjected to surface treatment such as chromate treatment.
  • the film thickness of the polyolefin is 0.1 to 9 mm, and the film thickness of the polyolefin is 0.2 to 9 mm when the surface treatment is not applied to the metal member.
  • Patent Document 3 a first adhesive layer, a first intermediate layer, a heat-resistant base material layer, a second intermediate layer, and a second adhesive layer are laminated in this order, and the first adhesive layer and the above-mentioned first adhesive layer and A hot melt adhesive resin film in which the second adhesive layer contains an acid-modified polyolefin resin is disclosed.
  • Patent Document 4 discloses an adhesive composition containing a specific modified polyolefin (A), a glycidylamine type epoxy resin (B1), a glycidyl ether type epoxy resin (B2), and an organic solvent (C).
  • A a specific modified polyolefin
  • B1 a glycidylamine type epoxy resin
  • B2 a glycidyl ether type epoxy resin
  • C an organic solvent
  • the adhesive strength in the presence of warm water was significantly reduced in the presence of warm water.
  • the adhesive strength of the low-polarity metal member is significantly reduced, particularly in the presence of warm water.
  • the decrease in adhesive strength in the presence of hot water may be a particular problem in a joint used in the presence of hot water, for example, a joint for a fuel cell.
  • One embodiment of the present disclosure has been made in view of the above circumstances, and an object thereof is a fuel cell joint having excellent adhesive strength (hereinafter, may be referred to as “warm water resistance”) in the presence of warm water. Is to provide.
  • An object of another embodiment of the present disclosure is to provide a laminate used for a fuel cell joint having excellent adhesive strength in the presence of warm water.
  • Means for solving the above problems include the following aspects. ⁇ 1> An adhesive resin layer containing a polyolefin having at least one group selected from the group consisting of an acidic group and an acid anhydride group and having an acid value of 0.01 mgKOH / g to 6.5 mgKOH / g. And two or more members bonded via the adhesive resin layer, and at least one of the members has a dipole term in the surface free energy of 0.01% to 5.
  • a fuel cell joint that is a 0% metal member.
  • An acidic group and an acid anhydride are provided on the surface of the resin base material, the easy-adhesive layer provided on at least one surface of the resin base material, and the surface of the easy-adhesive layer opposite to the resin base material.
  • a fuel cell having a metal member having a dipole term in the surface free energy of 0.01% to 5.0%, which is adhered to at least a part of the surface of the adhesive resin layer of the laminate. For joints.
  • the solubility parameter of the easy-adhesive layer is larger than the solubility parameter of the adhesive resin layer and smaller than the solubility parameter of the resin base material, and the solubility parameter of the easy-adhesive layer and the solubility parameter of the adhesive resin layer are The joint for a fuel cell according to ⁇ 2>, wherein the absolute value of the difference is 3.0 (J / cm 3 ) 1/2 or less.
  • ⁇ 4> The fuel cell junction according to ⁇ 2> or ⁇ 3>, wherein the thickness of the easy-adhesion layer is 8 nm to 200 nm.
  • ⁇ 5> The fuel cell junction according to any one of ⁇ 2> to ⁇ 4>, wherein the glass transition temperature of the resin base material is 90 ° C. or higher.
  • the laminate is provided on both sides of the resin base material with the easy-adhesive layer and the adhesive resin layer provided on the surface of the easy-adhesion layer on the opposite side of the resin base material.
  • the fuel cell joint according to any one of ⁇ 2> to ⁇ 5> having.
  • ⁇ 7> The fuel cell conjugate according to any one of ⁇ 1> to ⁇ 6>, wherein the acidic group contains a carboxylic acid group and the acid anhydride group contains a carboxylic acid anhydride group.
  • ⁇ 11> The fuel cell conjugate according to ⁇ 10>, wherein the content of the styrene-based thermoplastic elastomer is 20% by mass or less with respect to the total amount of the above-mentioned polyolefin and the above-mentioned styrene-based thermoplastic elastomer.
  • ⁇ 12> The fuel cell junction according to any one of ⁇ 1> to ⁇ 11>, wherein the acid value of the adhesive resin layer is 0.01 mgKOH / g to 6.5 mgKOH / g.
  • ⁇ 13> The relationship between the surface free energy ⁇ M of the metal member and the surface free energy ⁇ A of the adhesive resin layer satisfies ⁇ M ⁇ A ⁇ 5.0 mN / m ⁇ 1> to ⁇ 12>.
  • ⁇ 14> The fuel cell joint according to any one of ⁇ 1> to ⁇ 13>, wherein the metal member is titanium or a titanium alloy.
  • An acidic group and an acid anhydride are provided on the surface of the resin base material, the easy-adhesion layer provided on at least one surface of the resin base material, and the surface of the easy-adhesion layer opposite to the resin base material.
  • the laminate used for the fuel cell joint according to any one of. ⁇ 16> A joining method for joining metal members of a fuel cell using a laminate.
  • the laminated body is the laminated body according to any one of ⁇ 2> to ⁇ 6>.
  • the metal member is a joining method in which the ratio of the dipole term to the surface free energy is 0.01% to 5.0%.
  • a fuel cell joint having excellent adhesive strength in the presence of warm water.
  • a laminate used for a fuel cell joint having excellent adhesive strength in the presence of warm water.
  • the numerical range represented by using “-" means a range including the numerical values before and after "-" as the lower limit value and the upper limit value.
  • the upper limit value or the lower limit value described in a certain numerical range may be replaced with the upper limit value or the lower limit value of another numerical range described stepwise.
  • the upper limit value or the lower limit value described in a certain numerical range may be replaced with the value shown in the examples.
  • “% by mass” and “% by weight” are synonymous, and “parts by mass” and “parts by weight” are synonymous.
  • a combination of two or more preferred embodiments is a more preferred embodiment.
  • the fuel cell conjugate according to one embodiment of the present disclosure has at least one group selected from the group consisting of an acidic group and an acid anhydride group, and has an acid value of 0.01 mgKOH /. It has an adhesive resin layer containing a polyolefin containing g to 6.5 mgKOH / g, and two or more members bonded via the adhesive resin layer, and at least one of the members has a surface. It is a metal member in which the ratio of the dipole term to the free energy is 0.01% to 5.0%.
  • the bonded body for a fuel cell includes a resin base material, an easy-adhesive layer provided on at least one surface of the resin base material, and the resin base material of the easy-adhesion layer.
  • a polyolefin provided on the opposite surface, having at least one group selected from the group consisting of an acidic group and an acid anhydride group, and having an acid value of 0.01 mgKOH / g to 6.5 mgKOH / g.
  • the ratio of the bipolar term to the surface free energy adhered to at least a part of the surface of the adhesive resin layer of the laminate and the laminate having the adhesive resin layer contained therein is 0.01% or more. It has a metal member which is 5.0%.
  • the metal member may be bonded to at least a part of the surface of the adhesive resin layer existing in the fuel cell junction of the present disclosure.
  • the metal member may be bonded to at least a part of the surface of the adhesive resin layer existing in the fuel cell joint of the present disclosure, and a plurality of metal members may be bonded. If an adhesive resin layer is present, it does not have to be bonded to the surface of all the adhesive resin layers. For example, when there is only one adhesive resin layer present in the fuel cell joint of the present disclosure, the metal member may be bonded to a part of the surface of one adhesive resin layer. Further, when there are a plurality of adhesive resin layers present in the fuel cell joint of the present disclosure, it is sufficient that the metal member is bonded to a part of the surface of at least one adhesive resin layer.
  • the fuel cell junction of the present disclosure is a metal member in which the ratio of the bipolar term to the surface free energy is 0.01% to 5.0% by having the adhesive resin layer containing the above-mentioned specific polyolefin. It has a high adhesive strength to the adhesive, and can reduce the infiltration of water into the adhesive interface between the adhesive resin layer and the metal member. Therefore, the fuel cell junction of the present disclosure can exhibit excellent adhesive strength in the presence of warm water.
  • the laminate is formed on the surfaces of the easy-adhesion layer provided on both sides of the resin base material and the surfaces of the easy-adhesion layer on the opposite side of the resin base material. It is preferable to have the adhesive resin layer provided in each of the above. By providing adhesive resin layers on both sides of the laminated body, two or more adherends can be joined via the laminated body.
  • the composition of the two easy-adhesion layers may be the same or different. Further, the compositions of the two adhesive resin layers may be the same or different.
  • the adhesive resin layer is a polyolefin having at least one group selected from the group consisting of an acidic group and an acid anhydride group, and having an acid value of 0.01 mgKOH / g to 6.5 mgKOH / g. (Hereinafter referred to as "component (A)").
  • the component (A) has at least one group selected from the group consisting of an acidic group and an acid anhydride group.
  • the acidic group examples include a carboxylic acid group, a sulfonic acid group, a phosphoric acid group and the like, and among these, a carboxylic acid group is preferable in that modification is easy.
  • the acid anhydride group examples include a carboxylic acid anhydride group, a sulfonic acid anhydride group, a phosphoric acid anhydride group, and the like. Among these, a raw material is easily available and modification is easy. Therefore, a carboxylic acid anhydride group is preferable.
  • the acidic group contains a carboxylic acid group and the acid anhydride group contains a carboxylic acid anhydride group in the component (A).
  • the component (A) may be a polyolefin modified with an acidic group-containing monomer and / or an acid anhydride group-containing monomer.
  • a modification method a known method can be adopted. For example, in the presence of a radical polymerization initiator such as an organic peroxide or an aliphatic azo compound, an acidic group-containing monomer and / or an acid anhydride group-containing monomer is melted with a polyolefin having no acidic group and an acid anhydride group. Examples thereof include graft modification such as kneading, and copolymerization of an acidic group-containing monomer and / or an acid anhydride group-containing monomer with olefins.
  • Examples of the raw material of the component (A) include an acidic group-containing monomer. Specifically, it is a compound having an ethylenic double bond, a carboxylic acid group and the like in the same molecule, and examples thereof include various unsaturated monocarboxylic acid compounds and unsaturated dicarboxylic acid compounds.
  • unsaturated monocarboxylic acid compounds include acrylic acid, methacrylic acid, crotonic acid, isocrotonic acid and the like.
  • unsaturated dicarboxylic acid compounds include maleic acid, itaconic acid, citraconic acid, nadic acid, endic acid and the like.
  • an unsaturated dicarboxylic acid compound is preferable, and maleic acid is particularly preferable, because it is easy to modify.
  • These acidic group-containing monomers may be used alone or in combination of two or more.
  • the unreacted acidic group-containing monomer used for the modification is removed by a known method in order to suppress an adverse effect on the adhesive strength. It is preferably used as an ingredient.
  • Examples of the raw material of the component (A) include an acid anhydride group-containing monomer. Specifically, it is a compound having an ethylenic double bond, a carboxylic acid anhydride group, or the like in the same molecule, and is an acid anhydride of the unsaturated monocarboxylic acid compound and an acid anhydride of the unsaturated dicarboxylic acid compound. And so on.
  • acid anhydride of the unsaturated monocarboxylic acid compound examples include acrylic acid anhydride, methacrylic acid anhydride, crotonic acid anhydride and isocrotonic acid anhydride.
  • acid anhydride of the unsaturated dicarboxylic acid compound examples include maleic acid anhydride, itaconic acid anhydride, citraconic acid anhydride, nadic acid anhydride and endic acid anhydride.
  • an acid anhydride of an unsaturated dicarboxylic acid compound is preferable, and a maleic anhydride is particularly preferable, because modification is easy.
  • These acid anhydride group-containing monomers may be used alone or in combination of two or more.
  • component (a1) Polyolefin without acid group and acid anhydride group
  • component (a1) examples of the raw material of the component (A) include polyolefins having no acidic group and acid anhydride group (hereinafter, referred to as “component (a1)”).
  • component (a1) examples include polyethylene, polypropylene, a random copolymer of propylene and ethylene, a block copolymer of propylene and ethylene, a random copolymer of ethylene and ⁇ -olein, and a block of ethylene and ⁇ -olefin.
  • examples thereof include copolymers, random copolymers of propylene and ⁇ -olefin, block copolymers of propylene and ⁇ -olefin, and the like.
  • the ⁇ -olefin examples include 1-butene, isobutylene, 1-hexene and 1-octene.
  • polypropylene, propylene-ethylene block copolymer, propylene-ethylene random copolymer, propylene and ⁇ -olefin random copolymer, and propylene and ⁇ -olefin can be improved in terms of improving temperature and water resistance.
  • Polypropylene-based polymers such as block copolymers are preferable.
  • the propylene unit in the component (a1) is 50% by mass or more.
  • component (a1) only one type may be used, or two or more types may be used in combination.
  • the acid value of the component (A) is 0.01 mgKOH / g to 6.5 mgKOH / g. It is 0.01 mgKOH / g or more, more preferably 0.1 mgKOH / g or more, and particularly preferably 0.5 mgKOH / g or more in that an adhesive force to a metal member can be imparted. Further, in terms of improving the temperature resistance, it is 6.5 mgKOH / g or less, more preferably 3.0 mgKOH / g or less, further preferably 2.0 mgKOH / g or less, and particularly preferably 1.0 mgKOH / g or less.
  • the acid value can be measured according to JIS K 0070: 1992.
  • the melting point of the component (A) is preferably 100 ° C. to 200 ° C., more preferably 120 ° C. to 180 ° C. 100 ° C. or higher is preferable from the viewpoint of improving heat resistance and water resistance, and 200 ° C. or lower is preferable from the viewpoint of improving workability.
  • the melting point is increased by 10 ° C./min from 25 ° C. to 230 ° C. using a differential scanning calorimeter (DSC) (for example, DSCQ100 manufactured by TA Instruments) and enclosing about 20 mg of a sample in an aluminum pan for measurement. It can be obtained as the melting peak temperature when the measurement is performed at the temperature rate.
  • DSC differential scanning calorimeter
  • the melt flow rate of the component (A) (hereinafter referred to as "MFR") is preferably 0.1 g / 10 minutes to 30 g / 10 minutes, more preferably 0, under the measurement conditions of 230 ° C. and a test pressure of 1.96 MPa. .1 g / 10 minutes to 20 g / 10 minutes. From the viewpoint of improving workability, 0.1 g / 10 minutes or more is preferable, and from the viewpoint of improving heat resistance and water resistance, 30 g / 10 minutes or less is preferable. MFR conforms to JIS K 7210: 2014 and can be measured under the following conditions.
  • the component (A) preferably contains a propylene unit.
  • the content of the propylene unit in the component (A) is preferably 50% by mass or more, more preferably 80% by mass or more, based on the component (A), in that the temperature resistance can be improved. More preferably, it is 90% by mass or more.
  • the component (A) may be used alone or in combination of two or more.
  • the content of the component (A) is preferably 80% by mass to 100% by mass based on 100% by mass of the adhesive resin layer because of its excellent heat resistance and water resistance. , More preferably 90% by mass to 100% by mass.
  • the adhesive resin layer of the present disclosure contains the component (A), but various components can be blended depending on the purpose. Since the adhesive resin layer of the present disclosure may have poor temperature and water resistance, it is preferable that the adhesive resin layer does not contain a polyfunctional isocyanate compound, and for example, the content is preferably 100 ppm or less.
  • component (B) styrene-based thermoplastic elastomers
  • component (B) styrene-based thermoplastic elastomers
  • tackifiers antioxidants, hindered amine-based light stabilizers, ultraviolet absorbers, and antistatic agents.
  • the adhesive resin layer of the present disclosure may contain a polyolefin other than the above component (A) (for example, component (a1)).
  • the adhesive resin layer of the present disclosure can further contain a styrene-based thermoplastic elastomer as the component (B).
  • a styrene-based thermoplastic elastomer By further containing a styrene-based thermoplastic elastomer, the adhesive strength can be improved.
  • component (B) examples include styrene-butadiene copolymer, epoxy-modified styrene-butadiene copolymer, styrene-butadiene-styrene block copolymer, and styrene-ethylene / propylene-styrene block copolymer (hereinafter, "SEPS"), styrene-ethylene / butylene-styrene block copolymer (hereinafter referred to as "SEBS”), styrene-isoprene / butadiene-styrene block copolymer, styrene-isoprene-styrene block copolymer, etc.
  • Styrene-based resin and the like which do not have an acidic group and an acid anhydride group, may have an acidic group and / or an acid anhydride group, and have an amino group. May be good.
  • a modification method for introducing an acidic group and / or an acid anhydride group a known method can be adopted.
  • graft modification such as melt-kneading the acidic group and / or acid anhydride group-containing monomer with the styrene resin in the presence of a radical polymerization initiator such as an organic peroxide or an aliphatic azo compound can be mentioned. Be done.
  • a modification method for introducing an amino group a known method can be adopted.
  • terminal modification such as adding an amino group-containing compound to the living terminal of the styrene resin obtained by living anion polymerization, or a radical polymerization initiator such as an organic peroxide or an aliphatic azo compound
  • 2- Examples thereof include graft modification such as melt-kneading an amine compound having an unsaturated bond such as (1-cyclohexenyl) ethylamine with the styrene-based resin.
  • SEPS and SEBS are preferable in that both temperature resistance and workability can be achieved.
  • the acid value of the component (B) is preferably 80 mgKOH / g or less in that stable quality can be maintained. Further, 50 mgKOH / g or less is more preferable, 20 mgKOH / g or less is particularly preferable, and 0.0 mgKOH / g may be used, in that the temperature resistance can be improved.
