JP2018043241A - 積層ポリエステルフィルムの製造方法。 - Google Patents

積層ポリエステルフィルムの製造方法。 Download PDF

Info

Publication number
JP2018043241A
JP2018043241A JP2017232251A JP2017232251A JP2018043241A JP 2018043241 A JP2018043241 A JP 2018043241A JP 2017232251 A JP2017232251 A JP 2017232251A JP 2017232251 A JP2017232251 A JP 2017232251A JP 2018043241 A JP2018043241 A JP 2018043241A
Authority
JP
Japan
Prior art keywords
group
polyester film
compound
film
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017232251A
Other languages
English (en)
Other versions
JP6750598B2 (ja
Inventor
泰史 川崎
Yasushi Kawasaki
泰史 川崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Mitsubishi Chemical Group Corp
Original Assignee
Mitsubishi Chemical Corp
Mitsubishi Chemical Holdings Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp, Mitsubishi Chemical Holdings Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2017232251A priority Critical patent/JP6750598B2/ja
Publication of JP2018043241A publication Critical patent/JP2018043241A/ja
Application granted granted Critical
Publication of JP6750598B2 publication Critical patent/JP6750598B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Adhesive Tapes (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Laminated Bodies (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

【課題】塵埃の付着が少なく、良好な粘着特性が求められる各種の用途、例えば、樹脂板、金属板等の輸送時、保管時や加工時の傷付き防止や汚れ付着防止用等に使用される表面保護フィルム等の用途に好適に利用することができる積層ポリエステルフィルムの製造方法を提供する。
【解決手段】ポリエステルフィルムの少なくとも片面に、ガラス転移点が0℃以下の樹脂と、帯電防止剤とを含有する、膜厚が10μm以下である粘着層を設け、当該粘着層をフィルム製造の工程内で、インラインコーティングにより形成することを特徴とする積層ポリエステルフィルムの製造方法。
【選択図】なし

