WO2021045302A1 - 입체 나노시트 구조를 갖는 촉매를 포함하는 수전해전극, 그 제조방법 및 그를 포함하는 수전해장치 - Google Patents

입체 나노시트 구조를 갖는 촉매를 포함하는 수전해전극, 그 제조방법 및 그를 포함하는 수전해장치 Download PDF

Info

Publication number
WO2021045302A1
WO2021045302A1 PCT/KR2019/013607 KR2019013607W WO2021045302A1 WO 2021045302 A1 WO2021045302 A1 WO 2021045302A1 KR 2019013607 W KR2019013607 W KR 2019013607W WO 2021045302 A1 WO2021045302 A1 WO 2021045302A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
water
oxide
catalyst layer
water electrolysis
Prior art date
Application number
PCT/KR2019/013607
Other languages
English (en)
French (fr)
Inventor
최승목
박유세
장명제
양주찬
이규환
이정훈
박성민
정재훈
Original Assignee
한국재료연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국재료연구원 filed Critical 한국재료연구원
Priority to US17/637,607 priority Critical patent/US20220282386A1/en
Publication of WO2021045302A1 publication Critical patent/WO2021045302A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/075Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of a single catalytic element or catalytic compound
    • C25B11/077Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of a single catalytic element or catalytic compound the compound being a non-noble metal oxide
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/075Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of a single catalytic element or catalytic compound
    • C25B11/077Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of a single catalytic element or catalytic compound the compound being a non-noble metal oxide
    • C25B11/0771Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of a single catalytic element or catalytic compound the compound being a non-noble metal oxide of the spinel type
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/02Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form
    • C25B11/03Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form perforated or foraminous
    • C25B11/031Porous electrodes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/052Electrodes comprising one or more electrocatalytic coatings on a substrate
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/052Electrodes comprising one or more electrocatalytic coatings on a substrate
    • C25B11/053Electrodes comprising one or more electrocatalytic coatings on a substrate characterised by multilayer electrocatalytic coatings
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/091Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/091Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds
    • C25B11/093Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds at least one noble metal or noble metal oxide and at least one non-noble metal oxide
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D9/00Electrolytic coating other than with metals
    • C25D9/04Electrolytic coating other than with metals with inorganic materials