  • the MFR of the component (B) is preferably 1 g / 10 minutes to 100 g / 10 minutes, more preferably 1 g / 10 minutes to 90 g / 10 minutes under the measurement conditions of 230 ° C. and a test pressure of 1.96 MPa. 1 g / 10 minutes or more is preferable from the viewpoint of improving workability, and 100 g / 10 minutes or less is preferable from the viewpoint of improving heat resistance. MFR conforms to JIS K 7210: 2014 and can be measured under the following conditions.
  • the content of the component (B) is preferably 20% by mass or less, more preferably 1% by mass to 20% by mass, and 1% by mass with respect to the total of the components (A) and (B). It is particularly preferably% to 10% by mass.
  • the lower limit of the content of the component (B) is not limited and exceeds 0% by mass with respect to the total of the components (A) and (B). It can be set appropriately within the range.
  • the content of the component (A) corresponding to the preferable range of the content of the component (B) is 80% by mass or more and 80% by mass to 99% by mass with respect to the total of the components (A) and (B). , 90% by mass to 99% by mass, respectively.
  • the upper limit of the content of the component (A) is within a range of less than 100% by mass with respect to the total of the components (A) and (B). It can be set as appropriate.
  • the content of the component (B) is preferably 1% by mass or more in terms of excellent processability and adhesive strength, and preferably 20% by mass or less in terms of improving heat resistance.
  • the tackifier can be blended for the purpose of improving the adhesive strength.
  • tackifier known ones can be used, and examples thereof include terpen-based resin, rosin-based resin, aliphatic petroleum resin, alicyclic petroleum resin, copolymer petroleum resin, and hydrogenated petroleum resin. Be done.
  • terpene-based resin examples include ⁇ -pinene polymer, ⁇ -pinene polymer, and a copolymer of these with phenol, bisphenol A, or the like.
  • rosin-based resin examples include natural rosin, polymerized rosin, and ester derivatives thereof.
  • Aliphatic petroleum resin is also called C5 resin, and is generally a resin synthesized from the C5 fraction of petroleum.
  • the alicyclic petroleum resin is also called a C9 resin, and is generally a resin synthesized from the C9 fraction of petroleum.
  • copolymerized petroleum resin examples include C5 / C9 copolymerized resin and the like.
  • Hydrogenated petroleum resin is generally produced by hydrogenation of the above-mentioned various petroleum resins.
  • the content of the tackifier is preferably 1% by mass to 20% by mass, more preferably 1% by mass or more, based on 100% by mass of the adhesive resin layer in terms of excellent temperature and water resistance. It is 10% by mass.
  • the acid value of the adhesive resin layer is preferably 0.01 mgKOH / g to 6.5 mgKOH / g. From the viewpoint of improving the adhesive force to the metal member, 0.01 mgKOH / g or more is preferable, 0.1 mgKOH / g or more is more preferable, and 0.5 mgKOH / g or more is particularly preferable. Further, 6.5 mgKOH / g or less is preferable, 3.0 mgKOH / g or less is more preferable, and 1.5 mgKOH / g or less is particularly preferable, from the viewpoint of improving the temperature resistance.
  • the acid value can be measured according to JIS K 0070: 1992.
  • Examples of the method for adjusting the acid value of the adhesive resin layer include a method for adjusting the content of the component (A) in the adhesive resin layer, a polyolefin having an acid value of 0.05 mgKOH / g to 100 mgKOH / g, and (a1). Examples thereof include a method of blending with an ingredient.
  • the melting point of the adhesive resin layer is preferably 100 ° C. to 200 ° C., more preferably 120 ° C. to 180 ° C. 100 ° C. or higher is preferable from the viewpoint of improving heat resistance and water resistance, and 200 ° C. or lower is preferable from the viewpoint of improving workability.
  • the melting point is increased by 10 ° C./min from 25 ° C. to 230 ° C. using a differential scanning calorimeter (DSC) (for example, DSCQ100 manufactured by TA Instruments) and enclosing about 20 mg of a sample in an aluminum pan for measurement. It can be obtained as the melting peak temperature when the measurement is performed at the temperature rate.
  • DSC differential scanning calorimeter
  • the MFR of the adhesive resin layer is preferably 1 g / 10 minutes to 30 g / 10 minutes, more preferably 5 g / 10 minutes to 20 g / 10 minutes under the measurement conditions of 230 ° C. and a test pressure of 1.96 MPa.
  • 1 g / 10 minutes or more is preferable from the viewpoint of improving workability, and 30 g / 10 minutes or less is preferable from the viewpoint of improving heat resistance.
  • MFR conforms to JIS K 7210: 2014 and can be measured under the following conditions.
  • the thickness of the adhesive resin layer may be appropriately set according to the material, application, etc. of the metal member, and is not particularly limited, but is preferably 10 to 200 ⁇ m, more preferably 20 to 200 ⁇ m.
  • the method for forming the adhesive resin layer is not limited, and can be appropriately selected from commonly used methods.
  • a composition for forming an adhesive resin layer (hereinafter referred to as "adhesive composition”) can be melt-kneaded and extruded to form an adhesive resin layer on the easy-adhesive layer.
  • the extrusion molding include a coextrusion method and an extrusion laminating method.
  • the adhesive composition can be produced by a known method. Specifically, it is preferable to obtain the component (A) and, if necessary, other components by mixing them using a Henschel mixer, a Banbury mixer, a V-type blender, a tumbler blender, a ribbon blender, or the like, and the mixture is uniaxially mixed. It can be obtained in the form of pellets by melt-kneading at 180 to 300 ° C., preferably 190 to 260 ° C. using an extruder, a multi-screw extruder, a roll or a kneader.
  • the adhesive composition can be used in the form of pellets, and the pellets can be used in the form of a film or sheet (hereinafter referred to as "adhesive film") using a film forming machine. Further, it is melt-kneaded at a temperature of 50 ° C. to 200 ° C. by a T-die method, an inflation method, a calender method or a screw type extruder, and adhered to one or both sides of a metal, glass or thermoplastic resin which is a member by extrusion molding. It may be used as an adhesive film in which an adhesive resin layer composed of an agent composition is laminated.
  • thermoplastic resin When a thermoplastic resin is used as the member, it is preferable to obtain an adhesive film having a thermoplastic resin layer by extrusion-molding the adhesive composition by a co-extrusion method or an extrusion laminating method.
  • a resin base material is used as a base material of a laminate having an adhesive resin layer.
  • the resin constituting such a base material can be selected according to the characteristics required for the base material in the intended application, but it enhances the effect of improving the adhesion to the adhesive resin layer in a moist heat environment and is a metal member.
  • the glass transition temperature (Tg) is preferably high, preferably 75 ° C. or higher, more preferably 90 ° C. or higher, still more preferably 100 ° C. or higher, in order to enhance the effect of improving the adhesion with the glass. Therefore, it is preferably a thermoplastic resin.
  • the upper limit of the glass transition temperature of the resin base material is preferably 200 ° C. or lower from the viewpoint of handleability.
  • the glass transition temperature can be measured according to the following method. 10 mg of the sample is enclosed in an aluminum pan for measurement and mounted on a differential scanning calorimeter (Q100 type DSC manufactured by TA Instruments), and the temperature is raised from 25 ° C. to 300 ° C. at a rate of 20 ° C./min to 300 ° C. After holding for 5 minutes, take it out and cool it on a metal plate to quench it. This pan is attached to the differential scanning calorimeter again, and the temperature is raised from 25 ° C. to 20 ° C./min to measure the glass transition temperature (Tg: ° C.) and the melting point (Tm: ° C.). The glass transition temperature is defined as the extrapolation start temperature.
  • the thickness of the resin base material used in the present disclosure may be 20 ⁇ m or more, preferably 25 ⁇ m or more, and more preferably 25 ⁇ m or more in order to obtain the strength required for the base material of the laminate having the adhesive resin layer. It is 35 ⁇ m or more, more preferably 45 ⁇ m or more, preferably 300 ⁇ m or less, more preferably 270 ⁇ m or less, still more preferably 250 ⁇ m or less. Alternatively, it may be 150 ⁇ m or less, or 130 ⁇ m or less.
  • polyester resin polystyrene resin, polyamide resin and the like can be mentioned as the resin from the viewpoint that the glass transition temperature as described above can be easily obtained and the mechanical properties are preferable and easy to handle.
  • polyamide resin nylon 6 (N6), nylon 66 (N66), nylon 46 (N46), nylon 11 (N11), nylon 12 (N12), nylon 610 (N610), nylon 612 (N612), nylon 6 / 66 Copolymer (N6 / 66), Nylon 6/66/610 Copolymer (N6 / 66/610), Nylon MXD6 (MXD6), Nylon 6T, Nylon 6 / 6T Copolymer, Nylon 66 / PP Co-weight Combined, nylon 66 / PPS copolymer and the like can be mentioned.
  • a polyester resin having excellent moldability is preferable, that is, a polyester film is preferable as the resin base material.
  • the polyester resin constituting the polyester film preferably has a glass transition temperature of 75 ° C. or higher.
  • the glass transition temperature is more preferably 90 ° C. or higher, still more preferably 100 ° C. or higher.
  • homopolymers of polyethylene terephthalate, polyethylene isophthalate, polybutylene terephthalate, polyethylene-2,6-naphthalate, polyethylene-2,7-naphthalate, and polybutylene-2,6-naphthalate are preferably exemplified. Can be done.
  • the polyester resin may be used as a polymer blend.
  • the copolymerization component include oxalic acid, adipic acid, phthalic acid, sebacic acid, dodecanecarboxylic acid, isophthalic acid, terephthalic acid, 1,4-cyclohexanedicarboxylic acid, 4,4'-diphenyldicarboxylic acid, and phenylindandicarboxylic acid.
  • Dicarboxylic acids such as acids, 2,6-naphthalenedicarboxylic acids, 2,7-naphthalenedicarboxylic acids (if the main polymer is not polyethylene-2,7-naphthalate), tetralindicarboxylic acids, decalindicarboxylic acids, diphenyletherdicarboxylic acids, p.
  • -Oxycarboxylic acid such as oxybenzoic acid, p-oxyethoxybenzoic acid, or ethylene oxide adduct of propylene glycol, trimethylene glycol, tetramethylene glycol, hexamethylene glycol, cyclohexanemethylene glycol, neopentyl glycol, bisphenolsulfone, bisphenol Dihydric alcohols such as the ethylene oxide adduct of A, diethylene glycol, polyethylene oxide glycol and the like can be preferably used. As these compounds, not only one kind but two or more kinds can be used.
  • the acid components are isophthalic acid, terephthalic acid, 4,4'-diphenyldicarboxylic acid, 2,6-naphthalenedicarboxylic acid, 2,7-naphthalenedicarboxylic acid, p-oxybenzoic acid, and glycol.
  • the components include ethylene oxide adducts of trimethylene glycol, hexamethylene glycol, neopentyl glycol, and bisphenol sulfone.
  • the polyester resin having a glass transition temperature of 90 ° C. or higher polyethylene naphthalate is particularly preferable. As long as the glass transition temperature is 90 ° C.
  • polyethylene naphthalate may be a copolymerized polymer. Further, polyethylene naphthalate may be used as a polymer blend. Of these, a polyester resin mainly composed of polyethylene-2,6-naphthalate is preferable because it has good mechanical characteristics and moisture and heat resistance.
  • "mainly" means that 90 mol% or more, preferably 95 mol% or more, of all the repeating units of the polyester resin are ethylene-2,6-naphthalate units.
  • the resin base material in the present disclosure may contain an appropriate filler as necessary for the purpose of improving slipperiness, etc., as long as the object of the present disclosure is not impaired.
  • an appropriate filler those conventionally known as slippery imparting agents for films such as polyester films and sheets can be used.
  • those conventionally known as slippery imparting agents for films such as polyester films and sheets can be used.
  • calcium carbonate, calcium oxide, aluminum oxide, kaolin, silicon oxide, zinc oxide can be used.
  • a colorant, an antistatic agent, an antioxidant, an organic lubricant, a catalyst and the like can be appropriately added to the resin base material.
  • the resin base material used in the present disclosure and the resin used therein can be produced by a method conventionally known to those skilled in the art.
  • a case where a polyester resin is used as the resin will be described as a typical example.
  • a resin base material may be obtained with reference to the following.
  • the polyester resin in the present disclosure is a conventionally known method, for example, a method for directly obtaining a low polymerization degree polyester resin by reacting a carboxylic acid such as terephthalic acid or naphthalenedicarboxylic acid with a glycol, or an ester of a lower alkyl ester of a dicarboxylic acid and a glycol. It can be obtained by a method of reacting with an exchange catalyst and then performing polymerization in the presence of a polymerization catalyst.
  • the transesterification catalyst one or more compounds containing sodium, potassium, magnesium, calcium, zinc, strontium, titanium, zirconium, manganese and cobalt can be used.
  • the polymerization catalyst include antimony trioxide, antimony compounds such as antimony pentoxide, germanium compounds such as germanium dioxide, tetraethyl titanate, tetrapropyl titanate, tetraphenyl titanate or a partial hydrolyzate thereof, and titanyl ammonium oxalate.
  • Titanium compounds such as titanyl potassium oxalate, titanium trisacetylacetonate.
  • phosphorus compounds such as trimethyl phosphate, triethyl phosphate, tri-n-butyl phosphate and orthophosphoric acid are added for the purpose of inactivating the transesterification catalyst before the polymerization reaction.
  • the content of the phosphorus element in the polyester resin is 20% by mass ppm to 100% by mass ppm from the viewpoint of thermal stability of the polyester resin.
  • the polyester resin can be melt-polymerized and then chipped, and solid-phase polymerized under heating and reduced pressure or in an inert air flow such as nitrogen.
  • the intrinsic viscosity (35 ° C., orthochlorophenol) of the polyester resin constituting the resin base material is preferably 0.40 dl / g or more, and more preferably 0.40 dl / g to 0.90 dl / g. If the intrinsic viscosity is too low, process cutting tends to occur easily. Further, if it is too high, the melt viscosity tends to be high, so that melt extrusion tends to be difficult, and the polymerization time tends to be long. If the intrinsic viscosity is too low, the hydrolysis resistance tends to decrease.
  • the polyester film used in the present disclosure is, for example, melt-extruded the above polyester resin into a sheet and cooled and solidified with a casting drum to obtain an unstretched film.
  • Unit: ° C) + 60 ° C the total magnification of one or two or more times in the longitudinal direction (the axial direction of the film-forming machine, also referred to as the vertical direction or MD (Machine Direction)) becomes 3 to 6 times.
  • MD Machine Direction
  • Tg represents the glass transition temperature of the polyester resin which is the raw material of the film
  • Tm represents the melting point.
  • the above-mentioned stretching may be sequential biaxial stretching or simultaneous biaxial stretching.
  • Easy-Adhesion layer in order to impart excellent adhesiveness to a resin base material, a layer for easy adhesion (hereinafter referred to as "easy-adhesion layer") is provided on at least one surface of the resin base material. ) Is formed.
  • the easy-adhesion layer may be a coating film. Such an easy-adhesion layer can improve the adhesion with the adhesive resin layer of the present disclosure.
  • any component constituting the easy-adhesion layer may be used as long as it achieves the object of the present disclosure, but the solubility parameter (SP value, hereinafter abbreviated as "SP value").
  • SP value solubility parameter
  • the SP value of the adhesive resin layer is between the SP value of the resin base material and the SP value of the resin base material from the viewpoint of adhesiveness.
  • the SP value of the easy-adhesive layer is preferably larger than the SP value of the adhesive resin layer, and preferably smaller than the SP value of the resin base material.
  • the absolute value of the difference between the SP value of the easy-adhesive layer and the SP value of the adhesive resin layer is It is preferably 3.0 (J / cm 3 ) 1/2 or less, more preferably 2.5 (J / cm 3 ) 1/2 or less, and 2.0 (J / cm 3 ) 1 /. It is particularly preferable that it is 2 or less.
  • the lower limit of the absolute value of the difference between the SP value of the easy-adhesive layer and the SP value of the adhesive resin layer preferably exceeds 0 (J / cm 3 ) 1/2, and is 1.0 (J / cm). 3 ) More preferably, it is 1/2 or more.
  • the dissolution parameter can be obtained by using the Fedors formula. Specifically, from the chemical structural formulas of the resin base material, the adhesive resin layer, and the easy-adhesive layer, using the Fedors calculation formula, "Polymer Eng. &Sci.”, No. The SP value is obtained by calculation with reference to Volume 14, No. 2 (1974), pp. 148 to 154.
  • the easy-adhesive layer is particularly preferably composed of a composition containing at least one kind of binder resin selected from polyester resin, acrylic resin, and polyurethane resin as a main component.
  • a binder resin selected from polyester resin, acrylic resin, and polyurethane resin as a main component.
  • the polyester resin an acrylic resin-modified polyester resin and a vinyl-based resin-modified polyester resin can be preferably exemplified.
  • the components constituting the polyester resin include the following components derived from a multivalent carboxylic acid and a polyvalent hydroxy compound (that is, a constituent unit; the same applies hereinafter). That is, as the components derived from the polyvalent carboxylic acid, terephthalic acid, isophthalic acid, orthophthalic acid, 4,4'-diphenyldicarboxylic acid, 2,5-naphthalenedicarboxylic acid, 2,6-naphthalenedicarboxylic acid, 1,4 -Cyclohexanedicarboxylic acid, 2-potassium sulfoterephthalic acid, 5-sodium sulfoisophthalic acid, adipic acid, azelaic acid, sebacic acid, dodecandicarboxylic acid, glutaric acid, succinic acid, trimellitic acid, trimesic acid, trimellitic anhydride, Components derived from phthalic anhydride, p-hydroxybenzoic acid, monopotassi
  • Examples of the components derived from the polyvalent hydroxy compound include ethylene glycol and 1. , 2-propylene glycol, 1,3-propylene glycol, 1,4-butanediol, 1,6-hexanediol, 2-methyl-1,5-pentanediol, neopentyl glycol, 1,4-cyclohexanedimethanol, p.
  • -Xylylene glycol bisphenol A-ethylene glycol adduct, bisphenol A-1,2-propylene glycol adduct, diethylene glycol, triethylene glycol, polyethylene glycol, polypropylene glycol, polytetramethylene glycol, polytetramethylene oxide glycol, dimethylol A component derived from propionic acid, glycerin, trimethylolpropane, sodium dimethylolethylsulfonate, potassium dimethylolpropionate and the like can be used.
  • One or more of these compounds are appropriately selected, and a polyester resin is synthesized by a conventional polycondensation reaction.