Description

本発明は、積層ポリエステルフィルムに関するものであり、例えば、樹脂板、金属板等の輸送時、保管時や加工時の傷付き防止や汚れ付着防止用等の表面保護フィルム等として、フィッシュアイが少なく、機械的強度および耐熱性に優れ、塵埃の付着が少なく、良好な粘着特性を有する積層ポリエステルフィルムに関するものである。
従来、樹脂板、金属板やガラス板等の輸送時、保管時や加工時の傷付き防止や汚れ付着防止、液晶パネルや偏光板等の電子関連分野に使用される部材の加工時における傷付き防止や粉塵・汚れ付着防止、自動車の輸送時、保管時における汚れ付着防止や酸性雨からの自動車塗装の保護、フレキシブルプリント基板のメッキやエッチング処理時の保護等の用途において、表面保護フィルムが幅広く使用されている。
これらの表面保護フィルムには、樹脂板、金属板やガラス板等、各種の被着体の輸送時、保管時や加工時等において、当該被着体に対して適度な粘着力を有し、被着体の表面に付着することで、その被着体の表面を保護し、目的終了後には容易に剥がせられることが求められている。これらの課題を克服するために、ポリオレフィン系のフィルムを表面保護のために使用する提案がなされている(特許文献1、2)。
しかしながら、表面保護フィルム基材としてポリオレフィン系のフィルムを使用しているため、フィッシュアイと一般的に呼ばれる、フィルム基材原料に起因するゲル状物や劣化物による欠陥を除去することができず、例えば、表面保護フィルムを貼り合わせた状態で被着体を検査する際に、表面保護フィルムの欠陥を検知してしまう等の障害となるという問題がある。
また、表面保護フィルムの基材としては、被着体と貼り合わせ時等、各種の加工時の張力により、当該基材が引き伸ばされてしまわないようにある程度の機械的強度を有するフィルムが求められるが、ポリオレフィン系のフィルムは一般的に機械的強度が劣るため、生産性を重視するために加工速度を上げること等に起因する、高張力の加工には不向きであるという欠点がある。
さらに、加工速度や種々の特性向上等のための、加工温度の高温化においても、ポリオレフィン系のフィルムは熱による収縮安定性に優れていないため、寸法安定性が悪い。そのため、高温加工しても熱変形が少なく、寸法安定性に優れたフィルムが求められている。
また、一般的にプラスチックフィルムは、剥がす際や摩擦により静電気が発生し(剥離帯電や摩擦帯電)、塵埃が付着してしまうという欠点があり、特に異物を嫌う用途、例えば、偏光板などの光学部材の製造工程で保護フィルムとして使用する場合には問題である。
特開平5−98219号公報 特開2007−270005号公報
本発明は、上記実情に鑑みなされたものであって、その解決課題は、各種表面保護フィルム用等に使用する、フィッシュアイが少なく、機械的強度および耐熱性に優れ、塵埃の付着が少なく、良好な粘着特性を有する積層ポリエステルフィルムを提供することにある。
本発明者は、上記実情に鑑み、鋭意検討した結果、特定の構成からなる積層ポリエステルフィルムを用いれば、上述の課題を容易に解決できることを知見し、本発明を完成させるに至った。
すなわち、本発明の要旨は、ポリエステルフィルムの少なくとも片面に、ガラス転移点が0℃以下の樹脂と、帯電防止剤とを含有する、膜厚が10μm以下である粘着層を設け、当該粘着層をフィルム製造の工程内で、インラインコーティングにより形成することを特徴とする積層ポリエステルフィルムの製造方法に存する。
本発明の積層ポリエステルフィルムによれば、各種表面保護フィルムとして、フィッシュアイが少なく、機械的強度および耐熱性に優れ、塵埃の付着が少なく、良好な粘着特性を有するフィルムを提供することができ、その工業的価値は高い。
課題であるフィッシュアイの低減、機械的強度の向上および耐熱性の向上には基材フィルムの根本材料を大きく変える必要があると考え、種々検討の結果、従来使用のポリオレフィン系の材料から大きく異なるポリエステル系の材料を使用することで達成できることを見いだした。しかしながら、基材フィルムの材料系を大きく変えることにより、粘着特性は大幅に低下し、一般的なポリエステルフィルムでは到底達成できないものとなってしまった。そこで、基材フィルム上に粘着層を設けることで改善を図り、本発明に至った。
積層ポリエステルフィルムを構成するポリエステルフィルムは単層構成であっても多層構成であってもよく、2層、3層構成以外にも本発明の要旨を越えない限り、4層またはそれ以上の多層であってもよく、特に限定されるものではない。2層以上の多層構成とし、それぞれの層に特徴を持たせ、多機能化を図ることが好ましい。
使用するポリエステルは、ホモポリエステルであっても共重合ポリエステルであってもよい。ホモポリエステルからなる場合、芳香族ジカルボン酸と脂肪族グリコールとを重縮合させて得られるものが好ましい。芳香族ジカルボン酸としては、テレフタル酸、2,6−ナフタレンジカルボン酸などが挙げられ、脂肪族グリコールとしては、エチレングリコール、ジエチレングリコール、1,4−シクロヘキサンジメタノール等が挙げられる。代表的なポリエステルとしては、ポリエチレンテレフタレート等が例示される。一方、共重合ポリエステルのジカルボン酸成分としては、イソフタル酸、フタル酸、テレフタル酸、2,6−ナフタレンジカルボン酸、アジピン酸、セバシン酸、オキシカルボン酸(例えば、p−オキシ安息香酸など)等の一種または二種以上が挙げられ、グリコール成分として、エチレングリコール、ジエチレングリコール、プロピレングリコール、ブタンジオール、4−シクロヘキサンジメタノール、ネオペンチルグリコール等の一種または二種以上が挙げられる。
種々の加工条件に耐えられるフィルムにするという観点から、機械的強度や耐熱性(加熱による寸法安定性)が高いことが好ましく、そのためには共重合ポリエステル成分が少ないことが好ましい場合もある。具体的には、ポリエステルフィルム中に占める共重合ポリエステルを形成するモノマーの割合が、好ましくは10モル%以下、より好ましくは5モル%以下の範囲であり、さらに好ましくはホモポリエステル重合時に副産物として生成してしまう程度である、3モル%以下のジエーテル成分を含む程度である。ポリエステルとしてより好ましい形態は、機械的強度や耐熱性を考慮すると、前記化合物の中でも、テレフタル酸とエチレングリコールから重合されてなる、ポリエチレンテレフタレートやポリエチレンナフタレートから形成されたフィルムがより好ましく、製造のしやすさ、表面保護フィルム等の用途としての取扱い性を考慮すると、ポリエチレンテレフタレートから形成されたフィルムがより好ましい。
ポリエステルの重合触媒としては、特に制限はなく、従来公知の化合物を使用することができ、例えば、アンチモン化合物、チタン化合物、ゲルマニウム化合物、マンガン化合物、アルミニウム化合物、マグネシウム化合物、カルシウム化合物等が挙げられる。この中でも、アンチモン化合物は安価であることから好ましく、また、チタン化合物やゲルマニウム化合物は触媒活性が高く、少量で重合を行うことが可能であり、フィルム中に残留する金属量が少ないことから、フィルムの透明性が高くなるため好ましい。さらに、ゲルマニウム化合物は高価であることから、チタン化合物を用いることがより好ましい。
チタン化合物を用いたポリエステルの場合、チタン元素含有量は、好ましくは50ppm以下、より好ましくは1〜20ppm、さらに好ましくは2〜10ppmの範囲である。チタン化合物の含有量が多すぎる場合は、ポリエステルを溶融押出する工程でポリエステルの劣化が促進され黄色味が強いフィルムとなる場合があり、また、含有量が少なすぎる場合は、重合効率が悪くコストアップや十分な強度を有するフィルムが得られない場合がある。また、チタン化合物によるポリエステルを用いる場合、溶融押出する工程での劣化抑制の目的で、チタン化合物の活性を下げるためにリン化合物を使用することが好ましい。リン化合物としては、ポリエステルの生産性や熱安定性を考慮すると正リン酸が好ましい。リン元素含有量は、溶融押出するポリエステル量に対して、好ましくは1〜300ppm、より好ましくは3〜200ppm、さらに好ましくは5〜100ppmの範囲である。リン化合物の含有量が多すぎる場合は、ゲル化や異物の原因となる可能性があり、また、含有量が少なすぎる場合は、チタン化合物の活性を十分に下げることができず、黄色味のあるフィルムとなる場合がある。
ポリエステル層中には、易滑性の付与、各工程での傷発生防止、耐ブロッキング特性の向上を目的として、粒子を配合することも可能である。粒子を配合する場合、配合する粒子の種類は、易滑性付与可能な粒子であれば特に限定されるものではなく、具体例としては、例えば、シリカ、炭酸カルシウム、炭酸マグネシウム、炭酸バリウム、硫酸カルシウム、リン酸カルシウム、リン酸マグネシウム、カオリン、酸化アルミニウム、酸化ジルコニウム、酸化チタン等の無機粒子、アクリル樹脂、スチレン樹脂、尿素樹脂、フェノール樹脂、エポキシ樹脂、ベンゾグアナミン樹脂等の有機粒子等が挙げられる。さらに、ポリエステル製造工程中、触媒等の金属化合物の一部を沈殿、微分散させた析出粒子を用いることもできる。これらの中でも特に少量で効果が出やすいという点でシリカ粒子や炭酸カルシウム粒子が好ましい。
粒子の平均粒径は、好ましくは10μm以下、より好ましくは0.01〜5μm、さらに好ましくは0.01〜3μmの範囲である。平均粒径が10μmを超える場合には、フィルムの透明性の低下による不具合が懸念される場合がある。
さらにポリエステル層中の粒子含有量は、粒子の平均粒径との兼ね合いもあるので一概にはいえないが、好ましくは5重量%以下、より好ましくは0.0003〜3重量%の範囲、さらに好ましくは0.0005〜1重量%の範囲である。粒子含有量が5重量%を超える場合、粒子の脱落やフィルムの透明性の低下等の不具合が懸念される場合がある。粒子がない場合、あるいは少ない場合は、滑り性が不十分となる場合があるため、粘着層中に粒子を入れること等により、滑り性を向上させる等の工夫が必要な場合がある。
使用する粒子の形状に関しても特に限定されるわけではなく、球状、塊状、棒状、扁平状等のいずれを用いてもよい。また、その硬度、比重、色等についても特に制限はない。
これら一連の粒子は、必要に応じて2種類以上を併用してもよい。
ポリエステル層中に粒子を添加する方法としては、特に限定されるものではなく、従来公知の方法を採用しうる。例えば、各層を構成するポリエステルを製造する任意の段階において添加することができるが、好ましくはエステル化もしくはエステル交換反応終了後、添加するのが良い。
ポリエステルフィルム中には、上述の粒子以外に必要に応じて従来公知の紫外線吸収剤、酸化防止剤、帯電防止剤、熱安定剤、潤滑剤、染料、顔料等を添加することができる。
ポリエステルフィルムの厚みは、フィルムとして製膜可能な範囲であれば特に限定されるものではないが、好ましくは2〜350μm、より好ましくは5〜200μm、さらに好ましくは8〜75μmの範囲である。
フィルムの製造例について具体的に説明するが、以下の製造例に何ら限定されるものではなく、通常知られている製膜法を採用できる。一般的には、樹脂を溶融し、シート化して、強度を上げる等の目的で延伸を行い、フィルムを作成する。例えば、二軸延伸ポリエステルフィルムを製造する場合、まずポリエステル原料を、押出機を用いてダイから溶融押し出しし、溶融シートを冷却ロールで冷却固化して未延伸シートを得る。この場合、シートの平面性を向上させるためシートと回転冷却ドラムとの密着性を高めることが好ましく、静電印加密着法や液体塗布密着法が好ましく採用される。次に得られた未延伸シートを一方向にロールまたはテンター方式の延伸機により延伸する。延伸温度は、好ましくは70〜120℃、より好ましくは80〜110℃であり、延伸倍率は好ましくは2.5〜7倍、より好ましくは3.0〜6倍である。次いで、一段目の延伸方向と直交する方向に、好ましくは70〜170℃で、延伸倍率は好ましくは2.5〜7倍、より好ましくは3.0〜6倍で延伸する。引き続き180〜270℃の温度で緊張下または30%以内の弛緩下で熱処理を行い、二軸配向フィルムを得る方法が挙げられる。上記の延伸においては、一方向の延伸を2段階以上で行う方法を採用することもできる。その場合、最終的に二方向の延伸倍率がそれぞれ上記範囲となるように行うのが好ましい。
また、積層ポリエステルフィルムを構成するポリエステルフィルム製造に関しては同時二軸延伸法を採用することもできる。同時二軸延伸法は、前記の未延伸シートを通常70〜120℃、好ましくは80〜110℃で温度コントロールされた状態で機械方向および幅方向に同時に延伸し配向させる方法であり、延伸倍率としては、面積倍率で4〜50倍、好ましくは7〜35倍、さらに好ましくは10〜25倍である。そして、引き続き、180〜270℃の温度で緊張下または30%以内の弛緩下で熱処理を行い、延伸配向フィルムを得る。上述の延伸方式を採用する同時二軸延伸装置に関しては、スクリュー方式、パンタグラフ方式、リニアー駆動方式等、従来公知の延伸方式を採用することができる。
次に積層ポリエステルフィルムを構成する粘着層の形成について説明する。粘着層の形成方法としては、例えば、コーティング、転写、ラミネート等の方法が挙げられる。粘着層の形成のしやすさを考慮するとコーティングにより形成することが好ましい。
コーティングによる方法としては、フィルム製造の工程内で行う、インラインコーティングにより設けられてもよく、一旦製造したフィルムに系外でコーティングする、オフラインコーティングより設けられてもよい。より好ましくはインラインコーティングにより形成されるものである。
インラインコーティングは、具体的には、フィルムを形成する樹脂を溶融押出ししてから延伸後熱固定して巻き上げるまでの任意の段階でコーティングを行う方法である。通常は、溶融、急冷して得られる未延伸シート、延伸された一軸延伸フィルム、熱固定前の二軸延伸フィルム、熱固定後で巻上前のフィルムの何れかにコーティングする。以下に限定するものではないが、例えば逐次二軸延伸においては、特に長手方向(縦方向)に延伸された一軸延伸フィルムにコーティングした後に横方向に延伸する方法が優れている。かかる方法によれば、製膜と粘着層形成を同時に行うことができるため製造コスト上のメリットがあり、また、コーティング後に延伸を行うために、粘着層の厚みを延伸倍率により変化させることもでき、オフラインコーティングに比べ、薄膜コーティングをより容易に行うことができる。
また、延伸前にフィルム上に粘着層を設けることにより、粘着層を基材フィルムと共に延伸することができ、それにより粘着層を基材フィルムに強固に密着させることができる。さらに、二軸延伸ポリエステルフィルムの製造において、クリップ等によりフィルム端部を把持しつつ延伸することで、フィルムを縦および横方向に拘束することができ、熱固定工程において、しわ等が入らず平面性を維持したまま高温をかけることができる。
それゆえ、コーティング後に施される熱処理が他の方法では達成されない高温とすることができるために、粘着層の造膜性が向上し、粘着層と基材フィルムをより強固に密着させることができ、さらには、強固な粘着層とすることができる。特に架橋剤を反応させるには非常に有効である。
上述のインラインコーティングによる工程によれば、粘着層の形成有無でフィルム寸法が大きく変わることはなく、傷付きや異物付着のリスクも粘着層の形成有無で大きく変わることはないため、コーティングという工程を1つ余分に行うオフラインコーティングに比べ大きな利点である。さらに、種々検討の結果、インラインコーティングの方が本発明のフィルムを被着体に貼り合わせたときの粘着層の成分の移行である、糊残りを低減させることができるという利点もあることを見いだした。これは、オフラインコーティングでは得られない高温で熱処理することが可能であり、粘着層と基材フィルムとがより強固に密着した結果であると考えている。
本発明においては、ガラス転移点が0℃以下の樹脂と、帯電防止剤とを含有する、膜厚が10μm以下である粘着層を有することを必須の要件とするものである。
ガラス転移点が0℃以下の樹脂を用いることにより、ポリエステルフィルムに適度な粘着特性を付与することができることを見出した。ガラス転移点が0℃以下の樹脂としては、従来公知の樹脂を使用することができる。樹脂の具体例としては、ポリエステル樹脂、アクリル樹脂、ウレタン樹脂、ポリビニル樹脂(ポリビニルアルコール、塩化ビニル酢酸ビニル共重合体等)等が挙げられ、その中でも特に粘着特性や塗布性を考慮すると、ポリエステル樹脂、アクリル樹脂、ウレタン樹脂が好ましい。さらに、より強力な粘着特性やフィルムの再利用性を考慮した場合、ポリエステル樹脂やアクリル樹脂が好ましく、また、基材であるポリエステルフィルムとの密着性やポリエステル系材料への貼り合わせを考慮した場合はポリエステル樹脂、さらに強力な粘着特性やアクリル系材料への貼り合わせ、被着体への粘着成分の移行(糊残り)の低減、裏面側とのブロッキング特性を考慮した場合はアクリル樹脂が最も好ましい。
ポリエステル樹脂とは、主な構成成分として例えば、下記のような多価カルボン酸および多価ヒドロキシ化合物からなるものが挙げられる。すなわち、多価カルボン酸としては、テレフタル酸、イソフタル酸、オルトフタル酸、フタル酸、4,4’−ジフェニルジカルボン酸、2,5−ナフタレンジカルボン酸、1,5−ナフタレンジカルボン酸および、2,6−ナフタレンジカルボン酸、2,7−ナフタレンジカルボン酸、1,4−シクロヘキサンジカルボン酸、2−カリウムスルホテレフタル酸、5−ソジウムスルホイソフタル酸、アジピン酸、アゼライン酸、セバシン酸、ドデカンジカルボン酸、グルタル酸、コハク酸、トリメリット酸、トリメシン酸、ピロメリット酸、無水トリメリット酸、無水フタル酸、p−ヒドロキシ安息香酸、トリメリット酸モノカリウム塩およびそれらのエステル形成性誘導体などを用いることができ、多価ヒドロキシ化合物としては、エチレングリコール、1,2−プロピレングリコール、1,3−プロピレングリコール、1,3−プロパンジオ−ル、1,4−ブタンジオール、1,6−ヘキサンジオ−ル、2−メチル−1,5−ペンタンジオ−ル、ネオペンチルグリコール、1,4−シクロヘキサンジメタノ−ル、p−キシリレングリコ−ル、ビスフェノ−ルA−エチレングリコ−ル付加物、ジエチレングリコール、トリエチレングリコール、ポリエチレングリコ−ル、ポリプロピレングリコ−ル、ポリテトラメチレングリコ−ル、ポリテトラメチレンオキシドグリコ−ル、ジメチロ−ルプロピオン酸、グリセリン、トリメチロ−ルプロパン、ジメチロ−ルエチルスルホン酸ナトリウム、ジメチロ−ルプロピオン酸カリウムなどを用いることができる。これらの化合物の中から、それぞれ適宜1つ以上を選択し、常法の重縮合反応によりポリエステル樹脂を合成すればよい。
上記の中でもガラス転移点を0℃以下と低くするために脂肪族多価カルボン酸や脂肪族多価ヒドロキシ化合物を構成成分に含有することが好ましい。一般的に、ポリエステル樹脂は芳香族多価カルボン酸と脂肪族も含めた多価ヒドロキシ化合物で構成されるので、一般的なポリエステル樹脂よりもガラス転移点を低くするためには、脂肪族多価カルボン酸を含有することが効果的である。ガラス転移点を低くする観点においては脂肪族多価カルボン酸の中でも炭素数は長いことが良く、好ましくは炭素数6以上(アジピン酸)、より好ましくは炭素数8以上、さらに好ましくは10以上の範囲であり、好ましい範囲の上限は20である。
また、粘着特性向上の観点から、上記脂肪族多価カルボン酸のポリエステル樹脂中の酸成分における含有量としては、好ましくは2モル%以上、より好ましくは4モル%以上、さらに好ましくは6モル%以上、特に好ましくは10モル%以上であり、好ましい範囲の上限は50モル%である。
脂肪族多価ヒドロキシ化合物において、ガラス転移点を低くするためには、炭素数が4以上(ブタンジオール)であることが好ましく、そのポリエステル樹脂中のヒドロキシ成分における含有量としては、好ましくは10モル%以上、より好ましくは30モル%以上の範囲である。
インラインコーティングへの適性を考慮すると水系にすることが好ましく、そのためにスルホン酸、スルホン酸金属塩、カルボン酸、カルボン酸金属塩がポリエステル樹脂に含有していることが好ましい。特に水への分散性が良好であるという点において、スルホン酸やスルホン酸金属塩が好ましく、特にスルホン酸金属塩が好ましい。
上記、スルホン酸、スルホン酸金属塩、カルボン酸、カルボン酸金属塩を使用する場合、ポリエステル樹脂を構成する酸成分中の含有量として、好ましくは0.1〜10モル%、より好ましくは0.2〜8モル%の範囲である。上記範囲で使用することで水への分散性が良好なものとなる。
また、インラインコーティング塗布層における塗布外観、ポリエステルフィルムへの密着性やブロッキング、さらには表面保護フィルムとして用いた場合の被着体への糊残りの低減を考慮すると、ポリエステル樹脂中の酸成分として、ある程度の芳香族多価カルボン酸を含有していることが好ましい。ポリエステル樹脂中の酸成分中の割合として、芳香族多価カルボン酸は、好ましくは30モル%以上、より好ましくは50モル%以上、さらに好ましくは60モル%以上の範囲であり、好ましい範囲の上限は98モル%である。また、芳香族多価カルボン酸の中でも粘着特性の観点からテレフタル酸やイソフタル酸等のベンゼン環構造がナフタレン環構造より好ましい。さらに粘着特性をより向上させるには2種類以上の芳香族多価カルボン酸を併用することがより好ましい。
粘着特性を向上させるためのポリエステル樹脂のガラス転移点としては、0℃以下が必須であり、好ましくは−10℃以下、より好ましくは−20℃以下の範囲であり、好ましい範囲の下限としては−60℃である。上記範囲で使用することで最適な粘着特性を有するフィルムとすることが容易となる。
アクリル樹脂とは、アクリル系、メタアクリル系のモノマーを含む重合性モノマーからなる重合体である(以下、アクリルおよびメタアクリルを合わせて(メタ)アクリルと略記する場合がある)。これらは、単独重合体あるいは共重合体、さらにはアクリル系、メタアクリル系のモノマー以外の重合性モノマーとの共重合体、いずれでも差し支えない。
また、それら重合体と他のポリマー(例えばポリエステル、ポリウレタン等)との共重合体も含まれる。例えば、ブロック共重合体、グラフト共重合体である。あるいは、ポリエステル溶液、またはポリエステル分散液中で重合性モノマーを重合して得られたポリマー(場合によってはポリマーの混合物)も含まれる。同様にポリウレタン溶液、ポリウレタン分散液中で重合性モノマーを重合して得られたポリマー(場合によってはポリマーの混合物)も含まれる。同様にして他のポリマー溶液、または分散液中で重合性モノマーを重合して得られたポリマー(場合によってはポリマー混合物)も含まれる。しかしながら、粘着特性、被着体への糊残りを考慮すると、ポリエステルやポリウレタン等の他のポリマーを含有しないこと(炭素−炭素二重結合を含有する重合性モノマー(単独重合体でも共重合体でも可)のみから構成された(メタ)アクリル樹脂)が好ましい。