Definitions

  • the present invention relates to a water electrolytic electrode including a catalyst having a three-dimensional nanosheet structure, a method of manufacturing the same, and a water electrolysis device including the same. Specifically, it relates to a water electrolytic electrode having excellent water electrolysis efficiency, a method of manufacturing the same, and a water electrolysis device including the same.
  • Electrochemical water decomposition occurs in two reactions, the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER).
  • HER hydrogen evolution reaction
  • OER oxygen evolution reaction
  • water electrolysis can proceed when a voltage of 1.23V is applied.
  • an overvoltage of 1.23V or more must be applied. Therefore, in order to increase the water electrolysis efficiency by reducing the electric energy cost, it is necessary to reduce the overvoltage for water electrolysis, and thus a catalyst capable of reducing the overvoltage in the hydrogen generation reaction and the oxygen generation reaction is required, respectively.
  • the catalytic performance in water decomposition needs to be evaluated in terms of hydrogen generation and oxygen generation, and Pt is the most effective in terms of hydrogen generation reaction (HER).
  • Pt is the most effective in terms of hydrogen generation reaction (HER).
  • OER oxygen evolution
  • the performance of Pt itself is not very superior, and the metal oxides IrO 2 or RuO 2 show high performance.
  • the Ru- and Ir-based catalysts are expensive and have disadvantages of lack of long-term stability in an alkaline medium. Accordingly, transition metal oxides, phosphides, and borides that can be used as OER catalysts are drawing attention.
  • Co oxide is very suitable as an OER catalyst, but it requires a higher overvoltage than Ru and Ir based catalysts. This is a necessary situation.
  • the technical problem to be achieved by the present invention is to provide a water electrolytic electrode including a catalyst layer that is inexpensive, stable, and excellent in catalytic activity, a method of manufacturing the same, and a water electrolysis device including the same.
  • a Cu precursor comprising an electrolyte solution including an X precursor; Immersing an electrode substrate in the electrolyte solution; Electrodepositing Cu hydroxide and X hydroxide on the surface of the immersed electrode substrate; And Cu-X oxide by annealing the electrode substrate on which the Cu hydroxide and X hydroxide are electrodeposited. And, at least one of Cu oxide and X oxide; generating a composite metal oxide containing; Including, wherein X is one of Co, Mn, Fe, Ni, V, W, Mo, Pt, Ir, Pd and Ru provides a method of manufacturing a water-electrolytic electrode according to the present invention.
  • a water electrolysis device using the electrolytic electrode according to the present invention as an anode.
  • the water electrolytic electrode according to an exemplary embodiment of the present invention may have excellent catalytic activity by increasing the surface area of the catalyst layer.
  • the water-receiving electrode according to an exemplary embodiment of the present invention is introduced into the water-receiving device, it is possible to increase the water-electrolysis efficiency by having a low overvoltage.
  • FIG. 1 is a scanning electron microscope (SEM) photograph of the surface of a water-electrolytic electrode prepared in Example 1, Reference Example 1, Comparative Example 1, and Comparative Example 2.
  • SEM scanning electron microscope
  • Example 2 is a view showing the EDS element mapping of Co and Cu of the catalyst layer material of the water-electrolytic electrode prepared in Example 1.
  • FIG. 3 is an SEM photograph of a cross section of a catalyst layer of the water electrolytic electrode prepared in Example 1.
  • FIG. 4 is a Raman spectrum of a catalyst layer material of a water-electrolytic electrode prepared in Example 1 and Comparative Example 1.
  • FIG. 4 is a Raman spectrum of a catalyst layer material of a water-electrolytic electrode prepared in Example 1 and Comparative Example 1.
  • FIG. 5 is an XPS spectrum of Cu and Co of the catalyst layer material of the water-electrolytic electrode prepared in Example 1 and Reference Example 1.
  • FIG. 5 is an XPS spectrum of Cu and Co of the catalyst layer material of the water-electrolytic electrode prepared in Example 1 and Reference Example 1.
  • Example 6 is an LSV polarization curve of a nickel foam prepared in Example 1 and Comparative Example 1 without including the electrolytic electrode and the catalyst layer.
  • FIG. 7 is a graph of a potential difference over time at a constant current density of 25 mA/cm 2 or 100 mA/cm 2 of the water electrolytic electrode prepared in Example 1.
  • FIG. 7 is a graph of a potential difference over time at a constant current density of 25 mA/cm 2 or 100 mA/cm 2 of the water electrolytic electrode prepared in Example 1.
  • FIG. 8 is an LSV polarization curve of the electrolytic electrode prepared in Example 1 and the electrolytic electrode after operating at a current density of 25A/cm 2 or 100 mA/cm 2 for 24 hours.
  • Example 9 is a SEM photograph of the surface of the water-electrode electrode prepared in Example 1 after operating at a current density of 25A/cm 2 or 100 mA/cm 2 for 24 hours.
  • FIG. 10 is a graph of a large time potential difference at a constant current density of 100 mA/cm 2 of an anion exchange membrane electrolytic cell into which the electrolytic electrode prepared in Example 1 is introduced.
  • FIG. 11 is a polarization curve of a water electrolytic cell after operating at a constant current density of 100 mA/cm 2 for 24 hours of an anion exchange membrane water electrolytic cell to which the water electrolytic electrode prepared in Example 1 was introduced.
  • FIG. 12 is a SEM photograph of the surface of the water electrolytic electrode after introducing the water electrolytic electrode prepared in Example 1 into an anion exchange membrane water electrolysis cell and operating at a constant current density of 25 mA/cm 2 for 24 hours.
  • Example 13 is an XPS spectrum of the catalyst layer material of the water-electrolytic electrode prepared in Example 1 and the catalyst layer material of the water-electrolytic electrode prepared in Example 1 operated for 24 hours at a current density of 25 A/cm 2.
  • Example 14 is an XPS spectrum of Cu and Co of the catalyst layer material of the water-electrolytic electrode prepared in Example 1, which was operated at a current density of 25 A/cm 2 for 24 hours.
  • the water electrolytic electrode according to an exemplary embodiment of the present invention includes an electrode substrate; And a catalyst layer positioned on the electrode substrate, wherein the catalyst layer comprises: a Cu-X oxide; And, a composite metal oxide including at least one of Cu oxide and X oxide, and has a three-dimensional nanosheet structure, wherein X is Co, Mn, Fe, Ni, V, W, Mo, Pt, Ir, Pd And Ru.
  • the electrode substrate may be in the form of a foam or a plate.
  • the fact that the catalyst layer is located on the electrode substrate means that the catalyst layer is located on the surface of the electrode substrate when the electrode substrate is in a plate shape, and is located on the surface of the electrode substrate and/or inside the substrate when the electrode substrate is in the form of a plate. It means to be located on the surface of the foam.
  • the oxygen or hydrogen gas generated by the water electrolysis reaction stays on the surface of the catalyst, so that the surface area and the active point of the interface between the electrolyte and the catalyst are relatively reduced, so that the reaction rate is not significantly lowered. It may be desirable to use an electrode substrate in the form of a foam in order for the generated gas to be easily transported.
  • the catalyst layer is a Cu-X oxide; And a composite metal oxide including at least one of Cu oxide and X oxide, wherein X is one of Co, Mn, Fe, Ni, V, W, Mo, Pt, Ir, Pd, and Ru.
  • X may be Co
  • the catalyst layer includes all of Cu-Co oxide, Cu oxide, and Co oxide, or includes Cu-Co oxide and Cu oxide, or Cu-Co oxide and Co oxide. It may include.
  • the electrode substrate may include at least one of Ni, SUS, Ti, Au, Cu, ITO, and FTO, preferably Ni.
  • the catalyst layer includes a three-dimensional nanosheet structure, and the surface area of the catalyst layer is increased, so that catalytic activity may be improved.
  • the three-dimensional nanosheet structure refers to a three-dimensional structure formed by growing a nanosheet in the form of a plate having a size of a nano unit three-dimensionally from the surface of an electrode substrate. Accordingly, the three-dimensional nanosheet structure may be formed by combining nanosheets in various forms in a three-dimensional space.
  • the individual nanosheet may have a thickness of 20 nm to 30 nm.
  • the three-dimensional nanosheet structure may be a three-dimensional honeycomb structure, and the three-dimensional honeycomb nanosheet structure may mean a three-dimensional honeycomb shape formed by crossing plate-shaped nanosheets grown on the surface of a substrate.
  • the surface area may be particularly wide, and thus the catalytic activity may be particularly excellent.
  • the diameter of the unit cell of the three-dimensional honeycomb structure may be 100 nm to 300 nm, 200 nm to 300 nm, or 200 nm to 250 nm. have.
  • the catalyst surface area is maximized, thereby increasing the catalytic activity point and increasing the catalytic activity.
  • the catalyst layer may have a thickness of 400 nm to 3000 nm, 500 nm to 3000 nm, or 1000 nm to 3000 nm.
  • the thickness of the catalyst layer has a value within the above numerical range, it is possible to prevent the performance decrease as the catalyst layer is removed or dissolved according to the deterioration mechanism during the oxygen generation reaction, and the non-conductive catalyst layer is thickened and the electrical conductivity is increased. As it is lowered, the oxygen generating activity can be prevented from being lowered.
  • the catalyst layer may include Cu in the composite metal oxide in an amount that decreases toward a distance away from the electrode substrate.
  • the content of Cu atoms on the side of the catalyst layer adjacent to the electrode substrate may be higher than the content of Cu atoms on the side not adjacent to the electrode substrate.
  • X is Co and the Cu-X oxide has the chemical formula of the composition, catalytic activity can be improved, has a stable reverse spinel structure, and as Cu enters the positive spinel structure, Co 2+ , Co 3+ The ions coexist and oxygen vacancy is formed through the ions, thereby increasing the conductivity, thereby increasing the activity of the catalyst.
  • the water electrolytic electrode is a Cu precursor; And forming an electrolyte solution including an X precursor; Immersing an electrode substrate in the electrolyte solution; Electrodepositing Cu hydroxide and X hydroxide on the surface of the immersed electrode substrate; And Cu-X oxide by annealing the electrode substrate on which the Cu hydroxide and X hydroxide are electrodeposited. And, at least one of Cu oxide and X oxide; generating a composite metal oxide containing; Including, the X can be prepared according to the manufacturing method of one of Co, Mn, Fe, Ni, V, W, Mo, Pt, Ir, Pd, and Ru.
  • the electrolyte may further include a solvent.
  • the electrolyte solution may include a metal source forming a catalyst layer, and the types of precursors of metals other than Cu may be varied according to a desired composition of the catalyst layer.
  • the Cu precursor and the X precursor may each independently be a nitric oxide, a sulfur oxide, a chloride, or an acetate of Cu and X.
  • the solvent may be water or an organic solvent, and specifically, may be a polar or non-polar organic solvent.
  • the Cu precursor may be included in an amount of 10 to 30 parts by weight or 20 to 30 parts by weight based on 100 parts by weight of the X precursor. If it falls within the above content range, the three-dimensional nanosheet structure of the catalyst layer may be well maintained and catalytic activity may not be impaired.
  • the electrode substrate is immersed in the electrolyte solution, and a metal hydroxide is formed on the electrode substrate by electrodeposition. That is, Cu hydroxide and X hydroxide are electrodeposited. .
  • Electrodeposition means electrical vapor deposition, and is also known as electrolytic plating.
  • the electrodeposition may be performed by a three-electrode system using the electrode substrate as a working electrode.
  • the electrodepositing may be performed by applying a voltage of -0.5 V to -1.5 V to the immersed electrode substrate for 3 to 10 minutes.
  • a voltage of -0.5 V to -1.5 V When electrodeposition is performed within the voltage range and the time range, side reactions may be suppressed, and when the electrolyte solution further contains a solvent, electrolysis of the solvent may be prevented.
