WO2021242028A1 - 고성능 알칼리 수전해용 전극 및 이의 제조 방법 - Google Patents

고성능 알칼리 수전해용 전극 및 이의 제조 방법 Download PDF

Info

Publication number
WO2021242028A1
WO2021242028A1 PCT/KR2021/006612 KR2021006612W WO2021242028A1 WO 2021242028 A1 WO2021242028 A1 WO 2021242028A1 KR 2021006612 W KR2021006612 W KR 2021006612W WO 2021242028 A1 WO2021242028 A1 WO 2021242028A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
water electrolysis
alkaline water
manufacturing
heat treatment
Prior art date
Application number
PCT/KR2021/006612
Other languages
English (en)
French (fr)
Inventor
주종훈
김혜리
이가현
Original Assignee
충북대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020200065437A external-priority patent/KR102425855B1/ko
Priority claimed from KR1020210006026A external-priority patent/KR102552378B1/ko
Application filed by 충북대학교 산학협력단 filed Critical 충북대학교 산학협력단
Priority to US17/753,136 priority Critical patent/US20220333258A1/en
Publication of WO2021242028A1 publication Critical patent/WO2021242028A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/02Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form
    • C25B11/03Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form perforated or foraminous
    • C25B11/031Porous electrodes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/042Electrodes formed of a single material
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/042Electrodes formed of a single material
    • C25B11/046Alloys
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/075Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of a single catalytic element or catalytic compound
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/075Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of a single catalytic element or catalytic compound
    • C25B11/089Alloys
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/091Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/133Renewable energy sources, e.g. sunlight

Definitions

  • the present invention relates to an electrode for high-performance alkaline water electrolysis and a method for manufacturing the same.
  • Hydrogen can be produced by extracting hydrogen from hydrocarbons or water through steam reforming, natural reforming, partial oxidation, thermochemical decomposition, direct decomposition, biological decomposition, and electrolysis.
  • Water electrolysis is a method of producing hydrogen by electrolysis of pure water. It is a technology that not only responds to the increasing demand for hydrogen, but also aims to store large-capacity power that stores renewable energy such as wind power and solar power. Hydrogen has a high energy density, can be stored stably for a long period of time, and has the advantage of being stored in various forms such as gas and liquid.
  • Such water electrolysis technology is classified into alkali type, polymer electrolyte membrane type, and high temperature water electrolysis technology.
  • the alkali-type water electrolysis method uses an anion-transferring liquid electrolyte such as potassium hydroxide (KOH) and sodium hydroxide (NaOH) through an electrochemical reaction to produce hydrogen at the cathode and oxygen at the anode in a molar ratio of 1:2.
  • KOH potassium hydroxide
  • NaOH sodium hydroxide
  • a method of producing proportions Current alkali-type water electrolysis commercial systems show low efficiency due to increased resistance in the system during high current operation and repeated on/off operation, and decrease in electrode activity and durability due to the gaseous reaction of hydrogen and oxygen in the electrode.
  • the anion transfer catalyst has a high oxygen reduction rate, so it does not use noble metals such as Pt and uses transition metals (Ni, Co, Fe, etc.) as electrode catalysts to increase electrode activity and efficiency, thus producing a large amount of hydrogen.
  • noble metals such as Pt
  • transition metals Ni, Co, Fe, etc.
  • Catalyst materials are mainly used by depositing on a substrate using electroplating, electrophoresis, PVD (Physical vapor deposition), CVD (Chemical vapor deposition), binder, etc.
  • the deposition method is different depending on the catalyst material. Material selection is limited depending on the deposition method. In particular, in the case of large-area/mass production technology to achieve commercialization, facility/equipment investment costs are greatly required, and a catalyst deposition method must be developed in consideration of this.
  • the present invention is to solve the above-mentioned problems, the manufacturing process is simple, the electrode of various compositions can be manufactured through the complexing of raw materials, and it is easy to manufacture a large-area electrode, so that it is advantageous for commercialization.
  • the present invention relates to a method and an electrode manufactured therefor.
  • the method for manufacturing an electrode for alkaline water electrolysis of the present invention comprises the steps of: preparing a wet powder by dissolving and synthesizing a metal salt in a solvent; performing the wet powder oxidation heat treatment; and reducing the heat-treated powder to oxidation.
  • the present invention has low reactivity of OER (Oxygen Evolution Reaction)/HER (Hydrogen Evolution Reaction). It is a method of manufacturing a high catalyst material into a nano-porous substrate itself through a wet powder manufacturing process, and there is no need to deposit a catalyst, so the manufacturing process is simple. That is, since the process of depositing the catalyst can be omitted, the manufacturing method is simple compared to the existing complicated processes such as electroplating, electrophoresis, and plasma spraying, and various catalyst materials can be applied without limitation to the material.
  • the catalytically active surface area can be maximized, thereby greatly improving electrode performance. Therefore, it is possible to manufacture a low-cost and high-efficiency electrode for alkaline water electrolysis using non-noble metal materials (Ni, Co, Fe, Zn, etc.) without using expensive iridium (Ir) or platinum (Pt) that show high activity. do.
  • FIG 2 is an SEM image of an electrode according to various embodiments of the present invention.
  • FIG 3 is an LSV measurement result of an electrode according to various embodiments of the present invention.
  • FIG. 8A is a schematic diagram showing a method for manufacturing a porous NiFe catalyst substrate (CS) according to an embodiment of the present invention
  • B is XRD (X-ray) for confirming the crystal structure of Ni x Fe 1- x diffraction) analysis result
  • C is Ni 0 . 7 Fe 0 .3 is a SAED (selected area electron diffraction) pattern of -CS
  • insertion image is a TEM image
  • D is an EDS mapping image element.
  • 9A is a Ni x Fe 1- x LSV (Linear Sweep Voltammetry) measurement graph for HER
  • B is an LSV measurement graph for OER
  • C is a graph comparing overvoltage for HER and OER
  • D is Ni 0 . 7 Fe 0 .3 -CS and is a comparison of various prior art NiFe substrate both functional catalytic electrode of the HER and OER active table.
  • 10A is Ni 0 . 7 Fe 0 .3, Ni plate, LSV for HER foam of Ni and Pt plate (Linear Sweep Voltammetry) measurement graph, and B is a LSV measurement graph for the OER.
  • EIS electrochemical impedance spectroscopy
  • EIS electrochemical impedance spectroscopy
  • 14A is Ni 0 for HER.
  • B is the polarization curve for the OER
  • C is the polarization curve of the fixed electrode system RDE system
  • D is the HER and OER in the 280 mV voltage
  • It is a graph comparing the current density for Ni 0 . 7 is a Tafel plot of the Fe 0 .3 -CS
  • F is a Nyquist plot of the Ni 0.7 Fe 0.3 -CS for HER and OER
  • inserted image is enlarged EIS curve
  • G is Ni 0 at different current densities.
  • 7 is a curve of Chronopotentiometric Fe 0 .3 -CS.
  • Ni 0 . 7 is a graph comparing the amount of gas measured by the theoretical and experimental for the HER and OER with time of the Fe 0 .3.
  • 16A is Ni 0 . 7 Fe 0 .3 is a TEM image of a -CS of fresh sample
  • B is a TEM image
  • OER insertion SAED pattern image
  • C is a TEM image
  • HER and insertion image SAED pattern
  • D to F are XPS Spectra
  • G is the double layer capacitance measurement result
  • H is a graph comparing the double layer capacitance (C dl ).
  • 17A is Ni 0 . 7 is a TEM image, the OER Fe 0 .3 -CS, B is an SAED pattern, C represents the ratio of the Ni / Fe.
  • 18A is an EDS element mapping image after HER of Ni 0.7 Fe 0.3 -CS, and B and C represent the Ni/Fe ratio.