上記重合性モノマーとしては、特に限定はしないが、特に代表的な化合物としては、例えば、アクリル酸、メタクリル酸、クロトン酸、イタコン酸、フマル酸、マレイン酸、シトラコン酸のような各種カルボキシル基含有モノマー類、およびそれらの塩;2−ヒドロキシエチル(メタ)アクリレート、2−ヒドロキシプロピル(メタ)アクリレート、4−ヒドロキシブチル(メタ)アクリレート、モノブチルヒドロキルフマレート、モノブチルヒドロキシイタコネートのような各種の水酸基含有モノマー類;メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、ブチル(メタ)アクリレート、2−エチルへキシル(メタ)アクリレート、ラウリル(メタ)アクリレートのような各種の(メタ)アクリル酸エステル類;(メタ)アクリルアミド、ジアセトンアクリルアミド、N−メチロールアクリルアミドまたは(メタ)アクリロニトリル等のような種々の窒素含有化合物;スチレン、α−メチルスチレン、ジビニルベンゼン、ビニルトルエンのような各種スチレン誘導体、プロピオン酸ビニル、酢酸ビニルのような各種のビニルエステル類;γ−メタクリロキシプロピルトリメトキシシラン、ビニルトリメトキシシラン等のような種々の珪素含有重合性モノマー類;燐含有ビニル系モノマー類;塩化ビニル、塩化ビリデンのような各種のハロゲン化ビニル類;ブタジエンのような各種共役ジエン類が挙げられる。
ガラス転移点を0℃以下と低くするために、ホモポリマーのガラス転移点が0℃以下の(メタ)アクリル系を使用する必要があり、例えば、エチルアクリレート(ガラス転移点:−22℃)、n−プロピルアクリレート(ガラス転移点:−37℃)、イソプロピルアクリレート(ガラス転移点:−5℃)、ノルマルブチルアクリレート(ガラス転移点:−55℃)、ノルマルへキシルアクリレート(ガラス転移点:−57℃)、2−エチルへキシルアクリレート(ガラス転移点:−70℃)、ノルマルオクチルアクリレート(ガラス転移点:−65℃)、イソオクチルアクリレート(ガラス転移点:−83℃)、ノルマルノニルアクリレート(ガラス転移点:−63℃)、ノルマルノニルメタクリレート(ガラス転移点:−35℃)、イソノニルアクリレート(ガラス転移点:−82℃)、ノルマルデシルアクリレート(ガラス転移点:−70℃)、ノルマルデシルメタクリレート(ガラス転移点:−45℃)、イソデシルアクリレート(ガラス転移点:−55℃)、イソデシルメタクリレート(ガラス転移点:−41℃)、ラウリルアクリレート(ガラス転移点:−30℃)、ラウリルメタアクリレート(ガラス転移点:−65℃)、トリデシルアクリレート(ガラス転移点:−75℃)、トリデシルメタクリレート(ガラス転移点:−46℃)、イソミスチリルアクリレート(ガラス転移点:−56℃)、2−ヒドロキシエチルアクリレート(ガラス転移点:−15℃)等が挙げられる。
上記の中でも、粘着特性を向上させるために、好ましくはアルキル基の炭素数が4以上の範囲、より好ましくは4〜30の範囲、さらに好ましくは4〜20の範囲、特に好ましくは4〜14の範囲であるアルキル(メタ)アクリレートである。工業的に量産されており、取扱い性や供給安定性の観点から、ノルマルブチルアクリレート、2−エチルへキシルアクリレートを含有する(メタ)アクリル樹脂が最適である。
炭素数が4以上のアルキル基をエステル末端に有する(メタ)アクリレートユニットの(メタ)アクリル樹脂中の含有量は、好ましくは20重量%以上、より好ましくは35〜99重量%、さらに好ましくは50〜98重量%、特に好ましくは65〜95重量%、最も好ましくは75〜90重量%の範囲である。炭素数が4以上のアルキル基をエステル末端に有する(メタ)アクリレートユニットの含有量が多いほど粘着特性は強くなる。逆に含有量が少なすぎる場合は、粘着力が十分でないものとなる場合もある。
上記(メタ)アクリル樹脂中、ホモポリマーのガラス転移点が0℃以下であり、炭素数が4未満のアルキル基をエステル末端に有する(メタ)アクリレートユニットの含有量としては、好ましくは50重量%以下、より好ましくは40重量%以下、さらに好ましくは30重量%以下の範囲である。上記範囲で使用することで良好な粘着特性となる。
また、被着体への粘着成分の移行を低減できるという観点からは、上記の中でもエステル末端に含有する炭素数が2以下である化合物、または環状構造を有する化合物であることが好ましく、さらに好ましくは、炭素数が1である化合物または芳香族化合物である。
具体例としては、メチルメタクリレート、アクリロニトリル、スチレン、シクロへキシルアクリレートが好ましい化合物として挙げられる。
(メタ)アクリル樹脂中の上記、エステル末端に含有する炭素数が2以下である化合物ユニットの含有量としては、好ましくは50重量%以下、より好ましくは1〜40重量%、さらに好ましくは3〜30重量%、特に好ましくは5〜20重量%の範囲である。当該ユニットの含有量が少ない方が、粘着特性を大きく落とすことなく、適度な範囲の粘着特性を付与することが可能であり、また、逆に、含有量が多い方が、被着体への粘着成分の移行を低減することが可能となる。それゆえ、上記範囲であれば、粘着特性と移行低減の2つの目的を達成しやすくなる。
上記(メタ)アクリル樹脂中、環状構造を有する化合物ユニットの含有量としては、好ましくは50重量%以下、より好ましくは1〜45重量%、さらに好ましくは5〜40重量%の範囲である。当該ユニットの含有量が少ない方が、粘着特性を大きく落とすことなく、適度な範囲の粘着特性を付与することが可能であり、また、逆に、含有量が多い方が、被着体への粘着成分の移行を低減することが可能となる。それゆえ、上記範囲であれば、粘着特性と移行低減の2つの目的を達成しやすくなる。
粘着特性の観点から、(メタ)アクリル樹脂を構成するモノマーとして、ホモポリマーのガラス転移点が0℃以下であるモノマーの含有量は、(メタ)アクリル樹脂全体に対する割合として、好ましくは30重量%以上、より好ましくは45重量%以上、さらに好ましくは60重量%以上、特に好ましくは70重量%以上の範囲である。また、好ましい範囲の上限は99重量%である。当該範囲で使用することで良好な粘着特性が得られやすい。
また、粘着特性を向上させる、ホモポリマーのガラス転移点が0℃以下であるモノマーのガラス転移点としては、好ましくは−20℃以下、より好ましくは−30℃以下、さらに好ましくは−40℃以下、特に好ましくは−50℃以下であり、好ましい範囲の下限は−100℃である。当該範囲で使用することで、適度な粘着特性を有するフィルムとすることが容易となる。
粘着特性を向上させるためのさらに最適な(メタ)アクリル樹脂の形態としては、ノルマルブチルアクリレートおよび2−エチルへキシルアクリレートの(メタ)アクリル樹脂中の合計の含有量が、好ましくは30重量%以上、より好ましくは40重量%以上、さらに好ましくは50重量%以上、特に好ましくは60重量%以上、最も好ましくは70重量%以上の範囲であり、好ましい範囲の上限は99重量%である。使用する(メタ)アクリル樹脂の組成や、粘着層の組成にも依存するが、特に、少ない架橋剤量で、被着体への粘着成分の移行をなくしたい場合には、2−エチルへキシルアクリレートの含有量は好ましくは90重量%以下、より好ましくは80重量%以下の範囲である。
また、インラインコーティングへの適用等を考慮し、水系利用可能な(メタ)アクリル樹脂とするために、各種の親水性官能基を導入することも可能である。親水性官能基として好ましく挙げられるものは、カルボン酸基、カルボン酸塩基、スルホン酸基、スルホン酸塩基、水酸基であり、その中でも耐水性の観点からカルボン酸基、カルボン酸塩基や水酸基が好ましい。
カルボン酸の導入としては、アクリル酸、メタクリル酸、クロトン酸、イタコン酸、フマル酸、マレイン酸、シトラコン酸のような各種カルボキシル基含有モノマーを共重合させることが挙げられる。上記中でも、効果的な水分散が可能であることからアクリル酸やメタクリル酸が好ましい。
水酸基の導入としては、2−ヒドロキシエチル(メタ)アクリレート、2−ヒドロキシプロピル(メタ)アクリレート、4−ヒドロキシブチル(メタ)アクリレート、モノブチルヒドロキルフマレート、モノブチルヒドロキシイタコネートのような各種の水酸基含有モノマーを共重合させることが挙げられる。上記中でも、工業的な取扱い容易性を考慮すると、2−ヒドロキシエチル(メタ)アクリレートや4−ヒドロキシブチル(メタ)アクリレートが好ましい。
また、架橋反応基として、ジメチルアミノエチル(メタ)アクリレートのようなアミノ基含有モノマーの共重合体や、グリシジル(メタ)アクリレートのようなエポキシ基含有モノマーの共重合体を含有させることも可能である。しかし、含有量が多すぎると粘着特性に影響を与えるので適度な量にする必要がある。
(メタ)アクリル樹脂中の親水性官能基含有モノマーの割合は、好ましくは30重量%以下、より好ましくは1〜20重量%、さらに好ましくは2〜15重量%、特に好ましくは3〜10重量%の範囲である。上記範囲で使用することで、水系展開がしやすくなる。
粘着特性を向上させるための(メタ)アクリル樹脂のガラス転移点としては、0℃以下であることが必須であり、好ましくは−10℃以下、より好ましくは−20℃以下の範囲、さらに好ましくは−30℃以下の範囲であり、好ましい範囲の下限としては−80℃である。上記範囲で使用することで最適な粘着特性を有するフィルムとすることが容易となる。また、被着体への粘着成分の移行の低減を考慮する必要がある場合には、好ましくは−70℃以上、より好ましくは−60℃以上、さらに好ましくは−50℃以上の範囲である。
ウレタン樹脂とは、ウレタン結合を分子内に有する高分子化合物のことであり、通常ポリオールとイソシアネートの反応により作成される。ポリオールとしては、ポリカーボネートポリオール類、ポリエーテルポリオール類、ポリエステルポリオール類、ポリオレフィンポリオール類、アクリルポリオール類が挙げられ、これらの化合物は単独で用いても、複数種用いてもよい。
ポリカーボネートポリオール類は、多価アルコール類とカーボネート化合物とから、脱アルコール反応によって得られる。多価アルコール類としては、エチレングリコール、1,2−プロピレングリコール、1,3−プロピレングリコール、1,2−ブタンジオール、1,3−ブタンジオール、1,4−ブタンジオール、1,5−ペンタンジオール、1,6−ヘキサンジオール、1,4−シクロヘキサンジオール、1,4−シクロヘキサンジメタノール、1,7−ヘプタンジオール、1,8−オクタンジオール、1,9−ノナンジオール、1,10−デカンジオール、ネオペンチルグリコール、3−メチル−1,5−ペンタンジオール、3,3−ジメチロールヘプタン等が挙げられる。カーボネート化合物としては、ジメチルカーボネート、ジエチルカーボネート、ジフェニルカーボネート、エチレンカーボネート等が挙げられ、これらの反応から得られるポリカーボネート系ポリオール類としては、例えば、ポリ(1,6−ヘキシレン)カーボネート、ポリ(3−メチル−1,5−ペンチレン)カーボネート等が挙げられる。
粘着特性向上の観点から、鎖状のアルキル鎖の炭素数は、好ましくは4〜30、より好ましくは4〜20、さらに好ましくは6〜12の範囲であるジオール成分から構成されるポリカーボネートポリオールであり、工業的に量産されており、取扱い性や供給安定性が良いという観点において、1,6−ヘキサンジオール、あるいは1,4−ブタンジオール、1,5−ペンタンジオール、1,6−ヘキサンジオールの中から選ばれる少なくとも2種のジオールを含有させた共重合ポリカーボネートポリオールであることが最適である。
ポリエーテルポリオール類としては、ポリエチレングリコール、ポリプロピレングリコール、ポリエチレンプロピレングリコール、ポリテトラメチレンエーテルグリコール、ポリヘキサメチレンエーテルグリコール等が挙げられる。
粘着特性向上の観点から、ポリエーテルを形成するモノマーは、炭素数が、好ましくは2〜30、より好ましくは3〜20、さらに好ましくは4〜12の範囲である脂肪族ジオール、特に直鎖脂肪族ジオールを含有するポリエーテルポリオールである。
ポリエステルポリオール類としては、多価カルボン酸(マロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、セバシン酸、フマル酸、マレイン酸、テレフタル酸、イソフタル酸等)またはそれらの酸無水物と多価アルコール(エチレングリコール、ジエチレングリコール、トリエチレングリコール、プロピレングリコール、ジプロピレングリコール、トリプロピレングリコール、ブタンジオール、1,3−ブタンジオール、1,4−ブタンジオール、2,3−ブタンジオール、2−メチル−1,3−プロパンジオール、1,5−ペンタンジオール、ネオペンチルグリコール、1,6−ヘキサンジオール、3−メチル−1,5−ペンタンジオール、2−メチル−2,4−ペンタンジオール、2−メチル−2−プロピル−1,3−プロパンジオール、1,8−オクタンジオール、2,2,4−トリメチル−1,3−ペンタンジオール、2−エチル−1,3−ヘキサンジオール、2,5−ジメチル−2,5−ヘキサンジオール、1,9−ノナンジオール、2−メチル−1,8−オクタンジオール、2−ブチル−2−エチル−1,3−プロパンジオール、2−ブチル−2−ヘキシル−1,3−プロパンジオール、シクロヘキサンジオール、ビスヒドロキシメチルシクロヘキサン、ジメタノールベンゼン、ビスヒドロキシエトキシベンゼン、アルキルジアルカノールアミン、ラクトンジオール等)の反応から得られるもの、ポリカプロラクトン等のラクトン化合物の誘導体ユニットを有するもの等が挙げられる。
粘着特性を考慮すると、上記ポリオール類の中でもポリカーボネートポリオール類およびポリエーテルポリオール類がより好適に用いられ、特にポリカーボネートポリオール類が好適である。
ウレタン樹脂を得るために使用されるポリイソシアネート化合物としては、トリレンジイソシアネート、キシリレンジイソシアネート、メチレンジフェニルジイソシアネート、フェニレンジイソシアネート、ナフタレンジイソシアネート、トリジンジイソシアネート等の芳香族ジイソシアネート、α,α,α’,α’−テトラメチルキシリレンジイソシアネート等の芳香環を有する脂肪族ジイソシアネート、メチレンジイソシアネート、プロピレンジイソシアネート、リジンジイソシアネート、トリメチルヘキサメチレンジイソシアネート、ヘキサメチレンジイソシアネート等の脂肪族ジイソシアネート、シクロヘキサンジイソシアネート、メチルシクロヘキサンジイソシアネート、イソホロンジイソシアネート、ジシクロヘキシルメタンジイソシアネート、イソプロピリデンジシクロヘキシルジイソシアネート等の脂環族ジイソシアネート等が例示される。これらは単独で用いても、複数種併用してもよい。
ウレタン樹脂を合成する際に鎖延長剤を使用しても良く、鎖延長剤としては、イソシアネート基と反応する活性基を2個以上有するものであれば特に制限はなく、一般的には、水酸基またはアミノ基を2個有する鎖延長剤を主に用いることができる。
水酸基を2個有する鎖延長剤としては、例えば、エチレングリコール、プロピレングリコール、ブタンジオール等の脂肪族グリコール、キシリレングリコール、ビスヒドロキシエトキシベンゼン等の芳香族グリコール、ネオペンチルグリコールヒドロキシピバレート等のエステルグリコールといったグリコール類を挙げることができる。また、アミノ基を2個有する鎖延長剤としては、例えば、トリレンジアミン、キシリレンジアミン、ジフェニルメタンジアミン等の芳香族ジアミン、エチレンジアミン、プロピレンジアミン、ヘキサンジアミン、2,2−ジメチル−1,3−プロパンジアミン、2−メチル−1,5−ペンタンジアミン、トリメチルヘキサンジアミン、2−ブチル−2−エチル−1,5−ペンタンジアミン、1 ,8−オクタンジアミン、1 ,9−ノナンジアミン、1 ,10−デカンジアミン等の脂肪族ジアミン、1−アミノ−3−アミノメチル−3,5,5−トリメチルシクロヘキサン、ジシクロヘキシルメタンジアミン、イソプロビリチンシクロヘキシル−4,4’−ジアミン、1,4−ジアミノシクロヘキサン、1 ,3−ビスアミノメチルシクロヘキサン等の脂環族ジアミン等が挙げられる。
本発明におけるウレタン樹脂は、溶剤を媒体とするものであってもよいが、好ましくは水を媒体とするものである。ウレタン樹脂を水に分散または溶解させるには、乳化剤を用いる強制乳化型、ウレタン樹脂中に親水性基を導入する自己乳化型あるいは水溶型等がある。特に、ウレタン樹脂の構造中にイオン基を導入しアイオノマー化した自己乳化タイプが、液の貯蔵安定性や得られる塗布層の耐水性、透明性に優れており好ましい。
また、導入するイオン基としては、カルボキシル基、スルホン酸、リン酸、ホスホン酸、第4級アンモニウム塩等、種々のものが挙げられるが、カルボキシル基が好ましい。ウレタン樹脂にカルボキシル基を導入する方法としては、重合反応の各段階の中で種々の方法が取り得る。例えば、プレポリマー合成時に、カルボキシル基を持つ樹脂を共重合成分として用いる方法や、ポリオールやポリイソシアネート、鎖延長剤などの一成分としてカルボキシル基を持つ成分を用いる方法がある。特に、カルボキシル基含有ジオールを用いて、この成分の仕込み量によって所望の量のカルボキシル基を導入する方法が好ましい。
例えば、ウレタン樹脂の重合に用いるジオールに対して、ジメチロールプロピオン酸、ジメチロールブタン酸、ビス−(2−ヒドロキシエチル)プロピオン酸、ビス−(2−ヒドロキシエチル)ブタン酸等を共重合させることができる。またこのカルボキシル基はアンモニア、アミン、アルカリ金属類、無機アルカリ類等で中和した塩の形にするのが好ましい。特に好ましいものは、アンモニア、トリメチルアミン、トリエチルアミンである。
かかるウレタン樹脂は、塗布後の乾燥工程において中和剤が外れたカルボキシル基を、他の架橋剤による架橋反応点として用いることが出来る。これにより、塗布前の液の状態での安定性に優れる上、得られる塗布層の耐久性、耐溶剤性、耐水性、耐ブロッキング性等をさらに改善することが可能となる。
粘着特性を向上させるためのウレタン樹脂のガラス転移点としては、0℃以下であることが必須であり、好ましくは−10℃以下、より好ましくは−20℃以下の範囲、さらに好ましくは−30℃以下の範囲であり、好ましい範囲の下限としては−80℃である。上記範囲で使用することで最適な粘着特性を有するフィルムとすることが容易となる。
帯電防止剤は、各種の工程中の塵埃の付着防止などのために、フィルム表面の表面抵抗を下げるために用いられるものである。帯電防止剤としては、特に制限はなく、従来公知の帯電防止剤を使用することが可能であるが、耐熱性、耐湿熱性が良好であることから、高分子タイプの帯電防止剤であることが好ましい。高分子タイプの帯電防止剤としては、例えば、導電ポリマー、アンモニウム基を有する化合物、スルホン酸基を有する化合物、ポリエーテル化合物、ベタイン化合物等が挙げられる。これらの中でも、特に表面抵抗が低くでき、帯電防止性能を高くすることができるという観点から導電ポリマーが好ましい。また、色が付きにくいという観点からは、アンモニウム基を有する化合物、スルホン酸基を有する化合物が好ましい。
さらに、検討を進めた結果、帯電防止剤として導電ポリマーを使用する場合には、併用するガラス転移点が0℃以下の樹脂として、ポリエステル樹脂を用いることが、アクリル樹脂やウレタン樹脂などの他の樹脂に比べて帯電防止性能に優れ、粘着力との両立に優れることを見出した。また、導電ポリマー以外の帯電防止剤の場合には、アクリル樹脂が最も粘着力と帯電防止性能の両立に優れていることも見出した。
導電ポリマーとしては、例えば、ポリチオフェン系、ポリアニリン系、ポリピロール系、ポリアセチレン系等が挙げられ、その中でも例えば、ポリ(3,4−エチレンジオキシチオフェン)をポリスチレンスルホン酸と併用するような、ポリチオフェン系が好適に用いられる。導電ポリマーは抵抗値が低くなるという点において、上述の他の帯電防止剤に比べて好適である。しかし、一方で、着色やコストが気になる用途では使用量を低減するなどの工夫が必要となってくる。
アンモニウム基を有する化合物とは、分子内にアンモニウム基を有する化合物であり、脂肪族アミン、脂環族アミンや芳香族アミンのアンモニウム化物等が挙げられる。アンモニウム基を有する化合物は、高分子タイプのアンモニウム基を有する化合物であることが好ましく、当該アンモニウム基は、カウンターイオンとしてではなく、高分子の主鎖や側鎖中に組み込まれている構造であることが好ましい。例えば、付加重合性のアンモニウム基またはアミン等のアンモニウム基の前駆体を含有するモノマーを重合した重合体からアンモニウム基を有する高分子化合物とするものが挙げられ、好適に用いられる。重合体としては、付加重合性のアンモニウム基またはアミン等のアンモニウム基の前駆体を含有するモノマーを単独で重合してもよいし、これらを含有するモノマーと他のモノマーとの共重合体であってもよい。
アンモニウム基を有する化合物の中でも、帯電防止性、耐熱安定性が優れているという点で、ピロリジニウム環を有する化合物も好ましい。
ピロリジニウム環を有する化合物の窒素原子に結合している2つの置換基は、それぞれ独立してアルキル基、フェニル基等であり、これらのアルキル基、フェニル基が以下に示す基で置換されていてもよい。置換可能な基は、例えば、ヒドロキシル基、アミド基、エステル基、アルコキシ基、フェノキシ基、ナフトキシ基、チオアルコキシ、チオフェノキシ基、シクロアルキル基、トリアルキルアンモニウムアルキル基、シアノ基、ハロゲンである。また、窒素原子に結合している2つの置換基は化学的に結合していてもよく、例えば、−(CH2m−(m=2〜5の整数)、−CH(CH3)CH(CH3)−、−CH=CH−CH=CH−、−CH=CH−CH=N−、−CH=CH−N=C−、−CH2OCH2−、−(CH22O(CH22−などが挙げられる。
ピロリジニウム環を有するポリマーは、ジアリルアミン誘導体を、ラジカル重合触媒を用いて環化重合させることにより得られる。重合は、溶媒として水あるいはメタノール、エタノール、イソプロパノール、ホルムアミド、ジメチルホルムアミド、ジオキサン、アセトニトリルなどの極性溶媒中で過酸化水素、ベンゾイルパーオキサイド、第3級ブチルパーオキサイド等の重合開始剤により、公知の方法で実施できるが、これらに限定するものではない。ジアリルアミン誘導体と重合性のある炭素−炭素不飽和結合を有する化合物を共重合成分としてもよい。
また、帯電防止性および耐湿熱安定性に優れるという点で、下記式(1)の構造を有する高分子であることも好ましい。単独の重合体や共重合体、さらには、その他の複数の成分を共重合していてもよい。
Figure 2018043241