  • Cu hydroxide As Cu hydroxide is first electrodeposited, it can serve as a support for the three-dimensional nanosheet structure, and the active surface area can be increased by the three-dimensional nanosheet structure.
  • the electrodeposition may be performed at 25 to 30 °C.
  • an appropriate amount of catalyst may be electrodeposited without causing side reactions such as electrolyte decomposition.
  • the electrodeposition occurs before the electrodeposition of the X hydroxide in the form of a dendrimer in the Cu hydroxide.
  • the pH may be low near the electrode, and the pH at which Cu is electrodeposited is lower than the pH at which X is electrodeposited, so that the electrodeposition proceeds first.
  • the electrodeposited Cu hydroxide can serve as a support capable of stably maintaining the three-dimensional nanosheet structure of the catalyst layer to be formed later.
  • the electrode substrate on which the Cu hydroxide and X hydroxide are electrodeposited is annealed.
  • the electrode substrate on which the Cu hydroxide and X hydroxide are electrodeposited may include Cu hydroxide and X hydroxide as Cu-X oxide through annealing; And, by oxidizing to a composite metal oxide containing at least one of Cu oxide and X oxide, it is possible to form a catalyst layer having a three-dimensional nanosheet structure.
  • the composite metal oxide formed through annealing has a lower overvoltage than the metal hydroxide and thus has excellent catalytic activity for OER.
  • the annealing may be performed at a temperature of 200° C. to 400° C. for 30 to 180 minutes.
  • the conversion rate of the metal hydroxide to the composite metal oxide may increase, and the shape of the three-dimensional structure may be stably maintained.
  • a water electrolysis device includes the water electrolysis electrode according to the present invention as an anode.
  • the cathode and the electrolyte may include those commonly used in water electrolysis devices.
  • Ni(NO 3 ) 2 SIGMA-ALDRICH, 98%) was added to 2 mM, and Co(NO 3 ) 2 (SIGMA-ALDRICH, 98%) was 10 mM, and stirred to prepare an electrolyte.
  • nickel foam ALANTUM, PN05
  • SCE platinum electrode and calomel electrode
  • the electrode substrate on which electrodeposition was performed was annealed at 250° C. for 3 hours using a muffle furnace (PLUSKOLAB, CRFM13 ⁇ u3) to prepare a water electrolytic electrode.
  • a water electrolytic electrode was manufactured in the same manner as in Example 1, except that annealing was not performed.
  • a water electrolytic electrode was manufactured in the same manner as in Example 1, except that Co(NO 3 ) 2 (SIGMA-ALDRICH, 98%) was added to 50 ml of distilled water as a solvent to be 10 mM and stirred to prepare an electrolyte.
  • Co(NO 3 ) 2 SIGMA-ALDRICH, 98%) was added to 50 ml of distilled water as a solvent to be 10 mM and stirred to prepare an electrolyte.
  • a water electrolytic electrode was prepared in the same manner as in Example 1, except that Cu(NO 3 ) 2 (SIGMA-ALDRICH, 98%) was added to 2 mM and stirred to prepare an electrolyte solution to 50 ml of distilled water as a solvent. .
  • a scanning electron microscope (SEM) picture was taken using an electron microscope (JEOL, JSM-7001F) on the surfaces of the water-electrolytic electrodes prepared in Example 1, Reference Example 1, Comparative Example 1, and Comparative Example 2, respectively. It is shown in 1a to 1d.
  • the insertion diagram in each drawing of FIG. 1 is a diagram of respective enlarged magnifications.
  • FIGS. 1A to 1D it can be seen that the catalyst layer of Example 1 (FIG. 1A) was formed in a three-dimensional honeycomb shape.
  • the catalyst layer of Comparative Example 1 Fig. 1c
  • the sheet-shaped Co oxide layer was formed in an overlapping shape because there was no Cu forming a support capable of stably maintaining the three-dimensional nanosheet structure.
  • a non-uniform catalyst layer was formed in the form of an island.
  • the water electrolytic electrode according to the present invention has a high catalytic activity because the catalytic layer has a large surface area and a large number of catalytically active sites in a fine three-dimensional honeycomb shape.
  • the size of the unit cell of the three-dimensional honeycomb structure is about 100 nm to 200 nm.
  • FIG. 1B In the case of the catalyst layer of Reference Example 1 (FIG. 1B), it corresponds to the catalyst layer before annealing, and it can be seen that the honeycomb shape begins to be formed in the electrodeposition process, and becomes more pronounced in the annealing process.
  • the catalyst layer of the water-electrolytic electrode prepared in Example 1 is uniformly distributed in the metal elements used to form the catalyst layer.
  • the thickness of the catalyst layer of the water-receiving electrode prepared in Example 1 is about 550 nm.
  • the Raman spectrum of Comparative Example 1 has a Raman peak slightly skewed toward a smaller wavelength from the original Co 3 O 4 peak, but the Raman spectrum of Example 1 is the original Co 3 O than that of Comparative Example 1. It has a Raman peak that is more skewed toward the smaller wavelength at the peak of 4. From this, it can be seen that Cu was mixed to form Co x Cu 3-x O 4.
  • XPS spectra of Cu and Co of the catalyst layer material of the water-electrolytic electrode prepared in Example 1 and Reference Example 1 using an X-ray photoelectron analyzer are shown in FIGS. 5A and 5B, respectively. .
  • Cu of the water-receiving electrode prepared in Reference Example 1 has a composition in which Cu + : Cu 2+ is 13: 87, and Cu of the water-electrolyte electrode prepared in Example 1 is Cu + : Cu 2+ . It has a composition of 40:80.
  • Co of the electrolytic electrode prepared in Reference Example 1 has a composition in which Co 2+ : Co 3+ is 66: 34, and Co of the electrolytic electrode prepared in Example 1 is Co 2+ : Co 3 + Has a composition of 61:39.
  • the water electrolytic electrode prepared in Reference Example 1 includes CuOH, Cu(OH) 2 , and Co(OH) 2 , and was prepared in Example 1 through an annealing process.
  • the Co hydroxide and the Cu hydroxide are transformed into Cu 0.81 Co 2.19 O 4 , and an excess of Cu is precipitated as a Cu oxide of Cu 2 O.
  • the metal hydroxide is converted to the composite metal oxide in the annealing step.
  • Example 1 The nickel foam (reference) prepared in Example 1 and Comparative Example 1 that does not contain the electrolytic electrode and the catalyst layer was subjected to a linear periphery method at room temperature at a scanning speed of 5 mV/s using a potentiometer (Bio-Logic, VMP3). A voltage was applied using (LSV), and an LSV polarization curve corresponding to the current density with respect to the applied voltage is shown in FIG. 6.
  • the water electrolytic electrode according to the present invention has a relatively low overvoltage by clearly having a three-dimensional nanosheet structure of a three-dimensional honeycomb structure, and thus has excellent catalytic activity even at a lower voltage than when introduced into a water electrolysis device. Efficiency can be excellent.
  • the water electrolytic electrode prepared in Example 1 was operated for 24 hours using a chronopotentiometry at a constant current density of 25 mA/cm 2 or 100 mA/cm 2 in an electrolyte of 1 M KOH, and voltage was measured, A graph corresponding to the voltage versus time is shown in FIG. 7.
  • Example 7 exemplary electrolytic prepared in Example 1, the electrode is visible only 90mV voltage rise of the comparison in operation initially even work for 24 hours at a current density of 25mA / cm 2, at a current density of 100mA / cm 2 Even in the case of operation, it can be seen that the increase in overvoltage is not large, so that the long-term stability of catalytic activity is excellent.
  • Example 2 After operating the water electrolytic electrode prepared in Example 1 at a current density of 25A/cm 2 or a current density of 100 mA/cm 2 in an electrolyte solution of 1 M KOH for 24 hours, a potentiometer (Bio-Logic, VMP3 ), a voltage was applied at room temperature at a scanning speed of 5 mV/s using a linear scanning method (LSV), and an LSV polarization curve corresponding to the current density with respect to the applied voltage is shown in FIG. 8.
  • a potentiometer Bio-Logic, VMP3
  • LSV linear scanning method
  • Example 1 After operating the water electrolytic electrode prepared in Example 1 at a current density of 25 A/cm 2 or a current density of 100 mA/cm 2 in an electrolyte of 1 M KOH for 24 hours, the surface of the water electrolytic electrode was subjected to an electron microscope. A scanning electron microscope (SEM) picture was taken using (JEOL, JSM-7001F) and are shown in FIGS. 9A and 9B, respectively.
  • SEM scanning electron microscope
  • FIGS. 9A and 9B it can be seen that the three-dimensional honeycomb structure is maintained even when the electrolytic electrode manufactured in Example 1 is operated for 24 hours. Therefore, it can be confirmed that the long-term stability of the large catalyst surface area of the water electrolytic electrode according to the present invention is high.
  • the aqueous electrolytic electrode prepared in Example 1 was introduced into an anion exchange membrane aqueous electrolysis cell (AWMWE) containing 0.1 M KOH of electrolyte to test for long-term stability.
  • ABMWE anion exchange membrane aqueous electrolysis cell
  • the anion exchange membrane water electrolysis cell includes a gas outlet, an anion exchange membrane for gas separation, and an external device for promoting electrolyte circulation, and the aqueous electrolytic electrode prepared in Example 1 is used as the anode, Pt/C is used as the cathode, and the electrolyte is The test was carried out with 0.1M KOH.
  • the anion exchange membrane water electrolytic cell with the water electrolytic electrode prepared in Example 1 was operated for 100 hours at a constant current density of 100 mA/cm 2 at a temperature of 30° C. for 100 hours, and the cell voltage was measured. , Graphs corresponding to voltages over time are shown in FIG. 10, respectively.
  • the electrolytic electrode prepared in Example 1 is introduced into the electrolytic cell and operated at a constant current density of 100 mA/cm 2 for about 100 hours, the overvoltage after 100 hours compared to the initial overvoltage of 350 mV is It can be seen that only 20mV increases and does not change significantly. That is, it can be seen that the water electrolytic electrode according to the present invention has high long-term stability of catalytic activity.
  • Example 1 the anion exchange membrane water electrolytic cell prepared in Example 1 was introduced, and the water electrolytic cell after being operated at a constant current density of 25 mA/cm 2 or 100 mA/cm 2 for 24 hours was used as a potentiometer.
  • a polarization curve corresponding to the current density with respect to the applied voltage is shown in FIG. 11, respectively.
  • the electrochemical properties of the electrochemical electrode prepared in Example 1 do not deteriorate even after 24 hours of operation at a constant current density of 100 mA/cm 2, according to the present invention. It can be seen that the water electrolytic electrode has high long-term stability of catalytic activity.
  • the surface of the electrolytic electrode which was operated for 24 hours at a constant current density of 25 mA/cm 2 by introducing the electrolytic electrode of Example 1 into an anion exchange membrane electrolytic cell, was scanned using a potentiometer (WonaTech, ZIVE MP5). An electron microscope (SEM) picture was taken and shown in FIG. 12.
  • the three-dimensional honeycomb structure is maintained even after 24 hours of operation at a constant current density of 25 mA/cm 2 or 100 mA/cm 2 of the water electrolytic electrode prepared in Example 1. Therefore, it can be confirmed that the long-term stability of the large catalyst surface area of the water electrolytic electrode according to the present invention is high.
  • Example 1 Using an X-ray photoelectron analyzer (Thermo Scientific, VG Multilab 2000), the XPS graph of the catalyst layer material of the water electrolytic electrode prepared in Example 1 is shown in FIG. 13A.
  • Example 1 the water electrolytic electrode prepared in Example 1 was operated in an electrolytic solution of 1 M KOH at a constant current density of 25 mA/cm 2 for 24 hours.
  • the XPS graph of the material of the catalyst layer of the electrode is shown in FIG. 13B.
  • Example 1 the water electrolytic electrode prepared in Example 1 was operated in an electrolytic solution of 1 M KOH at a constant current density of 25 mA/cm 2 for 24 hours.
  • the XPS spectra of Cu and Co of the catalyst layer material of the electrode are shown in FIGS. 14A and 14B.
  • the water electrolytic electrode prepared in Example 1 is XPS spectrum after being operated at a constant current density of 25 mA/cm 2 in an electrolyte solution of 1 M KOH for 24 hours. There is no significant difference in the peak of Silver Co, but it can be seen that the Cu peak has definitely decreased.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Catalysts (AREA)