  • a of Figure 20 is Ni 0 . 7 shows the pore distribution of the Fe 0 .3 -CS
  • B is an electrochemical double layer capacitance measurement results (C dl) of the HER
  • C is an electrochemical double layer capacitance measurements for OER
  • D is Ni 0. 7 is Fe 0 .3 -CS table and a comparison of the C dl for the HER and OER variety of conventional catalyst.
  • a method of manufacturing an electrode for alkaline water electrolysis includes: preparing a wet powder; oxidation heat treatment; and reducing heat treatment.
  • the wet powder may be prepared by dissolving and synthesizing a metal salt in a solvent.
  • the metal salt may be at least one metal salt selected from the group consisting of Ni, Fe, Co, Mn, Cu, Zn, Mo, Ca, Nb, W, and Ti.
  • the metal salt may be a hydrate of the metal salt.
  • the metal salt is Ni(NO 3 ) 2 .6H 2 O, Fe(NO 3 ) 3 .9H 2 O, Co(NO 3 ).6H 2 O, Mn(NO 3 ) 2 .6H 2 O, Cu (NO 3 ) 2 ⁇ 6H 2 O, Zn(NO 3 ) 2 ⁇ 6H 2 O, or the like.
  • the wet powder may be prepared by any one method selected from the group consisting of a Pechini process, a sol-gel method, and a colloidal process.
  • a Pechini process a sol-gel method
  • a colloidal process a method selected from the group consisting of a sol-gel method, and a colloidal process.
  • the wet powder when it is prepared by the Peccini method, it can be synthesized by dissolving a metal salt in distilled water as a solvent, adding a chelating agent, and titrating the pH to 6.
  • a chelating agent citric acid and the like may be used.
  • an oxidation heat treatment of the synthesized wet powder may be performed.
  • the oxidative heat treatment may be performed after molding the wet powder into a mold at a temperature of 300° C. to 500° C. in air for 30 minutes to 2 hours. By oxidative heat treatment under these conditions, it is possible to finally manufacture a nano-porous electrode.
  • the reduction heat treatment of the wet powder subjected to oxidation heat treatment may be performed.
  • the reduction heat treatment may be performed at a temperature of 400° C. to 700° C. under a hydrogen atmosphere for 1 hour to 4 hours.
  • the porosity of the electrode manufactured according to the reduction heat treatment temperature may vary.
  • the average porosity of the prepared electrode can be adjusted to 50 to 80% by performing a reduction heat treatment at a temperature in the above range.
  • processes such as dip-coating and etching may be additionally performed to control the shape of the electrode.
  • the wet-synthesized nanopowder is molded into a mold and then oxidatively heat-treated to form an oxide, followed by reduction heat treatment to manufacture a metal nanoporous electrode.
  • the manufacturing method of the present invention has a simple process, and it is easy to increase the area by manufacturing a substrate capable of applying a multi-element material and using it as an electrode.
  • it can be synthesized by applying various transition metals and oxide materials such as Ni, Co, Mn, Cu, Zn, and Ti, and since the synthesized powder is subjected to reduction heat treatment in a hydrogen atmosphere, alumina (Al 2 O 3 ), zirconia (ZrO 2 ) It is possible to manufacture a metal/ceramic composite electrode based on an oxide material such as TiO 2 .
  • the electrode for alkaline water electrolysis of the present invention may be manufactured by the above-described manufacturing method.
  • the electrode for alkaline water electrolysis of the present invention includes at least one selected from the group consisting of Ni, Fe, Co, Mn, Cu, Zn, Mo, Ca, Nb, W and Ti, and may be in a nanoporous form.
  • the electrode for alkaline water electrolysis of the present invention includes one selected from the group consisting of Ni, Fe, Co, Mn, Cu, Zn, Mo, Ca, Nb, W and Ti, or an alloy of metals selected from these groups can
  • the electrode for alkaline water electrolysis of the present invention may be a Ni-Fe alloy, a Ni-Co alloy, and a Ni-Zn alloy.
  • the electrode for alkaline water electrolysis of the present invention may include a metal selected from the group consisting of Ni, Fe, Co, Mn, Cu, Zn, Mo, Ca, Nb, W and Ti; and oxides. That is, the electrode for alkaline water electrolysis of the present invention may be a metal/ceramic composite material.
  • the oxide is alumina (Al 2 O 3 ), zirconia (ZrO 2 ), TiO 2 , [(La 1 - x Sr x )CoO 3 - ⁇ ](LSC), [(La 1 - x Sr x )FeO 3 - ⁇ ] (LSF), [( La 1 - x Sr x) (Co 1 - y Fe y) O 3- ⁇ ] (LSCF), [(La x Sr 1 -x) TiO 3 - ⁇ ] (LST) , [(Ba x Sr 1-x )(Co y Fe 1-y )O 3 ](BSCF), LaCoO 3 , LaNiO3, (La x Sr 1- x )VO 3 , Ca(V x Mo 1-x ) O 3 , [Ba(Zr x Ce y Y 1-(x+y) )O 3 ] (BZCY), and [Pr(Ba 1-x Sr x
  • the electrode for alkaline water electrolysis may have an average porosity of 50 to 80%. This ensures that the overvoltage is low. It is chemically stable and has excellent durability, and an electrode with a large specific surface area can be secured.
  • nitrate hexahydrate that is, Ni (NO 3) 2 ⁇ 6H 2 O, Fe (NO 3) 3 ⁇ 9H 2 O, Co (NO 3) ⁇ 6H 2 O, and Zn (NO 3) 2 ⁇ 6H 2 O of at least Any one was dissolved in distilled water and synthesized according to the molar ratio in Table 1 below.
  • the powder synthesized through the wet process is molded for electrode manufacturing, followed by oxidation heat treatment (Air, 400 °C, 1 h), and reduction heat treatment in a hydrogen atmosphere for 3 hours, but at different reduction heat treatment temperatures according to Table 1 below Thus, it was prepared by heat treatment.
  • Table 1 shows the porosity of a Ni sandblast substrate generally used as a substrate for an electrode for alkaline water electrolysis and a substrate manufactured according to an embodiment of the present invention.
  • the porosity of the electrode prepared according to the example is much higher than that of the commercially available Ni sandblast substrate, which is a comparative example.
  • Linear Sweep Voltammetry A measurement graph and an overvoltage (overpotential, ⁇ @10mA/cm 2 ) are shown. It can be seen that the Ni substrate electrode prepared in the example shows better performance than the Ni sandblast, which is a comparative example, and has a lower overvoltage at the same current density (10mA/cm 2 ).
  • the performance of the conventional electrode can be further improved due to the influence of the large specific surface area of the Ni electrode of Example 1-1 having a higher porosity compared to the comparative example, and the metal oxide and peroves
  • various materials such as oxides including skyte and spinel structures are manufactured as electrodes by applying the manufacturing method of the present invention, the possibility of further improving the performance of existing electrodes is presented.
  • Examples 1-2 (Ni), 1-5 (Ni-Fe), 1-6 (Ni-Co), and 1-7 (Ni- Zn) SEM images of the electrode.
  • Table 1 it can be seen that the porosity of each electrode is higher than that of the electrode of the comparative example.
  • Example 1-2 (Ni), 1-5 (Ni-Fe), 1-6 (Ni-Co), and 1-7 in which the reduction heat treatment temperature is 650 ° C in an embodiment of the present invention
  • This is the LSV measurement result of the (Ni-Zn) electrode.
  • a multi-element electrode capable of various combinations can be manufactured through the manufacturing method of the present invention, and Examples 1-7 (Ni-Zn) ⁇ Example 1-5 (Ni-Fe) ⁇ Example It can be seen that 1-6 (Ni-Co) ⁇ Example 1-2 (Ni) shows a low overvoltage in the order of the electrode, and an electrode having excellent performance can be realized by combining various materials.
  • Equation 4 is a graph showing the difference in oxidation/reduction current density according to the scan rate (20, 40, 60, 80, 100 mV/s) of the multi-element substrate electrode in the -0.2VHg/HgO (HER standard) region. Equation 1 below is an equation showing the relationship between the oxidation/reduction current density difference and the double layer capacitance in CV (Cyclic Voltammetry) according to the electric double layer capacitance and the scanning speed.