例えば、上記式中で置換基R1は水素原子または炭素数が1〜20のアルキル基、フェニル基等の炭化水素基、R2が−O−、−NH−または−S−、R3が炭素数1〜20のアルキレン基または式1の構造を成立しうるその他の構造、R4、R5、R6は、それぞれ独立して、水素原子、炭素数1〜20のアルキル基、フェニル基等の炭化水素基、またはヒドロキシアルキル基等の官能基が付与された炭化水素基、X-は各種のカウンターイオンである。
上記の中でも、特に帯電防止性や耐湿熱安定性に優れるという観点において、式(1)中で、置換基R1は水素原子または炭素数が1〜6のアルキル基であることが好ましく、R3は炭素数が1〜6のアルキル基であることが好ましく、R4、R5、R6はそれぞれ独立して水素原子または炭素数1〜6のアルキル基であることが好ましく、さらに好ましくは、R4、R5、R6のいずれか1つは水素原子であり、他の置換基が炭素数1〜4のアルキル基であることである。
上述したアンモニウム基を有する化合物のアンモニウム基の対イオン(カウンターイオン)となるアニオンとしては例えば、ハロゲンイオン、スルホナート、ホスファート、ニトラート、アルキルスルホナート、カルボキシラート等のイオンが挙げられる。
また、アンモニウム基を有する化合物の数平均分子量は1000〜500000、好ましくは2000〜350000、さらに好ましくは5000〜200000である。分子量が1000未満の場合は塗膜の強度が弱くなる場合や、耐熱安定性が劣る場合がある。
また、分子量が500000を超える場合は、塗布液の粘度が高くなり、取扱い性や塗布性が悪化する場合がある。
スルホン酸基を有する化合物とは、分子内にスルホン酸あるいはスルホン酸塩を含有する化合物のことであり、例えば、ポリスチレンスルホン酸またはその誘導体等、スルホン酸あるいはスルホン酸塩が多量に存在する化合物が好適に用いられる。
ポリスチレンスルホン酸またはその誘導体としては、パラ位にスルホン酸やスルホン酸塩を有する構成体が帯電防止性の観点から好ましい。また、単独重合体でも、他成分を含んだ共重合体でも良いが、帯電防止性の観点から、ポリスチレンスルホン酸またはその誘導体の割合が単独重合体に近い方がよく、好ましくは80重量%以上、より好ましくは90重量%以上の範囲である。
スルホン酸基の部分としては、スルホン酸の状態でも、1価の金属イオンあるいはアンモニウムイオン等によるスルホン酸塩の状態でも構わない。より帯電防止性に優れるという観点においては、スルホン酸の状態、あるいは1価の金属塩の状態(その中でもリチウム塩またはナトリウム塩といった小さい金属イオンが好ましい)がより好ましい。さらにスルホン酸の状態の量が、スルホン酸塩の状態の量よりも多い方が好ましく、スルホン酸の量としては、スルホン酸とスルホン酸塩の合計数に対して、より好ましくは60%以上、さらに好ましくは70%以上、特に好ましくは80%以上の範囲である。また、着色の観点からは、スルホン酸塩の量を多めに(スルホン酸の量を少し少なく)することが好ましく、その場合は、上記のスルホン酸の量のとして好ましくは99%以下、より好ましくは97%以下、さらに好ましくは95%以下の範囲である。
ポリスチレンスルホン酸またはその誘導体の分子量は、数平均分子量として好ましくは5000〜100000、より好ましくは10000〜50000の範囲である。上記範囲で使用することで、良好な帯電防止性能と、塗布適性が得られやすい。
ポリエーテル化合物としては、例えば、ポリエチレンオキシド、ポリエーテルエステルアミド、ポリエチレングリコールを側鎖に有するアクリル樹脂等が挙げられる。
また、粘着層の外観の向上や、表面抵抗値をより低減するために、例えば、ポリアルキレンオキサイド、グリセリン、ポリグリセリン、グリセリンまたはポリグリセリンへのアルキレンオキサイド付加物等のポリオール化合物またはポリエーテル化合物を併用することも可能である。
ポリアルキレンオキサイドまたはその誘導体として好ましいものは、エチレンオキサイドまたはプロピレンオキサイド構造を有する構造である。アルキレンオキサイド構造中のアルキル基が長くなりすぎると、疎水性が強くなり、塗布液中での均一な分散性が悪化し、帯電防止性が悪化する傾向がある。特に好ましいものはエチレンオキサイドである。
ポリグリセリンとはグリセリンが2以上重合した化合物であり、重合度は2〜20の範囲が好ましい。グリセリンを用いた場合、透明性が若干劣る場合がある。
また、グリセリンまたはポリグリセリンへのアルキレンオキサイド付加物とは、グリセリンまたはポリグリセリンのヒドロキシル基にアルキレンオキサイドまたはその誘導体を付加した構造を有するものである。
ここで、グリセリンまたはポリグリセリン構造のヒドロキシル基ごとに、付加されるアルキレンオキサイドまたはその誘導体の構造は異なっていてもかまわない。また、少なくとも分子中1つのヒドロキシル基に付加されていればよく、全てのヒドロキシル基にアルキレンオキサイドまたはその誘導体が付加されている必要はない。
また、グリセリンまたはポリグリセリンに付加されるアルキレンオキサイドまたはその誘導体として好ましいものは、エチレンオキサイドまたはプロピレンオキサイド構造を有する構造である。アルキレンオキサイド構造中のアルキル鎖が長くなりすぎると、疎水性が強くなり、塗布液中での均一な分散性が悪化し、帯電防止性が悪化する傾向がある。特に好ましいものはエチレンオキサイドである。また、その付加数は、最終的な化合物としての重量平均分子量で300〜2000の範囲になるものが特に好ましい。
また、粘着層の強度の観点から架橋剤を併用することも好ましい。厳しい条件下においては、使用する樹脂によっては、被着体に粘着成分が移行してしまう場合もあるが、架橋剤を併用することで、粘着層の被着体への移行が改善できる。
架橋剤としては、従来公知の材料を使用することができ、例えば、メラミン化合物、イソシアネート系化合物、エポキシ化合物、オキサゾリン化合物、カルボジイミド系化合物、シランカップリング化合物、ヒドラジド化合物、アジリジン化合物等が挙げられる。それらの中でも、メラミン化合物、イソシアネート系化合物、エポキシ化合物、オキサゾリン化合物、カルボジイミド系化合物、シランカップリング化合物が好ましく、さらに、粘着力を適度に維持でき、調整しやすいという観点からはメラミン化合物、イソシアネート系化合物、エポキシ化合物がより好ましく、特にイソシアネート系化合物およびエポキシ化合物は併用による粘着力の低下が抑えられるので好ましい。また、特に被着体への移行を少なくできるという観点においては、メラミン化合物やイソシアネート系化合物が好ましく、その中でもメラミン化合物が特に好ましい。さらに粘着層の強度の観点からはメラミン化合物が特に好ましい。またこれらの架橋剤は1種類でもよいし、2種類以上を併用してもよい。
なお、粘着層の構成や架橋剤の種類によっては、粘着層中の架橋剤の含有量が多くなりすぎると粘着特性が低下しすぎる場合がある。それゆえ、粘着層中の含有量に注意する必要がある。
メラミン化合物とは、化合物中にメラミン骨格を有する化合物のことであり、例えば、アルキロール化メラミン誘導体、アルキロール化メラミン誘導体にアルコールを反応させて部分的あるいは完全にエーテル化した化合物、およびこれらの混合物を用いることができる。エーテル化に用いるアルコールとしては、メチルアルコール、エチルアルコール、イソプロピルアルコール、n−ブタノール、イソブタノール等が好適に用いられる。また、メラミン化合物としては、単量体、あるいは2量体以上の多量体のいずれであってもよく、あるいはこれらの混合物を用いてもよい。各種化合物との反応性を考慮すると、メラミン化合物中に水酸基を含有していることが好ましい。さらに、メラミンの一部に尿素等を共縮合したものも使用できるし、メラミン化合物の反応性を上げるために触媒を使用することも可能である。
イソシアネート系化合物とは、イソシアネート、あるいはブロックイソシアネートに代表されるイソシアネート誘導体構造を有する化合物のことである。イソシアネートとしては、例えば、トリレンジイソシアネート、キシリレンジイソシアネート、メチレンジフェニルジイソシアネート、フェニレンジイソシアネート、ナフタレンジイソシアネート等の芳香族イソシアネート、α,α,α’,α’−テトラメチルキシリレンジイソシアネート等の芳香環を有する脂肪族イソシアネート、メチレンジイソシアネート、プロピレンジイソシアネート、リジンジイソシアネート、トリメチルヘキサメチレンジイソシアネート、ヘキサメチレンジイソシアネート等の脂肪族イソシアネート、シクロヘキサンジイソシアネート、メチルシクロヘキサンジイソシアネート、イソホロンジイソシアネート、メチレンビス(4−シクロヘキシルイソシアネート)、イソプロピリデンジシクロヘキシルジイソシアネート等の脂環族イソシアネート等が例示される。また、これらイソシアネートのビュレット化物、イソシアヌレート化物、ウレトジオン化物、カルボジイミド変性体等の重合体や誘導体も挙げられる。これらは単独で用いても、複数種併用してもよい。上記イソシアネートの中でも、紫外線による黄変を避けるために、芳香族イソシアネートよりも脂肪族イソシアネートまたは脂環族イソシアネートがより好ましい。
ブロックイソシアネートの状態で使用する場合、そのブロック剤としては、例えば重亜硫酸塩類、フェノール、クレゾール、エチルフェノールなどのフェノール系化合物、プロピレングリコールモノメチルエーテル、エチレングリコール、ベンジルアルコール、メタノール、エタノールなどのアルコール系化合物、マロン酸ジメチル、マロン酸ジエチル、イソブタノイル酢酸メチル、アセト酢酸メチル、アセト酢酸エチル、アセチルアセトンなどの活性メチレン系化合物、ブチルメルカプタン、ドデシルメルカプタンなどのメルカプタン系化合物、ε‐カプロラクタム、δ‐バレロラクタムなどのラクタム系化合物、ジフェニルアニリン、アニリン、エチレンイミンなどのアミン系化合物、アセトアニリド、酢酸アミドの酸アミド化合物、ホルムアルデヒド、アセトアルドオキシム、アセトンオキシム、メチルエチルケトンオキシム、シクロヘキサノンオキシムなどのオキシム系化合物が挙げられ、これらは単独でも2種以上の併用であってもよい。上記中でも特に粘着層の被着体への移行性の低減に効果的であるという観点から、活性メチレン系化合物によりブロックされたイソシアネート化合物であることが好ましい。
また、イソシアネート系化合物は単体で用いてもよいし、各種ポリマーとの混合物や結合物として用いてもよい。イソシアネート系化合物の分散性や架橋性を向上させるという意味において、ポリエステル樹脂やウレタン樹脂との混合物や結合物を使用することが好ましい。
エポキシ化合物とは、分子内にエポキシ基を有する化合物であり、例えば、エピクロロヒドリンとエチレングリコール、ポリエチレングリコール、グリセリン、ポリグリセリン、ビスフェノールA等の水酸基やアミノ基との縮合物が挙げられ、ポリエポキシ化合物、ジエポキシ化合物、モノエポキシ化合物、グリシジルアミン化合物等がある。ポリエポキシ化合物としては、例えば、ソルビトールポリグリシジルエーテル、ポリグリセロールポリグリシジルエーテル、ペンタエリスリトールポリグリシジルエーテル、ジグリセロールポリグリシジルエーテル、トリグリシジルトリス(2−ヒドロキシエチル)イソシアネート、グリセロールポリグリシジルエーテル、トリメチロールプロパンポリグリシジルエーテル、ジエポキシ化合物としては、例えば、ネオペンチルグリコールジグリシジルエーテル、1,6−ヘキサンジオールジグリシジルエーテル、レゾルシンジグリシジルエーテル、エチレングリコールジグリシジルエーテル、ポリエチレングリコールジグリシジルエーテル、プロピレングリコールジグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテル、ポリテトラメチレングリコールジグリシジルエーテル、モノエポキシ化合物としては、例えば、アリルグリシジルエーテル、2−エチルヘキシルグリシジルエーテル、フェニルグリシジルエーテル、グリシジルアミン化合物としてはN,N,N’,N’−テトラグリシジル−m−キシリレンジアミン、1,3−ビス(N,N−ジグリシジルアミノ)シクロヘキサン等が挙げられる。
粘着特性が良好であるという観点において、上記中でも、ポリエーテル系のエポキシ化合物が好ましい。また、エポキシ基の量としては、2官能より、3官能以上の多官能であるポリエポキシ化合物が好ましい。
オキサゾリン化合物とは、分子内にオキサゾリン基を有する化合物であり、特にオキサゾリン基を含有する重合体が好ましく、付加重合性オキサゾリン基含有モノマー単独もしくは他のモノマーとの重合によって作成できる。付加重合性オキサゾリン基含有モノマーは、2−ビニル−2−オキサゾリン、2−ビニル−4−メチル−2−オキサゾリン、2−ビニル−5−メチル−2−オキサゾリン、2−イソプロペニル−2−オキサゾリン、2−イソプロペニル−4−メチル−2−オキサゾリン、2−イソプロペニル−5−エチル−2−オキサゾリン等を挙げることができ、これらの1種または2種以上の混合物を使用することができる。これらの中でも2−イソプロペニル−2−オキサゾリンが工業的にも入手しやすく好適である。他のモノマーは、付加重合性オキサゾリン基含有モノマーと共重合可能なモノマーであれば制限なく、例えばアルキル(メタ)アクリレート(アルキル基としては、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、t−ブチル基、2−エチルヘキシル基、シクロヘキシル基)等の(メタ)アクリル酸エステル類;アクリル酸、メタクリル酸、イタコン酸、マレイン酸、フマール酸、クロトン酸、スチレンスルホン酸およびその塩(ナトリウム塩、カリウム塩、アンモニウム塩、第三級アミン塩等)等の不飽和カルボン酸類;アクリロニトリル、メタクリロニトリル等の不飽和ニトリル類;(メタ)アクリルアミド、N−アルキル(メタ)アクリルアミド、N,N−ジアルキル(メタ)アクリルアミド、(アルキル基としては、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、t−ブチル基、2−エチルヘキシル基、シクロヘキシル基等)等の不飽和アミド類;酢酸ビニル、プロピオン酸ビニル等のビニルエステル類;メチルビニルエーテル、エチルビニルエーテル等のビニルエーテル類;エチレン、プロピレン等のα−オレフィン類;塩化ビニル、塩化ビニリデン、フッ化ビニル等の含ハロゲンα,β−不飽和モノマー類;スチレン、α−メチルスチレン、等のα,β−不飽和芳香族モノマー等を挙げることができ、これらの1種または2種以上のモノマーを使用することができる。
オキサゾリン化合物のオキサゾリン基量は、好ましくは0.5〜10mmol/g、より好ましくは1〜9mmol/g、さらに好ましくは3〜8mmol/g、特に好ましくは4〜6mmol/gの範囲である。上記範囲で使用することで、耐久性が向上し、粘着特性の調整がしやすくなる。
カルボジイミド系化合物とは、分子内にカルボジイミド、あるいはカルボジイミド誘導体構造を1つ以上有する化合物である。より良好な粘着層の強度等のために、分子内に2つ以上有するポリカルボジイミド系化合物がより好ましい。
カルボジイミド系化合物は従来公知の技術で合成することができ、一般的には、ジイソシアネート化合物の縮合反応が用いられる。ジイソシアネート化合物としては、特に限定されるものではなく、芳香族系、脂肪族系いずれも使用することができ、具体的には、トリレンジイソシアネート、キシレンジイソシアネート、ジフェニルメタンジイソシアネート、フェニレンジイソシアネート、ナフタレンジイソシアネート、ヘキサメチレンジイソシアネート、トリメチルヘキサメチレンジイソシアネート、シクロヘキサンジイソシアネート、メチルシクロヘキサンジイソシアネート、イソホロンジイソシアネート、ジシクロヘキシルジイソシアネート、ジシクロヘキシルメタンジイソシアネートなどが挙げられる。
さらに本発明の効果を消失させない範囲において、ポリカルボジイミド系化合物の水溶性や水分散性を向上させるために、界面活性剤を添加することや、ポリアルキレンオキシド、ジアルキルアミノアルコールの四級アンモニウム塩、ヒドロキシアルキルスルホン酸塩などの親水性モノマーを添加して用いてもよい。
シランカップリング化合物とは、1つの分子中に有機官能基とアルコキシ基などの加水分解基を有する有機ケイ素化合物である。例えば、3−グリシドキシプロピルメチルジメトキシシラン、3−グリシドキシプロピルトリメトキシシラン、3−グリシドキシプロピルメチルジエトキシシラン、3−グリシドキシプロピルトリエトキシシラン、2−(3,4−エポキシシクロヘキシル)エチルトリメトキシシランなどのエポキシ基含有化合物、ビニルトリメトキシシラン、ビニルトリエトキシシランなどのビニル基含有化合物、p−スチリルトリメトキシシラン、p−スチリルトリエトキシシランなどのスチリル基含有化合物、3−(メタ)アクリロキシプロピルトリメトキシシラン、3−(メタ)アクリロキシプロピルトリエトキシシラン、3−(メタ)アクリロキシプロピルメチルジメトキシシラン、3−(メタ)アクリロキシプロピルメチルジエトキシシランなどの(メタ)アクリル基含有化合物、3−アミノプロピルトリメトキシシラン、3−アミノプロピルトリエトキシシラン、N−2−(アミノエチル)−3−アミノプロピルトリメトキシシラン、N−2−(アミノエチル)−3−アミノプロピルトリエトキシシラン、N−2−(アミノエチル)−3−アミノプロピルメチルジメトキシシラン、N−2−(アミノエチル)−3−アミノプロピルメチルジエトキシシラン、3−トリエトキシシリル−N−(1,3−ジメチルブチリデン)プロピルアミン、N−フェニル−3−アミノプロピルトリメトキシシラン、N−フェニル−3−アミノプロピルトリエトキシシランなどのアミノ基含有化合物、トリス(トリメトキシシリルプロピル)イソシアヌレート、トリス(トリエトキシシリルプロピル)イソシアヌレートなどのイソシアヌレート基含有化合物、3−メルカプトプロピルトリメトキシシラン、3−メルカプトプロピルトリエトキシシラン、3−メルカプトプロピルメチルジメトキシシラン、3−メルカプトプロピルメチルジエトキシシランなどのメルカプト基含有化合物などが挙げられる。
上記化合物の中でも粘着層の強度と粘着力の保持の観点から、エポキシ基含有シランカップリング化合物、ビニル基や(メタ)アクリル基などの二重結合含有シランカップリング化合物、アミノ基含有シランカップリング化合物がより好ましい。
なお、これらの架橋剤は、乾燥過程や、製膜過程において、反応させて粘着層の性能を向上させる設計で用いている。できあがった粘着層中には、これら架橋剤の未反応物、反応後の化合物、あるいはそれらの混合物が存在しているものと推測できる。
また、粘着層の外観、粘着力の調整、粘着層の強化、基材フィルムとの密着性、耐ブロッキング性、被着体への粘着成分の移行防止などの観点から、ガラス転移点が0℃を超える樹脂を併用することも可能である。ガラス転移点が0℃を超える樹脂としては、従来公知の材料を使用することが可能である。その中でも、ポリエステル樹脂、アクリル樹脂、ウレタン樹脂およびポリビニル(ポリビニルアルコール、塩化ビニル酢酸ビニル共重合体等)が好ましく、粘着層の外観、粘着力への影響を考慮すると、ポリエステル樹脂、アクリル樹脂およびウレタン樹脂から選ばれる樹脂が好ましい。しかしながら、使用方法によっては、粘着力を大きく低下させてしまう懸念もあり注意が必要である。
また、粘着層の形成には、ブロッキングや滑り性改良、粘着特性の調整のために粒子を併用することも可能である。ただし、使用する粒子の種類によっては粘着力が低下する場合もあるため、注意が必要である。粘着力をあまり低下させないためには、使用する粒子の平均粒径が粘着層の膜厚の3倍以下にすることが好ましく、より好ましくは1.5倍以下、さらに好ましくは1.0倍以下、特に好ましくは0.8倍以下の範囲である。特に粘着層の樹脂の粘着性能をそのまま発揮させたい場合には、粘着層中に粒子を含有しないことが好ましい場合もある。
フィルムの粘着層とは反対側の面に、各種の機能付与のために機能層を設けても良い。
例えば、粘着層によるフィルムのブロッキングを軽減するために離型層を設けることも好ましいし、フィルムの剥離帯電や摩擦帯電による周囲のゴミなどの付着等による欠陥を防止するために、帯電防止層を設けることも好ましい形態である。当該機能層はコーティングにより設けることも可能であり、インラインコーティングにより設けられてもよく、オフラインコーティングを採用してもよい。製造コストやインラインの熱処理による離型性能や帯電防止性能などの安定化の観点から、インラインコーティングが好ましく用いられる。
例えば、フィルムの粘着層とは反対側の面に離型機能層を設ける場合、機能層に含有する離型剤としては、特に制限はなく、従来公知の離型剤を使用することが可能であり、例えば、長鎖アルキル基含有化合物、フッ素化合物、シリコーン化合物、ワックス等が挙げられる。これらの中でも汚染性が少なく、ブロッキング軽減に優れるという点からは長鎖アルキル化合物やフッ素化合物が好ましく、特にブロッキング軽減を重視したい場合はシリコーン化合物が好ましい。また、表面の汚染除去性を向上させるためにはワックスが効果的である。これらの離型剤は単独で用いてもよいし、複数種使用してもよい。
長鎖アルキル基含有化合物とは、炭素数が通常6以上、好ましくは8以上、さらに好ましくは12以上の直鎖または分岐のアルキル基を有する化合物のことである。アルキル基としては、例えば、ヘキシル基、オクチル基、デシル基、ラウリル基、オクタデシル基、ベヘニル基等が挙げられる。アルキル基を有する化合物とは、例えば、各種の長鎖アルキル基含有高分子化合物、長鎖アルキル基含有アミン化合物、長鎖アルキル基含有エーテル化合物、長鎖アルキル基含有4級アンモニウム塩等が挙げられる。耐熱性、汚染性を考慮すると高分子化合物であることが好ましい。また、効果的に離型性を得られるという観点から、長鎖アルキル基を側鎖に持つ高分子化合物であることがより好ましい。
長鎖アルキル基を側鎖に持つ高分子化合物とは、反応性基を有する高分子と、当該反応性基と反応可能なアルキル基を有する化合物とを反応させて得ることができる。上記反応性基としては、例えば、水酸基、アミノ基、カルボキシル基、酸無水物等が挙げられる。
これらの反応性基を有する化合物としては、例えば、ポリビニルアルコール、ポリエチレンイミン、ポリエチレンアミン、反応性基含有ポリエステル樹脂、反応性基含有ポリ(メタ)アクリル樹脂等が挙げられる。これらの中でも離型性や取り扱い易さを考慮するとポリビニルアルコールであることが好ましい。