Abstract

본 발명은 과전압이 낮고 촉매 활성이 뛰어난 입체 나노시트 구조를 갖는 촉매를 포함하는 수전해전극, 그 제조방법 및 그를 포함하는 수전해장치를 제공한다. 본 발명의 수전해전극은 복합 금속 산화물을 포함하고, 입체 나노시트 구조를 갖는 촉매층 및 전극 기재를 포함한다. 본 발명의 수전해전극의 제조방법은 금속 산화물 전구체를 포함하는 전해액에 전극 기재를 침지하고, 전압을 인가하여 복합 금속 수산화물을 전착한 다음, 어닐링하여 복합금속산화물을 형성하는 단계를 포함한다. 본 발명의 수전해장치는 본 발명에 따른 수전해전극을 양극으로 포함한다.

Description

입체 나노시트 구조를 갖는 촉매를 포함하는 수전해전극, 그 제조방법 및 그를 포함하는 수전해장치
본 명세서는 2019년 9월 6일에 한국특허청에 제출된 한국 특허 출원 제10-2019-0111058호의 출원일의 이익을 주장하며, 그 내용 전부는 본 발명에 포함된다.
본 발명은 입체 나노시트 구조를 갖는 촉매를 포함하는 수전해전극, 그 제조방법 및 그를 포함하는 수전해장치에 관한 것이다. 구체적으로, 수전해 효율이 뛰어난 수전해전극, 그 제조 방법 및 그를 포함하는 수전해장치에 관한 것이다.
탄소 기반 에너지 저장 장치 사용에 의해 야기되는 지구 온난화의 가속화로 인하여 신 재생 에너지에 대한 요구가 증가하고 있다. 이에 물의 전기 분해를 이용하여 수소를 전기화학적으로 생산하는 방법이 광범위하게 연구되어 왔고, 여기서 생산된 수소는 연료 전지나 직접 연소 기관 등에 사용될 수 있다.
전기화학적 물분해는 두 가지 반응에서 발생하는데, 수소 발생 반응(HER)과 산소 발생 반응(OER)이다. 물 전기분해는 이상적으로는 1.23V의 전압을 가해주는 경우 반응이 진행될 수 있다. 그러나, 실제로는 표면 저항 등의 영향으로 인해 물 전기분해를 통해 수소를 생산하기 위해서는 1.23V 이상의 과전압이 가해져야 한다. 따라서, 전기에너지 비용을 줄여 물 전기분해 효율을 상승시키기 위해서는 물 전기분해를 위한 과전압을 줄여야 되기 때문에 수소발생 반응과 산소발생 반응에서 과전압을 줄일 수 있는 촉매가 각각 필요하다.
물 분해에서의 촉매 성능은 수소 발생과 산소 발생의 두 관점에서 평가해야 하는데, 수소 발생 반응(HER) 측면에서는 Pt가 가장 효과적이다. 산소 발생 반응(OER)의 측면에서 Pt 자체의 성능은 크게 우월하지 않으며 금속 산화물인 IrO 2나 RuO 2가 높은 성능을 보인다.
그러나, 상기 Ru 및 Ir 기반 촉매들은 값비싸고, 알칼리성 매체 내에서 장기적 안정성이 부족한 약점을 가진다. 이에 OER 촉매로 사용할 수 있는 전이금속 산화물, 인화물, 붕화물 등이 주목받고 있다.
이 중에서도 Co 산화물이 OER 촉매로 매우 적합하나, Ru 및 Ir 기반 촉매들보다 더 높은 과전압을 필요로 하는 바, Co 산화물의 과전압을 낮추고 안정성이 우수하게 하며 OER 촉매 활성을 향상시킬 수 있는 방안의 모색이 필요한 실정이다.
본 발명이 이루고자 하는 기술적 과제는 저렴하면서도 안정적이며 촉매 활성이 뛰어난 촉매층을 포함하는 수전해전극, 그 제조방법 및 그를 포함하는 수전해장치를 제공하는 것이다.
본 발명의 일 측면에 따르면, 전극 기재; 및 상기 전극 기재 상에 위치한 촉매층을 포함하는 수전해전극으로서, 상기 촉매층은 Cu-X 산화물; 및, Cu 산화물 및 X 산화물 중 1종 이상을 포함하는 복합 금속 산화물을 포함하고, 입체 나노시트 구조를 가지며, 상기 X는 Co, Mn, Fe, Ni, V, W, Mo, Pt, Ir, Pd 및 Ru 중 1종인 수전해전극을 제공한다.
본 발명의 다른 측면에 따르면, Cu 전구체; 및 X 전구체를 포함하는 전해액을 형성하는 단계; 상기 전해액에 전극 기재를 침지하는 단계; 상기 침지된 전극 기재의 표면 상에 Cu 수산화물 및 X 수산화물을 전착(electrodeposition)시키는 단계; 및 상기 Cu 수산화물 및 X 수산화물이 전착된 전극 기재를 어닐링하여 Cu-X 산화물; 및, Cu 산화물 및 X 산화물 중 1종 이상;을 포함하는 복합 금속 산화물을 생성하는 단계; 를 포함하고, 상기 X는 Co, Mn, Fe, Ni, V, W, Mo, Pt, Ir, Pd 및 Ru 중 1종인 본 발명에 따른 수전해전극의 제조방법을 제공한다.
본 발명의 또 다른 측면에 따르면, 본 발명에 따른 수전해전극을 양극으로 하는 수전해장치를 제공한다.
본 발명의 일 실시상태에 따른 수전해전극은 촉매층의 표면적이 증가하여 우수한 촉매 활성을 가질 수 있다. 또한 본 발명의 일 실시상태에 따른 수전해전극이 수전해장치에 도입되는 경우, 낮은 값의 과전압을 가져 수전해 효율을 높일 수 있다.
도 1은 실시예 1, 참고예 1, 비교예 1 및 비교예 2에서 제조한 수전해전극의 표면의 주사전자현미경(SEM) 사진이다.
도 2는 실시예 1에서 제조한 수전해전극의 촉매층 물질의 Co 및 Cu의 EDS 원소 맵핑을 나타낸 도면이다.
도 3은 실시예 1 에서 제조한 수전해전극의 촉매층 단면의 SEM 사진이다.
도 4는 실시예 1 및 비교예 1에서 제조한 수전해전극의 촉매층 물질의 라만 스펙트럼이다.
도 5는 실시예 1 및 참고예 1에서 제조한 수전해전극의 촉매층 물질의 Cu 및 Co의 XPS 스펙트럼이다.
도 6은 실시예 1 및 비교예 1에서 제조한 수전해전극 및 촉매층을 포함하지 않는 니켈 폼의 LSV 분극 곡선이다.
도 7은 실시예 1에서 제조한 수전해전극의 25mA/cm 2 또는 100 mA/cm 2 의 일정한 전류밀도에서의 대시간전위차 그래프이다.
도 8은 실시예 1에서 제조한 수전해전극 및 이 수전해전극을 25A/cm 2 또는 100 mA/cm 2 의 전류밀도로 24 시간 동안 작동시킨 후의 수전해전극의 LSV 분극 곡선이다.
도 9는 실시예 1에서 제조한 수전해전극을 25A/cm 2 또는 100 mA/cm 2 의 전류밀도로 24 시간 동안 작동시킨 후의 수전해전극의 표면의 SEM 사진이다.
도 10은 실시예 1에서 제조한 수전해전극이 도입된 음이온교환막 수전해셀의 100 mA/cm 2 의 일정한 전류밀도에서의 대시간전위차 그래프이다.
도 11은 실시예 1에서 제조한 수전해전극이 도입된 음이온교환막 수전해셀의 100 mA/cm 2 의 일정한 전류밀도로 24시간 동안 작동한 후의 수전해셀의 분극 곡선이다.
도 12는 실시예 1에서 제조한 수전해전극을 음이온교환막 수전해셀에 도입하여 25mA/cm 2 의 일정한 전류밀도로 24 시간 동안 작동시킨 후의 수전해전극의 표면의 SEM 사진이다.
도 13은 실시예 1에서 제조한 수전해전극의 촉매층 물질 및 25 A/cm 2 의 전류밀도로 24 시간 동안 작동시킨 실시예 1에서 제조한 수전해전극의 촉매층 물질의 XPS 스펙트럼이다.
도 14는 25 A/cm 2 의 전류밀도로 24 시간 동안 작동시킨 실시예 1에서 제조한 수전해전극의 촉매층 물질의 Cu 및 Co의 XPS 스펙트럼이다.
본 명세서에서 어떤 부분이 어떤 구성요소를 "포함" 한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성 요소를 더 포함할 수 있는 것을 의미한다.
이하, 본 발명에 대하여 더욱 상세하게 설명한다.
본 발명의 일 실시상태에 따른 수전해전극은 전극 기재; 및 상기 전극 기재 상에 위치한 촉매층을 포함하는 수전해전극으로서, 상기 촉매층은 Cu-X 산화물; 및, Cu 산화물 및 X 산화물 중 1종 이상을 포함하는 복합 금속 산화물을 포함하고, 입체 나노시트 구조를 가지며, 상기 X는 Co, Mn, Fe, Ni, V, W, Mo, Pt, Ir, Pd 및 Ru 중 1종이다.
본 발명의 일 실시상태에 따르면, 상기 전극 기재는 폼(foam) 형태 또는 판(plate) 형태일 수 있다.
본 발명의 일 실시상태에 따르면, 상기 촉매층이 상기 전극 기재 상에 위치한다는 것은 전극 기재가 판 형태일 경우에는 전극 기재 표면 상에, 폼 형태인 경우에는 전극 기재 표면 및/또는 기재 내부에 위치하는 폼의 표면 상에 위치하는 것을 의미한다.
상기 수전해전극이 수전해장치에 도입되는 경우, 수전해반응으로 발생한 산소 또는 수소 기체가 촉매 표면에서 체류함으로써 전해질과 촉매 계면의 표면적 및 활성점이 상대적으로 감소하여 반응속도를 현저히 저하시키지 않도록, 상기 발생한 기체가 용이하게 이송되기 위해 폼 형태의 전극 기재를 이용하는 것이 바람직할 수 있다.
상기 촉매층은 Cu-X 산화물; 및, Cu 산화물 및 X 산화물 중 1종 이상을 포함하는 복합 금속 산화물을 포함하고, 상기 X는 Co, Mn, Fe, Ni, V, W, Mo, Pt, Ir, Pd 및 Ru 중 1종이다. 예를 들어, 상기 X는 Co일 수 있으며, 이 경우 상기 촉매층은 Cu-Co 산화물과 Cu 산화물, Co 산화물을 모두 포함하거나, Cu-Co 산화물과 Cu 산화물을 포함하거나, Cu-Co 산화물과 Co 산화물을 포함할 수 있다.
본 발명의 일 실시상태에 따르면, 상기 전극 기재는 Ni, SUS, Ti, Au, Cu, ITO 및 FTO 중 1종 이상을 포함할 수 있고, 바람직하게는 Ni 일 수 있다.
본 발명의 일 실시상태에 따르면, 상기 촉매층은 입체 나노시트 구조를 포함하여 촉매층의 표면적이 넓어져 촉매 활성이 향상될 수 있다. 구체적으로, 입체 나노시트 구조란 나노 단위의 크기를 가지는 판 형태인 나노시트가 전극 기재 표면으로부터 3차원으로 성장하여 이루는 입체 구조를 의미한다. 따라서 입체 나노시트 구조는 나노시트가 3차원 공간에서 다양한 형태로 결합되어 형성된 것일 수 있다.
본 발명의 일 실시상태에 따르면, 상기 개별 나노시트의 두께는 20 nm 내지 30 nm 일 수 있다.
상기 입체 나노시트 구조는 입체 허니콤형 구조일 수 있고, 입체 허니콤형 나노시트 구조라 함은 기재 표면에서 성장한 판상 나노시트가 서로 교차하여 형성된 입체 허니콤 형태를 의미할 수 있다. 입체 나노시트 구조가 입체 허니콤형 구조인 경우, 표면적이 특히 넓어질 수 있어 촉매 활성이 특히 우수할 수 있다.