  • the active area of the electrode manufactured according to the embodiment of the present invention is larger than that of the electrode of the conventional comparative example. This shows a result corresponding to the SEM image of the prepared multi-element substrate electrode of FIG. 2 .
  • FIG. 5 is an SEM image for each temperature of Ni-Fe electrodes prepared according to Examples 1-3, 1-4, and 1-5
  • FIG. 6 is an LSV measurement result thereof.
  • LSV measurement result, Examples 1-3, 1-4 and 1-5 respectively 46.3 mV (@ 10 mA, 450 °C), 65.5 mV (@10 mA, 550 °C), 123 mV (@10 mA, 650 °C) of overvoltage.
  • FIG. 7 it was determined that the site participating in the electrode reaction could be controlled by controlling the reduction heat treatment temperature.
  • a method of manufacturing an electrode for alkaline water electrolysis includes: preparing a wet powder by dissolving and synthesizing a metal salt in a solvent; gelling the wet powder; manufacturing the gel into char by heat-treating the gel at a low temperature; manufacturing a substrate by molding the charcoal; oxidation heat treatment of the substrate; and subjecting the substrate to a reduction heat treatment.
  • the wet powder may be prepared by dissolving and synthesizing a metal salt in a solvent.
  • the metal salt may be at least one metal salt selected from the group consisting of Ni, Fe, Co, Mn, Cu, Zn, Mo, Ca, Nb, W, and Ti.
  • the metal salt may be a hydrate of the metal salt.
  • the metal salt is Ni(NO 3 ) 2 .6H 2 O, Fe(NO 3 ) 3 .9H 2 O, Co(NO 3 ).6H 2 O, Mn(NO 3 ) 2 .6H 2 O, Cu (NO 3 ) 2 ⁇ 6H 2 O, Zn(NO 3 ) 2 ⁇ 6H 2 O, or the like.
  • the wet powder may be prepared by any one method selected from the group consisting of a Pechini process, a sol-gel method, and a colloidal process.
  • a Pechini process a sol-gel method
  • a colloidal process a method selected from the group consisting of a sol-gel method, and a colloidal process.
  • the wet powder when it is prepared by the Peccini method, it can be synthesized by dissolving a metal salt in distilled water as a solvent, adding a chelating agent, and titrating the pH to 6.
  • a chelating agent citric acid and the like may be used.
  • a step of gelling the wet powder may be performed.
  • the gelling step may be performed by stirring at 70 ° C. to 90 ° C. for 5 hours to 9 hours. By processing under these conditions, the wet powder can be gelled.
  • the gel may be heat-treated at a low temperature to prepare char.
  • the step of producing charcoal may be performed at 300 °C to 700 °C for 30 minutes to 2 hours. By heat treatment under these conditions, it can be manufactured in the form of ash.
  • the substrate can be manufactured by molding the charcoal. Specifically, it can be prepared in the form of pellets by putting charcoal in a mold and pressing at 1000 MPa to 2000 MPa.
  • an oxidation heat treatment of the substrate may be performed.
  • the oxidation heat treatment may be performed in air at a temperature of 300° C. to 700° C. for 30 minutes to 2 hours.
  • a reduction heat treatment may be performed on the substrate subjected to oxidation heat treatment.
  • the reduction heat treatment may be performed at a temperature of 400° C. to 700° C. under a hydrogen atmosphere for 1 hour to 4 hours. Through this, oxygen vacancies can form nanopores.
  • hydroxyl species OH species
  • the porosity of the electrode manufactured according to the reduction heat treatment temperature may vary. In the present invention, the average porosity of the prepared electrode can be adjusted to 50 to 80% by performing a reduction heat treatment at a temperature in the above range.
  • processes such as dip-coating and etching may be additionally performed to control the shape of the electrode.
  • a metal nanoporous electrode can be manufactured by gelling wet synthesized nanopowder, preparing charcoal, molding it in a mold, and performing oxidation heat treatment and reduction heat treatment.
  • the manufacturing method of the present invention has a simple process, and it is easy to increase the area by manufacturing a substrate capable of applying a multi-element material and using it as an electrode.
  • it can be synthesized by applying various transition metals and oxide materials such as Ni, Co, Mn, Cu, Zn, and Ti, and since the synthesized powder is subjected to reduction heat treatment in a hydrogen atmosphere, alumina (Al 2 O 3 ), zirconia (ZrO 2 ) It is possible to manufacture a metal/ceramic composite electrode based on an oxide material such as TiO 2 .
  • the electrode for alkaline water electrolysis of the present invention may be manufactured by the above-described manufacturing method.
  • the electrode for alkaline water electrolysis of the present invention includes at least one selected from the group consisting of Ni, Fe, Co, Mn, Cu, Zn, Mo, Ca, Nb, W and Ti, and may be in a nanoporous form.
  • the electrode for alkaline water electrolysis of the present invention includes one selected from the group consisting of Ni, Fe, Co, Mn, Cu, Zn, Mo, Ca, Nb, W and Ti, or an alloy of metals selected from these groups can
  • the electrode for alkaline water electrolysis of the present invention may be a Ni-Fe alloy, a Ni-Co alloy, and a Ni-Zn alloy.
  • the electrode for alkaline water electrolysis of the present invention may be a Ni-Fe alloy adjusted in various molar ratios.
  • the electrode for alkaline water electrolysis of the present invention may include Ni x Fe 1- x , and x>0.5. More specifically, the molar ratio of Ni and Fe may be 9: 1 to 7: 3. Through such a molar ratio, a lower overvoltage can be exhibited at the same current density for an oxygen evolution reaction (OER) and a hydrogen evolution reaction (HER), thereby having excellent properties.
  • OER oxygen evolution reaction
  • HER hydrogen evolution reaction
  • an amorphous hydroxyl layer may be formed in OER. Therefore, it can include an amorphous hydroxyl layer after OER.
  • layered double hydroxide (LDH) in HER may be generated.
  • LDH layered double hydroxide
  • the electrode for alkaline water electrolysis of the present invention includes a metal selected from the group consisting of Ni, Fe, Co, Mn, Cu, Zn, Mo, Ca, Nb, W and Ti; and oxides. That is, the electrode for alkaline water electrolysis of the present invention may be a metal/ceramic composite material.
  • the oxide is alumina (Al 2 O 3), zirconia (ZrO 2), TiO 2, MgO, CaO, BaO, SiO 2, Y 2 O 3, CeO 2, [(La 1 - x Sr x) CoO 3 - ⁇ ](LSC), [(La 1 - x Sr x )FeO 3 - ⁇ ] (LSF), [(La 1 - x Sr x )(Co 1 - y Fe y )O 3- ⁇ ] (LSCF), [(La x Sr 1-x )TiO 3- ⁇ ] (LST), [(Ba x Sr 1- x )(Co y Fe 1 -y )O 3 ](BSCF), LaCoO 3 , LaNiO3, (La x Sr 1 -x )VO 3 , Ca(V x Mo 1-x )O 3 , [Ba(Zr x Ce y Y 1-(x+y) )
  • the electrode for alkaline water electrolysis may have an average porosity of 50 to 80%. This ensures that the overvoltage is low. It is chemically stable and has excellent durability, and an electrode with a large specific surface area can be secured.
  • citric acid 99.5%, Kanto chemical Co., Inc
  • Charcoal powder was pressurized at 1370 MPa to make pellets, subjected to oxidation heat treatment (400 °C, 1 h, P(O 2 ) 0.21 atm), and reduced heat treatment (450 °C, 3 h, P for 3 hours under a hydrogen atmosphere) (O 2 ) 10 -22 atm) was prepared by proceeding.