  • the polyester resin may be a composite polymer having a polyester component such as an acrylic resin-modified polyester resin, a vinyl-based resin-modified polyester resin, or a polyester polyurethane in which a polyester polyol is chain-extended with isocyanate, which will be described later. Good.
  • a component derived from alkyl acrylate or alkyl methacrylate is preferable as a main component, and the component is 30 mol% to 90 mol% with respect to the acrylic resin and can be copolymerized.
  • a water-soluble or water-dispersible resin containing 70 mol% to 10 mol% of a component derived from a vinyl monomer having a functional group is more preferable.
  • a vinyl monomer copolymerizable with an alkyl acrylate or an alkyl methacrylate and having a functional group was subjected to a carboxyl group or a salt thereof, an acid anhydride group, a sulfonic acid group or a salt thereof, an amide group or an alkylol as a functional group.
  • It is a vinyl monomer having an amide group, an amino group (including a substituted amino group) or an alkylolated amino group or a salt thereof, a hydroxyl group, an epoxy group and the like.
  • particularly preferable functional groups are carboxyl groups or salts thereof, acid anhydride groups, epoxy groups and the like. Two or more kinds of these groups may be contained in the resin.
  • alkyl groups of alkyl acrylates and alkyl methacrylates are methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, t-butyl group, 2-ethylhexyl group, lauryl group and stearyl group. , Cyclohexyl group and the like.
  • the vinyl-based monomer having a functional group copolymerizing with an alkyl acrylate or an alkyl methacrylate the following compounds having a functional group such as a reactive functional group, a self-crosslinking functional group and a hydrophilic group can be used.
  • the compound having a carboxyl group or a salt thereof and an acid anhydride group include acrylic acid, methacrylic acid, itaconic acid, maleic acid, metal salts of these carboxylic acids with sodium and the like, ammonium salts, maleic anhydride and the like. ..
  • Examples of the compound having a sulfonic acid group or a salt thereof include vinyl sulfonic acid, styrene sulfonic acid, a metal salt of these sulfonic acids with sodium and the like, and an ammonium salt.
  • Examples of the compound having an amide group or an alkylolated amide group include acrylamide, methacrylamide, N-methylmethacrylamide, methylolated acrylamide, methylolated methacrylamide, ureidovinyl ether, ⁇ -ureidoisobutylvinyl ether, and ureidoethyl acrylate. Can be mentioned.
  • Examples of the compound having an amino group or an alkylolated amino group or a salt thereof include diethylaminoethyl vinyl ether, 2-aminoethyl vinyl ether, 3-aminopropyl vinyl ether, 2-aminobutyl vinyl ether, dimethylaminoethyl methacrylate and dimethylaminoethyl.
  • Examples thereof include vinyl ethers, those in which their amino groups are methylolated, and those in which alkyl halides, dimethyl sulfate, salton and the like are quaternized.
  • Examples of the compound having a hydroxyl group include ⁇ -hydroxyethyl acrylate, ⁇ -hydroxyethyl methacrylate, ⁇ -hydroxypropyl acrylate, ⁇ -hydroxypropyl methacrylate, ⁇ -hydroxyethyl vinyl ether, 5-hydroxypentyl vinyl ether, 6-hydroxyhexyl vinyl ether, and polyethylene. Examples thereof include glycol monoacrylate, polyethylene glycol monomethacrylate, polypropylene glycol monoacrylate, and polypropylene glycol monomethacrylate. Examples of the compound having an epoxy group include glycidyl acrylate and glycidyl methacrylate. Examples of other compounds having a functional group include vinyl isocyanate and allyl isocyanate.
  • olefins such as ethylene, propylene, methylpentene, butadiene, styrene, ⁇ -methylstyrene, vinyl methyl ether, vinyl ethyl ether, vinyl trialkoxysilane, acrylonitrile, methacrylonitrile, vinylidene chloride, vinyl chloride, vinylidene fluoride, quaternary Ethylene fluoride, vinyl acetate and the like are also mentioned as vinyl-based monomer compounds.
  • components constituting the polyurethane resin include the following components derived from a multivalent hydroxy compound, a component derived from a multivalent isocyanate compound, a component derived from a chain length extender, a component derived from a cross-linking agent, and the like. .. That is, as components derived from the polyvalent hydroxy compound, polyethers such as polyoxyethylene glycol, polyoxypropylene glycol, and polyoxytetramethylene glycol, polyesters such as polyethylene adipate, polyethylene-butylene adipate, and polycaprolactone. , Polycarbonates, acrylic polyols, castor oil and the like can be used.
  • components derived from polyvalent isocyanate compounds components derived from tolylene diisocyanate, phenylenedi isocyanate, 4,4'-diphenylmethane diisocyanate, hexamethylene diisocyanate, xylylene diisocyanate, 4,4'-dicyclohexylmethane diisocyanate, isophorone diisocyanate and the like.
  • components derived from chain length extenders or crosslinkers include ethylene glycol, propylene glycol, diethylene glycol, trimethylolpropane, hydrazine, ethylenediamine, diethylenetriamine, ethylenediamine-sodium acrylate adducts, 4,4'-.
  • Components derived from diaminodiphenylmethane, 4,4'-diaminodicyclohexylmethane, water and the like can be used. One or more of these compounds are appropriately selected, and a polyurethane resin is synthesized by a conventional polycondensation-crosslinking reaction.
  • Acrylic resin-modified polyester resin and vinyl-based resin-modified polyester resin can be synthesized by polymerizing an acrylic resin or vinyl-based resin in an aqueous solution or aqueous dispersion of polyester.
  • the components constituting this polyester include components derived from a multivalent carboxylic acid similar to those described above, components derived from a multivalent hydroxy compound, and components derived from an ester-forming derivative of these compounds.
  • the same components derived from the alkyl acrylate or the components derived from the alkyl methacrylate, which are also the same as those described above, and the same vinyl-based simple compounds as those described above copolymerizing with these are also used.
  • One or more of the components derived from the polymer compound can be appropriately used.
  • the acrylic resin-modified polyester resin and the vinyl-based resin-modified polyester resin of the present disclosure include those having a molecular structure such as the so-called acrylic graft polyester described in JP-A-1-165633.
  • the content of the binder resin in the easy-adhesion layer is preferably 80% by mass or more, more preferably 90% by mass or more, based on the total mass of the easy-adhesion layer.
  • the easy-adhesion layer in the present disclosure is preferably formed from a composition containing a cross-linking agent in addition to the binder resin. This further improves the adhesiveness.
  • Preferred examples of the cross-linking agent include an oxazoline-based cross-linking agent and a glycidylamine-based cross-linking agent.
  • the content of the cross-linking agent is preferably 3 parts by mass to 40 parts by mass, more preferably 4 parts by mass or more and 5 parts by mass or more, and 35 parts by mass or less and 30 parts by mass or less with respect to 100 parts by mass of the binder resin. More preferred.
  • the method for forming such an easy-adhesion layer on at least one surface of the resin base material is not limited, and can be appropriately selected from commonly used methods.
  • the easy-adhesion layer can be formed by applying a coating liquid for forming the easy-adhesion layer to the resin base material and drying the coating liquid. It may be formed by a coextrusion method or a lamination method.
  • a coating liquid preferably an aqueous solution, an aqueous dispersion, or an emulsion type dispersion
  • a component forming an easy-adhesion layer is applied to the stretchable polyester film, and then dried. It can be laminated by stretching and heat-treating if necessary.
  • the coating of this coating liquid may be carried out in a normal coating process, that is, a step of separating the biaxially stretched heat-fixed polyester film from the manufacturing process of the film, but coating in a cleaner atmosphere, that is, It is preferable to carry out the film during the manufacturing process because it is difficult for dust, dust and the like to be entrained.
  • the coating in the state of a stretchable polyester film can further improve the adhesion of the coating film to the polyester film by the subsequent stretching.
  • the "stretchable polyester film” means an unstretched polyester film, a uniaxially stretched polyester film, or a biaxially stretched polyester film, and among them, a polyester film uniaxially stretched in the film forming direction (longitudinal direction) is used. Especially preferable.
  • any known coating method can be applied as the coating method, for example, a roll coating method, a gravure coating method, a roll brushing method, a spray coating method, an air knife coating method, an impregnation method, a curtain coating method, or the like alone or in combination.
  • the coating amount is preferably 0.5 g to 20 g, more preferably 1 g to 10 g per 1 m 2 of the running film, and the thickness of the easy-adhesion layer after drying is preferably 8 nm to 200 nm, more preferably 10 nm to 100 nm.
  • the thickness of the easy-adhesion layer is too thin, the effect of improving the adhesion of the easy-adhesion layer tends to be low, while if it is too thick, cohesive failure tends to occur in the easy-adhesion layer, and in a moist heat environment. The effect of improving the adhesion to the heat seal layer tends to decrease.
  • Metal member is not limited as long as the ratio of the bipolar term to the surface free energy is 0.01% to 5.0%, and is not limited, for example, iron, aluminum, titanium, magnesium, copper, nickel, chromium, etc. Examples include metal members including. Among the above, a metal member containing titanium is preferable because it has excellent acid resistance. Specific examples of the metal member include iron, aluminum, titanium, magnesium, copper, nickel, chromium and other metals, and alloys thereof. Among the above, the metal member is preferably titanium or a titanium alloy because it has excellent acid resistance.
  • the ratio of the dipole term to the surface free energy is preferably 0.01% to 2.5%, more preferably 0.01% to 1.5% in terms of excellent temperature and water resistance. It is particularly preferably 0.01% to 1.0%.
  • the surface free energy of the metal member and their dispersion term, dipole term and hydrogen bond term shall be represented by the following abbreviations.
  • the proportion of the dipole section occupying the surface free energy of the metal member is calculated by " ⁇ M P ⁇ ⁇ M ⁇ 100".
  • ⁇ M Surface free energy of metal member ( ⁇ M D + ⁇ M P + ⁇ M H ) ⁇ M D : Dispersion term of surface free energy of metal member ⁇ M P : Dipole term of surface free energy of metal member ⁇ M H : Hydrogen bond term of surface free energy of metal member
  • ⁇ M , ⁇ M D , ⁇ M P , and ⁇ M H are measured by the three-point method under the following conditions by the intravenous drop method using a contact angle meter specified in JIS R 3257: 1999. Then, it is calculated using the extended Fawkes formula. Measurement temperature: 25 ° C Liquid: water, ⁇ -bromonaphthalene, diiodomethane
  • the thickness of the metal member may be appropriately set according to the material, application, etc., and is not particularly limited.
  • the shape of the metal member may be appropriately set according to the intended use, and is not particularly limited, and examples thereof include a film shape, a sheet shape, a plate shape, an angle shape, and a rod shape.
  • a fuel cell separator is mentioned as a metal member for a fuel cell that requires warm water resistance.
  • the relationship between the surface free energy ⁇ M of the metal member and the surface free energy ⁇ A of the adhesive resin layer is ⁇ M ⁇ ⁇ A ⁇ 5. It is preferable to satisfy 0 mN / m, and it is more preferable to satisfy ⁇ M ⁇ A ⁇ 6.0 mN / m. Further, from the viewpoint of peel strength, the difference between the surface free energy of the metal member and the surface free energy of the adhesive resin layer preferably satisfies ⁇ M ⁇ A ⁇ 10.0 mN / m.
  • the relationship between the surface free energy ⁇ M of the metal member and the surface free energy ⁇ A of the adhesive resin layer is ⁇ M ⁇ ⁇ A in terms of maintaining stable quality, heat resistance and peeling strength. It is preferable to satisfy ⁇ 30 mN / m, more preferably ⁇ M ⁇ A ⁇ 15 mN / m, and particularly preferably 13 mN / m or less.
  • the surface free energy of the adhesive resin layer and their dispersion term, dipole term and hydrogen bond term shall be represented by the following abbreviations.
  • gamma A surface free energy of the adhesive resin layer ( ⁇ A D + ⁇ A P + ⁇ A H) ⁇
  • a D Dispersion term of surface free energy of adhesive resin layer ⁇
  • a P Dipole term of surface free energy of adhesive resin layer ⁇
  • a H Hydrogen bond term of surface free energy of adhesive resin layer
  • the ⁇ A, ⁇ A D, ⁇ A P, and gamma A H is, JIS R 3257: by sessile drop method using a contact angle meter as specified in 1999, measuring the contact angle by 3-point method under the following conditions Then, it is calculated using the extended Fawkes formula. Measurement temperature: 25 ° C Liquid: water, ⁇ -bromonaphthalene, diiodomethane
  • the members other than the metal members include.
  • glass, thermoplastic resin and the like can be mentioned.
  • glass examples include alkaline glass, non-alkali glass, quartz glass and the like.
  • thermoplastic resin examples include polyolefin resins, polyester resins, polyamide resins, polyacrylonitrile resins, polyvinyl alcohol resins and polyvinyl chloride resins.
  • the shape of the other member may be appropriately set according to the intended use, and is not particularly limited, and examples thereof include a film shape, a sheet shape, a plate shape, an angle shape, and a rod shape.
  • the fuel cell junction of the present disclosure is excellent in heat resistance and water resistance, it can be suitably used as a member of a fuel cell in the field of in-vehicle batteries and the like. In particular, it can be suitably used as a joint of a fuel cell separator.
  • the laminate of the present disclosure is provided on the surface of the resin base material, the easy-adhesion layer provided on at least one surface of the resin base material, and the surface of the easy-adhesion layer opposite to the resin base material.
  • the aspect of the laminate of the present disclosure is the same as that of the laminate described in the above "1. Fuel cell junction", and the preferred embodiment is also the same.
  • T represents the titration amount (mL)
  • F represents the factor of the titration solution
  • W represents the sampling amount (g).
  • MFR The MFR (unit: g / 10 minutes) was measured under the following conditions. ⁇ Equipment: Flow tester CFT-500 (manufactured by Shimadzu Corporation) ⁇ Dice: ⁇ 1mm ⁇ 10mm -Test pressure: 1.96 MPa ⁇ Cylinder area: 1 cm 2 ⁇ Cylinder temperature: 230 °C
  • ⁇ Glass-transition temperature 10 mg of the sample is enclosed in an aluminum pan for measurement and mounted on a differential scanning calorimeter (Q100 type DSC manufactured by TA Instruments), and the temperature is raised from 25 ° C. to 300 ° C. at a rate of 20 ° C./min to 300 ° C. After holding for 5 minutes, it was taken out and cooled on a metal plate to quench it.
  • This pan was mounted on the differential scanning calorimeter again, and the temperature was raised from 25 ° C. to 20 ° C./min to measure the glass transition temperature (Tg: ° C.) and the melting point (Tm: ° C.). The glass transition temperature was taken as the extrapolation start temperature.
  • SP value [Solution parameter (SP value)]
  • the SP value was determined by the following method. From the chemical structural formulas of the used resin base material, adhesive resin layer, and easy-adhesive layer, using the Fedors formula, "Polymer Eng. &Sci.”, Vol. 14, The SP value was calculated by referring to No. 2 (1974), pp. 148 to 154.
  • Ev Evaporation energy
  • V Molar volume
  • ⁇ ei Evaporation energy of atom or atomic group of i component
  • ⁇ vi Molar volume of atom or atomic group of i component
  • Example 1 [Manufacturing of laminated body] (Preparation of easy adhesive) An easy-to-adhesive (solid content concentration: 4% by mass) was prepared according to the following formulation. Ion-exchanged water was used as the diluting solvent. -Acrylic resin (manufactured by Nippon Carbite Industries, Ltd., trade name RX7770): 85 parts by mass-Epoxy-based cross-linking agent (manufactured by Mitsubishi Gas Chemical Company, trade name TETRAD-X): 7.5 parts by mass-surfactant Agent (manufactured by Sanyo Chemical Industries, Ltd., trade name Sannonic SS-70): 7.5 parts by mass
  • an adhesive resin layer having the composition shown in Table 4 was formed on the easy-adhesive layers on both sides of the obtained biaxially stretched film by an extrusion laminating method to obtain a laminated body.
  • the thickness of each of the obtained adhesive resin layers was 50 ⁇ m.
  • the conditions for extrusion lamination were an extrusion temperature of 230 ° C.
  • Examples 2-5 and 10 and Comparative Examples 1-8 A laminate was produced in the same manner as in Example 1 except that the structure of the adhesive resin layer and the metal member used were changed as shown in Table 4.
  • Example 6 A laminate was produced in the same manner as in Example 1 except that a resin base material having an easy-adhesion layer was produced according to the following. Polyethylene terephthalate having an intrinsic viscosity of 0.58 dl / g (35 ° C., orthochlorophenol) as a resin using manganese acetate tetrahydrate as a transesterification catalyst and antimony trioxide as a polymerization catalyst (shown as "PET" in Table 4). .) was synthesized. The obtained resin is dried in a 170 ° C.
  • the film was guided to a tenter while holding both ends of the film with clips, and stretched 3.5 times in the lateral direction in an atmosphere heated to 135 ° C. Then, the film was heat-fixed at 220 ° C. for 40 seconds in a tenter, relaxed by 1% in the width direction at 220 ° C., slowly cooled uniformly and cooled to room temperature to obtain a biaxially stretched film having a thickness of 200 ⁇ m.
  • Examples 7-9 A laminate was produced in the same manner as in Example 1 except that the structure of the easy-adhesion layer was changed as shown in Table 4.
  • the test piece was obtained by accommodating in an environment adjusted to 25 ° C. for 3 days.
  • the portions where the adhesive resin layer is not adhered are fixed to the upper and lower chucks, respectively, and the peeling adhesive strength (N /) between the metal member and the adhesive resin layer. 10 mm) was measured.
  • the measurement conditions were a temperature of 25 ° C. and a tensile speed of 30 mm / min.
  • the fuel cell joints formed by using the laminates of Examples 1 to 10 are more resistant to temperature and water than the fuel cell joints formed by using the laminates of Comparative Examples 1 to 8. It turned out to be excellent.
  • the fuel cell joints and laminates of the present disclosure can be suitably used as fuel cell members in the field of in-vehicle batteries and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Sustainable Development (AREA)
  • Manufacturing & Machinery (AREA)
  • Engineering & Computer Science (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Electrochemistry (AREA)
  • Composite Materials (AREA)
  • Laminated Bodies (AREA)
  • Adhesives Or Adhesive Processes (AREA)