본 발명의 일 실시상태에 따르면, 상기 촉매층의 입체 나노시트 구조가 입체 허니콤형 구조를 가지는 경우, 입체 허니콤형 구조의 단위 셀의 직경이 100nm 내지 300nm, 200 nm 내지 300 nm 또는 200nm 내지 250nm 일 수 있다. 단위셀의 직경이 상기 수치범위 내일 경우, 촉매 표면적이 극대화되어 촉매 활성점이 증가하고, 촉매 활성이 높아질 수 있다.
본 발명의 일 실시상태에 따르면, 상기 촉매층은 두께가 400 nm 내지 3000 nm, 500 nm 내지 3000 nm, 또는 1000 nm 내지 3000 nm일 수 있다. 상기 촉매층의 두께가 상기 수치 범위 내의 값을 가질 경우, 산소발생반응 중에 열화 메커니즘에 따라 촉매층이 탈락 또는 용해(dissolution) 되면서 성능이 감소되는 것을 방지할 수 있고, 비전도성 촉매층이 두꺼워 지면서 전기전도성이 낮아져서 산소발생활성이 낮아지는 것을 방지할 수 있다.
본 발명의 일 실시상태에 따르면, 상기 촉매층은 상기 전극 기재와 인접한 쪽으로부터 멀어지는 쪽으로 감소하는 양으로 복합금속 산화물 중의 Cu를 포함할 수 있다. 구체적으로, 상기 촉매층이 상기 전극 기재와 인접한 쪽의 Cu 원자 함량이 상기 전극 기재와 인접하지 않은 쪽의 Cu 원자 함량보다 높을 수 있다.
본 발명의 일 실시상태에 따르면, 상기 Cu-X 산화물은 Cu xX yO z이고, 상기 x 및 상기 y는 x+y=3을 만족하고, 상기 z는 4일 수 있다. 상기 X 가 Co이고, 상기 Cu-X 산화물이 상기 조성의 화학식을 갖는 경우, 촉매 활성이 향상될 수 있고, 안정한 역스피넬 구조를 가지며 Cu 가 정스피넬 구조로 들어오게 되면서 Co 2+, Co 3+ 이온이 공존하고 이를 통해서 산소 정공(oxygen vacancy)이 형성되어 전도도가 증가하게 되어 촉매의 활성이 증가할 수 있다.
본 발명의 다른 측면에 따르면, 상기 수전해전극은 Cu 전구체; 및 X 전구체를 포함하는 전해액을 형성하는 단계; 상기 전해액에 전극 기재를 침지하는 단계; 상기 침지된 전극 기재의 표면 상에 Cu 수산화물 및 X 수산화물을 전착(electrodeposition)시키는 단계; 및 상기 Cu 수산화물 및 X 수산화물이 전착된 전극 기재를 어닐링하여 Cu-X 산화물; 및, Cu 산화물 및 X 산화물 중 1종 이상;을 포함하는 복합 금속 산화물을 생성하는 단계; 를 포함하고, 상기 X는 Co, Mn, Fe, Ni, V, W, Mo, Pt, Ir, Pd 및 Ru 중 1종인 제조방법에 따라 제조될 수 있다.
이하에서는 상기 수전해전극의 제조방법을 각 단계별로 상세히 설명하기로 한다.
먼저, Cu 전구체; 및 X 전구체를 포함하는 전해액을 형성한다. 상기 전해액은 용매를 더 포함할 수 있다. Cu 전구체; 및 Co 전구체, Mn 전구체, Fe 전구체, Ni 전구체, V 전구체, W 전구체, Mo 전구체, Pt 전구체, Ir 전구체, Pd 전구체 및 Ru 전구체 중 1종 이상의 금속의 전구체;를 용매에 첨가하고, 교반하여 전해액을 형성할 수 있다. 상기 전해액은 촉매층을 형성하는 금속원을 포함하여, 촉매층의 원하는 조성에 따라 Cu 이외의 금속의 전구체의 종류를 다양하게 할 수 있다.
본 발명의 일 실시상태에 따르면, 상기 Cu 전구체 및 상기 X 전구체는 각각 독립적으로 Cu 및 X의 질산화물, 황산화물, 염화물 또는 아세트산화물일 수 있다.
또한 본 발명의 일 실시상태에 따르면, 상기 용매는 물 또는 유기 용매일 수 있고, 구체적으로 극성 또는 비극성 유기 용매일 수 있다.
상기 Cu 전구체는 상기 X 전구체 100 중량부에 대하여 10 내지 30 중량부 또는 20 내지 30 중량부의 양으로 포함될 수 있다. 상기 함량 범위 내에 드는 경우 촉매층의 입체 나노시트 구조를 잘 유지할 수 있고, 촉매 활성을 저해하지 않을 수 있다.
본 발명의 일 실시상태에 따르면, 상기 전해액에 전극 기재를 침지하고, 전착법으로 전극 기재상에 금속 수산화물을 형성하게 된다. 즉, Cu 수산화물 및 X 수산화물을 전착하게 된다. .
전착이란 전기적 증착을 의미하며, 전해 도금으로도 알려져 있다. 상기 전착은 상기 전극 기재를 작업 전극으로 하는 3전극 시스템에 의해 수행될 수 있다.
본 발명의 일 실시상태에 따르면, 상기 전착시키는 단계는 상기 침지된 전극 기재에 -0.5 V 내지 -1.5 V 의 전압을 3 분 내지 10 분 동안 인가하여 수행되는 것일 수 있다. 전착이 상기 전압 범위 및 상기 시간 범위 내에서 수행될 경우, 부반응이 억제되고, 상기 전해액에 용매가 더 포함된 경우 용매의 전기분해는 방지되는 효과가 있을 수 있다. 또한, Cu 수산화물이 먼저 전착되면서 입체 나노시트 구조의 지지체 역할을 할 수 있고, 입체 나노시트 구조에 의해 활성 표면적을 증가시킬 수 있다.
본 발명의 일 실시상태에 따르면, 상기 전착은 25 내지 30℃에서 수행되는 것일 수 있다. 상기 온도 범위 내에서 전착이 수행되는 경우, 전해질 분해 등의 부반응은 발생하지 않으면서도 적정량의 촉매가 전착될 수 있다.
본 발명의 일 실시상태에 따르면, 상기 전착은 Cu 수산화물이 덴드리머 형태로 X 수산화물의 전착보다 먼저 일어난다. 구체적으로, 전극 근처에는 pH가 낮을 수 있고, Cu가 전착되는 pH 가, X가 전착되는 pH보다 낮아 먼저 전착이 진행된다. 전착된 Cu 수산화물은 추후에 형성되는 촉매층의 입체 나노시트 구조를 안정적으로 유지할 수 있는 지지체 역할을 할 수 있게 된다.
본 발명의 일 실시상태에 따르면, 상기 Cu 수산화물 및 X 수산화물이 전착된 전극 기재를 어닐링하게 된다.
상기 Cu 수산화물 및 X 수산화물이 전착된 전극 기재는 어닐링을 통해 Cu 수산화물 및 X 수산화물이 Cu-X 산화물; 및, Cu 산화물 및 X 산화물 중 1종 이상을 포함하는 복합 금속 산화물로 산화하여, 입체 나노시트 구조의 촉매층을 형성할 수 있다. 또한, 어닐링을 통하여 형성된 복합 금속 산화물은 금속 수산화물보다 과전압이 낮아 OER에 대한 촉매 활성이 우수하다.
본 발명의 일 실시상태에 따르면, 상기 어닐링은 200 ℃ 내지 400 ℃ 의 온도로 30 분 내지 180 분 동안 수행되는 것일 수 있다. 어닐링이 상기 온도 범위 및 상기 시간 범위 내에서 수행될 경우, 금속 수산화물의 복합 금속 산화물로의 전환율이 증가할 수 있고, 안정적으로 3차원 구조체 형상을 유지할 수 있다.
본 발명의 다른 실시상태에 따른 수전해장치는 본 발명에 따른 수전해전극을 양극으로 포함한다.
본 발명의 일 실시상태에 따르면, 음극 및 전해질로는 수전해장치에 통상적으로 사용하는 것들을 포함할 수 있다.
이하, 본 발명을 구체적으로 설명하기 위해 실시상태를 들어 상세하게 설명하기로 한다. 그러나, 본 발명에 따른 실시상태들은 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 아래에서 기술하는 실시상태들에 한정되는 것으로 해석되지 않는다. 본 명세서의 실시상태들은 당업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해 제공되는 것이다.
실시예 1
용매인 증류수 50ml 에 Cu(NO 3) 2 (SIGMA-ALDRICH, 98%)는 2mM, Co(NO 3) 2 (SIGMA-ALDRICH, 98%)는 10mM이 되도록 첨가하고 교반하여 전해액을 제조하였다. 전극 기재로 니켈 폼(ALANTUM, PN05)을 0.25cm * 0.25cm 크기의 시편으로 준비한 다음, 제조한 전해액에 작업 전극으로 침지하고, 4cm * 5cm 로 준비한 백금 전극과 칼로멜 전극(SCE)을 각각 상대전극과 기준전극으로 사용하였다. 전착은 -1 V 의 전압을 5분 동안 포텐시오스탯(Bio-Logic, VMP3)으로 가하여 25℃에서 수행하였다. 전착이 수행된 전극 기재는 머플퍼니스(PLUSKOLAB, CRFM13ㆍu3)를 이용하여 250℃의 온도에서 3시간 동안 어닐링하여 수전해전극을 제조하였다.
참고예 1
어닐링을 수행하지 않은 것을 제외하고는 실시예 1과 동일한 방법으로 수전해전극을 제조하였다.
비교예 1
용매인 증류수 50ml에 Co(NO 3) 2 (SIGMA-ALDRICH, 98%)가 10mM이 되도록 첨가하고 교반하여 전해액을 제조한 것을 제외하고는 실시예 1과 동일한 방법으로 수전해전극을 제조하였다.
비교예 2
용매인 증류수 50 ml에 Cu(NO 3) 2 (SIGMA-ALDRICH, 98 %)가 2 mM이 되도록 첨가하고 교반하여 전해액을 제조한 것을 제외하고는 실시예 1과 동일한 방법으로 수전해전극을 제조하였다.
수전해전극의 표면 및 촉매층의 단면 관찰
실시예 1, 참고예 1, 비교예 1 및 비교예 2에서 제조한 수전해전극의 표면을 전자현미경(JEOL, JSM-7001F)을 이용하여 주사전자현미경(SEM) 사진을 촬영하고, 이를 각각 도 1a 내지 도 1d에 나타내었다. 도 1의 각 도면에서의 삽입도는 각각의 확대 배율의 도면이다.
도 1a 내지 도 1d에 따르면, 실시예 1(도 1a)의 촉매층의 경우 입체 허니콤 형상으로 형성된 것을 확인할 수 있다. 반면에 비교예 1(도 1c)의 촉매층의 경우 입체 나노시트 구조를 안정적으로 유지할 수 있는 지지체를 형성하는 Cu 가 없기 때문에 시트 형태의 Co 산화물 층이 겹쳐지는 형상으로 형성된 것을 확인할 수 있고, 비교예 2(도 1d)의 촉매층의 경우 섬 형태로 불균일한 촉매층이 형성된 것을 확인할 수 있다. 따라서, 본 발명에 따른 수전해전극은 정교한 입체 허니콤 형상으로 촉매층의 표면적이 넓어 촉매 활성 사이트가 많으므로 높은 촉매 활성을 가진다. 또한, 실시예 1의 SEM 사진으로 입체 허니콤형 구조의 단위 셀의 크기가 약 100 nm 내지 200nm인 것을 확인할 수 있다.
참고예 1(도 1b)의 촉매층의 경우 어닐링 전의 촉매층에 해당하는 바, 허니콤 형상은 전착 과정에서 형성되기 시작하여, 어닐링 과정에서 더 뚜렷해지는 것을 확인할 수 있다.