上記の反応性基と反応可能なアルキル基を有する化合物とは、例えば、ヘキシルイソシアネート、オクチルイソシアネート、デシルイソシアネート、ラウリルイソシアネート、オクタデシルイソシアネート、ベヘニルイソシアネート等の長鎖アルキル基含有イソシアネート、ヘキシルクロライド、オクチルクロライド、デシルクロライド、ラウリルクロライド、オクタデシルクロライド、ベヘニルクロライド等の長鎖アルキル基含有酸クロライド、長鎖アルキル基含有アミン、長鎖アルキル基含有アルコール等が挙げられる。これらの中でも離型性や取り扱い易さを考慮すると長鎖アルキル基含有イソシアネートが好ましく、オクタデシルイソシアネートが特に好ましい。
また、長鎖アルキル基を側鎖に持つ高分子化合物は、長鎖アルキル(メタ)アクリレートの重合物や長鎖アルキル(メタ)アクリレートと他のビニル基含有モノマーとの共重合によって得ることもできる。長鎖アルキル(メタ)アクリレートとは、例えば、ヘキシル(メタ)アクリレート、オクチル(メタ)アクリレート、デシル(メタ)アクリレート、ラウリル(メタ)アクリレート、オクタデシル(メタ)アクリレート、ベヘニル(メタ)アクリレート等が挙げられる。
フッ素化合物としては、化合物中にフッ素原子を含有している化合物である。インラインコーティングによる塗布外観の点で有機系フッ素化合物が好適に用いられ、例えば、パーフルオロアルキル基含有化合物、フッ素原子を含有するオレフィン化合物の重合体、フルオロベンゼン等の芳香族フッ素化合物等が挙げられる。離型性の観点からパーフルオロアルキル基を有する化合物であることが好ましい。さらにフッ素化合物には後述するような長鎖アルキル化合物を含有している化合物も使用することができる。
パーフルオロアルキル基を有する化合物とは、例えば、パーフルオロアルキル(メタ)アクリレート、パーフルオロアルキルメチル(メタ)アクリレート、2−パーフルオロアルキルエチル(メタ)アクリレート、3−パーフルオロアルキルプロピル(メタ)アクリレート、3−パーフルオロアルキル−1−メチルプロピル(メタ)アクリレート、3−パーフルオロアルキル−2−プロペニル(メタ)アクリレート等のパーフルオロアルキル基含有(メタ)アクリレートやその重合物、パーフルオロアルキルメチルビニルエーテル、2−パーフルオロアルキルエチルビニルエーテル、3−パーフルオロプロピルビニルエーテル、3−パーフルオロアルキル−1−メチルプロピルビニルエーテル、3−パーフルオロアルキル−2−プロペニルビニルエーテル等のパーフルオロアルキル基含有ビニルエーテルやその重合物などが挙げられる。耐熱性、汚染性を考慮すると重合物であることが好ましい。重合物は単一化合物のみでも複数化合物の重合物でもよい。また、離型性の観点からパーフルオロアルキル基は炭素原子数が3〜11であることが好ましい。さらに後述するような長鎖アルキル化合物を含有している化合物との重合物であってもよい。また、基材との密着性の観点から、塩化ビニルとの重合物であることも好ましい。
シリコーン化合物とは、分子内にシリコーン構造を有する化合物のことであり、例えば、ジメチルシリコーン、ジエチルシリコーン等のアルキルシリコーン、また、フェニル基を有するフェニルシリコーン、メチルフェニルシリコーン等が挙げられる。シリコーンには各種の官能基を有するものも使用することができ、例えば、エーテル基、水酸基、アミノ基、エポキシ基、カルボン酸基、フッ素等のハロゲン基、パーフルオロアルキル基、各種アルキル基や各種芳香族基等の炭化水素基等が挙げられる。他の官能基として、ビニル基を有するシリコーンや水素原子が直接ケイ素原子に結合したハイドロゲンシリコーンも一般的で、両者を併用して、付加型(ビニル基とハイドロゲンシランの付加反応による型)のシリコーンとして使用することも可能である。
また、シリコーン化合物として、アクリルグラフトシリコーン、シリコーングラフトアクリル、アミノ変性シリコーン、パーフルオロアルキル変性シリコーン等の変性シリコーンを使用することも可能である。耐熱性、汚染性を考慮すると、硬化型シリコーン樹脂を使用することが好ましく、硬化型の種類としては、縮合型、付加型、活性エネルギー線硬化型等いずれの硬化反応タイプでも用いることができる。これらの中でも、特にロール状にしたときの裏面転写が少ないという観点において、縮合型シリコーン化合物が好ましい。
シリコーン化合物を使用する場合の好ましい形態としては、裏面転写が少なく、水系溶媒への分散性が良くインラインコーティングへの適性が高いという観点において、ポリエーテル基含有シリコーン化合物が好ましい。ポリエーテル基はシリコーンの側鎖や末端に有していても、主鎖に有していても良い。水系溶媒への分散性の観点から、側鎖や末端に有していることが好ましい。
ポリエーテル基は従来公知の構造を使用することができる。水系溶媒の分散性の観点から、芳香族ポリエーテル基より、脂肪族ポリエーテル基が好ましく、脂肪族ポリエーテル基の中でも、アルキルポリエーテル基が好ましい。また、立体障害による合成上の観点から、分岐アルキルポリエーテル基よりも、直鎖アルキルポリエーテル基が好ましく、その中でも、炭素数が8以下の直鎖アルキルからなるポリエーテル基が好ましい。さらに、展開する溶媒が水の場合は、水への分散性を考慮し、ポリエチレングリコール基またはポリプロピレングリコール基が好ましく、特に最適なのは、ポリエチレングリコール基である。
ポリエーテル基のエーテル結合の個数は、水系溶媒への分散性と機能層の耐久性の向上の観点から、通常1〜30個の範囲、好ましくは2〜20個の範囲、より好ましくは3〜15個の範囲である。エーテル結合が少ないと分散性が悪くなり、逆に多すぎると耐久性や離型性能が悪くなる。
ポリエーテル基をシリコーンの側鎖あるいは末端に有する場合、ポリエーテル基の末端は特に限定するものではなく、水酸基、アミノ基、チオール基、アルキル基やフェニル基等の炭化水素基、カルボン酸基、スルホン酸基、アルデヒド基、アセタール基等、各種の官能基を使用することができる。その中でも、水への分散性や機能層の強度向上のための架橋性を考慮すると、水酸基、アミノ基、カルボン酸基、スルホン酸基が好ましく、特に、水酸基が最適である。
ポリエーテル基含有シリコーンのポリエーテル基の含有量は、シリコーンのシロキサン結合を1として、モル比の割合で、好ましくは0.001〜0.30%の範囲、より好ましくは0.01〜0.20%の範囲、さらに好ましくは0.03〜0.15%の範囲、特に好ましくは0.05〜0.12%の範囲である。この範囲内で使用することで、水への分散性と機能層の耐久性や良好な離型性を保持することができる。
ポリエーテル基含有シリコーンの分子量は、水系溶媒への分散性を考慮するとあまり大きくない方が好ましく、また、機能層の耐久性や離型性能を考慮すると大きい方が好ましい。この両者の特性をバランスさせることが求められており、数平均分子量として、好ましくは1000〜100000の範囲、より好ましくは3000〜30000の範囲、さらに好ましくは、5000〜10000の範囲である。
また、機能層の経時変化や離型性能、また、各種工程の汚染性を考慮するとシリコーンの低分子成分(数平均分子量で500以下)はできる限り少ない方が好ましく、その量としては、シリコーン化合物全体の割合として、好ましくは15重量%以下、より好ましくは10重量%以下、さらに好ましくは5重量%以下の範囲である。また、縮合型シリコーンを使用する場合は、ケイ素に結合したビニル基(ビニルシラン)、水素基(ハイドロゲンシラン)は、未反応のまま機能層に残ると各種性能の経時変化の原因となるので、シリコーン中の官能基量として含有量は0.1モル%以下が好ましく、さらには含有しないことがより好ましい。
ポリエーテル基含有シリコーンは単独では塗布することが難しいので、水へ分散して使用することが好ましい。分散のために従来公知の各種の分散剤を使用することが可能であり、例えば、アニオン性分散剤、ノニオン性分散剤、カチオン性分散剤、両性分散剤が挙げられる。これらの中でも、ポリエーテル基含有シリコーンの分散性、および機能層の形成に用いられ得るポリエーテル基含有シリコーン以外のポリマーとの相溶性を考慮した場合、アニオン性分散剤やノニオン性分散剤が好ましい。また、これら分散剤には、フッ素化合物を使用することも可能である。
アニオン性分散剤としては、ドデシルベンゼンスルホン酸ナトリウム、アルキルスルホン酸ナトリウム、アルキルナフタレンスルホン酸ナトリウム、ジアルキルスルホコハク酸ナトリウム、ポリオキシエチレンアルキルエーテル硫酸ナトリウム、ポリオキシエチレンアルキルアリルエーテル硫酸ナトリウム、ポリオキシアルキレンアルケニルエーテル硫酸アンモニウム塩等のスルホン酸塩や硫酸エステル塩系、ラウリル酸ナトリウム、オレイン酸カリウム等のカルボン酸塩系、アルキルリン酸塩、ポリオキシエチレンアルキルエーテルリン酸塩、ポリオキシエチレンアルキルフェニルエーテルリン酸塩等のリン酸塩系が挙げられる。これらの中でも、分散性が良好であるという観点からスルホン酸塩系が好ましい。
ノニオン性分散剤としては、例えば、高級アルコールやアルキルフェノールなどの水酸基をもつ化合物にエチレンオキサイドやプロピレンオキサイド等のアルキレンオキサイドを付加させたエーテル型、グリセリンや糖類などの多価アルコールと脂肪酸がエステル結合したエステル型、脂肪酸や多価アルコール脂肪酸エステルにアルキレンオキサイドを付加させたエステル・エーテル型、疎水基と親水基がアミド結合を介しているアミド型等が挙げられる。これらの中でも水への溶解性、安定性を考慮するとエーテル型が好ましく、取扱い性も考慮するとエチレンオキサイドを付加させたタイプがより好ましい。
使用するポリエーテル基含有シリコーンの分子量や構造にも依存するし、使用する分散剤の種類にも依存するので一概にはいえないが、目安として分散剤の量は、ポリエーテル基含有シリコーンを1として、重量比で、好ましくは0.01〜0.5、より好ましくは0.05〜0.4、さらに好ましくは0.1〜0.3の範囲である。
ワックスとは、天然ワックス、合成ワックス、それらの配合したワックスの中から選ばれたワックスである。天然ワックスとは、植物系ワックス、動物系ワックス、鉱物系ワックス、石油ワックスである。植物系ワックスとしては、キャンデリラワックス、カルナウバワックス、ライスワックス、木ロウ、ホホバ油等が挙げられる。動物系ワックスとしては、みつろう、ラノリン、鯨ロウ等が挙げられる。鉱物系ワックスとしてはモンタンワックス、オゾケライト、セレシン等が挙げられる。石油ワックスとしてはパラフィンワックス、マイクロクリスタリンワックス、ペトロラタム等が挙げられる。合成ワックスとしては、合成炭化水素、変性ワックス、水素化ワックス、脂肪酸、酸アミド、アミン、イミド、エステル、ケトン等が挙げられる。合成炭化水素としては、例えば、フィッシャー・トロプシュワックス(別名サゾールワックス)、ポリエチレンワックスが挙げられ、このほかに低分子量の高分子(具体的には数平均分子量500から20000の高分子)である以下のポリマーも、すなわち、ポリプロピレン、エチレン・アクリル酸共重合体、ポリエチレングリコール、ポリプロピレングリコール、ポリエチレングリコールとポリプロピレングリコールのブロックまたはグラフト結合体等が挙げられる。変性ワックスとしてはモンタンワックス誘導体、パラフィンワックス誘導体、マイクロクリスタリンワックス誘導体等が挙げられる。ここでの誘導体とは、精製、酸化、エステル化、ケン化のいずれかの処理、またはそれらの組み合わせによって得られる化合物である。水素化ワックスとしては硬化ひまし油、および硬化ひまし油誘導体が挙げられる。
上記中でも特性が安定するという観点において、合成ワックスが好ましく、その中でもポリエチレンワックスがより好ましく、酸化ポリエチレンワックスがさらに好ましい。合成ワックスの数平均分子量としては、ブロッキング等の特性の安定性、取扱い性の観点から、好ましくは500〜30000、より好ましくは1000〜15000、さらに好ましくは2000〜8000の範囲である。
フィルムの粘着層と反対側の面に帯電防止機能層を設ける場合、機能層に含有する帯電防止剤としては、特に制限はなく、従来公知の帯電防止剤を使用することが可能であるが、耐熱性、耐湿熱性が良好であることから、高分子タイプの帯電防止剤であることが好ましい。具体的には、粘着層と同様な帯電防止剤が挙げられる。
フィルムの粘着層とは反対側の面に設けられうる機能層は、上述の離型剤と帯電防止剤の両方を含有させ、帯電防止離型機能を有するものとすることも好ましい形態である。
機能層の形成には、塗布外観や透明性の向上、滑り性のコントロールために、ポリエステル樹脂、アクリル樹脂、ウレタン樹脂等の各種のポリマーや、粘着層の形成に使用されうる架橋剤を併用することも可能である。特に機能層を強固にする、ブロッキング軽減するという観点において、メラミン化合物、オキサゾリン化合物、イソシアネート系化合物、エポキシ化合物、カルボジイミド系化合物を併用することが好ましく、その中でも特にメラミン化合物が好ましい。
本発明の主旨を損なわない範囲において、機能層の形成にも、ブロッキングや滑り性改良のために粒子を併用することも可能である。ただし、機能層が離型性能を有している場合は十分な耐ブロッキング性や滑り性を備えている場合が多いため、機能層の外観の観点から粒子を併用しないことが好ましい場合がある。
さらに本発明の主旨を損なわない範囲において、粘着層および機能層の形成には必要に応じて消泡剤、塗布性改良剤、増粘剤、有機系潤滑剤、帯電防止剤、紫外線吸収剤、酸化防止剤、発泡剤、染料、顔料等を併用することも可能である。
積層ポリエステルフィルムを構成する粘着層中の割合として、ガラス転移点が0℃以下の樹脂は、併用する帯電防止剤が導電ポリマーの場合には、通常10〜99.9重量%、好ましくは30〜99.8重量%、より好ましくは50〜98重量%、さらに好ましくは65〜97重量%、特に好ましくは75〜94重量%の範囲である。また併用する帯電防止剤が導電ポリマー以外の場合には、通常10〜90重量%、好ましくは30〜85重量%、より好ましくは50〜80重量%の範囲である。含有量が少なすぎる場合には、粘着特性が十分なものとならず、また逆に多すぎる場合には帯電防止剤の量が少ないことにより、帯電防止性能が不十分となり、塵埃の付着が問題となる場合がある。
積層ポリエステルフィルムを構成する粘着層中の割合として、帯電防止剤は、導電ポリマーの場合には、通常0.1〜80重量%、好ましくは0.2〜50重量%、より好ましくは0.5〜30重量%、さらに好ましくは1.0〜20重量%、特に好ましくは1.5〜8重量%の範囲である。また帯電防止剤が導電ポリマー以外の場合には、通常5〜90重量%、好ましくは10〜70重量%、より好ましくは15〜50重量%の範囲である。
帯電防止剤の含有量が少なすぎる場合には帯電防止性能が不十分となり、塵埃の付着が問題となり、逆に多すぎる場合は、ガラス転移点が0℃以下の樹脂の量が少ないことにより、粘着特性が不十分となる場合がある。
積層ポリエステルフィルムにおいて、粘着層とは反対面側に離型性能を有する機能層を設ける場合、機能層中の割合として、離型剤の割合は、離型剤の種類により適量が異なるので一概にはいえないが、好ましくは3重量%以上の範囲、より好ましくは15重量%以上、さらに好ましくは25〜99重量%の範囲である。3重量%未満の場合はブロッキング軽減が十分でない場合がある。
離型剤として、長鎖アルキル化合物やフッ素化合物を使用する場合、機能層中の割合は、好ましくは5重量%以上、より好ましくは15〜99重量%、さらに好ましくは20〜95重量%、特に好ましくは25〜90重量%の範囲である。上記範囲で使用することで、ブロッキング軽減が効果的なものとなる。また、架橋剤の割合は、好ましくは95重量%以下、より好ましくは1〜80重量%、さらに好ましくは5〜70重量%、特に好ましくは10〜50重量%の範囲であり、架橋剤としてメラミン化合物やイソシアネート系化合物(その中でも特に活性メチレン系化合物でブロックしたブロックイソシアネートが好ましい)が好ましく、特にメラミン化合物がブロッキング軽減の観点から好ましい。
離型剤として、縮合型のシリコーン化合物を使用する場合、機能層中の割合は、好ましくは3重量%以上、より好ましくは5〜97重量%、さらに好ましくは8〜95重量%、特に好ましくは10〜90重量%の範囲である。上記範囲で使用することで、ブロッキング軽減が効果的なものとなる。また、架橋剤の割合は、好ましくは97重量%以下、より好ましくは3〜95重量%、さらに好ましくは5〜92重量%、特に好ましくは10〜90重量%の範囲である。また、架橋剤としては、メラミン化合物がブロッキング軽減の観点から好ましい。
離型剤として、付加型のシリコーン化合物を使用する場合、機能層中の割合は、好ましくは5重量%以上、より好ましくは25重量%以上、さらに好ましくは50重量%以上、特に好ましくは70重量%以上の範囲である。好ましい範囲の上限としては、99重量%、より好ましい上限は90重量%である。上記範囲で使用することで、ブロッキング軽減が効果的なものとなり、また機能層の外観も良好なものとなる。
離型剤として、ワックスを使用する場合、機能層中の割合は、好ましくは10重量%以上、より好ましくは20〜90重量%、さらに好ましくは25〜70重量%の範囲である。上記範囲で使用することで、ブロッキング低減がしやすいものとなる。ただし、表面の汚染除去性が目的でワックスを使用する場合は、上記の割合を少なくすることができ、好ましくは1重量%以上、より好ましくは2〜50重量%、さらに好ましくは3〜30重量%の範囲である。また、架橋剤の割合は、好ましくは90重量%以下、より好ましくは10〜70重量%、さらに好ましくは20〜50重量%の範囲である。また、架橋剤としては、メラミン化合物がブロッキング低減の観点から好ましい。
一方、粘着層とは反対面側に帯電防止性能を有する機能層を設ける場合、機能層中の割合として、帯電防止剤の割合は、帯電防止剤の種類により適量が異なるので一概にはいえないが、好ましくは0.5重量%以上の範囲、より好ましくは3〜90重量%、さらに好ましくは5〜70重量%の範囲、特に好ましくは8〜60重量%の範囲である。0.5重量%未満の場合は、帯電防止効果が十分ではなく、周囲のゴミ等の付着防止の効果が十分でない場合がある。
帯電防止剤として、導電ポリマー以外の帯電防止剤を使用する場合、帯電防止層中の割合は、好ましくは5重量%以上、より好ましくは10〜90重量%、さらに好ましくは20〜70重量%の範囲、特に好ましくは25〜60重量%の範囲である。5重量%未満の場合は、帯電防止効果が十分ではなく、周囲のゴミ等の付着防止の効果が十分でない場合がある。
帯電防止剤として、導電ポリマーを使用する場合、帯電防止層中の割合は、好ましくは0.5重量%以上、より好ましくは3〜70重量%、さらに好ましくは5〜50重量%、特に好ましくは8〜30重量%の範囲である。0.5重量%未満の場合は、帯電防止効果が十分ではなく、周囲のゴミ等の付着防止の効果が十分でない場合がある。
粘着層や機能層中の成分の分析は、例えば、TOF−SIMS、ESCA、蛍光X線、IR等の分析によって行うことができる。
粘着層や機能層の形成に関して、上述の一連の化合物を溶液または溶媒の分散体として、固形分濃度が0.1〜80重量%程度を目安に調整した液をフィルム上にコーティングする要領にて積層ポリエステルフィルムを製造することが好ましい。特にインラインコーティングにより設ける場合は、水溶液または水分散体であることがより好ましい。水への分散性改良、造膜性改良等を目的として、塗布液中には少量の有機溶剤を含有していてもよい。また、有機溶剤は1種類のみでもよく、適宜、2種類以上を使用してもよい。
粘着層の膜厚は、10μm以下であることが必須であり、好ましくは1nm〜4μm、より好ましくは10nm〜1μm、さらに好ましくは20〜700nm、特に好ましくは30〜600nm、最も好ましくは50〜480nmの範囲である。粘着層の膜厚を上記範囲で使用することにより、適度な粘着特性、帯電防止特性、ブロッキング特性を保持することが容易となる。
一般的な粘着層は10μmを超える厚い膜厚であるが、そのような場合、例えば、偏光板製造用に使用する場合、粘着フィルムを偏光板、位相差板や視野角拡大板などとの被着体と貼り合わせて断裁する際等において、粘着層中の粘着剤のはみ出しが顕著に発生してしまう場合がある。ところが上述の範囲に膜厚を調整することで、当該はみ出しを最小限に抑えることができる。この効果は、粘着層の膜厚が薄いほど良好となる。また、粘着層の膜厚が薄いほど、フィルム上に存在する粘着層の絶対量が少ないこともあり、被着体に粘着層の成分が移行する、糊残りの低減にも効果的である。さらに上述の範囲の膜厚とすることで、強すぎない適度な粘着力を達成することができることも分かり、例えば、偏光板製造工程用など、粘着性能と、貼り合わせ後に剥離する剥離性能の両立を図る必要がある用途に用いる場合には、貼り合わせ−剥離の操作を容易に行うことができ、最適なフィルムとすることが可能となる。膜厚が薄いほどブロッキング特性には有効であり、インラインコーティングにより粘着層を形成する場合には製造しやすいものとなり好ましいが、逆に膜厚が薄すぎる場合は粘着層の構成によっては粘着特性がなくなってしまう場合もあるので、用途に応じて上述の好適な範囲での使用が好ましい。
機能層の膜厚は、設ける機能にも依存するために一概にはいえないが、例えば、離型性能や帯電防止性能を付与するための機能層としては、好ましくは1nm〜3μm、より好ましくは10nm〜1μm、さらに好ましくは20〜500nm、特に好ましくは20〜200nmの範囲である。機能層の膜厚を上記範囲で使用することにより、ブロッキング特性の向上、あるいは帯電防止性能の向上や、良好な外観とすることが容易となる。
粘着層や機能層を形成する方法としては、例えば、グラビアコート、リバースロールコート、ダイコート、エアドクターコート、ブレードコート、ロッドコート、バーコート、カーテンコート、ナイフコート、トランスファロールコート、スクイズコート、含浸コート、キスコート、スプレーコート、カレンダコート、押出コート等、従来公知のコーティング方式を用いることができる。
フィルム上に粘着層を形成する際の乾燥および硬化条件に関しては特に限定されるものではないが、コーティングによる方法の場合、コーティング液に使用している水等の溶媒の乾燥に関しては、好ましくは70〜150℃、より好ましくは80〜130℃、さらに好ましくは90〜120℃の範囲である。乾燥の時間としては、目安として3〜200秒、好ましくは5〜120秒の範囲である。また、粘着層の強度を向上させるため、フィルム製造工程において、好ましくは180〜270℃、より好ましくは200〜250℃、さらに好ましくは210〜240℃の範囲の熱処理工程を経ることである。当該熱処理工程の時間としては、目安として3〜200秒、好ましくは5〜120秒の範囲である。
また、必要に応じて熱処理と紫外線照射等の活性エネルギー線照射とを併用してもよい。本発明における積層ポリエステルフィルムを構成するフィルムにはあらかじめ、コロナ処理、プラズマ処理等の表面処理を施してもよい。