  • Table 2 shows the porosity of the Ni sandblast substrate, which is generally used as a substrate for an electrode for alkaline water electrolysis, and the substrate prepared according to Example 2 of the present invention. Referring to Table 2, it can be seen that the porosity of the electrode prepared according to the example is much higher than that of the commercially available Ni sandblast substrate as a comparative example.
  • FIG. 8B is an X-ray diffraction (XRD) analysis result for confirming the crystal structure of Ni x Fe 1 -x .
  • XRD X-ray diffraction
  • the crystal structure of Ni x Fe 1 -x was confirmed by a selected area electron diffraction (SAED) pattern shown in FIG. 8C .
  • SAED selected area electron diffraction
  • the [114] region axis of the diffraction image clearly shows the presence of an ordered FCC structure. This result is also consistent with the results of XRD analysis confirming the FCC phase.
  • Ni 0 . 9 Fe 0 .1 -CS (catalyzed substrate ) and Ni 0. 7 Fe 0 .3 -CS showed the best performance in comparison to the embodiments of the different molar ratios.
  • Ni 0 . 9 is Fe 0 .1 -CS showed a lower voltage at the same current density, it can be seen that the most active good for HER and OER.
  • Ni foam and Pt plate as a bulk substrate Ni 0.7 Fe 0.3 -CS showed the highest activity against HER and OER.
  • 11 and 12 are impedance analysis (EI S) results of the HER and OER reactions of the NiFe substrate electrode by composition, Ni 0.9 Fe 0.1 and Ni 0 . Fe 0 .3 7 it can be seen that this beam is the smallest arc impedance on both HER and OER reaction.
  • the impedance pattern is related to charge transfer resistance, Ni 0 . 9 Fe 0 . It can be seen that 1 and Ni 0.7 Fe 0.3 exhibit excellent activity as an electrode because charge transfer is the easiest.
  • the charge transfer resistance between the catalyst and the substrate is large, so it shows a high impedance value.
  • the charge transfer resistance between the catalyst and the substrate can be completely excluded. showed much lower values.
  • NiFe substrate electrode composition by at -0.2V Hg / HgO (HER) and -0.04V Hg / HgO (OER) region in double layer capacitance measurements in the HER and OER reaction of the substrate by the composition
  • NiFe electrode scan rate 20, 40, 60, 80, 100 mV/s
  • NiFe electrode scan rate 20, 40, 60, 80, 100 mV/s
  • Equation 1 is an expression showing the relationship between the oxidation/reduction current density difference and the double layer capacitance in CV (Cyclic Voltammetry) according to the scan rate.
  • the actual electrochemical active area of the electrode was calculated using the double layer capacitance value obtained using the relationship of Equation 1 above. As a result, referring to FIG. 13 , it can be seen that the electrochemically active area increases as the content of Fe in the NiFe substrate electrode increases in both the HER and OER reactions.
  • the performance of the fixed electrode system and the RDE system was compared.
  • the performance of the fixed electrode system was almost similar to that of the RDE system. This indicates that the electrode performance is not limited by the effect of mass transport because the surface area of the catalyst substrate prepared through the preparation method according to the embodiment is dramatically improved.
  • D of Fig. 14 is a comparison of the performance of the N i of 0. 7 Fe 0 .3 -CS HER / OER performance of the conventional NiFe-based feature amount of sex HER / OER catalyst.
  • Ni 0 .7 Fe 0 .3 -CS exhibited the highest current of the mill for the HER / OER each 280mV low voltage to 390mA cm -2 and 287mA cm -2 in Fig.
  • Ni 14 F is Ni 0 .
  • 7 Fe 0 .3 shows a Nyquist plot of -CS, CS-Ni and Ni plate. The semicircle corresponds to the polarization resistance (R p ) including the charge transfer resistance (R ct ).
  • R p polarization resistance
  • Ni 0 . 7 Fe 0 .3 -CS and R p values of the Ni-CS has been determined, each 1.3 ⁇ and 3.55 ⁇ , which is much less than the Ni plate ( ⁇ 358 ⁇ ).
  • the smaller R p of 3-CS than that of Ni-CS is due to metal doping of Fe, suggesting that the catalytic active site can be improved by changing the local electronic structure of the Ni-based catalyst.
  • Electrochemical long-term stability is another essential parameter to evaluate the performance of the catalyst.
  • Ni 0 for HER/OER. 7 Fe 0 .3 -CS stability of the catalyst is the current density of 100mA at 10 cm over 100 hours was confirmed by the multi-step time Potentiometric changed to two.
  • Ni 0 . 7 Fe 0 .3 -CS can confirm the excellent stability represented by a slight increase in voltage during the long-HER / OER operation.
  • Ni 0 .7 Fe 0 .3 -CS shows a 99.3% and a high Faraday efficiency of 97.2% for HER and OER ratio of hydrogen and oxygen of 2: the result is close to 1 showed Through this, it can be confirmed that the water splitting reaction occurs without loss of other electrons or side reactions. Therefore, NiFe-CS is an excellent non-noble metal 3D porous structure for alkaline water electrolysis with low overpotential for both HER and OER. It can be evaluated as one of the plays.
  • Ni 0.7 Fe 0.3 -CS The surface structure of Ni 0.7 Fe 0.3 -CS of fresh samples and samples collected after HER and OER was analyzed using TEM and X-ray photoelectron spectroscopy (XPS).
  • 16A Ni 0.7 Fe 0 .3 is a TEM image of a fresh sa mple of -CS, the claimed NiFe- the alloy frame with abundant pores.
  • the surface layer of the NiFe-alloy frame can be confirmed through the SAED pattern, and it can be seen that an amorphous layer is formed without a clear ring pattern.
  • 17 is an EDS element mapping result after OER. Referring to FIG. 17, it is mainly composed of oxygen atoms, which confirms that the amorphous phase is composed of hydroxyl species.
  • the surface layer showed a cross-linked structure, according to the SAED pattern showing three distinct diffraction planes: (2 0 26), (2 0 14), and (2 0 8). It was identified as a NiFe layered double hydroxide (LDH) phase.
  • 18 is an EDS element mapping result after HER. Referring to FIG. 18, it can be seen that Fe, Ni, and O elements are uniformly distributed in the NiFe alloy frame, whereas O is more prominent than Ni and Fe in the NiFe LDH layer.
  • the chemical states of the amorphous hydroxyl layer and NiFe LDH phase after OER and HER were confirmed by XPS, respectively.
  • the fresh samples were Ni 0 and Fe 0 with a mixture of oxides and hydroxides. showed the presence of a metallic state.
  • Ni and Fe in the metal peak is attenuated phase Ni 3 + and of the significant effort Fe 3 + was observed as this indicates an Empty the hydroxyl and NiFe layer formed on a surface of LDH.
  • the fresh sample showed two peaks of lattice oxygen (MO) and hydroxide (M-OH), and it can be seen that the strength of the hydroxide was dramatically improved after the reaction.
  • MO lattice oxygen
  • M-OH hydroxide
  • the formation of an amorphous hydroxyl layer can also be confirmed by Raman analysis.
  • 19 is Ni 0 prepared by low-temperature sintering and reduction . 7 Fe 0 .3 -CS of the fresh sample and then test the result of comparing the Raman spectrum of the sample.
  • the fresh sample showed three characteristic hydroxide peaks, 468, 554 and 674 cm -1 .
  • the two low-band peaks ⁇ 468 and 554 cm -1 correspond to Ni-hydroxide, whereas the high-band peak ⁇ 674 cm -1 appeared after Fe doping at the Ni site. Therefore, this characteristic corresponds to disordered Ni-hydroxide by Fe doping, and the peak of Ni-hydroxide is shifted due to a change in local bonding properties during Fe doping.
  • the peak broadened significantly after testing, indicating that additional bonding structures were formed.
  • the broadening of the Raman peak can be attributed to the presence of various local bonding structures created by the formation of an amorphous phase and inhomogeneous local environment. Therefore, these results indicate that an amorphous hydroxide was formed during the reaction.