또한, 실시예 1에서 제조한 수전해전극의 촉매층 물질의 Co 및 Cu의 EDS 원소 맵핑을 도 2에 나타내었다.
도 2에 따르면, 실시예 1에서 제조한 수전해전극의 촉매층은 촉매층 형성에 사용된 금속 원소가 균일하게 분포되어 있는 것을 확인할 수 있다.
또한, 실시예 1 에서 제조한 수전해전극의 촉매층 단면을 전자현미경(JEOL, JSM-7001F)를 이용하여 주사전자현미경(SEM) 사진을 촬영하고, 이를 도 3에 나타내었다.
도 3에 따르면, 실시예 1에서 제조한 수전해전극의 촉매층의 두께가 약 550 nm 인 것을 확인할 수 있다.
수전해전극의 조성 확인
라만분광기(JASCO, NRS-3300)를 이용하여 실시예 1 및 비교예 1에서 제조한 수전해전극의 촉매층 물질의 라만 스펙트럼을 도 4에 나타내었다.
도 4에 따르면, 비교예 1의 라만 스펙트럼은 원래의 Co 3O 4의 피크에서 더 작은 파장쪽으로 살짝 치우친 라만 피크를 가지나, 실시예 1의 라만 스펙트럼은 비교예 1의 경우보다 원래의 Co 3O 4의 피크에서 더 작은 파장쪽으로 더 많이 치우친 라만 피크를 가진다. 이것으로부터, Cu 가 혼입되어 Co xCu 3-xO 4를 형성하였음을 알 수 있다.
X-ray 광전자 분석기(Thermo Scientific, VG Multilab 2000)를 이용하여 실시예 1 및 참고예 1에서 제조한 수전해전극의 촉매층 물질의 Cu 및 Co의 XPS 스펙트럼을 각각 도 5a 및 도 5b에 각각 나타내었다.
도 5a 에 따르면, 참고예 1에서 제조한 수전해전극의 Cu는 Cu + : Cu 2+가 13 : 87인 조성을 갖고, 실시예 1에서 제조한 수전해전극의 Cu 는 Cu + : Cu 2+가 40 : 80인 조성을 갖는다.
도 5b 에 따르면, 참고예 1에서 제조한 수전해전극의 Co는 Co 2+ : Co 3+가 66 : 34인 조성을 갖고, 실시예 1에서 제조한 수전해전극의 Co 는 Co 2+ : Co 3+가 61 : 39인 조성을 갖는다.
즉, 도 4, 도 5a 및 도 5b에 따르면, 참고예 1 에서 제조한 수전해전극은 CuOH, Cu(OH) 2, 및 Co(OH) 2를 포함하고, 어닐링 공정을 거친 실시예 1에서 제조한 수전해전극은 상기 Co 수산화물 및 Cu 수산화물이 Cu 0.81Co 2.19O 4로 변형되고, 과량의 Cu는 Cu 2O의 Cu 산화물로 석출되는 것을 알 수 있다.
즉, 어닐링 단계에서 금속의 수산화물이 복합 금속 산화물로 변환되는 것을 확인할 수 있다.
수전해전극의 과전압 측정 및 평가
실시예 1 및 비교예 1에서 제조한 수전해전극 및 촉매층을 포함하지 않는 니켈 폼(참조)을 포텐시오스탯(Bio-Logic, VMP3)을 사용하여 상온에서 주사 속도 5mV/s으로 선형주사전위법(LSV)을 이용하여 전압을 가하고, 가해준 전압에 대한 전류 밀도에 해당하는 LSV 분극 곡선을 도 6에 나타내었다.
도 6에 따르면, 실시예 1의 경우 10 mA/cm 2의 전류밀도에서 290mV의 과전압을 나타내었다. 반면, 비교예 1의 경우 10 mA/cm 2의 전류밀도에서 420mV의 과전압 값으로, 실시예 1보다 높은 값을 나타내었다. 따라서, 본 발명에 따른 수전해전극은 입체 허니콤형 구조의 입체 나노시트 구조를 뚜렷하게 가짐으로써 상대적으로 낮은 과전압을 가지므로, 수전해장치에 도입되는 경우 보다 낮은 전압에서도 우수한 촉매 활성을 가지며, 수전해 효율이 우수할 수 있다.
수전해전극의 장기 안정성 시험
하프셀(half cell) 시험
실시예 1에서 제조한 수전해전극을 1M KOH의 전해액에서 25mA/cm 2 또는 100 mA/cm 2 의 일정한 전류밀도로 대시간전위차법(chronopotentiometry)을 이용하여 24 시간 동안 작동시키며 전압을 측정하였으며, 시간에 대한 전압에 해당하는 그래프를 도 7에 나타내었다.
도 7을 참조하면, 실시예 1에서 제조한 수전해전극은 25mA/cm 2 의 전류밀도로 24시간 동안 작동되더라도 작동 초기에 비해 단지 90mV의 과전압 상승을 보이고 있고, 100mA/cm 2의 전류밀도로 작동되는 경우에도 과전압 상승량이 크지 않아 촉매 활성의 장기안정성이 우수한 것을 확인할 수 있다.
또한, 실시예 1에서 제조한 수전해전극을 1M KOH의 전해액에서 25A/cm 2의 전류밀도로 또는 100 mA/cm 2 의 전류밀도로 24 시간 동안 작동시킨 후 포텐시오스탯(Bio-Logic, VMP3)를 사용하여 상온에서 주사 속도 5mV/s으로 선형주사전위법(LSV)을 이용하여 전압을 가하고, 가해준 전압에 대한 전류 밀도에 해당하는 LSV 분극 곡선을 도 8에 나타내었다.
도 8을 참조하면, 실시예 1에서 제조한 수전해전극이 25 mA/cm 2에서 24시간 동안 작동된 경우, 초기 수전해전극의 과전압에 비해 단지 40mV의 과전압 상승을 보였고, 100mA/cm 2에서 24시간 동안 작동된 경우, 단지 50mV의 과전압 상승을 보이고 있어, 촉매 활성의 장기안정성이 우수한 것을 확인할 수 있다.
또한, 실시예 1에서 제조한 수전해전극을 1M KOH의 전해액에서 25A/cm 2의 전류밀도로, 또는 100 mA/cm 2 의 전류밀도로 24 시간 동안 작동시킨 후 수전해전극의 표면을 전자현미경(JEOL, JSM-7001F)을 이용하여 주사전자현미경(SEM) 사진을 촬영하고 이를 각각 도 9a 및 도 9b에 나타내었다.
도 9a 및 도 9b를 참조하면, 실시예 1에서 제조한 수전해전극은 24 시간의 작동을 거치더라도 입체 허니콤형 구조가 유지되는 것을 확인할 수 있다. 따라서 본 발명에 따른 수전해전극의 넓은 촉매 표면적의 장기 안정성이 높은 것을 확인할 수 있다.
풀셀(full cell) 시험
실시예 1에서 제조한 수전해전극을 0.1M KOH 의 전해액을 포함하는 음이온교환막 수전해셀(AWMWE)에 도입하여 장기 안정성을 시험하였다.
음이온교환막 수전해셀은 가스 배출구, 가스 분리용 음이온 교환막, 전해액 순환을 촉진하는 외부 장치를 포함하며, 실시예 1에서 제조한 수전해전극을 양극으로 하고, Pt/C를 환원전극으로 하며 전해액은 0.1M KOH로 하여 시험을 진행하였다.
실시예 1에서 제조한 수전해전극이 도입된 음이온교환막 수전해셀을 30 ℃의 온도에서 100 mA/cm 2 의 일정한 전류밀도로 대시간전위차법을 이용하여 100 시간 동안 작동시키며 셀 전압을 측정하였으며, 시간에 대한 전압에 해당하는 그래프를 각각 도 10에 나타내었다.
도 10을 참조하면, 실시예 1에서 제조한 수전해전극은 수전해셀에 도입되어 100 mA/cm 2 의 일정한 전류밀도로 약 100시간동안 작동되더라도, 초기 과전압인 350mV에 비해 100시간 후의 과전압이 단지 20mV만 증가하여 크게 변하지 아니하는 것을 확인할 수 있다. 즉, 본 발명에 따른 수전해전극은 촉매 활성의 장기 안정성이 높은 것을 확인할 수 있다.
또한 실시예 1에서 제조한 수전해전극이 도입된 음이온교환막 수전해셀과, 이를, 25mA/cm 2 또는 100 mA/cm 2 의 일정한 전류밀도로 24시간 동안 작동된 후의 수전해셀을 포텐시오스탯(WonaTech, ZIVE MP5)기기를 사용하여, 가해준 전압에 대한 전류 밀도에 해당하는 분극 곡선을 각각 도 11에 나타내었다.
도 11을 참조하면, 실시예 1에서 제조한 수전해전극은 100 mA/cm 2 의 일정한 전류밀도로 24 시간의 작동을 거치더라도 전기화학적 특성이 열화되지 않는 것을 확인할 수 있고, 따라서 본 발명에 따른 수전해전극은 촉매 활성의 장기 안정성이 높은 것을 확인할 수 있다.
또한 실시예 1의 수전해전극을 음이온교환막 수전해셀에 도입하여 25mA/cm 2 의 일정한 전류밀도로 24 시간 동안 작동시킨 수전해전극의 표면을 포텐시오스탯(WonaTech, ZIVE MP5)을 이용하여 주사전자현미경(SEM) 사진을 촬영하고 이를 도 12에 나타내었다.
도 12를 참조하면, 실시예 1에서 제조한 수전해전극은 25mA/cm 2 또는 100 mA/cm 2 의 일정한 전류밀도로 24 시간의 작동을 거치더라도 입체 허니콤형 구조가 유지되는 것을 확인할 수 있다. 따라서 본 발명에 따른 수전해전극의 넓은 촉매 표면적의 장기 안정성이 높은 것을 확인할 수 있다.
장기 안정성 시험 후 수전해전극의 조성의 변화 확인
X-ray 광전자 분석기(Thermo Scientific, VG Multilab 2000)를 이용하여, 실시예 1에서 제조한 수전해전극의 촉매층 물질의 XPS 그래프를 도 13a에 나타내었다.
또한 X-ray 광전자 분석기(Thermo Scientific, VG Multilab 2000)를 이용하여, 실시예 1에서 제조한 수전해전극을 1M KOH의 전해액에서 25mA/cm 2 의 일정한 전류밀도로 24시간 동안 작동시킨 후의 수전해전극의 촉매층 물질의 XPS 그래프를 도 13b에 나타내었다.
도 13a 및 도 13b를 참조하면, 실시예 1에서 제조한 수전해전극은 1M KOH의 전해액에서 25mA/cm 2 의 일정한 전류밀도로 24시간 동안 작동되는 경우 Cu의 피크가 확연히 감소한 것을 확인할 수 있다.
또한 X-ray 광전자 분석기(Thermo Scientific, VG Multilab 2000)를 이용하여, 실시예 1에서 제조한 수전해전극을 1M KOH의 전해액에서 25mA/cm 2 의 일정한 전류밀도로 24시간 동안 작동시킨 후의 수전해전극의 촉매층 물질의 Cu 및 Co의 XPS 스펙트럼을 도 14a 및 도 14b에 나타내었다.
도 14a 및 도 14b를 참조하면, 도 4a 및 도 5b와 비교할 때, 실시예 1에서 제조한 수전해전극은 1M KOH의 전해액에서 25mA/cm 2 의 일정한 전류밀도로 24시간 동안 작동된 후의 XPS 스펙트럼은 Co의 피크는 큰 차이가 없지만 Cu 피크는 확실히 감소한 것을 확인할 수 있다.
즉, 도 13 및 도 14을 종합하면 실시예 1에서 제조한 수전해전극은 작동 시간이 길어질수록 Cu가 용해되어 촉매 활성이 감소하는 것을 알 수 있다.