Abstract

温水存在下で接着力に優れる燃料電池用接合体、及び上記燃料電池用接合体に用いる積層体を提供する。 酸性基及び酸無水物基からなる群より選択される少なくとも1種の基を有し、酸価が0.01mgKOH/g~6.5mgKOH/gであるポリオレフィンを含有する接着性樹脂層と、上記接着性樹脂層を介して接着された2つ以上の部材と、を有し、上記部材の少なくとも1つは、表面自由エネルギーに占める双極子項の割合が0.01%~5.0%の金属部材である燃料電池用接合体。

Description

燃料電池用接合体、及び積層体
 本開示は、燃料電池用接合体、及び積層体に関する。
 ホットメルト型の接着剤組成物は、フィルム状又はシート状に加工し、部材の表面に積層された接着性フィルム又はシートとして、電気分野、自動車分野及びその他の工業分野等の様々な産業分野で利用されている。これら分野で用いられる、鉄、アルミニウム、チタン及びその他金属等、並びにそれらの合金等の金属部材を接着するために、酸により変性されたオレフィン系熱可塑性樹脂(以下、「酸変性ポリオレフィン」という)を主成分とするホットメルト型組成物を用いると、比較的良好な接着強度を有する接合体が得られる事が知られている。
 例えば、特許文献1には、特定の酸変性ポリオレフィン、酸により変性されていない熱可塑性エラストマー及びエポキシ基を有するシランカップリング剤を含む接着剤組成物を用いた接着性シール部材が開示されている。これは、シランカップリング剤と金属表面の水酸基との化学結合により接着力を得るもので、当該シール部材を用いた接合体は、耐水性に優れるものである。
 特許文献2は、ポリオレフィンを用いた特定の条件下での熱溶着により、金属部材と熱可塑性樹脂部材の接合体を製造する方法に関するもので、金属部材に対してクロメート処理等の表面処理をする場合にはポリオレフィンの膜厚を0.1~9mmとし、金属部材に対して記表面処理をしない場合にはポリオレフィンの膜厚を0.2~9mmとする事が開示されている。
 特許文献3には、第1接着剤層、第1中間層、耐熱性を有する基材層、第2中間層、第2接着剤層をこの順に積層してなり、上記第1接着剤層及び上記第2接着剤層が酸変性ポリオレフィン樹脂を含むホットメルト接着性樹脂フィルムが開示されている。
 特許文献4には、特定の変性ポリオレフィン(A)、グリシジルアミン型エポキシ樹脂(B1)、グリシジルエーテル型エポキシ樹脂(B2)及び有機溶剤(C)を含有する接着剤組成物が開示されている。
特開2011-213767号公報 国際公開第2014/112506号 特開2017-36354号公報 国際公開第2015/190411号
 しかしながら、従来技術を用いて形成された接合体を水の存在下で使用する場合、接着界面への水の侵入により剥離が促進され短時間で接着力が低下するという問題があった。
 特許文献1に記載の接着性シール部材を用いた接合体では、耐水性は比較的良好なものの、温水存在下では接着力低下が著しいという問題があった。
 特許文献2に記載の接合体の製造方法では、表面自由エネルギーに占める双極子項の割合が5.0%以下である低極性の金属部材に対しては、表面処理の有無に関わらず、ポリオレフィンの膜厚を200μmよりも薄膜とした場合には、耐水性に劣り、特に、温水存在下では接着力低下が著しいという問題があった。
 特許文献3に記載のホットメルト接着性樹脂フィルム、及び特許文献4に記載の接着剤組成物においても、上記低極性の金属部材に対しては、特に、温水存在下において接着力の低下が著しいという問題があった。
 温水存在下における接着力の低下は、例えば燃料電池用接合体等の温水存在下で使用される接合体において特に問題となることがある。
 本開示の一実施形態は、上記事情に鑑みてなされたものであり、その目的は、温水存在下で接着力(以下、「耐温水性」ということがある。)に優れる燃料電池用接合体を提供することである。
 本開示の他の一実施形態の目的は、温水存在下で接着力に優れる燃料電池用接合体に用いる積層体を提供することである。
 上記課題を解決するための手段には、以下の態様が含まれる。
<1> 酸性基及び酸無水物基からなる群より選択される少なくとも1種の基を有し、酸価が0.01mgKOH/g~6.5mgKOH/gであるポリオレフィンを含有する接着性樹脂層と、上記接着性樹脂層を介して接着された2つ以上の部材と、を有し、上記部材の少なくとも1つは、表面自由エネルギーに占める双極子項の割合が0.01%~5.0%の金属部材である燃料電池用接合体。
<2> 樹脂基材と、上記樹脂基材の少なくとも一方の表面に設けられた易接着層と、上記易接着層の上記樹脂基材とは反対側の表面に設けられ、酸性基及び酸無水物基からなる群より選択される少なくとも1種の基を有し、酸価が0.01mgKOH/g~6.5mgKOH/gであるポリオレフィンを含有する接着性樹脂層と、を有する積層体と、上記積層体の上記接着性樹脂層の表面の少なくとも一部に接着された、表面自由エネルギーに占める双極子項の割合が0.01%~5.0%である金属部材と、を有する燃料電池用接合体。
<3> 上記易接着層の溶解パラメーターが、上記接着性樹脂層の溶解パラメーターより大きく、上記樹脂基材の溶解パラメーターより小さく、上記易接着層の溶解パラメーターと上記接着性樹脂層の溶解パラメーターとの差の絶対値が、3.0(J/cm1/2以下である<2>に記載の燃料電池用接合体。
<4> 上記易接着層の厚みが、8nm~200nmである<2>又は<3>に記載の燃料電池用接合体。
<5> 上記樹脂基材のガラス転移温度が、90℃以上である<2>~<4>のいずれか1つに記載の燃料電池用接合体。
<6> 上記積層体が、上記樹脂基材の両面に設けられた上記易接着層と、上記易接着層の上記樹脂基材とは反対側の表面にそれぞれ設けられた上記接着性樹脂層と、を有する<2>~<5>のいずれか1つに記載の燃料電池用接合体。
<7> 上記酸性基がカルボン酸基を含み、上記酸無水物基がカルボン酸無水物基を含む
<1>~<6>のいずれか1つに記載の燃料電池用接合体。
<8> 上記ポリオレフィンがプロピレン単位を含み、上記プロピレン単位の含有量が、ポリオレフィンに対して、50質量%以上である<1>~<7>のいずれか1つに記載の燃料電池用接合体。
<9> 上記ポリオレフィンの酸価が、0.01mgKOH/g~3.0mgKOH/gである<1>~<8>のいずれか1つに記載の燃料電池用接合体。
<10> 上記接着性樹脂層が、スチレン系熱可塑性エラストマーをさらに含有する<1>~<9>のいずれか1つに記載の燃料電池用接合体。
<11> 上記スチレン系熱可塑性エラストマーの含有量が、上記ポリオレフィン及び上記スチレン系熱可塑性エラストマーの合計量に対して、20質量%以下である<10>に記載の燃料電池用接合体。
<12> 上記接着性樹脂層の酸価が、0.01mgKOH/g~6.5mgKOH/gである<1>~<11>のいずれか1つに記載の燃料電池用接合体。
<13> 上記金属部材の表面自由エネルギーγMと上記接着性樹脂層の表面自由エネルギーγAとの関係が、γM-γA≧5.0mN/mを満たす<1>~<12>のいずれか1つに記載の燃料電池用接合体。
<14> 上記金属部材が、チタン又はチタン合金である<1>~<13>のいずれか1つに記載の燃料電池用接合体。
<15> 樹脂基材と、上記樹脂基材の少なくとも一方の表面に設けられた易接着層と、上記易接着層の上記樹脂基材とは反対側の表面に設けられ、酸性基及び酸無水物基からなる群より選択される少なくとも1種の基を有し、酸価が0.01mgKOH/g~6.5mgKOH/gであるポリオレフィンを含有する接着性樹脂層と、を有し、<2>~<6>のいずれか1つに記載の燃料電池用接合体に用いる積層体。
<16> 積層体を用いて燃料電池の金属部材を接合する接合方法であって、
 前記積層体は、<2>~<6>のいずれか1つに記載の前記積層体であり、
 前記金属部材は、表面自由エネルギーに占める双極子項の割合が0.01%~5.0%である、接合方法。
 本開示の一実施形態によれば、温水存在下で接着力に優れる燃料電池用接合体を提供することができる。
 本開示の他の一実施形態によれば、温水存在下で接着力に優れる燃料電池用接合体に用いる積層体を提供することができる。
 以下、本開示の実施形態について詳細に説明する。なお、本開示は、以下の実施形態に何ら制限されず、本開示の目的の範囲内において、適宜変更を加えて実施することができる。
 本開示において、「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値及び上限値として含む範囲を意味する。本開示に段階的に記載されている数値範囲において、ある数値範囲で記載された上限値又は下限値は、他の段階的な記載の数値範囲の上限値又は下限値に置き換えてもよい。また、本開示に記載されている数値範囲において、ある数値範囲で記載された上限値又は下限値は、実施例に示されている値に置き換えてもよい。
 本開示において、「質量%」と「重量%」とは同義であり、「質量部」と「重量部」とは同義である。
 本開示において、2以上の好ましい態様の組み合わせは、より好ましい態様である。
1.燃料電池用接合体
 本開示の一実施形態に係る燃料電池用接合体は、酸性基及び酸無水物基からなる群より選択される少なくとも1種の基を有し、酸価が0.01mgKOH/g~6.5mgKOH/gであるポリオレフィンを含有する接着性樹脂層と、上記接着性樹脂層を介して接着された2つ以上の部材と、を有し、上記部材の少なくとも1つは、表面自由エネルギーに占める双極子項の割合が0.01%~5.0%の金属部材である。
 また、本開示の一実施形態に係る燃料電池用接合体は、樹脂基材と、上記樹脂基材の少なくとも一方の表面に設けられた易接着層と、上記易接着層の上記樹脂基材とは反対側の表面に設けられ、酸性基及び酸無水物基からなる群より選択される少なくとも1種の基を有し、酸価が0.01mgKOH/g~6.5mgKOH/gであるポリオレフィンを含有する接着性樹脂層と、を有する積層体と、上記積層体の上記接着性樹脂層の表面の少なくとも一部に接着された、表面自由エネルギーに占める双極子項の割合が0.01%~5.0%である金属部材と、を有する。
 本開示において、「接着性樹脂層の表面の少なくとも一部」とは、本開示の燃料電池用接合体に存在する接着性樹脂層の表面の少なくとも一部を意味する。本開示の燃料電池用接合体の一実施形態において、上記金属部材は、本開示の燃料電池用接合体に存在する接着性樹脂層の表面の少なくとも一部に接合されていればよく、複数の接着性樹脂層が存在する場合にはすべての接着性樹脂層の表面に接合されていなくてもよい。例えば、本開示の燃料電池用接合体に存在する接着性樹脂層が1つである場合には、1つの接着性樹脂層の表面の一部に上記金属部材が接合されていればよい。また、本開示の燃料電池用接合体に存在する接着性樹脂層が複数である場合には、少なくとも1つの接着性樹脂層の表面の一部に上記金属部材が接合されていればよい。
 本開示の燃料電池用接合体は、上記特定のポリオレフィンを含有する接着性樹脂層を有することによって、表面自由エネルギーに占める双極子項の割合が0.01%~5.0%である金属部材に対して高い接着力を有し、また、接着性樹脂層と上記金属部材との接着界面への水の浸入を低減することができる。このため、本開示の燃料電池用接合体は、温水存在下で優れた接着力を発現することができる。
 本開示の燃料電池用接合体の一実施形態において、上記積層体は、上記樹脂基材の両面に設けられた上記易接着層と、上記易接着層の上記樹脂基材とは反対側の表面にそれぞれ設けられた上記接着性樹脂層と、を有することが好ましい。積層体の両面にそれぞれ接着性樹脂層を設けることで、積層体を介して、2つ以上の被着体を接合することができる。2つの易接着層の組成は、同一であってもよく、異なっていてもよい。また、2つの接着性樹脂層の組成は、同一であってもよく、異なっていてもよい。
 以下、本開示の燃料電池用接合体の具体的な実施形態について説明する。
1-1.接着性樹脂層
 接着性樹脂層は、酸性基及び酸無水物基からなる群より選択される少なくとも1種の基を有し、酸価が0.01mgKOH/g~6.5mgKOH/gであるポリオレフィン(以下、「(A)成分」という。)を含有する。
〔(A)成分〕
 (A)成分は、酸性基及び酸無水物基からなる群より選択される少なくとも1種の基を有する。
 酸性基の具体例としては、カルボン酸基、スルホン酸基及びリン酸基等が挙げられ、これらの中でも、変性が容易である点で、カルボン酸基が好ましい。
 酸無水物基の具体例としては、カルボン酸無水物基、スルホン酸無水物基及びリン酸無水物基等が挙げられ、これらの中でも、原料の入手が容易であり、変性が容易である点で、カルボン酸無水物基が好ましい。
 上記の中でも、耐温水性の観点から、(A)成分においては、酸性基がカルボン酸基を含み、酸無水物基がカルボン酸無水物基を含むことが好ましい。
 (A)成分は、酸性基含有モノマー及び/又は酸無水物基含有モノマーで変性されたポリオレフィンであってもよい。変性の方法としては、公知の方法を採用することができる。例えば、有機過酸化物、脂肪族アゾ化合物等のラジカル重合開始剤の存在下で、酸性基含有モノマー及び/又は酸無水物基含有モノマーを、酸性基及び酸無水物基を有しないポリオレフィンと溶融混練する等のグラフト変性、酸性基含有モノマー及び/又は酸無水物基含有モノマーとオレフィン類との共重合等が挙げられる。
(酸性基含有モノマー)
 (A)成分の原料として酸性基含有モノマーが挙げられる。具体的には、エチレン性二重結合及びカルボン酸基等を、同一分子内に持つ化合物であり、各種の不飽和モノカルボン酸化合物及び不飽和ジカルボン酸化合物等が挙げられる。
 不飽和モノカルボン酸化合物の具体例としては、アクリル酸、メタクリル酸、クロトン酸及びイソクロトン酸等が挙げられる。
 不飽和ジカルボン酸化合物の具体例としては、マレイン酸、イタコン酸、シトラコン酸、ナジック酸及びエンディック酸等が挙げられる。
 酸性基含有モノマーとしては、変性が容易である点で、不飽和ジカルボン酸化合物が好ましく、マレイン酸が特に好ましい。
 これらの酸性基含有モノマーは、1種のみを使用しても、2種以上を併用してもよい。
 変性に用いた酸性基含有モノマーの一部が未反応である場合は、接着力への悪影響を抑制するため、公知の方法により、未反応の酸性基含有モノマーを除去したものを、(A)成分として用いることが好ましい。
(酸無水物基含有モノマー)
 (A)成分の原料として酸無水物基含有モノマーが挙げられる。具体的には、エチレン性二重結合及びカルボン酸無水物基等を、同一分子内に持つ化合物であり、前記不飽和モノカルボン酸化合物の酸無水物及び前記不飽和ジカルボン酸化合物の酸無水物等が挙げられる。
 不飽和モノカルボン酸化合物の酸無水物の具体例としては、アクリル酸無水物、メタクリル酸無水物、クロトン酸無水物及びイソクロトン酸無水物等が挙げられる。
 不飽和ジカルボン酸化合物の酸無水物の具体例としては、マレイン酸無水物、イタコン酸無水物、シトラコン酸無水物、ナジック酸無水物及びエンディック酸無水物等が挙げられる。
 酸無水物基含有モノマーとしては、変性が容易である点で、不飽和ジカルボン酸化合物の酸無水物が好ましく、マレイン酸無水物が特に好ましい。
 これらの酸無水物基含有モノマーは、1種のみを使用しても、2種以上を併用してもよい。
 変性に用いた酸無水物基含有モノマーの一部が未反応である場合は、接着力への悪影響を抑制するため、公知の方法により、未反応の酸無水物基含有モノマーを除去したものを、(A)成分として用いることが好ましい。
(酸性基及び酸無水物基を有しないポリオレフィン)
 (A)成分の原料として酸性基及び酸無水物基を有しないポリオレフィン(以下、「(a1)成分」という。)が挙げられる。
 (a1)成分の具体例としては、ポリエチレン、ポリプロピレン、プロピレンとエチレンのランダム共重合体、プロピレンとエチレンのブロック共重合体、エチレンとα-オレィンのランダム共重合体、エチレンとα-オレフィンのブロック共重合体、プロピレンとα-オレフィンのランダム共重合体、プロピレンとα-オレフィンのブロック共重合体等が挙げられる。前記α-オレフィンとしては、1-ブテン、イソブチレン、1-ヘキセン及び1-オクテン等が挙げられる。
 これらの中でも、耐温水性を向上できる点で、ポリプロピレン、プロピレン-エチレンのブロック共重合体、プロピレン-エチレンのランダム共重合体、プロピレンとα-オレフィンのランダム共重合体及びプロピレンとα-オレフィンのブロック共重合体等のポリプロピレン系重合体が好ましい。さらに、(a1)成分におけるプロピレン単位が50質量%以上であることが特に好ましい。
 (a1)成分は、1種のみを使用しても、2種以上を併用してもよい。
 (A)成分の酸価は、0.01mgKOH/g~6.5mgKOH/gである。金属部材に対する接着力を付与できる点で、0.01mgKOH/g以上であり、0.1mgKOH/g以上がより好ましく、0.5mgKOH/g以上が特に好ましい。また、耐温水性を向上できる点で、6.5mgKOH/g以下であり、3.0mgKOH/g以下がより好ましく、2.0mgKOH/g以下がさらに好ましく、1.0mgKOH/g以下が特に好ましい。