  • NiFe(oxy)hydroxide generally acts as the active phase for both hydrogen and oxygen evolution reactions in alkaline electrolytes, the design to maximize the surface area with hydroxide-forming sites is the electrocatalyst by lowering the overpotential. It is a key factor in improving activity.
  • 16G and 20B, C show the active surface area estimated by the electrochemical double layer capacitance (C dl ), which is proportional to the electrochemically active surface area (ECSA).
  • C dl electrochemical double layer capacitance
  • ECSA electrochemically active surface area
  • the catalyzed substrate of the present invention has a much higher active surface area compared to other conventional electrodes in which a nanoscale structure of a catalyst is disposed on a substrate by thermal growth or deposition method.
  • the catalyst substrate of the present invention has a porous structure and abundant active sites with excellent charge/mass transfer properties, which allows precise control of catalyst components, and plays an important role in dramatically improving HER/OER activity. can do.
  • the manufacturing method of the electrode for alkaline water electrolysis of the present invention has a simple manufacturing process, can manufacture electrodes of various compositions through the complexing of raw materials, and is advantageous for commercialization because it is easy to manufacture a large-area electrode.

Abstract

본 발명의 알칼리 수전해용 전극의 제조 방법은, 금속염을 용매에 용해하고 합성하여 습식 파우더를 제조하는 단계; 상기 습식 파우더 산화 열처리하는 단계; 및 상기 산화 열처리된 파우더를 환원 열처리하는 단계를 포함할 수 있다.

Description

고성능 알칼리 수전해용 전극 및 이의 제조 방법
본 발명은 고성능 알칼리 수전해용 전극 및 이의 제조 방법에 관한 것이다.
최근 세계 선진국들의 풍력, 태양광과 같은 재생에너지의 개발 규모는 지속적으로 증가하고 있으며, 이에 따라 발생하는 예측 불가능성과 변동성으로 인해 재생전력 이용률 감소와 같은 문제점을 해결하기 위한 대안으로 대용량 에너지 저장에 대한 필요성이 증가하고 있다. 세계적인 환경 보호 정책으로 인해 디젤, 가솔린에 대한 황 허용치가 낮아짐에 따라 수소의 시장 규모는 매년 지속적으로 성장하고 있으며, 금속 또는 반도체 생산, 암모니아 등의 화합물 합성 등 여러 산업 분야에서 사용되고 있다. 수소는 탄화수소나 물로부터 수증기 개질, 자연 개질, 부분산화, 열화학분해, 직접분해, 생물학적 분해, 전기분해 등의 방법을 통해 수소를 추출하여 제조할 수 있다.
수전해란 순수한 물을 전기 분해하여 수소를 제조하는 방식으로써 현재 증가하는 수소 수요에 대응이 가능할 뿐 아니라 풍력, 태양광과 같은 재생에너지를 저장하는 대용량 전력저장을 목적으로 하는 기술이다. 수소는 에너지 밀도가 높고 안정적으로 오랜 기간 저장할 수 있으며 기체, 액체와 같이 다양한 형태로 저장이 가능한 이점이 있다. 이러한 수전해 기술은 알칼리형, 고분자 전해질막형, 고온 수전해 기술로 분류된다.
알칼리형 수전해 방법은 수산화칼륨(KOH), 수산화나트륨(NaOH) 등의 음이온 전달 액체 전해질을 이용하여 전기화학반응을 통해 cathode(음극)에서는 수소, anode(양극)에서는 산소를 1:2의 몰 비율로 생산하는 방법이다. 현재 알칼리형 수전해 상용 시스템은 고 전류 운전과 on/off 반복 운전시 시스템 내부의 저항증가, 전극 내 수소와 산소의 기체 발생반응에 따른 전극 활성 및 내구성 감소로 인해 낮은 효율을 나타낸다. 하지만 음이온 전달 촉매는 산소환원 속도가 빨라 Pt 등이 귀금속을 사용하지 않고 전이금속 (Ni, Co, Fe 등)을 전극 촉매로 사용하여 전극 활성 및 효율을 높일 수 있어 대용량의 수소를 생산할 수 있다는 장점을 가진다. 알칼리형 수전해 기술의 개선을 위해서는 전극/전해질 간 계면특성이 우수하며 안정성과 활성이 우수한 전극 및 촉매의 소재 및 제조 방법 개발이 필수적이며, 전극 촉매의 안정성은 긴 작동 수명을 달성하는데 매우 중요한 요소이다.
하지만, 현재까지의 알칼라인 수전해용 전극은 기판 (substrate)에 촉매를 증착 하여 사용하는 연구에 치중되어 있다. 촉매 소재는 주로 전기 도금, 전기 영동, PVD (Physical vapor deposition), CVD (Chemical vapor deposition), binder 등을 이용하여 기판 (substrate)에 증착하여 사용되는데, 이 경우 촉매 소재에 따라 증착 방법이 상이하여 증착 방법에 따라 소재 선정이 한정적이다. 특히 상용화를 이루기 위한 대면적/대량 생산화 기술의 경우 시설/장비 투자비가 크게 필요하며 이를 고려한 촉매 증착 방법이 개발되어야 한다. 즉, 알카라인 수전해의 상용화를 이루기 위한 필수 요소인 전극의 대량 생산 및 대면적화가 가능하고, 다양한 전이금속을 사용하여 고 전류 운전 및 on/off 반복운전에 내구성을 가진 알칼리형 수전해용 전극 제조 방법에 대한 기술이 필요한 실정이다.
본 발명은 상술한 문제점을 해결하기 위한 것으로, 제조 과정이 간단하고 원료 소재의 복합화를 통해 다양한 조성의 전극을 제조할 수 있으며, 대면적 전극 제조에 용이하여 상용화에 유리한 고성능 알칼리 수전해용 전극의 제조 방법 및 이를 통해 제조된 전극에 관한 것이다.
상기와 같은 본 발명의 목적을 달성하기 위해서,
본 발명의 알칼리 수전해용 전극의 제조 방법은, 금속염을 용매에 용해하고 합성하여 습식 파우더를 제조하는 단계; 상기 습식 파우더 산화 열처리하는 단계; 및 상기 산화 열처리된 파우더를 환원 열처리하는 단계를 포함할 수 있다.
일반적인 알칼라인 수전해용 전극은 Ni foam, Ni sandblast, Glassy carbon 등의 기본 기판에 다양한 귀금속 또는 나노 촉매 소재를 증착 시킴으로써 제조하지만, 본 발명은 OER (Oxygen Evolution Reaction)/HER (Hydrogen Evolution Reaction)의 반응성이 높은 촉매 물질을 습식 파우더 제조 공정을 통해 나노 다공성 형태의 기판 자체로 제조하는 것으로, 따로 촉매를 증착 할 필요가 없어 제조 과정이 단순하다. 즉, 촉매를 증착시키는 공정의 생략이 가능하여 기존의 전기도금 및 전기 영동, 플라즈마 스프레이 기법과 같은 복잡한 기존 공정에 비해 제조 방법이 간단하며, 소재에 제한 없이 다양한 촉매물질을 적용 가능하다.
또한, 원료 소재의 복합화를 통해 다양한 조성의 전극을 제조할 수 있다. 즉, 원소 조성 비율을 몰(mol) 단위로 조절이 가능하여, 조성비를 정밀하면서도 다양한 비율로 조절하여 전극을 제조할 수 있다.
특히 얇은 촉매층을 입히는 것에 비해 기판 자체로 적용시 촉매 활성 표면적을 극대화할 수 있어 전극 성능을 크게 향상시킬 수 있다. 따라서, 기존의 높은 활성을 보이는 고가의 이리듐(Ir)이나 백금(Pt)을 사용하지 않고도 비귀금속 물질(Ni, Co, Fe, Zn 등)을 사용하여 저비용·고효율 알칼리 수전해용 전극의 제조가 가능하다.