Claims (13)

  1. 전극 기재; 및
    상기 전극 기재 상에 위치한 촉매층을 포함하는 수전해전극으로서,
    상기 촉매층은 Cu-X 산화물; 및, Cu 산화물 및 X 산화물 중 1종 이상을 포함하는 복합 금속 산화물을 포함하고, 입체 나노시트 구조를 가지며, 상기 X는 Co, Mn, Fe, Ni, V, W, Mo, Pt, Ir, Pd 및 Ru 중 1종인 수전해전극.
  2. 제1항에 있어서.
    상기 전극 기재는 폼(foam) 형태 또는 판 형태인 것인 수전해전극.
  3. 제1항에 있어서,
    상기 전극 기재는 Ni, SUS, Ti, Au, Cu, ITO 및 FTO 중 1종 이상을 포함하는 수전해전극.
  4. 제1항에 있어서,
    상기 촉매층은 두께가 400nm 내지 3000nm 인 수전해전극.
  5. 제1항에 있어서,
    상기 Cu-X 산화물은 Cu xX yO z이고, 상기 x 및 상기 y는 x+y=3을 만족하고, 상기 z는 4인 수전해전극.
  6. 제1항에 있어서,
    상기 촉매층의 입체 나노시트 구조는 입체 허니콤형 구조를 갖는 것인 수전해전극.
  7. 제6항에 있어서,
    상기 입체 허니콤형 구조의 단위 셀은 직경이 100 nm 내지 300 nm 인 수전해전극.
  8. Cu 전구체; 및 X 전구체를 포함하는 전해액을 형성하는 단계;
    상기 전해액에 전극 기재를 침지하는 단계;
    상기 침지된 전극 기재의 표면 상에 Cu 수산화물 및 X 수산화물을 전착(electrodeposition)시키는 단계; 및
    상기 Cu 수산화물 및 X 수산화물이 전착된 전극 기재를 어닐링하여 Cu-X 산화물; 및, Cu 산화물 및 X 산화물 중 1종 이상;을 포함하는 복합 금속 산화물을 생성하는 단계;
    를 포함하고, 상기 X는 Co, Mn, Fe, Ni, V, W, Mo, Pt, Ir, Pd 및 Ru 중 1종인 제1항 내지 제7항 중 어느 한 항에 따른 수전해전극의 제조방법.
  9. 제8항에 있어서,
    상기 Cu 전구체 및 상기 X 전구체는 각각 독립적으로 Cu 및 X의 질산화물, 황산화물, 염화물 또는 아세트산화물인 수전해전극의 제조방법.
  10. 제8항에 있어서,
    상기 Cu 전구체는 상기 X 전구체 100 중량부에 대하여 10 내지 30 중량부의 양으로 포함되는 수전해전극의 제조방법.
  11. 제8항에 있어서,
    상기 전착시키는 단계는 상기 침지된 전극 기재에 -0.5 V 내지 -1.5 V 의 전압을 3 분 내지 10 분 동안 인가하여 수행되는 것인 수전해전극의 제조방법.
  12. 제8항에 있어서,
    상기 어닐링은 200 ℃ 내지 400 ℃ 의 온도로 30 분 내지 180 분 동안 수행되는 것인 수전해전극의 제조방법.
  13. 제1항 내지 제7항 중 어느 한 항에 따른 수전해전극을 양극으로 포함하는 수전해장치.
PCT/KR2019/013607 2019-09-06 2019-10-16 입체 나노시트 구조를 갖는 촉매를 포함하는 수전해전극, 그 제조방법 및 그를 포함하는 수전해장치 WO2021045302A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/637,607 US20220282386A1 (en) 2019-09-06 2019-10-16 Water electrolysis electrode containing catalyst having three-dimensional nanosheet structure, method for manufacturing same, and water electrolysis device including same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2019-0111058 2019-09-06
KR1020190111058A KR102403412B1 (ko) 2019-09-06 2019-09-06 입체 나노시트 구조를 갖는 촉매를 포함하는 수전해전극, 그 제조방법 및 그를 포함하는 수전해장치