粘着層の粘着力としては、後述する測定方法により測定された、ポリメチルメタクリレート板に対する粘着力が、1〜5000mN/cmであることが好ましく、より好ましくは3〜3000mN/cm、さらに好ましくは5〜500mN/cm、特に好ましくは7〜300mN/cm、最も好ましくは10〜100mN/cmの範囲である。上記範囲とすることで、粘着性能と、貼り合わせ後に剥離する剥離性能の両立を図ることができ、粘着−剥離の操作を行う各種の工程用には最適な積層体とすることが可能となる。また、フィルムのブロッキング特性も良好なものとしやすくなる。
積層ポリエステルフィルムのブロッキング性として、積層ポリエステルフィルムの粘着層側面と反対側面(機能層がある場合は機能層側面)とを重ね合わせて、40℃、80%RH、10kg/cm2、20時間の条件下でプレスした後の剥離荷重は、好ましくは100g/cm以下、より好ましくは30g/cm以下、さらに好ましくは20g/cm以下、特に好ましくは10g/cm以下、最も好ましくは8g/cm以下の範囲である。上記範囲とすることで、ブロッキングのリスクを回避しやすくなり、より実用性の高いフィルムとすることができる。
粘着層の帯電防止性能として、表面抵抗値は、好ましくは1×1012Ω以下、より好ましくは1×1011Ω以下、さらに好ましくは5×1010Ω以下の範囲である。上記範囲内の場合、塵埃等の付着が少ないフィルムとなる。
また、機能層側にも帯電防止性を必要とする用途においては、機能層の表面抵抗値として、好ましくは1×1012Ω以下、より好ましくは1×1011Ω以下、さらに好ましくは5×1010Ω以下の範囲である。上記範囲内の場合、より塵埃等の付着が少ないフィルムとなる。
また、粘着層とは反対側面のフィルム表面(機能層がある場合は機能層側面)を粗くすることも、粘着層側とのブロッキング特性を改善させるための手段の1つでありうる場合がある。粘着層の種類や粘着力にも依存するので一概にはいえないが、機能層によらず、表面粗さによりブロッキング特性を改善する目的がある場合には、粘着層とは反対側面のフィルム表面の算術平均粗さ(Sa)は、好ましくは5nm以上、より好ましくは8nm以上、さらに好ましくは30nm以上の範囲であり、上限は特に制限はないが、好ましい範囲の上限として透明性の観点から300nmである。なお、粘着層とは反対側面に離型の機能層を設けるなどの手法により離型性が良好な場合は、その離型性が支配的となるためSaの影響は小さく特に注意する必要はないが、離型性が弱い場合にはSaの影響が大きくなる場合があり、ブロッキング特性の改善などに有効な手段となり得る。しかしながら、Saを大きくするとヘーズが高くなり、透明性が低下してしまうので、用途に応じた対応が必要であり、特に透明性を重視したい案件では離型層によるブロッキング改善を考慮することが好ましい。
以下、本発明を実施例によりさらに詳細に説明するが、本発明はその要旨を越えない限り、以下の実施例に限定されるものではない。また、本発明で用いた測定法および評価方法は次のとおりである。
(1)ポリエステルの極限粘度の測定方法
ポリエステルに非相溶な他のポリマー成分および顔料を除去したポリエステル1gを精秤し、フェノール/テトラクロロエタン=50/50(重量比)の混合溶媒100mlを加えて溶解させ、30℃で測定した。
(2)平均粒径(d50:μm)の測定方法
株式会社島津製作所製、遠心沈降式粒度分布測定装置 SA−CP3型を使用して測定した等価球形分布における積算(重量基準)50%の値を平均粒径とした。
(3)算術平均粗さ(Sa)の測定方法
フィルム表面を、株式会社菱化システム製、非接触表面・層断面形状計測システム VertScan(登録商標)R550GMLを使用して、CCDカメラ:SONY HR−50 1/3’、対物レンズ:20倍、鏡筒:1X Body、ズームレンズ:No Relay、波長フィルター:530 white、測定モード:Waveにて測定し、4次の多項式補正による出力を用いた。
(4)粘着層および機能層の膜厚測定方法
粘着層または機能層の表面をRuO4で染色し、エポキシ樹脂中に包埋した。その後、超薄切片法により作成した切片をRuO4で染色し、粘着層断面をTEM(株式会社日立ハイテクノロジーズ製 H−7650、加速電圧100kV)を用いて測定した。
(5)ガラス転移点
株式会社パーキンエルマージャパン製、示差走査熱量測定装置(DSC) 8500を使用して、−100〜200℃において毎分10℃の昇温条件で測定した。
(6)数平均分子量測定方法
GPC(東ソー株式会社製 HLC−8120GPC)を用いて測定した。数平均分子量はポリスチレン換算で算出した。
(7−1)粘着力評価方法(粘着力1)
ポリメチルメタクリレート板(株式会社クラレ製 コモグラス(登録商標)、厚さ1mm)の表面に、5cm幅の本発明の積層ポリエステルフィルムの粘着層面を5cm幅の2kgゴムローラーにて1往復圧着し、室温にて1時間放置後の剥離力を測定した。剥離力は、株式会社島津製作所製「Ezgraph」を使用し、引張速度300mm/分の条件下、180°剥離を行った。
(7−2)粘着力評価方法(粘着力2)
(7−1)のポリメチルメタクリレート板に変えて、後述する比較例1で得られた粘着層のないポリエステルフィルム表面(厚さ25μm)を用いて粘着力を評価すること以外は(7−1)と同様にして評価を行った。
(8)粘着特性の評価方法
1枚のA4サイズの積層ポリエステルフィルムの粘着層側同志を重ねて指で押さえて粘着特性を評価した。指で軽く押さえただけでフィルムが貼りついて丸まった状態で保持できる場合を5点、指で強く押さえることでフィルムが貼りついて丸まった状態で保持できる場合を4点、指で強く押さえることでフィルムが貼りついて丸まった状態を保持できるが、3秒以内に剥がれてしまう場合を3点、指で強く押さえることでフィルムには粘着特性が微小に見られるが丸まった状態を全く保持できない場合を2点、指で強く押さえても全く粘着特性が見られない場合を1点とした。実使用上、3点以上が好ましい。
(9)表面抵抗の測定方法
下記(9−1)の方法に基づき、粘着層の表面抵抗を測定した。(9−1)の方法では、1×10Ωより低い表面抵抗率は十分に測定できないため、(9−1)で測定できなかったフィルムについては(9−2)の方法を用いた。
なお、表面抵抗が1×1014Ωを超える場合は「−」と記載した。
(9−1)日本ヒューレット・パッカード株式会社製高抵抗測定器:HP4339Bおよび測定電極:HP16008Bを使用し、23℃、50%RHの測定雰囲気下でポリエステルフィルムを十分調湿後、印可電圧100Vで1分後の塗布層の表面抵抗を測定した。
(9−2)三菱化学株式会社製低抵抗計:ロレスタGP MCP−T600を使用し、23℃、50%RHの測定雰囲気でサンプルを30分間調湿後、塗布層の表面抵抗を測定した。
(10)機能層(帯電防止層)側の塵埃付着性評価方法
23℃、50%RHの測定雰囲気下でポリエステルフィルムを十分調湿後、帯電防止層を綿布で10往復こする。これを、細かく砕いた煙草の灰の上に静かに近づけ、灰の付着状況を以下の基準で評価した。
A:フィルムを灰に接触させても付着しない
B:フィルムを灰に接触させると極わずかに付着する
C:フィルムを灰に接触させると少し付着する
D:フィルムを灰に近づけただけで多量に付着する
(11)ブロッキング特性の測定方法
測定するポリエステルフィルムを2枚用意し、粘着層側と、粘着層とは反対側(機能層がある場合は機能層側)を重ね合わせて、12cm×10cmの面積を、40℃、80%RH、10kg/cm2、20時間の条件下でプレスした。その後、フィルム同士をASTM D1893に規定された方法に準じて剥離し、その剥離荷重を測定した。
なお、300g/cmを超えて十分な測定ができない場合やフィルムが破断してしまう場合は「−」と記載した。
(12)粘着層の糊残り(転着特性)評価方法
1枚のA4サイズの積層ポリエステルフィルムの粘着層側と、後述する比較例1の粘着層がないA4サイズのポリエステルフィルムを重ねて指で強く押さえて貼りつけた後、粘着層を有するフィルムを剥がして、比較例1の粘着層がないフィルム表面を観察し、糊残り(粘着層の転着跡)がない場合をA、指で強く押さえた箇所の20%以下の範囲に糊残り(わずかに粘着層の転着跡)がある場合をB、指で強く押さえた箇所の20%を超える範囲に糊残りがある場合をCとした。
実施例および比較例において使用したポリエステルは、以下のようにして準備したものである。
<ポリエステル(A)の製造方法>
テレフタル酸ジメチル100重量部、エチレングリコール60重量部、エチルアシッドフォスフェートを生成ポリエステルに対して30ppm、触媒として酢酸マグネシウム・四水和物を生成ポリエステルに対して100ppmを窒素雰囲気下、260℃でエステル化反応をさせた。引き続いて、テトラブチルチタネートを生成ポリエステルに対して50ppm添加し、2時間30分かけて280℃まで昇温すると共に、絶対圧力0.3kPaまで減圧し、さらに80分、溶融重縮合させ、極限粘度0.63、ジエチレングリコール量が2モル%のポリエステル(A)を得た。
<ポリエステル(B)の製造方法>
テレフタル酸ジメチル100重量部、エチレングリコール60重量部、触媒として酢酸マグネシウム・四水和物を生成ポリエステルに対して900ppmを窒素雰囲気下、225℃でエステル化反応をさせた。引き続いて、正リン酸を生成ポリエステルに対して3500ppm、二酸化ゲルマニウムを生成ポリエステルに対して70ppm添加し、2時間30分かけて280℃まで昇温すると共に、絶対圧力0.4kPaまで減圧し、さらに85分、溶融重縮合させ、極限粘度0.64、ジエチレングリコール量が2モル%のポリエステル(B)を得た。
<ポリエステル(C)の製造方法>
ポリエステル(A)の製造方法において、溶融重合前に平均粒径2μmのシリカ粒子を0.3重量部添加する以外はポリエステル(A)の製造方法と同様の方法を用いてポリエステル(C)を得た。
<ポリエステル(D)の製造方法>
ポリエステル(A)の製造方法において、溶融重合前に平均粒径3.2μmのシリカ粒子を0.6重量部添加する以外はポリエステル(A)の製造方法と同様の方法を用いてポリエステル(D)を得た。
粘着層および機能層を構成する化合物例は以下のとおりである。
(化合物例)
・ポリエステル樹脂:(IA)
下記組成からなるポリエステル樹脂(ガラス転移点:−20℃)の水分散体
モノマー組成:(酸成分)ドデカンジカルボン酸/テレフタル酸/イソフタル酸/5−ソジウムスルホイソフタル酸//(ジオール成分)エチレングリコール/1,4−ブタンジオール=20/38/38/4//40/60(mol%)
・(メタ)アクリル樹脂:(IB)
下記組成からなるアクリル樹脂(ガラス転移点:−50℃)の水分散体
2−エチルへキシルアクリレート/メチルメタクリレート/メタクリル酸=85/12/3(重量%)
・(メタ)アクリル樹脂:(IC)
下記組成からなるアクリル樹脂(ガラス転移点:−40℃)の水分散体
2−エチルへキシルアクリレート/ノルマルブチルアクリレート/メチルメタクリレート/2−ヒドロキシエチルメタクリレート/アクリル酸=58/20/15/5/2(重量%)
・帯電防止剤(導電ポリマー):(IIA) ポリスチレンスルホン酸を併用した、ポリ(3,4−エチレンジオキシチオフェン)
・帯電防止剤(4級アンモニウム塩化合物):(IIB)
主鎖にピロリジニウム環を有する下記組成で重合したポリマー
ジアリルジメチルアンモニウムクロライド/ジメチルアクリルアミド/N−メチロールアクリルアミド=90/5/5(mol%)。数平均分子量30000。
・帯電防止剤(アンモニウム基を有する化合物):(IIC)
下記式(2)の構成単位からなる、対イオンがメタンスルホン酸イオンである数平均分子量50000の高分子化合物。
Figure 2018043241
・帯電防止剤(スルホン酸基を有する化合物):(IID)
パラ位にスルホン酸およびスルホン酸塩基を有する、スチレンスルホン酸およびその塩のホモポリマーであり、ポリマー中のスルホン酸およびスルホン酸塩の割合として、スルホン酸が90%、スルホン酸ナトリウム塩が10%である、数平均分子量20000の高分子化合物。
・メラミン化合物:(IIIA)ヘキサメトキシメチロールメラミン
・エポキシ化合物:(IIIB)多官能ポリエポキシ化合物である、ポリグリセロールポリグリシジルエーテル
・ポリエーテル化合物:(IV)
ジグリセリン構造への、ポリエチレンオキサイド付加物。重量平均分子量350。
・離型剤(長鎖アルキル基含有化合物):(VA)
4つ口フラスコにキシレン200部、オクタデシルイソシアネート600部を加え、攪拌下に加熱した。キシレンが還流し始めた時点から、平均重合度500、ケン化度88モル%のポリビニルアルコール100部を少量ずつ10分間隔で約2時間にわたって加えた。ポリビニルアルコールを加え終わってから、さらに2時間還流を行い、反応を終了した。反応混合物を約80℃まで冷却してから、メタノール中に加えたところ、反応生成物が白色沈殿として析出したので、この沈殿を濾別し、キシレン140部を加え、加熱して完全に溶解させた後、再びメタノールを加えて沈殿させるという操作を数回繰り返した後、沈殿をメタノールで洗浄し、乾燥粉砕して得た。
・離型剤(フッ素化合物):(VB)
下記組成からなるフッ素化合物の水分散体
オクタデシルアクリレート/パーフルオロヘキシルエチルメタクリレート/塩化ビニル=66/17/17(重量%)
・ポリエーテル基含有縮合型シリコーン:(VC)
ジメチルシリコーンの側鎖に、モル比でジメチルシロキサン100に対して、エチレングリコール鎖が8であるポリエチレングリコール(末端は水酸基)を1含有する、数平均分子量7000のポリエーテル基含有シリコーン(シリコーンのシロキサン結合を1とした場合、モル比の割合で、ポリエーテル基のエーテル結合は0.07である)。数平均分子量500以下の低分子成分は3%、ケイ素に結合したビニル基(ビニルシラン)、水素基(ハイドロゲンシラン)は存在せず。なお、本化合物は、重量比で、ポリエーテル基含有シリコーンを1として、ドデシルベンゼンスルホン酸ナトリウムを0.25の割合で配合し、水分散したもの。
・ワックス:(VD)
攪拌機、温度計、温度コントローラーを備えた内容量1.5Lの乳化設備に融点105℃、酸価16mgKOH/g、密度0.93g/mL、数平均分子量5000の酸化ポリエチレンワックス300g、イオン交換水650gとデカグリセリンモノオレエート界面活性剤を50g、48%水酸化カリウム水溶液10gを加え窒素で置換後、密封し150℃で1時間高速攪拌した後130℃に冷却し、高圧ホモジナイザーを400気圧下で通過させ40℃に冷却したワックスエマルション。
・ポリエステル樹脂:(VIA)
下記組成からなるポリエステル樹脂(ガラス転移点:50℃)の水分散体
モノマー組成:(酸成分)テレフタル酸/イソフタル酸/5−ソジウムスルホイソフタル酸//(ジオール成分)エチレングリコール/1,4−ブタンジオール/ジエチレングリコール=50/46/4//70/20/10(mol%)
・(メタ)アクリル樹脂:(VIB)
下記組成からなるアクリル樹脂(ガラス転移点:10℃)の水分散体
ノルマルブチルアクリレート/エチルアクリレート/メチルメタクリレート/2−ヒドロキシエチルメタクリレート/アクリル酸=10/52/30/5/3(重量%)
・(メタ)アクリル樹脂:(VIC)
下記組成からなるアクリル樹脂(ガラス転移点:40℃)の水分散体
エチルアクリレート/メチルメタクリレート/N−メチロールアクリルアミド/アクリル酸=48/45/4/3(重量%)
実施例1:
ポリエステル(A)、(B)、(C)をそれぞれ91%、3%、6%の割合で混合した混合原料を最外層(表層)の原料とし、ポリエステル(A)、(B)をそれぞれ97%、3%の割合で混合した混合原料を中間層の原料として、2台の押出機に各々を供給し、各々285℃で溶融した後、40℃に設定した冷却ロール上に、2種3層(表層/中間層/表層=3:19:3の吐出量)の層構成で共押出し冷却固化させて未延伸シートを得た。
次いで、ロール周速差を利用してフィルム温度85℃で縦方向に3.3倍延伸した後、この縦延伸フィルムの片面に、下記表1に示す塗布液A1を粘着層の膜厚(乾燥後)が150nmになるように塗布し、反対側の面に下記表2に示す塗布液B1を機能層の膜厚(乾燥後)が30nmになるように塗布し、テンターに導き、90℃で10秒間乾燥させた後、横方向に110℃で4.3倍延伸し、230℃で10秒間熱処理を行った後、横方向に2%弛緩し、厚さ25μm、粘着層の裏面側(機能層側)の表面のSaが9nmのポリエステルフィルムを得た。
でき上がったポリエステルフィルムを評価したところ、ポリメチルメタクリレート板との粘着力は6mN/cmで、粘着特性が見られ、表面抵抗は2×10Ωと良好な帯電防止性能であった。このフィルムの特性を下記表3に示す。
実施例2〜77:
実施例1において、塗布剤組成を表1および2に示す塗布剤組成に変更する以外は実施例1と同様にして製造し、ポリエステルフィルムを得た。でき上がったポリエステルフィルムは下記表3〜7に示すとおり、粘着力および表面抵抗は良好であった。
実施例78:
ポリエステル(A)、(B)、(C)をそれぞれ91%、3%、6%の割合で混合した混合原料を最外層(表層1)の原料とし、ポリエステル(A)、(B)、(D)をそれぞれ72%、3%、25%の割合で混合した混合原料を最外層(表層2)の原料とし、ポリエステル(A)、(B)をそれぞれ97%、3%の割合で混合した混合原料を中間層の原料として、2台の押出機に各々を供給し、各々285℃で溶融した後、40℃に設定した冷却ロール上に、3種3層(表層1/中間層/表層2=6:13:6の吐出量)の層構成で共押出し冷却固化させて未延伸シートを得た。次いで、ロール周速差を利用してフィルム温度85℃で縦方向に3.3倍延伸した後、この縦延伸フィルムの表層1側に、下記表1に示す塗布液A1を粘着層の膜厚(乾燥後)が250nmになるように塗布し、テンターに導き、90℃で10秒間乾燥させた後、横方向に110℃で4.3倍延伸し、230℃で10秒間熱処理を行った後、横方向に2%弛緩し、厚さ25μm、粘着層の裏面側(表層2側、機能層側)の表面のSaが30nmのポリエステルフィルムを得た。
でき上がったポリエステルフィルムを評価したところ、ポリメチルメタクリレート板との粘着力は10mN/cmで、粘着特性は良好であり、表面抵抗は1×10Ωと良好な帯電防止性能であった。このフィルムの特性を下記表7に示す。
実施例79〜84:
実施例78において、塗布剤組成を表1に示す塗布剤組成に変更する以外は実施例78と同様にして製造し、ポリエステルフィルムを得た。でき上がったポリエステルフィルムは下記表7に示すとおり、粘着力および表面抵抗は良好であった。
実施例85:
ポリエステル(A)、(B)、(C)をそれぞれ91%、3%、6%の割合で混合した混合原料を最外層(表層1)の原料とし、ポリエステル(A)、(B)、(D)をそれぞれ47%、3%、50%の割合で混合した混合原料を最外層(表層2)の原料とし、ポリエステル(A)、(B)をそれぞれ97%、3%の割合で混合した混合原料を中間層の原料として、2台の押出機に各々を供給し、各々285℃で溶融した後、40℃に設定した冷却ロール上に、3種3層(表層1/中間層/表層2=4:17:4の吐出量)の層構成で共押出し冷却固化させて未延伸シートを得た。次いで、ロール周速差を利用してフィルム温度85℃で縦方向に3.3倍延伸した後、この縦延伸フィルムの表層1側に、下記表1に示す塗布液A1を粘着層の膜厚(乾燥後)が250nmになるように塗布し、テンターに導き、90℃で10秒間乾燥させた後、横方向に110℃で4.3倍延伸し、230℃で10秒間熱処理を行った後、横方向に2%弛緩し、厚さ25μm、粘着層の裏面側の表面のSaが55nmのポリエステルフィルムを得た。
でき上がったポリエステルフィルムを評価したところ、ポリメチルメタクリレート板との粘着力は10mN/cmで、粘着特性は良好であり、表面抵抗は1×10Ωと良好な帯電防止性能であった。このフィルムの特性を下記表7に示す。
実施例86〜91:
実施例85において、塗布剤組成を表1に示す塗布剤組成に変更する以外は実施例85と同様にして製造し、ポリエステルフィルムを得た。でき上がったポリエステルフィルムは下記表7に示すとおり、粘着力および表面抵抗は良好であった。
実施例92:
実施例1において、粘着層を設けなかったこと以外は実施例1と同様にして製造し、ポリエステルフィルムを得た。この粘着層のないポリエステルフィルム上に、下記表1に示す塗布液A4を粘着層の膜厚(乾燥後)が350nmになるように塗布し、100℃で1分間の乾燥を行い、オフラインコーティングによる粘着層が積層されたポリエステルフィルムを得た。でき上がったポリエステルフィルムは表7に示すとおり、粘着力および表面抵抗は良好であった。しかしながら、糊残り(転着特性)が強いものであった。
比較例1:
実施例1において、粘着層および機能層を設けなかったこと以外は実施例1と同様にして製造し、ポリエステルフィルムを得た。でき上がったポリエステルフィルムを評価したところ、下記表8に示すとおり、粘着力および表面抵抗はないフィルムであった。
比較例2〜9:
実施例1において、塗布剤組成を表1に示す塗布剤組成に変更する以外は実施例1と同様にして製造し、ポリエステルフィルムを得た。でき上がったポリエステルフィルムは表8に示すとおり、粘着力がない場合や表面抵抗が悪い場合が見られる結果であった。
比較例10:
比較例1で得られた粘着層および機能層がないポリエステルフィルム上に、下記表1に示す塗布液C1を粘着層の膜厚(乾燥後)が20μmとなるように、100℃で3分間の乾燥を行い、オフラインコーティングによる粘着層が形成されたポリエステルフィルムを得た。比較例1の粘着層および機能層がないポリエステルフィルムに、上記得られたフィルムの粘着層側を貼り合わせた後に断裁したところ、実施例では見られなかった、粘着層の成分のはみ出しが見られ、粘着成分による汚染が懸念される結果であった。また粘着力はうまく測定ができなかった。その他の特性は表8に示すとおりであった。
Figure 2018043241
Figure 2018043241
Figure 2018043241
Figure 2018043241
Figure 2018043241
Figure 2018043241
Figure 2018043241
Figure 2018043241
本発明のフィルムは、例えば、樹脂板、金属板等の輸送時、保管時や加工時の傷付き防止や汚れ付着防止用等に使用する表面保護フィルム等の用途において、フィッシュアイが少なく、機械的強度および耐熱性に優れ、塵埃の付着が少なく、良好な粘着特性を有することが必要な用途に好適に利用することができる。