 酸価は、JIS K 0070:1992に準じて測定することができる。具体的には、混合キシレン:n―ブタノール=1:1質量比の混合溶媒に、精秤した試料を溶解させて試料溶液を得る。次いで、この試料溶液に、指示薬として1質量/体積%のフェノールフタレインエタノール溶液を数滴加え、滴定液として0.1mol/Lの水酸化カリウムのエチルアルコール溶液を用いて、滴定を行い、次式に従って酸価を算出する。次式において、Tは滴定量(mL)、Fは滴定液のファクター、Wは試料採取量(g)をそれぞれ表す。
  酸価=(T×F×56.11×0.1)/W
 (A)成分の融点は、100℃~200℃が好ましく、より好ましくは120℃~180℃である。耐温水性を向上できる点で、100℃以上が好ましく、加工性を向上できる点で、200℃以下が好ましい。
 融点は、示差走査熱量計(DSC)(例えば、TA Instruments社製、DSCQ100)を用い、サンプル約20mgを測定用のアルミニウム製パンに封入して、25℃から230℃まで10℃/分の昇温速度で測定を行ったときの融解ピーク温度として求めることができる。
 (A)成分のメルトフローレート(以下、「MFR」という。)は、230℃、試験圧力1.96MPaの測定条件において、0.1g/10分~30g/10分が好ましく、より好ましくは0.1g/10分~20g/10分である。加工性を向上できる点で、0.1g/10分以上が好ましく、耐温水性を向上できる点で、30g/10分以下が好ましい。
 MFRは、JIS K 7210:2014に準拠し、以下の条件で測定することができる。
・装置:フローテスターCFT-500((株)島津製作所製)
・ダイス:Φ1mm×10mm
・試験圧力:1.96MPa
・シリンダー面積:1cm
・シリンダー温度:230℃
 (A)成分は、プロピレン単位を含むことが好ましい。(A)成分中のプロピレン単位の含有量は、耐温水性を向上できる点で、(A)成分に対して、50質量%以上であることが好ましく、より好ましくは80質量%以上であり、さらに好ましくは90質量%以上である。
 本開示の接着性樹脂層において、(A)成分は、1種のみを使用しても、2種以上を併用してもよい。
 本開示の接着性樹脂層において、(A)成分の含有量は、耐温水性に優れるという理由から、接着性樹脂層100質量%を基準として、80質量%~100質量%であることが好ましく、より好ましくは90質量%~100質量%である。
〔その他成分〕
 本開示の接着性樹脂層は、(A)成分を含有するものであるが、目的に応じて種々の成分を配合することができる。なお、本開示の接着性樹脂層には、耐温水性が悪くなる恐れがあることから、多官能イソシアネート化合物を含まない方が好ましく、例えば100ppm以下の含有量であることが好ましい。
 その他成分としては、具体的には、スチレン系熱可塑性エラストマー(以下、「(B)成分」という。)、粘着付与剤、酸化防止剤、ヒンダードアミン系光安定剤、紫外線吸収剤、帯電防止剤、難燃剤、着色剤、分散剤、密着性付与剤、消泡剤、レベリング剤、可塑剤、滑剤及び充填剤等が挙げられる。また、本開示の接着性樹脂層は、上記(A)成分以外のポリオレフィン(例えば、(a1)成分等)を含有していてもよい。
 以下、これらの成分について説明する。
 なお、後記するその他成分は、例示した化合物の1種のみを使用しても良く、2種以上を併用してもよい。
((B)成分)
 本開示の接着性樹脂層は、(B)成分として、スチレン系熱可塑性エラストマーをさらに含有することができる。スチレン系熱可塑性エラストマーをさらに含有することで、接着力を向上することができる。
 (B)成分の具体例としては、スチレン-ブタジエン共重合体、エポキシ変性スチレン-ブタジエン共重合体、スチレン-ブタジエン-スチレンブロック共重合体、スチレン-エチレン/プロピレン-スチレンブロック共重合体(以下、「SEPS」という。)、スチレン-エチレン/ブチレン-スチレンブロック共重合体(以下、「SEBS」という。)、スチレン-イソプレン/ブタジエン-スチレンブロック共重合体、スチレン-イソプレン-スチレンブロック共重合体等のスチレン系樹脂等が挙げられ、酸性基及び酸無水物基を有しないものであっても酸性基及び/又は酸無水物基を有するものであっても良く、アミノ基を有するものであってもよい。
 酸性基及び/又は酸無水物基を導入するための変性方法としては、公知の方法を採用することができる。例えば、有機過酸化物、脂肪族アゾ化合物等のラジカル重合開始剤の存在下で、上記酸性基及び/又は酸無水物基含有モノマーを上記スチレン系樹脂と溶融混練する等のグラフト変性等が挙げられる。
 アミノ基を導入するための変性方法としては、公知の方法を採用することができる。例えば、リビングアニオン重合により得た前記スチレン系樹脂のリビング末端にアミノ基含有化合物を付加させる等の末端変性、有機過酸化物、脂肪族アゾ化合物等のラジカル重合開始剤の存在下で、2-(1-シクロヘキセニル)エチルアミン等の不飽和結合を持つアミン化合物を前記スチレン系樹脂と溶融混練する等のグラフト変性などが挙げられる。
 (B)成分としては、耐温水性と加工性を両立できる点で、SEPS及びSEBSが好ましい。
 (B)成分の酸価は、安定した品質を保つことができる点で、80mgKOH/g以下が好ましい。さらに、耐温水性を向上できる点で、50mgKOH/g以下がより好ましく、20mgKOH/g以下が特に好ましく、0.0mgKOH/gであってもよい。酸価は、JIS K 0070:1992に準じて測定することができる。具体的には、混合キシレン:n―ブタノール=1:1質量比の混合溶媒に、精秤した試料を溶解させて試料溶液を得る。次いで、この試料溶液に、指示薬として1質量/体積%のフェノールフタレインエタノール溶液を数滴加え、滴定液として0.1mol/Lの水酸化カリウムのエチルアルコール溶液を用いて、滴定を行い、次式に従って酸価を算出する。次式において、Tは滴定量(mL)、Fは滴定液のファクター、Wは試料採取量(g)をそれぞれ表す。
  酸価=(T×F×56.11×0.1)/W
 (B)成分のMFRは、230℃、試験圧力1.96MPaの測定条件において、1g/10分~100g/10分が好ましく、より好ましくは1g/10分~90g/10分である。加工性を向上できる点で、1g/10分以上が好ましく、耐温水性を向上できる点で、100g/10分以下が好ましい。
 MFRは、JIS K 7210:2014に準拠し、以下の条件で測定することができる。
・装置:フローテスターCFT-500((株)島津製作所製)
・ダイス:Φ1mm×10mm
・試験圧力:1.96MPa
・シリンダー面積:1cm
・シリンダー温度:230℃
 (B)成分の含有量は、(A)成分及び(B)成分の合計に対して、20質量%以下であることが好ましく、1質量%~20質量%であることがより好ましく、1質量%~10質量%であることが特に好ましい。接着性樹脂層が(B)成分を含有する場合、(B)成分の含有量の下限値は、制限されず、(A)成分及び(B)成分の合計に対して、0質量%を超える範囲で適宜設定することができる。上記(B)成分の含有量の好ましい範囲に対応する(A)成分の含有量は、(A)成分及び(B)成分の合計に対して、80質量%以上、80質量%~99質量%、90質量%~99質量%、にそれぞれなり得る。なお、接着性樹脂層が(B)成分を含有する場合における(A)成分の含有量の上限値は、(A)成分及び(B)成分の合計に対して、100質量%未満の範囲で適宜設定することができる。
 (B)成分の含有量としては、加工性及び接着力に優れる点で、1質量%以上であることが好ましく、耐温水性を向上できる点で、20質量%以下であることが好ましい。
(粘着付与剤)
 粘着付与剤は、接着力を向上する目的で配合することができる。
 粘着付与剤としては、公知のものを使用することができ、テルペン系樹脂、ロジン系樹脂、脂肪族系石油樹脂、脂環族系石油樹脂、共重合系石油樹脂及び水添石油樹脂等が挙げられる。
 テルペン系樹脂の具体例としては、α-ピネン重合体、β-ピネン重合体、及びこれらとフェノール又はビスフェノールA等との共重合体等が挙げられる。
 ロジン系樹脂の具体例としては、天然ロジン、重合ロジン及びこれらのエステル誘導体等が挙げられる。
 脂肪族系石油樹脂は、C5系樹脂ともいわれ、一般に、石油のC5留分より合成される樹脂である。
 脂環族系石油樹脂は、C9系樹脂ともいわれ、一般に、石油のC9留分より合成される樹脂である。
 共重合石油樹脂の具体例としては、C5/C9共重合樹脂等が挙げられる。
 水添石油樹脂は、一般に、上記の各種石油樹脂の水素添加により製造されたものである。
 粘着付与剤の含有量としては、耐温水性に優れるという点で、接着性樹脂層の100質量%に対して、1質量%~20質量%であることが好ましく、より好ましくは1質量%~10質量%である。
〔酸価〕
 接着性樹脂層の酸価は、0.01mgKOH/g~6.5mgKOH/gが好ましい。金属部材に対する接着力を向上できる点で、0.01mgKOH/g以上が好ましく、0.1mgKOH/g以上がより好ましく、0.5mgKOH/g以上が特に好ましい。また、耐温水性を向上できる点で、6.5mgKOH/g以下が好ましく、3.0mgKOH/g以下がより好ましく、1.5mgKOH/g以下が特に好ましい。酸価は、JIS K 0070:1992に準じて測定することができる。具体的には、混合キシレン:n―ブタノール=1:1質量比の混合溶媒に、精秤した試料を溶解させて試料溶液を得る。次いで、この試料溶液に、指示薬として1質量/体積%のフェノールフタレインエタノール溶液を数滴加え、滴定液として0.1mol/Lの水酸化カリウムのエチルアルコール溶液を用いて、滴定を行い、次式に従って酸価を算出する。次式において、Tは滴定量(mL)、Fは滴定液のファクター、Wは試料採取量(g)をそれぞれ表す。
  酸価=(T×F×56.11×0.1)/W
 接着性樹脂層の酸価の調整方法としては、接着性樹脂層中の(A)成分の含有量を調整する方法、酸価が0.05mgKOH/g~100mgKOH/gであるポリオレフィンと(a1)成分とを配合する方法等が挙げられる。
 接着性樹脂層の融点は、100℃~200℃が好ましく、より好ましくは120℃~180℃である。耐温水性を向上できる点で、100℃以上が好ましく、加工性を向上できる点で、200℃以下が好ましい。
 融点は、示差走査熱量計(DSC)(例えば、TA Instruments社製、DSCQ100)を用い、サンプル約20mgを測定用のアルミニウム製パンに封入して、25℃から230℃まで10℃/分の昇温速度で測定を行ったときの融解ピーク温度として求めることができる。
〔MFR〕
 接着性樹脂層のMFRは、230℃、試験圧力1.96MPaの測定条件において、1g/10分~30g/10分が好ましく、より好ましくは5g/10分~20g/10分である。加工性を向上できる点で、1g/10分以上が好ましく、耐温水性を向上できる点で、30g/10分以下が好ましい。
 MFRは、JIS K 7210:2014に準拠し、以下の条件で測定することができる。
・装置:フローテスターCFT-500((株)島津製作所製)
・ダイス:Φ1mm×10mm
・試験圧力:1.96MPa
・シリンダー面積:1cm
・シリンダー温度:230℃
〔厚み〕
 接着性樹脂層の厚みは、金属部材の材質、用途等に応じて適宜設定すればよく、特に限定されないが、10~200μmが好ましく、20~200μmがより好ましい。
〔接着性樹脂層の形成方法〕
 接着性樹脂層を形成する方法としては、制限されず、通常用いられる方法から適宜選択することができる。例えば、接着性樹脂層を形成するための組成物(以下、「接着剤組成物」という。)を溶融混練し、押出成形によって、易接着層上に接着性樹脂層を形成することができる。押出成形としては、例えば、共押出法、押出ラミネート法等が挙げられる。
 接着剤組成物は、公知の方法で製造できる。具体的には、(A)成分及び必要に応じてその他成分をヘンシェルミキサー、バンバリーミキサー、V型ブレンダー、タンブラーブレンダー又はリボンブレンダー等を用いて混合することによって得ることが好ましく、該混合物を単軸押出機、多軸押出機、ロール又はニーダー等を用いて180~300℃、好ましくは190~260℃で溶融混練することによって、ペレット状の形態として得ることができる。
 接着剤組成物はペレット状として使用でき、また当該ペレットを、フィルム成形機を用いてフィルム又はシート等の形状(以下、「接着性フィルム」という)として使用できる。また、T-ダイ方式、インフレ方式、カレンダー方式又はスクリュー式押出し機により50℃~200℃の温度で溶融混練し、押出成形により、部材である金属、ガラス又は熱可塑性樹脂の片面又は両面に接着剤組成物からなる接着性樹脂層が積層された接着性フィルムとして使用してもよい。
 なお、部材として熱可塑性樹脂を用いる場合は、接着剤組成物の押出成形を、共押出法、押出ラミネート法により行うことで、熱可塑性樹脂層を有する接着性フィルムを得ることが好ましい。
1-2.樹脂基材
 本開示においては接着性樹脂層を有する積層体の基材として樹脂基材を用いる。かかる基材を構成する樹脂は、目的とする用途において基材に求められる特性に応じて選択可能であるが、湿熱環境下における接着性樹脂層との密着性の向上効果を高くし、金属部材との密着性の向上効果を高くするため、ガラス転移温度(Tg)は高い方が好ましく、75℃以上が好ましく、より好ましくは90℃以上、さらに好ましくは100℃以上である。したがい、熱可塑性樹脂であることが好ましい。樹脂基材のガラス転移温度の上限値は、取扱い性の観点から、200℃以下であることが好ましい。
 ガラス転移温度は、以下の方法にしたがって測定することができる。
 試料10mgを測定用のアルミニウム製パンに封入して示差走査熱量計(TAインスツルメンツ社製・Q100型DSC)に装着し、25℃から20℃/分の速度で300℃まで昇温させ、300℃で5分間保持した後取出して金属板上で冷却することで急冷する。このパンを再度、示差走査熱量計に装着し、25℃から20℃/分の速度で昇温させてガラス転移温度(Tg:℃)及び融点(Tm:℃)を測定する。なお、かかるガラス転移温度は、補外開始温度とする。
 本開示に使用する樹脂基材の厚みは、接着性樹脂層を有する積層体の基材として必要な強度を得るために20μm以上であってもよく、25μm以上であることが好ましく、より好ましくは35μm以上、さらに好ましくは45μm以上であり、また、300μm以下であることが好ましく、より好ましくは270μm以下、さらに好ましくは250μm以下である。他には、150μm以下であってもよく、130μm以下であってもよい。
 本開示においては、上記のようなガラス転移温度が得易い観点、機械特性等が好ましく取り扱い易い観点などから、樹脂としてはポリエステル樹脂、ポリスチレン樹脂、ポリアミド系樹脂が挙げられる。ポリアミド系樹脂としてはナイロン6(N6)、ナイロン66(N66)、ナイロン46(N46)、ナイロン11(N11)、ナイロン12(N12)、ナイロン610(N610)、ナイロン612(N612)、ナイロン6/66共重合体(N6/66)、ナイロン6/66/610共重合体(N6/66/610)、ナイロンMXD6(MXD6)、ナイロン6T、ナイロン6/6T共重合体、ナイロン66/PP共重合体、ナイロン66/PPS共重合体などが挙げられる。この中でも成形性に優れるポリエステル樹脂が好ましく、すなわち樹脂基材としてはポリエステルフィルムが好ましい。
 本開示においてポリエステルフィルムを構成するポリエステル樹脂は、ガラス転移温度が75℃以上であることが好ましい。ガラス転移温度を75℃以上にすることで、湿熱環境下において接着性樹脂層との優れた密着性を維持することができ、金属部材との密着性向上につながる。ガラス転移温度は、より好ましくは90℃以上、さらに好ましくは100℃以上である。
 かかるポリエステル樹脂の具体例として、ポリエチレンテレフタレート、ポリエチレンイソフタレート、ポリブチレンテレフタレート、ポリエチレン-2,6-ナフタレート、ポリエチレン-2,7-ナフタレート、ポリブチレン-2,6-ナフタレートのホモポリマーを好ましく例示することができる。好ましくはガラス転移温度が75℃以上の範囲内においては、他のモノマーを共重合して共重合ポリマーとしてもよい。また、ポリエステル樹脂は、ポリマーブレンドとしてもよい。