또한, 대면적 구현에 고비용이 요구되는 전기도금 및 전기영동 등의 방법과 달리 비교적 공정이 간단하고 비용소모가 적어 대면적 및 대량생산이 용이하여 상용화에도 적합하다.
도 1은 비교예 및 실시예에 따른 전극의 LSV (Linear Sweep Voltammetry)측정 결과이다.
도 2는 본 발명의 다양한 실시예에 따른 전극의 SEM 이미지들이다.
도 3은 본 발명의 다양한 실시예에 따른 전극의 LSV 측정 결과이다.
도 4는 본 발명의 다양한 실시예에 따른 전극의 double layer capacitance 측정 결과이다.
도 5은 본 발명의 다양한 실시예에 따른 전극의 온도별 SEM 이미지이다.
도 6은 본 발명의 다양한 실시예에 따른 전극의 온도별 LSV 측정 결과이다.
도 7은 본 발명의 다양한 실시예에 따른 전극의온도별 double layer capacitance 측정 결과이다.
도 8의 A는 본 발명의 실시예에 따른 다공성 NiFe 촉매기판(catalyzed substrate, CS)의 제조 방법을 나타낸 모식도이고, B는 NixFe1 -x의 결정 구조를 확인하기 위한 XRD (X-ray diffraction) 분석 결과이고, C는 Ni0 . 7Fe0 .3-CS의 SAED (selected area electron diffraction) 패턴이고, 삽입이미지는 TEM 이미지이고, D는 EDS 원소매핑 이미지이다.
도 9의 A는 NixFe1 -x의 HER에 대한 LSV(Linear Sweep Voltammetry) 측정 그래프이고, B는 OER에 대한 LSV 측정 그래프이고, C는 HER 및 OER에 대한 과전압을 비교한 그래프이고, D는 Ni0 . 7Fe0 .3-CS 및 종래 다양한 NiFe 기판 양기능성 촉매 전극들의 HER 및 OER 활성을 비교한 표이다.
도 10의 A는 Ni0 . 7Fe0 .3, Ni plate, Ni foam 및 Pt plate의 HER 에 대한 LSV(Linear Sweep Voltammetry) 측정 그래프이고 B는 OER에 대한 LSV 측정 그래프이다.
도 11은 HER 반응에서 NixFe1-x 전극의 조성별 Electrochemical impedance spectroscopy(EIS)이다.
도 12은 OER 반응에서 NixFe1-x 전극의 조성별 Electrochemical impedance spectroscopy(EIS)이다.
도 13는 NixFe1-x 전극의 조성별 double layer capacitance 측정 결과이다.
도 14의 A는 HER에 대한 Ni0 . 7Fe0 .3-CS 및 종래 다양한 촉매의 분극 곡선이고, B는 OER에 대한 분극 곡선이고, C는 고정 전극 시스템 및 RDE 시스템에서의 분극 곡선이고, D는 280 mV의 과전압에서 HER 및 OER에 대한 전류 밀도를 비교한 그래프이며, E는 Ni0 . 7Fe0 .3-CS의 Tafel 플롯이고, F는 HER 및 OER에 대한 Ni0.7Fe0.3-CS의 Nyquist 플롯이고, 삽입 이미지는 확대된 EIS 곡선이고, G는 다른 전류 밀도에서 Ni0 . 7Fe0 .3-CS의Chronopotentiometric 곡선이다.
도 15은 Ni0 . 7Fe0 .3의 시간에 따른 HER 및 OER에 대해 이론 및 실험적으로 측정된 가스의 양을 비교한 그래프이다.
도 16의 A는 Ni0 . 7Fe0 .3-CS의 fresh sample의 TEM 이미지이고, B는 OER 후 TEM이미지이고, 삽입 이미지는 SAED패턴이고, C는 HER 후 TEM 이미지이고, 삽입 이미지는 SAED패턴이고, D 내지 F는 XPS 스펙트라이고, G는 double layer capacitance 측정 결과이고, H는 이중층 커패시턴스 (Cdl)를 비교한 그래프이다.
도 17의 A는Ni0 . 7Fe0 .3-CS의 OER 후 TEM 이미지이고, B는 SAED 패턴이고, C는 Ni/Fe의 비율을 나타낸다.
도 18의 A는Ni0.7Fe0.3-CS의 HER 후 EDS 원소 매핑 이미지이고, B 및 C는 Ni/Fe의 비율을 나타낸다.
도 19은 Ni0.7Fe0.3-CS의 라만 분광 결과이다.
도 20의 A는 Ni0 . 7Fe0 .3-CS의 기공 분포를 나타내고, B는 HER에 대한 전기 화학적 이중층 커패시턴스(Cdl) 측정 결과이고, C는 OER에 대한 전기 화학적 이중층 커패시턴스 측정 결과이고, D는 Ni0 . 7Fe0 .3-CS 및 종래 다양한 촉매의 HER 및 OER에 대한 Cdl을 비교한 표이다.
이하, 본 문서의 다양한 실시예들이 첨부된 도면을 참조하여 기재된다. 실시예 및 이에 사용된 용어들은 본 문서에 기재된 기술을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 해당 실시예의 다양한 변경, 균등물, 및/또는 대체물을 포함하는 것으로 이해되어야 한다.
이하, 첨부한 도면을 참조하여 본 발명의 실시예를 상세하게 설명하면 다음과 같다.
<제1 실시예>
본 발명의 다양한 실시예에 따른 알칼리 수전해용 전극의 제조 방법은, 습식 파우더를 제조하는 단계; 산화 열처리하는 단계; 및 환원 열처리하는 단계를 포함할 수 있다.
습식 파우더를 제조하는 단계에서는, 금속염을 용매에 용해하고 합성하여 습식 파우더를 제조할 수 있다.
이때, 금속염은 Ni, Fe, Co, Mn, Cu, Zn, Mo, Ca, Nb, W 및 Ti로 이루어진 군에서 선택된 적어도 어느 하나의 금속염일 수 있다. 구체적으로, 금속염은 금속염의 수화물일 수 있다. 예를 들면, 금속염은 Ni(NO3)2·6H2O, Fe(NO3)3·9H2O, Co(NO3)·6H2O, Mn(NO3)2·6H2O, Cu(NO3)2·6H2O, Zn(NO3)2·6H2O 등일 수 있다.
습식 파우더를 제조하는 단계에서는, 페치니 공법(Pechini process), 졸-겔 법(sol-gel) 및 콜로이달 공법(Colloidal process)로 이루어진 군에서 선택된 어느 하나의 방법으로 제조될 수 있다. 예를 들면, 습식 파우더가 페치니 공법으로 제조될 때, 금속염을 용매인 증류수에 용해하고 킬레이트제를 첨가하고, pH를 6으로 적정하여 합성할 수 있다. 킬레이트제로는 구연산(citric acid) 등이 사용될 수 있다.
다음으로, 합성된 습식 파우더를 산화 열처리하는 단계를 수행할 수 있다. 산화 열처리하는 단계는, 습식 파우더를 몰드에 성형 (molding) 후, 공기 중에 300 ℃ 내지 500 ℃의 온도에서 30 분 내지 2 시간 수행될 수 있다. 이러한 조건에서 산화 열처리함으로써, 최종적으로 나노 다공성 형태의 전극을 제조할 수 있다.
다음으로, 산화 열처리된 습식 파우더를 환원 열처리하는 단계를 수행할 수 있다. 환원 열처리하는 단계는, 수소 분위기 하 400 ℃ 내지 700 ℃의 온도에서 1 시간 내지 4 시간 수행될 수 있다. 이때, 환원 열처리 온도에 따라 제조되는 전극의 기공률이 달라질 수 있다. 본 발명에서는 상기 범위의 온도에서 환원 열처리 함으로써, 제조되는 전극의 평균 기공률을 50 내지 80 %로 조절할 수 있다.
이후, 딥 코팅 (dip-coating) 및 에칭 (etching) 등과 같은 공정을 추가로 수행하여 전극의 형상을 제어할 수도 있다.