Publications (1)

Publication Number Publication Date
WO2021045302A1 true WO2021045302A1 (ko) 2021-03-11

Family

ID=74853386

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/013607 WO2021045302A1 (ko) 2019-09-06 2019-10-16 입체 나노시트 구조를 갖는 촉매를 포함하는 수전해전극, 그 제조방법 및 그를 포함하는 수전해장치

Country Status (3)

Country Link
US (1) US20220282386A1 (ko)
KR (1) KR102403412B1 (ko)
WO (1) WO2021045302A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115505958A (zh) * 2022-09-30 2022-12-23 武汉工程大学 泡沫金属负载双尖晶石型氧化物CuCo2O4-Co3O4及其衍生物的制备、应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140021673A (ko) * 2011-06-22 2014-02-20 인두스트리에 데 노라 에스.피.에이. 산소 발생용 애노드
US20160305035A1 (en) * 2013-12-04 2016-10-20 Technische Universitaet Berlin Metal chalcogenide thin film electrode, method for the production thereof and use
KR20190017573A (ko) * 2017-08-11 2019-02-20 한국기계연구원 물분해 장치
KR20190022333A (ko) * 2017-08-23 2019-03-06 주식회사 엘지화학 전기분해용 양극 및 이의 제조방법

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090091503A (ko) * 2008-02-25 2009-08-28 (주)엘켐텍 전기분해모듈 및 이를 포함하는 산소 발생기
CN107442125B (zh) * 2017-09-05 2020-01-17 济南大学 一种碳基铜钴氧化物纳米片催化剂的制备方法和应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140021673A (ko) * 2011-06-22 2014-02-20 인두스트리에 데 노라 에스.피.에이. 산소 발생용 애노드
US20160305035A1 (en) * 2013-12-04 2016-10-20 Technische Universitaet Berlin Metal chalcogenide thin film electrode, method for the production thereof and use
KR20190017573A (ko) * 2017-08-11 2019-02-20 한국기계연구원 물분해 장치
KR20190022333A (ko) * 2017-08-23 2019-03-06 주식회사 엘지화학 전기분해용 양극 및 이의 제조방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CHOI, WOO-SUNG: "Three-Dimensional Honeycomb-Like Cu0.81Co2.1904 Nanosheet Arrays Supported by Ni Foam and Their High Efficiency as Oxygen Evo ution Electrodes", APPLIED MATERIALS & INTERFACES, vol. 10, no. 45, 14 November 2018 (2018-11-14), pages 38663 - 38668, XP055799534 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115505958A (zh) * 2022-09-30 2022-12-23 武汉工程大学 泡沫金属负载双尖晶石型氧化物CuCo2O4-Co3O4及其衍生物的制备、应用

Also Published As

Publication number Publication date
US20220282386A1 (en) 2022-09-08
KR20210029604A (ko) 2021-03-16
KR102403412B1 (ko) 2022-05-31

Similar Documents

Publication Publication Date Title
WO2012093880A9 (ko) 슈퍼커패시터용 나노다공성 전극 및 이의 제조방법
WO2021006439A1 (ko) 전기화학적 물분해 촉매 및 이의 제조방법
WO2016208965A1 (ko) 물 분해용 촉매 및 이의 제조방법
WO2016064086A1 (ko) 산소 발생 촉매, 전극 및 전기화학반응 시스템
WO2021107420A1 (ko) 광전기화학적 수처리용 광전극, 이의 제조방법 및 이의 용도
WO2019093765A2 (ko) 자동차용 연료전지를 위한 다기능성 비백금 담지 촉매 및 그 제조 방법
WO2021045302A1 (ko) 입체 나노시트 구조를 갖는 촉매를 포함하는 수전해전극, 그 제조방법 및 그를 포함하는 수전해장치
WO2020111710A1 (ko) 전기화학적 수처리용 전극소재 및 그 제조방법
WO2021141435A1 (ko) 전기분해용 전극
WO2019059570A1 (ko) 연료전지용 촉매의 제조 방법 및 이에 의하여 제조된 연료전지용 촉매
WO2021242028A1 (ko) 고성능 알칼리 수전해용 전극 및 이의 제조 방법
WO2021125543A1 (ko) 로듐-니켈 합금 나노섬유를 포함하는 수소 발생 반응용 촉매 및 로듐-니켈 합금 나노섬유의 제조 방법
WO2020171509A1 (ko) 전기분해용 전극
WO2023136396A1 (ko) 루테늄 산화물 기반 산소 발생 반응용 촉매, 이의 제조방법 및 이를 포함하는 수전해 전지
US11807948B2 (en) Method of producing hydrogen peroxide using nanostructured bismuth oxide
WO2023171924A1 (ko) 전기화학적 환원반응을 통한 hmf으로부터 bhmf 생산용 촉매 전극 및 이의 제조방법
WO2020091151A1 (ko) 전기화학기법을 적용한 고체산화물연료전지 공기극 및 이의 제조방법
WO2019004580A1 (ko) 수직배향 다공성 수소 및 산소 발생 전극 제조방법
WO2024117507A1 (ko) 해수 수전해용 고내구성 전극 촉매 및 그의 제조방법
WO2017073978A1 (ko) 촉매 및 촉매 제조 방법
WO2021101034A1 (ko) 코발트 산화물을 포함하는 수전해전극용 촉매의 제조방법
WO2023101339A1 (ko) 바나듐 전해액 제조용 촉매 및 바나듐 전해액의 제조 방법
WO2019059738A2 (ko) 전기증착을 이용한 구리 델라포사이트 광전극의 제조방법 및 이에 따라 제조된 광전극을 이용한 수소의 제조방법
WO2024071792A1 (ko) 금속 유기 골격체를 이용한 요소 산화 반응용 촉매 및 이의 제조 방법
WO2021010724A1 (ko) 물 분해 촉매 전극 및 이의 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19944323

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19944323

Country of ref document: EP

Kind code of ref document: A1