 共重合成分としては、例えば、シュウ酸、アジピン酸、フタル酸、セバシン酸、ドデカンカルボン酸、イソフタル酸、テレフタル酸、1,4-シクロヘキサンジカルボン酸、4,4’-ジフェニルジカルボン酸、フェニルインダンジカルボン酸、2,6-ナフタレンジカルボン酸、2,7-ナフタレンジカルボン酸(メインポリマーがポリエチレン-2,7-ナフタレートでない場合)、テトラリンジカルボン酸、デカリンジカルボン酸、ジフェニルエーテルジカルボン酸等の如きジカルボン酸、p-オキシ安息香酸、p-オキシエトキシ安息香酸の如きオキシカルボン酸、或いはプロピレングリコール、トリメチレングリコール、テトラメチレングリコール、ヘキサメチレングリコール、シクロヘキサンメチレングリコール、ネオペンチルグリコール、ビスフェノールスルホンのエチレンオキサイド付加物、ビスフェノールAのエチレンオキサイド付加物、ジエチレングリコール、ポリエチレンオキシドグリコール等の如き2価アルコール類等を好ましく用いることができる。
 これらの化合物は、1種のみでなく2種以上を用いることができる。またこれらの中でもさらに好ましくは、酸成分としてはイソフタル酸、テレフタル酸、4,4’-ジフェニルジカルボン酸、2,6-ナフタレンジカルボン酸、2,7-ナフタレンジカルボン酸、p-オキシ安息香酸、グリコール成分としてはトリメチレングリコール、ヘキサメチレングリコール、ネオペンチルグリコール、ビスフェノールスルホンのエチレンオキサイド付加物を例示することができる。
 ガラス転移温度が90℃以上のポリエステル樹脂の好ましい例としては、特にポリエチレンナフタレートが好ましい。ガラス転移温度が90℃以上である限りにおいて、ポリエチレンナフタレートは共重合ポリマーとしてもよい。また、ポリエチレンナフタレートは、ポリマーブレンドとしてもよい。なかでもポリエチレン-2、6-ナフタレートを主体とするポリエステル樹脂が力学的物性及び耐湿熱性が良いので好ましい。ここで「主体とする」とは、ポリエステル樹脂の全繰り返し単位の90モル%以上、好ましくは95モル%以上がエチレン-2,6-ナフタレート単位であることを表す。
〔添加剤〕
 本開示における樹脂基材には、本開示の目的を阻害しない限りにおいて、滑り性を向上させる等の目的で必要に応じて適当なフィラーを含有させることができる。このフィラーとしては、従来からポリエステルフィルム等のフィルム及びシートの滑り性付与剤として知られているものを用いることができるが、例えば、炭酸カルシウム、酸化カルシウム、酸化アルミニウム、カオリン、酸化珪素、酸化亜鉛、カーボンブラック、炭化珪素、酸化錫、架橋アクリル樹脂粒子、架橋ポリスチレン樹脂粒子、メラミン樹脂粒子、架橋シリコン樹脂粒子等を挙げることができる。さらに樹脂基材には、着色剤、帯電防止剤、酸化防止剤、有機滑材、触媒等をも適宜添加することができる。
〔製造方法〕
 本開示に用いられる樹脂基材及びそれに用いられる樹脂は、当業者に従来公知の方法で製造可能である。
 以下、樹脂としてポリエステル樹脂を用いた場合について代表例として説明する。なお、他の樹脂の場合も下記を参考にして樹脂基材を得ればよい。
(ポリエステルの製造方法)
 本開示におけるポリエステル樹脂は、従来公知の方法、例えばテレフタル酸、ナフタレンジカルボン酸等のカルボン酸とグリコールとの反応で直接低重合度ポリエステル樹脂を得る方法、ジカルボン酸の低級アルキルエステルとグリコールとをエステル交換触媒を用いて反応させた後、重合触媒の存在下で重合を行う方法等で、得ることができる。
 上記においてエステル交換触媒としては、ナトリウム、カリウム、マグネシウム、カルシウム、亜鉛、ストロンチウム、チタン、ジルコニウム、マンガン、コバルトを含む化合物の一種又は二種以上を用いることができる。重合触媒としては三酸化アンチモン、五酸化アンチモンのようなアンチモン化合物、二酸化ゲルマニウムで代表されるようなゲルマニウム化合物、テトラエチルチタネート、テトラプロピルチタネート、テトラフェニルチタネート又はこれらの部分加水分解物、シュウ酸チタニルアンモニウム、シュウ酸チタニルカリウム、チタントリスアセチルアセトネートのようなチタン化合物が挙げられる。
 エステル交換反応を経由して重合を行う場合は、重合反応前にエステル交換触媒を失活させる目的でトリメチルホスフェート、トリエチルホスフェート、トリ-n-ブチルホスフェート、正リン酸等のリン化合物が添加されるが、ポリエステル樹脂中のリン元素としての含有量が20質量ppm~100質量ppmであることがポリエステル樹脂の熱安定性の点から好ましい。
 ポリエステル樹脂は溶融重合後これをチップ化し、加熱減圧下又は窒素などの不活性気流中において固相重合することもできる。
 樹脂基材を構成するポリエステル樹脂の固有粘度(35℃、オルトクロロフェノール)は0.40dl/g以上であることが好ましく、0.40dl/g~0.90dl/gであることがさらに好ましい。固有粘度が低すぎると工程切断が発生し易くなる傾向にある。また高すぎると溶融粘度が高くなる傾向にあるため溶融押出しが困難になる傾向にあり、重合時間が長くなる傾向にある。なお、固有粘度が低すぎると、耐加水分解性が低下する傾向にもある。
(ポリエステルフィルムの製造方法)
 本開示に用いられるポリエステルフィルムは、例えば上記のポリエステル樹脂をシート状に溶融押出し、キャスティングドラムで冷却固化させて未延伸フィルムとし、この未延伸フィルムを「Tg(単位:℃)」~「Tg(単位:℃)+60℃」で長手方向(製膜機械軸方向のこと。縦方向又はMD(Machine Direction)ともいう。)に1回もしくは2回以上の合計の倍率が3倍~6倍になるよう延伸し、「Tg(単位:℃)」~「Tg(単位:℃)+60℃」で幅方向(製膜機械軸方向と厚み方向とに垂直な方向のこと。横方向又はTD(Transverse Direction)ともいう。)に1回もしくは2回以上の合計の倍率が3倍~5倍になるように延伸し、必要に応じて更に「Tm(単位:℃)-80℃」~「Tm(単位:℃)-20℃」で1秒間~60秒間熱処理を行い、必要に応じて更に熱処理温度より10℃~20℃低い温度で幅方向に0%~20%収縮させながら再熱処理を行うことにより得ることができる。なお、ここでTgはフィルムの原料であるポリエステル樹脂のガラス転移温度、Tmは融点を表す。また、上記延伸は、逐次二軸延伸でもよいし、同時二軸延伸でもよい。
1-3.易接着層
 本開示においては、樹脂基材に優れた接着性を付与するために、上記樹脂基材の少なくとも一方の表面に、易接着を目的とした層(以下、「易接着層」という。)を形成する。かかる易接着層は塗膜であってもよい。このような易接着層は、本開示の接着性樹脂層との密着性を向上させることができる。
 易接着層を構成する成分は、本開示の目的を達成するものであればどのようなものを使用してもよいが、溶解パラメーター(Solubility Parameter:SP値、以下「SP値」と略す。)が、接着性樹脂層のSP値と樹脂基材のSP値との間にあることが接着性の観点から好ましい。
 易接着層のSP値は、接着性樹脂層のSP値よりも大きいことが好ましく、樹脂基材のSP値よりも小さいことが好ましい。易接着層のSP値、接着性樹脂層のSP値、及び樹脂基材のSP値の上記大小関係において、易接着層のSP値と接着性樹脂層のSP値との差の絶対値は、3.0(J/cm1/2以下であることが好ましく、2.5(J/cm1/2以下であることがより好ましく、2.0(J/cm1/2以下であることが特に好ましい。なお、易接着層のSP値と接着性樹脂層のSP値との差の絶対値の下限値は、0(J/cm1/2を超えることが好ましく、1.0(J/cm1/2以上であることがより好ましい。
 溶解パラメーターは、Fedorsの計算式を用いて求めることができる。具体的には、樹脂基材、接着性樹脂層、易接着層の化学構造式から、Fedorsの計算式を用いて、「ポリマー・エンジニアリング・アンド・サイエンス(Polymer Eng.& Sci.)」,第14巻,第2号(1974),第148~154ページを参照して計算によりSP値を求める。
  δi=[Ev/V]1/2=[Δei/Δvi]1/2
  Ev:蒸発エネルギー
  V:モル体積
  Δei:i成分の原子又は原子団の蒸発エネルギー
  Δvi:i成分の原子又は原子団のモル体積
 全原子又は全原子団の総和として下記式からSP値を求める。
  σ=(Σei/Σvi)1/2
 易接着層としては、ポリエステル樹脂、アクリル樹脂、ポリウレタン樹脂の中から選ばれた少なくとも1種類のバインダー樹脂を主成分とする組成物からなることが特に好ましい。ポリエステル樹脂としては、アクリル系樹脂変性ポリエステル樹脂及びビニル系樹脂変性ポリエステル樹脂を好ましく例示できる。
 ポリエステル樹脂を構成する成分としては、以下のような多価カルボン酸及び多価ヒドロキシ化合物に由来する成分(すなわち、構成単位をいう。以下同様。)を例示できる。すなわち、多価カルボン酸に由来する成分としては、テレフタル酸、イソフタル酸、オルトフタル酸、4,4’-ジフェニルジカルボン酸、2,5-ナフタレンジカルボン酸、2,6-ナフタレンジカルボン酸、1,4-シクロヘキサンジカルボン酸、2-カリウムスルホテレフタル酸、5-ナトリウムスルホイソフタル酸、アジピン酸、アゼライン酸、セバシン酸、ドデカンジカルボン酸、グルタル酸、コハク酸、トリメリット酸、トリメシン酸、無水トリメリット酸、無水フタル酸、p-ヒドロキシ安息香酸、トリメリット酸モノカリウム塩、及びそれらのエステル形成性誘導体等に由来する成分を用いることができ、多価ヒドロキシ化合物に由来する成分としては、エチレングリコール、1,2-プロピレングリコール、1,3-プロピレングリコール、1,4-ブタンジオール、1,6-ヘキサンジオール、2-メチルー1,5-ペンタンジオール、ネオペンチルグリコール、1,4-シクロヘキサンジメタノール、p-キシリレングリコール、ビスフェノールA-エチレングリコール付加物、ビスフェノールA-1,2-プロピレングリコール付加物、ジエチレングリコール、トリエチレングリコール、ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコール、ポリテトラメチレンオキシドグリコール、ジメチロールプロピオン酸、グリセリン、トリメチロールプロパン、ジメチロールエチルスルホン酸ナトリウム、ジメチロールプロピオン酸カリウム等に由来する成分を用いることができる。これらの化合物の中から、それぞれ適宜1つ以上選択して、常法の重縮合反応によりポリエステル樹脂を合成する。なお、上記のほか、ポリエステル樹脂は、後述するアクリル系樹脂変性ポリエステル樹脂、ビニル系樹脂変性ポリエステル樹脂、ポリエステルポリオールをイソシアネートで鎖延長したポリエステルポリウレタン等のポリエステル成分を有する複合高分子などであってもよい。
 アクリル樹脂を構成する成分としては、アルキルアクリレートあるいはアルキルメタクリレートに由来する成分を主要な成分とするものが好ましく、アクリル樹脂に対して、当該成分が30モル%~90モル%であり、共重合可能でかつ官能基を有するビニル単量体に由来する成分70モル%~10モル%を含有する水溶性あるいは水分散性樹脂であるものがより好ましい。
 アルキルアクリレートあるいはアルキルメタクリレートと共重合可能でかつ官能基を有するビニル単量体は、官能基としてカルボキシル基又はその塩、酸無水物基、スルホン酸基又はその塩、アミド基又はアルキロール化されたアミド基、アミノ基(置換アミノ基を含む)又はアルキロール化されたアミノ基あるいはそれらの塩、水酸基、エポキシ基などを有するビニル単量体である。これらの中でも官能基として特に好ましいものはカルボキシル基又はその塩、酸無水物基、エポキシ基などである。これらの基は樹脂中に2種類以上含有されていてもよい。
 アルキルアクリレート及びアルキルメタクリレートのアルキル基の例としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、t-ブチル基、2-エチルヘキシル基、ラウリル基、ステアリル基、シクロヘキシル基などが挙げられる。
 アルキルアクリレートあるいはアルキルメタクリレートと共重合する官能基を有するビニル系単量体は、反応性官能基、自己架橋性官能基、親水性基などの官能基を有する下記の化合物類が使用できる。
 カルボキシル基又はその塩、酸無水物基を有する化合物としては、アクリル酸、メタクリル酸、イタコン酸、マレイン酸、これらのカルボン酸のナトリウムなどとの金属塩、アンモニウム塩あるいは無水マレイン酸などが挙げられる。
 スルホン酸基又はその塩を有する化合物としては、ビニルスルホン酸、スチレンスルホン酸、これらのスルホン酸のナトリウムなどとの金属塩、アンモニウム塩などが挙げられる。
 アミド基あるいはアルキロール化されたアミド基を有する化合物としては、アクリルアミド、メタクリルアミド、N-メチルメタクリルアミド、メチロール化アクリルアミド、メチロール化メタクリルアミド、ウレイドビニルエーテル、β-ウレイドイソブチルビニルエーテル、ウレイドエチルアクリレートなどが挙げられる。
 アミノ基あるいはアルキロール化されたアミノ基あるいはそれらの塩を有する化合物としては、ジエチルアミノエチルビニルエーテル、2-アミノエチルビニルエーテル、3-アミノプロピルビニルエーテル、2ーアミノブチルビニルエーテル、ジメチルアミノエチルメタクリレート、ジメチルアミノエチルビニルエーテル、それらのアミノ基をメチロール化したもの、ハロゲン化アルキル、ジメチル硫酸、サルトンなどにより4級化したものなどが挙げられる。
 水酸基を有する化合物としては、β-ヒドロキシエチルアクリレート、β-ヒドロキシエチルメタクリレート、β-ヒドロキシプロピルアクリレート、β-ヒドロキシプロピルメタクリレート、β-ヒドロキシエチルビニルエーテル、5-ヒドロキシペンチルビニルエーテル、6-ヒドロキシヘキシルビニルエーテル、ポリエチレングリコールモノアクリレート、ポリエチレングリコールモノメタクリレート、ポリプロピレングリコールモノアクリレート、ポリプロピレングリコールモノメタクリレートなどが挙げられる。
 エポキシ基を有する化合物としては、グリシジルアクリレート、グリシジルメタクリレートなどが挙げられる。その他官能基を有する化合物として、ビニルイソシアネート、アリルイソシアネートなどが挙げられる。
 さらに、エチレン、プロピレン、メチルペンテン、ブタジエン、スチレン、αーメチルスチレン等のオレフィン類、ビニルメチルエーテル、ビニルエチルエーテル、ビニルトリアルコキシシラン、アクリロニトリル、メタクリロニトリル、塩化ビニリデン、塩化ビニル、フッ化ビニリデン、四フッ化エチレン、酢酸ビニルなどもビニル系単量体化合物として挙げられる。
 ポリウレタン樹脂を構成する成分としては、以下のような多価ヒドロキシ化合物に由来する成分、多価イソシアネート化合物に由来する成分、鎖長延長剤に由来する成分、架橋剤に由来する成分などを例示できる。すなわち、多価ヒドロキシ化合物に由来する成分としては、ポリオキシエチレングリコール、ポリオキシプロピレングリコール、ポリオキシテトラメチレングリコールのようなポリエーテル類、ポリエチレンアジペート、ポリエチレン-ブチレンアジペート、ポリカプロラクトンのようなポリエステル類、ポリカーボネート類、アクリル系ポリオール、ひまし油等に由来する成分を用いることができる。多価イソシアネート化合物に由来する成分としては、トリレンジイソシアネート、フェニレンジイソシアネート、4,4’-ジフェニルメタンジイソシアネート、ヘキサメチレンジイソシアネート、キシリレンジイソシアネート、4,4’-ジシクロヘキシルメタンジイソシアネート、イソホロンジイソシアネート等に由来する成分を用いることができる。鎖長延長剤に由来する成分あるいは架橋剤に由来する成分の例としては、エチレングリコール、プロピレングリコール、ジエチレングリコール、トリメチロールプロパン、ヒドラジン、エチレンジアミン、ジエチレントリアミン、エチレンジアミン-ナトリウムアクリレート付加物、4,4’-ジアミノジフェニルメタン、4,4’-ジアミノジシクロヘキシルメタン、水等に由来する成分を用いることができる。これらの化合物の中から、それぞれ適宜1つ以上選択して、常法の重縮合-架橋反応によりポリウレタン樹脂を合成する。
 アクリル系樹脂変性ポリエステル樹脂及びビニル系樹脂変性ポリエステル樹脂は、ポリエステルの水溶液又は水分散液中においてアクリル系樹脂又はビニル系樹脂を重合することによって合成できる。このポリエステルを構成する成分としては、上述したものと同様の多価カルボン酸に由来する成分及び多価ヒドロキシ化合物に由来する成分及びこれらの化合物のエステル形成性誘導体に由来する成分を例示できる。
 アクリル系樹脂及びビニル系樹脂を構成する成分としては、やはり上述したものと同様のアルキルアクリレートに由来する成分あるいはアルキルメタクリレートに由来する成分、またこれらと共重合する上述したものと同様のビニル系単量体化合物に由来する成分の1種あるいは2種以上を適宜用いることができる。
 本開示のアクリル系樹脂変性ポリエステル樹脂及びビニル系樹脂変性ポリエステル樹脂として、特開平1-165633号公報に記載されている、いわゆるアクリルグラフトポリエステルのような分子構造を持つものも含まれる。
 易接着層中の上記バインダー樹脂の含有量は、易接着層の全質量に対して、80質量%以上であることが好ましく、90質量%以上であることがより好ましい。