본 발명에서는 습식 합성된 나노 파우더를 몰드에 성형 후 산화열처리 하여 산화물 형태로 제조한 후 다시 환원 열처리 하여 금속 나노 다공성 전극을 제조할 수 있다.
본 발명의 제조 방법은 공정이 간단하고, 다원소 소재 적용이 가능한 기판을 제조하여 전극으로 사용함으로써 대면적화가 용이하다. 또한, Ni, Co, Mn, Cu, Zn, Ti 등 전이금속 및 산화물 소재를 다양하게 적용하여 합성이 가능하며 합성한 파우더를 수소 분위기 하에서 환원 열처리를 진행하기 때문에 알루미나 (Al2O3), 지르코니아 (ZrO2), TiO2 등의 oxide 소재를 기반으로 한 금속/세라믹 복합 전극 제조가 가능하다.
본 발명의 알칼리 수전해용 전극은 상술한 제조 방법으로 제조될 수 있다. 본 발명의 알칼리 수전해용 전극은 Ni, Fe, Co, Mn, Cu, Zn, Mo, Ca, Nb, W 및 Ti로 이루어진 군에서 선택된 적어도 어느 하나를 포함하고, 나노 다공성 형태일 수 있다. 구체적으로, 본 발명의 알칼리 수전해용 전극은 Ni, Fe, Co, Mn, Cu, Zn, Mo, Ca, Nb, W 및 Ti로 이루어진 군에서 선택된 하나를 포함하거나, 이들 군에서 선택된 금속들의 합금일 수 있다. 예를 들면, 본 발명의 알칼리 수전해용 전극은 Ni-Fe 합금, Ni-Co 합금 및 Ni-Zn 합금일 수 있다.
또는, 본 발명의 알칼리 수전해용 전극은, Ni, Fe, Co, Mn, Cu, Zn, Mo, Ca, Nb, W 및 Ti로 이루어진 군에서 선택된 금속; 및 산화물을 포함할 수 있다. 즉, 본 발명의 알칼리 수전해용 전극은, 금속/세라믹 복합 물질일 수 있다. 이때, 산화물은 알루미나 (Al2O3), 지르코니아 (ZrO2), TiO2, [(La1 - xSrx)CoO3 ](LSC), [(La1 - xSrx)FeO3 ] (LSF), [(La1 - xSrx)(Co1 - yFey)O3-δ] (LSCF), [(LaxSr1 -x)TiO3 ] (LST), [(BaxSr1-x)(CoyFe1-y)O3](BSCF), LaCoO3, LaNiO3, (LaxSr1 -x)VO3, Ca(VxMo1-x)O3, [Ba(ZrxCeyY1-(x+y))O3] (BZCY), 및 [Pr(Ba1-xSrx)(Fe2-yGey)O6] (PBSFG) 로 이루어진 군에서 선택된 적어도 어느 하나일 수 있다. 여기서, 0<x<1, 0<y<1, 0<δ<3 일 수 있다. 자세하게는, 0<x<0.7, 0<y<0.7, 0<δ<3 일 수 있다.
상기 알칼리 수전해용 전극의 평균 기공률이 50 내지 80 %일 수 있다. 이를 통해 과전압이 낮고. 화학적으로 안정하여 내구성이 우수하며, 비표면적이 넓은 전극을 확보할 수 있다.
이하, 본 발명은 실시예에 의해서 상세히 설명한다. 단, 하기 실시예는 본 발명을 예시하기 위한 것일 뿐 본 발명이 하기 실시예에 의해서 한정되는 것은 아니다.
실시예 1
nitrate hexahydrate, 즉, Ni(NO3)2·6H2O, Fe(NO3)3·9H2O, Co(NO3)·6H2O, 및 Zn(NO3)2 ·6H2O 중 적어도 어느 하나를 증류수에 용해시켜 하기 표 1의 몰비에 따라 합성하였다. 다원소 nitrate가 첨가된 solution은 합성을 용이하게 하는 킬레이트제 역할의 citric acid를 첨가하였으며 암모니아수를 이용하여 pH=6 으로 적정하여 합성하였다. 이 후 전극 제조를 위해 습식 공정을 통해 합성된 파우더를 몰딩 후 산화 열처리 ( Air, 400 ℃, 1 h)를 하고, 수소 분위기 하에서 3 시간 동안 환원 열처리 하되, 하기 표 1에 따라 환원 열처리 온도를 달리하여 열처리를 진행하여 제조하였다.
몰비 환원 열처리 온도(℃) 기공률 (%)
비교예
(Ni sandblast 기판)
- - 6
실시예 1-1 (Ni) - 450 63
실시예 1-2 (Ni) - 650 58
실시예 1-3 (Ni-Fe) 5:5 450 74
실시예 1-4 (Ni-Fe) 5:5 550 60
실시예 1-5 (Ni-Fe) 5:5 650 57
실시예 1-6 (Ni-Co) 5:5 650 57
실시예 1-7 (Ni-Zn) 5:5 650 72
상기 표 1은 일반적으로 알칼라인 수전해용 전극의 기판으로 사용되는 Ni sandblast 기판과 본 발명의 실시예에 따라 제조된 기판의 기공률이다. 표 1을 참고하면, 비교예인 상용화된 Ni sandblast 기판보다 실시예에 따라 제조된 전극의 기공도가 매우 높은 것을 확인할 수 있다.도 1은 Ni sandblast 및 실시예 1-1에 따라 제조된 전극의 LSV(Linear Sweep Voltammetry) 측정 그래프 및 과전압(overpotential, η@10mA/cm2)를 나타낸 결과이다. 비교예인 Ni sandblast보다 실시예를 통해 제조된 Ni 기판 전극이 더 좋은 성능을 보이며 동일한 전류밀도(10mA/cm2)에서 더 낮은 과전압을 가지는 것을 확인할 수 있다.
표 1 및 도 1에서 확인하는 것과 같이 비교예에 비해 높은 기공률을 가진 실시예 1-1의 Ni 전극의 넓은 비표면적의 영향으로 기존 전극의 성능을 보다 더 향상시킬 수 있고, 금속 산화물과 페로브스카이트 및 스피넬 구조를 포함한 산화물 등 다양한 소재를 본 발명의 제조 방법을 적용하여 전극으로 제조하였을 때 기존 전극의 성능보다 더 향상시킬 수 있는 가능성을 제시하였다.
도 2는 본 발명의 실시예에서 환원 열처리 온도가 650℃인 실시예 1-2 (Ni), 1-5 (Ni-Fe), 1-6 (Ni-Co), 및 1-7 (Ni-Zn) 전극의 SEM 이미지들이다. 표 1과 마찬가지로 각 전극의 기공률이 비교예 전극보다 높은 것을 확인할 수 있다.
\*60도 3은 본 발명의 실시예에서 환원 열처리 온도가 650℃인 실시예 1-2 (Ni), 1-5 (Ni-Fe), 1-6 (Ni-Co), 및 1-7 (Ni-Zn) 전극의 LSV 측정 결과이다. 도 3을 참고하면, 본 발명의 제조 방법을 통해 다양한 조합이 가능한 다원소 전극을 제조할 수 있으며, 실시예 1-7 (Ni-Zn) < 실시예 1-5 (Ni-Fe) < 실시예 1-6 (Ni-Co) < 실시예 1-2 (Ni) 전극 순으로 낮은 과전압을 보이며, 다양한 소재를 조합하여 성능이 우수한 전극을 구현할 수 있음을 알 수 있다.
도 4는 -0.2VHg/HgO(HER기준)영역에서 다원소 substrate 전극의 scan rate(20, 40, 60, 80, 100 mV/s)에 따른 산화·환원 전류 밀도 차이를 나타낸 그래프이다. 하기 수학식 1은 전기이중층 커패시턴스와 주사속도에 따른 CV (Cyclic Voltammetry)에서 산화·환원 전류밀도 차이와 double layer capacitance의 관계를 나타낸 식이다.