Claims (16)

  1. ポリエステルフィルムの少なくとも片面に、ガラス転移点が0℃以下の樹脂と、帯電防止剤とを含有する、膜厚が10μm以下である粘着層を設け、当該粘着層をフィルム製造の工程内で、インラインコーティングにより形成することを特徴とする積層ポリエステルフィルムの製造方法。
  2. ポリエステルフィルムの少なくとも片面に、ガラス転移点が0℃以下の樹脂と、帯電防止剤とを含有する、膜厚が10μm以下である粘着層を設け、当該粘着層を180〜270℃の範囲の熱処理工程を経て形成することを特徴とする積層ポリエステルフィルムの製造方法。
  3. 前記粘着層を水溶液または水分散体を塗布して形成する、請求項1または2に記載の積層ポリエステルフィルムの製造方法。
  4. 前記粘着層の膜厚が1〜600nmの範囲である請求項1〜3のいずれかに記載の積層ポリエステルフィルムの製造方法。
  5. 前記帯電防止剤が、高分子の帯電防止剤である請求項1〜4のいずれかに記載の積層ポリエステルフィルムの製造方法。
  6. 前記高分子の帯電防止剤が、導電ポリマー、アンモニウム基を有する化合物、スルホン酸基を有する化合物、ポリエーテル化合物およびベタイン化合物から選ばれる少なくとも1種である請求項5に記載の積層ポリエステルフィルムの製造方法。
  7. 前記粘着層が、ポリオール化合物またはポリエーテル化合物を含有する請求1〜6のいずれかに記載の積層ポリエステルフィルムの製造方法。
  8. 前記ガラス転移点が0℃以下の樹脂が、ポリエステル樹脂である請求項1〜7のいずれかに記載の積層ポリエステルフィルムの製造方法。
  9. 前記ポリエステル樹脂が、官能基としてスルホン酸、スルホン酸金属塩、カルボン酸、またはカルボン酸金属塩を含有する請求項8に記載の積層ポリエステルフィルムの製造方法。
  10. 前記ガラス転移点が0℃以下の樹脂が、アクリル樹脂である請求項1〜7のいずれかに記載の積層ポリエステルフィルムの製造方法。
  11. 前記アクリル樹脂が、カルボン酸基、カルボン酸塩基、スルホン酸基、スルホン酸塩基、または水酸基を含有する請求項10に記載の積層ポリエステルフィルムの製造方法。
  12. 前記粘着層とは反対側のポリエステルフィルム面に、機能層を設ける請求項1〜11のいずれかに記載の積層ポリエステルフィルムの製造方法。
  13. 前記機能層が、離型剤を含有する請求項12に記載の積層ポリエステルフィルムの製造方法。
  14. 前記機能層が、帯電防止剤を含有する請求項12または13に記載の積層ポリエステルフィルムの製造方法。
  15. 前記機能層を、架橋剤を用いて形成する請求項12〜14のいずれかに記載の積層ポリエステルフィルムの製造方法。
  16. 前記粘着層とは反対側の積層ポリエステルフィルム表面の算術平均粗さ(Sa)が5nm以上である請求項1〜15のいずれかに記載の積層ポリエステルフィルムの製造方法。
JP2017232251A 2017-12-04 2017-12-04 積層ポリエステルフィルムの製造方法。 Active JP6750598B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017232251A JP6750598B2 (ja) 2017-12-04 2017-12-04 積層ポリエステルフィルムの製造方法。