 易接着層は、上記成分以外にメラミン樹脂等の他の樹脂、帯電防止剤、着色剤、界面活性剤、紫外線吸収剤等を使用してもよい。
 本開示における易接着層は、上記バインダー樹脂に加えて、架橋剤を含有する組成物から形成されることが好ましい。これにより接着性がさらに向上する。架橋剤としては、オキサゾリン系架橋剤、グリシジルアミン系架橋剤が好ましく挙げられる。架橋剤の含有量は、バインダー樹脂100質量部に対して3質量部~40質量部が好ましく、4質量部以上、5質量部以上がより好ましく、また、35質量部以下、30質量部以下がより好ましい。
〔易接着層の形成方法〕
 このような易接着層を、樹脂基材の少なくとも一方の表面に形成する方法としては、制限されず、通常用いられる方法から適宜選択することができる。例えば、易接着層を形成するための塗液を樹脂基材に塗布し、乾燥することによって、易接着層を形成することができる。共押出法又はラミネーション法によって形成してもよい。
 例えば、樹脂基材がポリエステルフィルムである場合、延伸可能なポリエステルフィルムに易接着層を形成する成分を含む塗液(水溶液又は水分散液、エマルジョン型分散液が好ましい)を塗布したのち、乾燥、延伸し必要に応じて熱処理することにより積層することができる。この塗液の塗工は、通常の塗工工程、すなわち、二軸延伸熱固定したポリエステルフィルムに該フィルムの製造工程と切り離した工程で行ってもよいが、よりクリーンな雰囲気での塗布、すなわち該フィルムの製造工程中で行う方が、埃、ちり等を巻き込み難いので好ましい。また、該フィルムの製造工程中で行う塗布の中でも、延伸可能なポリエステルフィルムの状態で塗布することが、後の延伸によって、塗膜のポリエステルフィルムへの密着性をより向上させることができることからより好ましい。ここで、「延伸可能なポリエステルフィルム」とは、未延伸ポリエステルフィルム、一軸延伸ポリエステルフィルム又は二軸延伸ポリエステルフィルムを意味し、この中でも、フィルム製膜方向(縦方向)に一軸延伸したポリエステルフィルムが特に好ましい。塗布方法としては、公知の任意の塗布方法が適用でき、例えば、ロールコート法、グラビアコート法、ロールブラッシュ法、スプレーコート法、エアーナイフコート法、含浸法及びカーテンコート法などを単独又は組み合わせて用いることが出来る。塗布量は走行しているフィルム1m当たり0.5g~20g、さらに1g~10gが好ましく、乾燥後の易接着層の厚みとしては、8nm~200nmが好ましく、さらに好ましくは10nm~100nmである。易接着層の厚みが薄すぎる場合は易接着層の密着性の向上効果が低くなる傾向にあり、他方厚すぎる場合は易接着層内において凝集破壊が生じ易くなる傾向にあり、湿熱環境下におけるヒートシール層との密着性の向上効果が低下する傾向にある。
1-4.金属部材
 金属部材としては、表面自由エネルギーに占める双極子項の割合が0.01%~5.0%であれば制限されず、例えば、鉄、アルミニウム、チタン、マグネシウム、銅、ニッケル、クロム等を含む金属部材が挙げられる。上記の中でも、耐酸性に優れる点で、チタンを含む金属部材が好ましい。また、金属部材の具体例としては、鉄、アルミニウム、チタン、マグネシウム、銅、ニッケル、クロム及びその他金属等、並びにそれらの合金等が挙げられる。上記の中でも、金属部材としては、耐酸性に優れる点で、チタン又はチタン合金であることが好ましい。
 耐温水性に優れる点で、表面自由エネルギーに占める双極子項の割合が0.01%~2.5%であることが好ましく、0.01%~1.5%であることがより好ましく、0.01%~1.0%であることが特に好ましい。
 ここで、金属部材の表面自由エネルギー並びにそれらの分散項、双極子項及び水素結合項は、以下の略号で表すものとする。金属部材の表面自由エネルギーに占める双極子項の割合は、「γM P÷γM×100」で計算される。
 γM:金属部材の表面自由エネルギー(γM D+γM P+γM H
 γM D:金属部材の表面自由エネルギーの分散項
 γM P:金属部材の表面自由エネルギーの双極子項
 γM H:金属部材の表面自由エネルギーの水素結合項
 上記γM、γM D、γM P、及びγM Hは、JIS R 3257:1999に規定される接触角計を用いた静滴法により、以下の条件で3点法による接触角を測定し、拡張Fowkes式を用いて計算される。
 測定温度:25℃
 液体:水、α-ブロモナフタレン、ジヨードメタン
 金属部材の厚みとしては、その材質、用途等に応じて適宜設定すればよく、特に限定されない。
 金属部材の形状としては、用途等に応じて適宜設定すればよく、特に限定されないが、フィルム状、シート状、板状、アングル状及び棒状等が挙げられる。特に、耐温水性が要求される燃料電池用の金属部材として、燃料電池セパレータが挙げられる。
 本開示の燃料電池用接合体においては、耐温水性の観点から、金属部材の表面自由エネルギーγMと接着性樹脂層の表面自由エネルギーγAとの関係は、γM-γA≧5.0mN/mを満たすことが好ましく、γM-γA≧6.0mN/mを満たすことがより好ましい。さらに、はく離強度の観点から、金属部材の表面自由エネルギーと接着性樹脂層の表面自由エネルギーとの差は、γM-γA≧10.0mN/mを満たすことが好ましい。また、安定した品質を保つことができること、耐温水性及びはく離強度の点で、金属部材の表面自由エネルギーγMと接着性樹脂層の表面自由エネルギーγAとの関係は、γM-γA≦30mN/mを満たすことが好ましく、γM-γA≦15mN/mを満たすことがより好ましく、13mN/m以下が特に好ましい。
 ここで、接着性樹脂層の表面自由エネルギー、並びにそれらの分散項、双極子項及び水素結合項は、以下の略号で表すものとする。
 γA:接着性樹脂層の表面自由エネルギー(γA D+γA P+γA H
 γA D:接着性樹脂層の表面自由エネルギーの分散項
 γA P:接着性樹脂層の表面自由エネルギーの双極子項
 γA H:接着性樹脂層の表面自由エネルギーの水素結合項
 上記γA、γA D、γA P、及びγA Hは、JIS R 3257:1999に規定される接触角計を用いた静滴法により、以下の条件で3点法による接触角を測定し、拡張Fowkes式を用いて計算される。
 測定温度:25℃
 液体:水、α-ブロモナフタレン、ジヨードメタン
1-5.その他の部材
 本開示の燃料電池用接合体に含まれる上記接着性樹脂層に接着される部材のうち、上記金属部材以外の部材(以下、「その他の部材」ということがある。)としては、例えば、ガラス、熱可塑性樹脂等が挙げられる。
 ガラスとしては、アルカリガラス、無アルカリガラス及び石英ガラス等が挙げられる。
 熱可塑性樹脂としては、ポリオレフィン系樹脂、ポリエステル系樹脂、ポリアミド系樹脂、ポリアクリロニトリル系樹脂、ポリビニルアルコール系樹脂及びポリ塩化ビニル系樹脂が挙げられる。
 その他の部材の形状としては、用途等に応じて適宜設定すればよく、特に限定されないが、フィルム状、シート状、板状、アングル状及び棒状等が挙げられる。
2.用途
 本開示の燃料電池用接合体は、耐温水性に優れるため、車載用電池分野等における燃料電池の部材として好適に使用することができる。特に燃料電池セパレータの接合体として好適に使用することができる。
3.積層体
 本開示の積層体は、樹脂基材と、上記樹脂基材の少なくとも一方の表面に設けられた易接着層と、上記易接着層の上記樹脂基材とは反対側の表面に設けられ、酸性基及び酸無水物基からなる群より選択される少なくとも1種の基を有し、酸価が0.01mgKOH/g~6.5mgKOH/gであるポリオレフィンを含有する接着性樹脂層と、を有し、本開示の燃料電池用接合体に用いられるものである。本開示の積層体の態様については、上記「1.燃料電池用接合体」において説明した積層体の態様と同様であり、好ましい態様も同様である。
 以下、実施例により本開示を詳細に説明するが、本開示はこれらに制限されるものではない。なお、特に断りのない限り、「部」、「%」は質量基準である。
1.測定方法〔酸価〕
 酸価は、試料1g中に含まれる酸を中和するのに要する水酸化カリウムのミリグラム数を示し、JIS K 0070:1992に準じて測定した。
 具体的には、混合キシレン:n―ブタノール=1:1質量比の混合溶媒に、精秤した試料を溶解させて試料溶液を得る。次いで、この試料溶液に、指示薬として1質量/体積%のフェノールフタレインエタノール溶液を数滴加え、滴定液として0.1mol/Lの水酸化カリウムのエチルアルコール溶液を用いて、滴定を行い、次式に従って酸価を算出した。
 酸価=(T×F×56.11×0.1)/W
 ここで、上記計算式において、Tは滴定量(mL)、Fは滴定液のファクター、Wは試料採取量(g)をそれぞれ表す。
〔MFR〕
 以下の条件でMFR(単位:g/10分)を測定した。
・装置:フローテスターCFT-500((株)島津製作所製)
・ダイス:Φ1mm×10mm
・試験圧力:1.96MPa
・シリンダー面積:1cm
・シリンダー温度:230℃
〔表面自由エネルギー〕
 JIS R 3257:1999に規定される接触角計を用いた静滴法により、以下の条件で3点法による接触角を測定し、拡張Fowkes式を用いて、γM、γM D、γM P及びγM H、並びにγA、γA D、γA P及びγA Hをそれぞれ計算した。また、静滴法に用いた各液体のγL、γL D、γL P及びγL Hを下記表1に示す。
 装置:CA-X型接触角計(協和界面科学(株)製)
 測定温度:25℃
 液体:水、α-ブロモナフタレン、ジヨードメタン
Figure JPOXMLDOC01-appb-T000001
〔ガラス転移温度〕
 試料10mgを測定用のアルミニウム製パンに封入して示差走査熱量計(TAインスツルメンツ社製・Q100型DSC)に装着し、25℃から20℃/分の速度で300℃まで昇温させ、300℃で5分間保持した後取出して金属板上で冷却することで急冷した。このパンを再度、示差走査熱量計に装着し、25℃から20℃/分の速度で昇温させてガラス転移温度(Tg:℃)及び融点(Tm:℃)を測定した。なお、かかるガラス転移温度は、補外開始温度とした。
〔厚み〕
 JIS K 7130:1999の規定に準じ、各層の厚みを測定した。
〔溶解パラメーター(SP値)〕
 以下の方法でSP値を求めた。
 使用した樹脂基材、接着性樹脂層、易接着層の化学構造式から、Fedorsの計算式を用いて、「ポリマー・エンジニアリング・アンド・サイエンス(Polymer Eng.& Sci.)」,第14巻,第2号(1974),第148~154ページを参照して計算によりSP値を求めた。
  δi=[Ev/V]1/2=[Δei/Δvi]1/2
  Ev:蒸発エネルギー
  V:モル体積
  Δei:i成分の原子又は原子団の蒸発エネルギー
  Δvi:i成分の原子又は原子団のモル体積
 全原子又は全原子団の総和として下記式からSP値を求めた。
  σ=(Σei/Σvi)1/2
2.使用した樹脂の物性
 下記表2に、使用した樹脂の酸価及びMFRを示す。
Figure JPOXMLDOC01-appb-T000002
3.使用した金属部材の物性
 下記表3に、金属部材として使用した5種類(M1~M5)の材質、表面自由エネルギー、並びにそれらの分散項、双極子項、水素結合項及び表面自由エネルギーに占める双極子項の割合を示す。なお、金属部材としては、サイズが10mm×30mm、厚みは100μmの板を使用した。
Figure JPOXMLDOC01-appb-T000003
4.実施例1〔積層体の製造〕
(易接着剤の調製)
 下記処方により易接着剤(固形分濃度4質量%)を調製した。希釈溶媒はイオン交換水を用いた。
・アクリル樹脂(日本カーバイト工業(株)製、商品名RX7770):85質量部
・エポキシ系架橋剤(三菱ガス化学(株)製、商品名TETRAD-X):7.5質量部
・界面活性剤(三洋化成工業(株)製、商品名サンノニックSS-70):7.5質量部
(易接着層を有する樹脂基材の製造)
 エステル交換触媒として酢酸マンガン四水塩を、重合触媒として三酸化アンチモンを用いて、固有粘度0.60dl/g(35℃、オルトクロロフェノール)のポリエチレン-2,6-ナフタレート(表4中「PEN」と示す。)を合成した。得られた樹脂を、170℃ドライヤーで6時間乾燥後、押出機に投入し、溶融温度300℃で溶融混練した。300℃のダイスリットより樹脂を押し出した後、表面温度25℃に設定したキャスティングドラム上で冷却固化させて未延伸フィルムを作製した。この未延伸フィルムを140℃に加熱したロール群に導き、長手方向に3.5倍で延伸し、25℃のロール群で冷却した。
 縦延伸後のフィルムの両面に、上記易接着剤をロールコーター法により、最終的に得られる積層体における易接着層の厚みがそれぞれ50nmとなるように塗布した。続いて、フィルムの両端をクリップで保持しながらテンター内に導き、135℃に加熱された雰囲気中で横方向に3.5倍で延伸した。テンタ-内で、220℃で40秒間の熱固定を行い、220℃で幅方向に1%弛緩した後、均一に徐冷して室温まで冷やし、200μm厚みの二軸延伸フィルムを得た。
(接着性樹脂層の形成)
 次に、得られた二軸延伸フィルムの両面の易接着層の上に、押出ラミネート法により、表4に示す組成の接着性樹脂層を形成し、積層体を得た。得られた接着性樹脂層のそれぞれの厚みは50μmであった。なお、押出ラミネートの条件は、押出温度230℃とした。
5.実施例2~5及び10、並びに比較例1~8
 接着性樹脂層の構成及び用いる金属部材を表4のように変更する以外は、実施例1と同様にして積層体を製造した。
6.実施例6
 下記に従って易接着層を有する樹脂基材を製造する点以外は、実施例1と同様にして積層体を製造した。
 エステル交換触媒として酢酸マンガン四水塩を、重合触媒として三酸化アンチモンを用いて、樹脂として固有粘度0.58dl/g(35℃、オルトクロロフェノール)のポリエチレンテレフタレート(表4中「PET」と示す。)を合成した。得られた樹脂を、170℃ドライヤーで6時間乾燥後、押出機に投入し、溶融温度300℃で溶融混練して300℃のダイスリットより押し出した後、表面温度25℃に設定したキャスティングドラム上で冷却固化させて未延伸フィルムを作成した。
 この未延伸フィルムを140℃に加熱したロール群に導き、長手方向に3.5倍で延伸し、25℃のロール群で冷却した。
 続いて、縦延伸後のフィルムの両面に、実施例1と同様にして易接着剤をロールコーター法により塗布した。
 続いて、フィルムの両端をクリップで保持しながらテンターに導き、135℃に加熱された雰囲気中で横方向に3.5倍で延伸した。その後、テンター内で220℃で40秒間の熱固定を行い、220℃で幅方向に1%弛緩後、均一に徐冷して室温まで冷やし、200μm厚みの二軸延伸フィルムを得た。
7.実施例7~9
 易接着層の構成を表4のように変更する以外は、実施例1と同様にして積層体を製造した。
8.評価
 実施例1~10及び比較例1~8の積層体を用いて、はく離接着強さ、及び定荷重浸漬試験の落下時間について評価した。評価結果をまとめて表4に示す。
〔はく離接着強さ〕
 実施例1~10及び比較例1~8の積層体をそれぞれ10mm×20mmのサイズにカットした。得られた各積層体の両面の接着性樹脂層に、表4の記載にしたがって選択した板状の金属部材をそれぞれ加熱圧着して燃料電池用接合体を作製した。このときの条件は、温度160℃、圧力3.0MPa、圧着時間10秒とした。接合体の作製においては、積層体の長手方向の一方の端部と、金属部材の長手方向の一方の端部との位置を合わせて、積層体に金属部材を加熱圧着することで、接合体における金属部材の長手方向の他方の端部に、接着性樹脂層が接着されていない部分を設けた。その後、25℃に調温された環境で3日間収容して試験片を得た。
 得られた試験片の2枚の金属部材のうち、接着性樹脂層が接着されていない部分をそれぞれ上下チャックに固定し、金属部材と接着性樹脂層との間のはく離接着強さ(N/10mm)を測定した。測定条件は、温度が25℃、引張速度は30mm/分とした。
〔定荷重浸漬試験の落下時間(耐温水性)〕
 はく離接着強さと同様の手順で作製した試験片の一方の金属部材のうち接着性樹脂層が接着されていない部分をフックを用いて上から吊るし、さらに、もう一方の金属部材のうち接着性樹脂層が接着されていない部分にフックを用いておもりを取り付け、温水中で荷重0.4N/mmとなるようにおもりを用いて荷重をかけた。試験片をおもりと共に95℃の温水中に浸漬し、接着部位が剥がれておもりが落下するまでの時間を測定した。
Figure JPOXMLDOC01-appb-T000004
 表4より、実施例1~10の積層体を用いて形成した燃料電池用接合体は、比較例1~8の積層体を用いて形成した燃料電池用接合体に比べて、耐温水性に優れることがわかった。
 本開示の燃料電池用接合体及び積層体は、車載用電池分野等における燃料電池の部材として好適に使用することができる。

Claims (16)

  1.  酸性基及び酸無水物基からなる群より選択される少なくとも1種の基を有し、酸価が0.01mgKOH/g~6.5mgKOH/gであるポリオレフィンを含有する接着性樹脂層と、
     前記接着性樹脂層を介して接着された2つ以上の部材と、
     を有し、
     前記部材の少なくとも1つは、表面自由エネルギーに占める双極子項の割合が0.01%~5.0%の金属部材である燃料電池用接合体。
  2.  樹脂基材と、前記樹脂基材の少なくとも一方の表面に設けられた易接着層と、前記易接着層の前記樹脂基材とは反対側の表面に設けられ、酸性基及び酸無水物基からなる群より選択される少なくとも1種の基を有し、酸価が0.01mgKOH/g~6.5mgKOH/gであるポリオレフィンを含有する接着性樹脂層と、を有する積層体と、
     前記積層体の前記接着性樹脂層の表面の少なくとも一部に接着された、表面自由エネルギーに占める双極子項の割合が0.01%~5.0%である金属部材と、
     を有する燃料電池用接合体。
  3.  前記易接着層の溶解パラメーターが、前記接着性樹脂層の溶解パラメーターより大きく、前記樹脂基材の溶解パラメーターより小さく、前記易接着層の溶解パラメーターと前記接着性樹脂層の溶解パラメーターとの差の絶対値が、3.0(J/cm1/2以下である請求項2に記載の燃料電池用接合体。
  4.  前記易接着層の厚みが、8nm~200nmである請求項2又は請求項3に記載の燃料電池用接合体。
  5.  前記樹脂基材のガラス転移温度が、90℃以上である請求項2~請求項4のいずれか1項に記載の燃料電池用接合体。
  6.  前記積層体が、前記樹脂基材の両面に設けられた前記易接着層と、前記易接着層の前記樹脂基材とは反対側の表面にそれぞれ設けられた前記接着性樹脂層と、を有する請求項2~請求項5のいずれか1項に記載の燃料電池用接合体。
  7.  前記酸性基がカルボン酸基を含み、前記酸無水物基がカルボン酸無水物基を含む請求項1~請求項6のいずれか1項に記載の燃料電池用接合体。
  8.  前記ポリオレフィンがプロピレン単位を含み、前記プロピレン単位の含有量が、ポリオレフィンに対して、50質量%以上である請求項1~請求項7のいずれか1項に記載の燃料電池用接合体。
  9.  前記ポリオレフィンの酸価が、0.01mgKOH/g~3.0mgKOH/gである請求項1~請求項8のいずれか1項に記載の燃料電池用接合体。
  10.  前記接着性樹脂層が、スチレン系熱可塑性エラストマーをさらに含有する請求項1~請求項9のいずれか1項に記載の燃料電池用接合体。
  11.  前記スチレン系熱可塑性エラストマーの含有量が、前記ポリオレフィン及び前記スチレン系熱可塑性エラストマーの合計量に対して、20質量%以下である請求項10に記載の燃料電池用接合体。
  12.  前記接着性樹脂層の酸価が、0.01mgKOH/g~6.5mgKOH/gである請求項1~請求項11のいずれか1項に記載の燃料電池用接合体。
  13.  前記金属部材の表面自由エネルギーγMと前記接着性樹脂層の表面自由エネルギーγAとの関係が、γM-γA≧5.0mN/mを満たす請求項1~請求項12のいずれか1項に記載の燃料電池用接合体。
  14.  前記金属部材が、チタン又はチタン合金である請求項1~請求項13のいずれか1項に記載の燃料電池用接合体。
  15.  樹脂基材と、
     前記樹脂基材の少なくとも一方の表面に設けられた易接着層と、
     前記易接着層の前記樹脂基材とは反対側の表面に設けられ、酸性基及び酸無水物基からなる群より選択される少なくとも1種の基を有し、酸価が0.01mgKOH/g~6.5mgKOH/gであるポリオレフィンを含有する接着性樹脂層と、を有し、
     請求項2~請求項6のいずれか1項に記載の燃料電池用接合体に用いる積層体。
  16.  積層体を用いて燃料電池の金属部材を接合する接合方法であって、
     前記積層体は、請求項2~請求項6のいずれか1項に記載の前記積層体であり、
     前記金属部材は、表面自由エネルギーに占める双極子項の割合が0.01%~5.0%である、接合方法。
PCT/JP2020/034328 2019-09-26 2020-09-10 燃料電池用接合体、及び積層体 WO2021060000A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2021548787A JP7404379B2 (ja) 2019-09-26 2020-09-10 燃料電池用接合体、及び積層体
KR1020227008395A KR102696762B1 (ko) 2019-09-26 2020-09-10 연료 전지용 접합체 및 적층체
US17/640,971 US20220340781A1 (en) 2019-09-26 2020-09-10 Assembly for fuel cell, and laminated body
EP20867068.7A EP4037042A4 (en) 2019-09-26 2020-09-10 ARRANGEMENT FOR FUEL CELL AND LAMINATE
CN202080067157.XA CN114450827B (zh) 2019-09-26 2020-09-10 燃料电池用接合体、和层叠体

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019176238 2019-09-26
JP2019-176238 2019-09-26

Publications (1)

Publication Number Publication Date
WO2021060000A1 true WO2021060000A1 (ja) 2021-04-01

Family

ID=75166672

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/034328 WO2021060000A1 (ja) 2019-09-26 2020-09-10 燃料電池用接合体、及び積層体

Country Status (7)

Country Link
US (1) US20220340781A1 (ja)
EP (1) EP4037042A4 (ja)
JP (1) JP7404379B2 (ja)
KR (1) KR102696762B1 (ja)
CN (1) CN114450827B (ja)
TW (1) TWI830949B (ja)
WO (1) WO2021060000A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01165633A (ja) 1987-12-22 1989-06-29 Diafoil Co Ltd 塗布層を有するポリエステルフィルムの製造法
JP2011213767A (ja) 2010-03-31 2011-10-27 Tokai Rubber Ind Ltd 接着性シール部材
WO2014112506A1 (ja) 2013-01-18 2014-07-24 日本軽金属株式会社 金属-樹脂接合体の製造方法及び金属-樹脂接合体
WO2015190411A1 (ja) 2014-06-11 2015-12-17 東洋紡株式会社 ポリオレフィン系接着剤組成物
JP2016096135A (ja) * 2014-11-10 2016-05-26 フタムラ化学株式会社 燃料電池用流路部材の製造方法
JP2017036354A (ja) 2015-08-06 2017-02-16 藤森工業株式会社 ホットメルト接着性樹脂フィルムおよびその製造方法
JP2018133145A (ja) * 2017-02-13 2018-08-23 東洋インキScホールディングス株式会社 燃料電池用セパレータの製造方法
JP2018147700A (ja) * 2017-03-06 2018-09-20 東洋インキScホールディングス株式会社 燃料電池用セルの製造方法

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1197504A1 (en) * 1999-07-08 2002-04-17 Mitsui Chemicals, Inc. Thermoplastic polymer having polar group, use thereof, and unsaturated compounds having polar group
JP2005183311A (ja) * 2003-12-22 2005-07-07 Jsr Corp 直接メタノール型燃料電池電極用高分子電解質、ワニス組成物および直接メタノール型燃料電池
JP2007188718A (ja) * 2006-01-12 2007-07-26 Tokai Rubber Ind Ltd 接着性シール部材およびこれを用いた燃料電池
TW200743246A (en) * 2006-05-15 2007-11-16 Antig Tech Co Ltd Laminated fuel cell
JP5068051B2 (ja) * 2006-09-29 2012-11-07 昭和電工株式会社 燃料電池用セパレータおよびその製造方法
US8512907B2 (en) * 2007-09-27 2013-08-20 Dai Nippon Printing Co., Ltd. Membrane catalyst layer assembly with reinforcing films, membrane electrode assembly with reinforcing films, and polymer electrolyte fuel cells
WO2011105133A1 (ja) * 2010-02-24 2011-09-01 コニカミノルタオプト株式会社 表面改質樹脂フィルム、その製造方法、それを用いた偏光板、及び液晶表示装置
JP5664836B2 (ja) * 2012-09-25 2015-02-04 Dic株式会社 ラミネート用接着剤、これを用いた積層体及び二次電池
JP5867379B2 (ja) * 2012-12-14 2016-02-24 トヨタ自動車株式会社 燃料電池の製造方法
JP5733339B2 (ja) * 2013-06-07 2015-06-10 大日本印刷株式会社 電池用包装材料
JP6068236B2 (ja) * 2013-04-02 2017-01-25 富士フイルム株式会社 積層フィルム、太陽電池モジュール用バックシート及び太陽電池モジュール
JP6179265B2 (ja) * 2013-08-12 2017-08-16 東洋インキScホールディングス株式会社 接着剤組成物、電池用包装材、及び電池用容器
CN105452411A (zh) * 2013-09-03 2016-03-30 东洋纺株式会社 聚烯烃系粘接剂组合物
JP6427014B2 (ja) * 2015-01-19 2018-11-21 三井化学株式会社 組成物、コーティング剤、接着剤および積層体
JP6596844B2 (ja) * 2015-03-03 2019-10-30 凸版印刷株式会社 蓄電装置用外装材、及びそれを用いた蓄電装置
JP6579700B2 (ja) * 2015-08-06 2019-09-25 藤森工業株式会社 接着性樹脂組成物、接着剤の製造方法、接着剤、接着性積層体、及び積層体
JP6732254B2 (ja) * 2016-02-23 2020-07-29 ビージェイテクノロジーズ株式会社 水系接着剤組成物及び水系接着剤を用いた接着方法
CN110494523B (zh) * 2017-04-05 2022-06-17 大日本印刷株式会社 粘接性保护膜、电池及其制造方法
JP7287276B2 (ja) * 2017-05-29 2023-06-06 東洋紡株式会社 ポリオレフィン系接着剤組成物
JP6361798B2 (ja) * 2017-07-12 2018-07-25 東洋インキScホールディングス株式会社 接着剤組成物、電池用包装材、及び電池用容器
CN111133075B (zh) * 2017-10-04 2021-11-23 Dic株式会社 粘接剂、层叠体、电池用构件及电池
US11097510B2 (en) * 2017-10-17 2021-08-24 Toyobo Co., Ltd. Laminate
JP7215091B2 (ja) * 2017-12-22 2023-01-31 東洋紡株式会社 ポリオレフィン系接着剤組成物
KR102524762B1 (ko) * 2018-01-16 2023-04-24 도아고세이가부시키가이샤 전지용 접착제 조성물 및 그것을 사용한 전지용 접착성 부재

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01165633A (ja) 1987-12-22 1989-06-29 Diafoil Co Ltd 塗布層を有するポリエステルフィルムの製造法
JP2011213767A (ja) 2010-03-31 2011-10-27 Tokai Rubber Ind Ltd 接着性シール部材
WO2014112506A1 (ja) 2013-01-18 2014-07-24 日本軽金属株式会社 金属-樹脂接合体の製造方法及び金属-樹脂接合体
WO2015190411A1 (ja) 2014-06-11 2015-12-17 東洋紡株式会社 ポリオレフィン系接着剤組成物
JP2016096135A (ja) * 2014-11-10 2016-05-26 フタムラ化学株式会社 燃料電池用流路部材の製造方法
JP2017036354A (ja) 2015-08-06 2017-02-16 藤森工業株式会社 ホットメルト接着性樹脂フィルムおよびその製造方法
JP2018133145A (ja) * 2017-02-13 2018-08-23 東洋インキScホールディングス株式会社 燃料電池用セパレータの製造方法
JP2018147700A (ja) * 2017-03-06 2018-09-20 東洋インキScホールディングス株式会社 燃料電池用セルの製造方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
POLYMER ENG. & SCI., vol. 14, no. 2, 1974, pages 148 - 154
POLYMER ENG. SCI., vol. 14, no. 2, 1974, pages 148 - 154
See also references of EP4037042A4

Also Published As

Publication number Publication date
EP4037042A1 (en) 2022-08-03
JPWO2021060000A1 (ja) 2021-04-01
US20220340781A1 (en) 2022-10-27
JP7404379B2 (ja) 2023-12-25
KR102696762B1 (ko) 2024-08-21
EP4037042A4 (en) 2023-10-11
CN114450827A (zh) 2022-05-06
TW202118841A (zh) 2021-05-16
TWI830949B (zh) 2024-02-01
CN114450827B (zh) 2023-12-01
KR20220049543A (ko) 2022-04-21

Similar Documents

Publication Publication Date Title
JP4944398B2 (ja) 太陽電池裏面保護膜用ポリエステルフィルムおよびそれを用いた太陽電池裏面保護膜
JP2011224981A (ja) 積層フィルム
JP6799171B2 (ja) 積層体
JP6330833B2 (ja) 積層ポリエステルフィルム
JP3753592B2 (ja) 金属板ラミネート用ポリエステルフィルム
KR20210068466A (ko) 2축배향 폴리아미드 필름 및 폴리아미드 필름 밀 롤
WO2021044940A1 (ja) 燃料電池用積層体
JP6308235B2 (ja) 積層ポリエステルフィルム
JP3181565B2 (ja) 金属缶胴部外面ラミネート用ポリエステルフィルム
JP7404379B2 (ja) 燃料電池用接合体、及び積層体
JP7254670B2 (ja) 積層体
JP2018043241A (ja) 積層ポリエステルフィルムの製造方法。
JP6075918B2 (ja) 積層ポリエステルフィルム
JP2018020569A (ja) 積層フィルム
JP6265220B2 (ja) 積層ポリエステルフィルムの製造方法
JP7311073B1 (ja) 蓄電デバイス用外装材、その製造方法、フィルム、及び蓄電デバイス
WO2023042884A1 (ja) 蓄電デバイス用外装材、その製造方法、フィルム、及び蓄電デバイス
WO2023042883A1 (ja) 蓄電デバイス用外装材、その製造方法、フィルム、及び蓄電デバイス
JP6308236B2 (ja) 積層ポリエステルフィルムの製造方法
JP6278085B2 (ja) 光学部材の製造方法
JP6120935B1 (ja) 積層ポリエステルフィルムの製造方法
JP6319330B2 (ja) 積層ポリエステルフィルム
JP2017200736A (ja) 積層ポリエステルフィルム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20867068

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021548787

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20227008395

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020867068

Country of ref document: EP

Effective date: 20220426