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017232251A JP6750598B2 (ja) 2017-12-04 2017-12-04 積層ポリエステルフィルムの製造方法。

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2016045416A Division JP6308235B2 (ja) 2016-03-09 2016-03-09 積層ポリエステルフィルム

Publications (2)

Publication Number Publication Date
JP2018043241A true JP2018043241A (ja) 2018-03-22
JP6750598B2 JP6750598B2 (ja) 2020-09-02

Family

ID=61692348

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017232251A Active JP6750598B2 (ja) 2017-12-04 2017-12-04 積層ポリエステルフィルムの製造方法。

Country Status (1)

Country Link
JP (1) JP6750598B2 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021123630A (ja) * 2020-02-04 2021-08-30 横浜ゴム株式会社 ゴム組成物及びスタッドレスタイヤ
WO2022091645A1 (ja) * 2020-10-26 2022-05-05 東洋紡株式会社 易接着性ポリエステルフィルム

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002060707A (ja) * 2000-08-17 2002-02-26 Teijin Ltd 表面保護フィルムおよびその積層体
JP2007008985A (ja) * 2005-06-28 2007-01-18 Nitto Denko Corp 粘着剤組成物および粘着シート類
JP2008019365A (ja) * 2006-07-14 2008-01-31 Mitsubishi Polyester Film Copp 帯電防止ポリエステルフィルム
JP2011230415A (ja) * 2010-04-28 2011-11-17 Mitsubishi Plastics Inc 積層ポリエステルフィルム
JP2014196463A (ja) * 2013-03-06 2014-10-16 三菱樹脂株式会社 積層ポリエステルフィルム
JP2015120337A (ja) * 2013-11-25 2015-07-02 日東電工株式会社 表面保護フィルム、表面保護フィルムの製造方法、及び、光学部材

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002060707A (ja) * 2000-08-17 2002-02-26 Teijin Ltd 表面保護フィルムおよびその積層体
JP2007008985A (ja) * 2005-06-28 2007-01-18 Nitto Denko Corp 粘着剤組成物および粘着シート類
JP2008019365A (ja) * 2006-07-14 2008-01-31 Mitsubishi Polyester Film Copp 帯電防止ポリエステルフィルム
JP2011230415A (ja) * 2010-04-28 2011-11-17 Mitsubishi Plastics Inc 積層ポリエステルフィルム
JP2014196463A (ja) * 2013-03-06 2014-10-16 三菱樹脂株式会社 積層ポリエステルフィルム
JP2015120337A (ja) * 2013-11-25 2015-07-02 日東電工株式会社 表面保護フィルム、表面保護フィルムの製造方法、及び、光学部材

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021123630A (ja) * 2020-02-04 2021-08-30 横浜ゴム株式会社 ゴム組成物及びスタッドレスタイヤ
JP7401755B2 (ja) 2020-02-04 2023-12-20 横浜ゴム株式会社 ゴム組成物及びスタッドレスタイヤ
WO2022091645A1 (ja) * 2020-10-26 2022-05-05 東洋紡株式会社 易接着性ポリエステルフィルム

Also Published As

Publication number Publication date
JP6750598B2 (ja) 2020-09-02

Similar Documents

Publication Publication Date Title
JP6365506B2 (ja) 積層ポリエステルフィルム
WO2017154226A1 (ja) 粘着フィルム及びその製造方法
JP6077063B2 (ja) 積層フィルム
JP6455566B2 (ja) 積層ポリエステルフィルム
WO2016092905A1 (ja) 塗布フィルム
JP6308235B2 (ja) 積層ポリエステルフィルム
JP6319331B2 (ja) 積層ポリエステルフィルム
JP6428878B2 (ja) 積層フィルム
JP6750598B2 (ja) 積層ポリエステルフィルムの製造方法。
WO2016203669A1 (ja) 粘着フィルム
JP6120936B1 (ja) 粘着ポリエステルフィルム積層体
JP6350623B2 (ja) 積層フィルム
JP6583146B2 (ja) 積層ポリエステルフィルムおよびその製造方法
JP6085656B1 (ja) 積層ポリエステルフィルム
JP2018168385A (ja) 積層ポリエステルフィルムの製造方法
JP6265220B2 (ja) 積層ポリエステルフィルムの製造方法
JP2018123325A (ja) 積層ポリエステルフィルム
JP6308236B2 (ja) 積層ポリエステルフィルムの製造方法
JP6319330B2 (ja) 積層ポリエステルフィルム
JP6380459B2 (ja) 積層ポリエステルフィルム
JP6439746B2 (ja) 積層ポリエステルフィルム
JP6168120B2 (ja) 積層ポリエステルフィルム
JP6344426B2 (ja) 積層ポリエステルフィルム
JP2017042914A (ja) 積層フィルム
JP6296129B2 (ja) 積層フィルムの製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190618

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190801

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200121

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200421

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20200511

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200714

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200727

R151 Written notification of patent or utility model registration

Ref document number: 6750598

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151