[수학식 1]
△j=vCdl
전극의 실제 전기화학적 활성면적을 계산하기 위해 double layer capacitance를 구한 결과, 기존의 비교예 전극보다 본 발명의 실시예에 따라 제조한 전극의 활성면적이 더 큰 것을 알 수 있다. 이는 상기 도 2의 제조된 다원소 substrate 전극 SEM 이미지와 상응하는 결과를 보인다.
도 5는 실시예 1-3, 1-4 및 1-5에 따라 제조된 Ni-Fe 전극의 온도별 SEM 이미지이며, 도 6은 그에 따른 LSV 측정 결과이다. LSV 측정 결과, 실시예 1-3, 1-4 및 1-5 각각 46.3 mV(@ 10 mA, 450 ℃), 65.5 mV (@10 mA, 550 ℃), 123 mV(@10 mA, 650 ℃)의 과전압을 나타내었다. 또한, 도 7을 참고하면, 환원 열처리 온도를 제어함으로써 전극 반응에 참여하는 site의 제어가 가능할 것으로 판단하였다.
따라서, 본 발명의 실시예들을 이용한 실험 결과를 통해 원소 및 환원 온도, 반응 site 등 전극의 성능을 향상시킬 수 있는 다양한 공정 변수 제어가 가능함을 알 수 있으며, 이 외에도 딥 코팅 (dip-coating) 및 에칭 (etching) 등 다양한 공정을 추가로 접목하여 전극의 제조 및 성능을 향상시킬 수 있는 가능성을 제시하였다.
<제2 실시예>
본 발명의 또 다른 일 실시예에 따른 알칼리 수전해용 전극의 제조 방법은, 금속염을 용매에 용해하고 합성하여 습식 파우더를 제조하는 단계; 상기 습식 파우더를 겔(gel)화 하는 단계; 상기 겔을 저온 열처리하여 숯(char)으로 제조하는 단계; 상기 숯을 몰딩하여 기판을 제조하는 단계; 상기 기판을 산화 열처리하는 단계; 및 상기 기판을 환원 열처리하는 단계를 포함할 수 있다.
습식 파우더를 제조하는 단계에서는, 금속염을 용매에 용해하고 합성하여 습식 파우더를 제조할 수 있다.
이때, 금속염은 Ni, Fe, Co, Mn, Cu, Zn, Mo, Ca, Nb, W 및 Ti로 이루어진 군에서 선택된 적어도 어느 하나의 금속염일 수 있다. 구체적으로, 금속염은 금속염의 수화물일 수 있다. 예를 들면, 금속염은 Ni(NO3)2·6H2O, Fe(NO3)3·9H2O, Co(NO3)·6H2O, Mn(NO3)2·6H2O, Cu(NO3)2·6H2O, Zn(NO3)2·6H2O 등일 수 있다.
습식 파우더를 제조하는 단계에서는, 페치니 공법(Pechini process), 졸-겔 법(sol-gel) 및 콜로이달 공법(Colloidal process)로 이루어진 군에서 선택된 어느 하나의 방법으로 제조될 수 있다. 예를 들면, 습식 파우더가 페치니 공법으로 제조될 때, 금속염을 용매인 증류수에 용해하고 킬레이트제를 첨가하고, pH를 6으로 적정하여 합성할 수 있다. 킬레이트제로는 구연산(citric acid) 등이 사용될 수 있다.
다음으로 습식 파우더를 겔(gel)화 하는 단계를 수행할 수 있다. 겔화 하는 단계는, 70 ℃ 내지 90 ℃에서 5 시간 내지 9 시간 동안 교반하여 진행될 수 있다. 이러한 조건에서 처리함으로써, 습식 파우더를 겔화할 수 있다.
다음으로, 겔을 저온 열처리하여 숯(char)으로 제조할 수 있다. 숯으로 제조하는 단계는, 300 ℃ 내지 700 ℃에서 30 분 내지 2 시간 수행될 수 있다. 이러한 조건에서 열처리함으로써, 재(ash) 형태로 제조할 수 있다.
다음으로, 숯을 몰딩하여 기판을 제조할 수 있다. 구체적으로, 숯을 몰드에 넣어 1000 MPa 내지 2000 MPa에서 가압하여 펠렛 형태로 제조할 수 있다.
다음으로, 기판을 산화 열처리하는 단계를 수행할 수 있다. 산화 열처리하는 단계는, 공기 중에 300 ℃ 내지 700 ℃의 온도에서 30 분 내지 2 시간 수행될 수 있다. 이러한 조건에서 산화 열처리함으로써, 유기 잔류물이 있던 공간이 공극으로 되어 기판의 전기 활성 면적이 증가할 수 있다.
다음으로, 산화 열처리된 기판을 환원 열처리하는 단계를 수행할 수 있다. 환원 열처리하는 단계는, 수소 분위기 하 400 ℃ 내지 700 ℃의 온도에서 1 시간 내지 4 시간 수행될 수 있다. 이를 통해 산소 공석이 나노 포어를 형성할 수 있다. 또한, 본 발명에서는 하이드록실 종(hydroxyl species, OH species)을 완전히 제거할 수 없는 저온 열처리를 통해 하이드록실 종이 기판의 표면에 남아 물 분해 성능을 향상시킬 수 있다. 이때, 환원 열처리 온도에 따라 제조되는 전극의 기공률이 달라질 수 있다. 본 발명에서는 상기 범위의 온도에서 환원 열처리 함으로써, 제조되는 전극의 평균 기공률을 50 내지 80 %로 조절할 수 있다.
이후, 딥 코팅 (dip-coating) 및 에칭 (etching) 등과 같은 공정을 추가로 수행하여 전극의 형상을 제어할 수도 있다.
본 발명에서는 습식 합성된 나노 파우더를 겔화하고 숯을 제조하여 몰드에 성형 후 산화 열처리 및 환원 열처리하여 금속 나노 다공성 전극을 제조할 수 있다.
본 발명의 제조 방법은 공정이 간단하고, 다원소 소재 적용이 가능한 기판을 제조하여 전극으로 사용함으로써 대면적화가 용이하다. 또한, Ni, Co, Mn, Cu, Zn, Ti 등 전이금속 및 산화물 소재를 다양하게 적용하여 합성이 가능하며 합성한 파우더를 수소 분위기 하에서 환원 열처리를 진행하기 때문에 알루미나 (Al2O3), 지르코니아 (ZrO2), TiO2 등의 oxide 소재를 기반으로 한 금속/세라믹 복합 전극 제조가 가능하다.
본 발명의 알칼리 수전해용 전극은 상술한 제조 방법으로 제조될 수 있다. 본 발명의 알칼리 수전해용 전극은 Ni, Fe, Co, Mn, Cu, Zn, Mo, Ca, Nb, W 및 Ti로 이루어진 군에서 선택된 적어도 어느 하나를 포함하고, 나노 다공성 형태일 수 있다. 구체적으로, 본 발명의 알칼리 수전해용 전극은 Ni, Fe, Co, Mn, Cu, Zn, Mo, Ca, Nb, W 및 Ti로 이루어진 군에서 선택된 하나를 포함하거나, 이들 군에서 선택된 금속들의 합금일 수 있다. 예를 들면, 본 발명의 알칼리 수전해용 전극은 Ni-Fe 합금, Ni-Co 합금 및 Ni-Zn 합금일 수 있다. 바람직하게는, 본 발명의 알칼리 수전해용 전극은 다양한 몰비로 조절된 Ni-Fe 합금일 수 있다. 예를 들면, 본 발명의 알칼리 수전해용 전극은 NixFe1 -x를 포함하고, x>0.5일 수 있다. 보다 더 구체적으로, Ni 및 Fe의 몰비는 9 : 1 내지 7 : 3일 수 있다. 이러한 몰비를 통해 산소 발생 반응(oxygen evolution reaction (OER)) 및 수소 발생 반응(Hydrogen evolution reaction (HER))에 대해 동일한 전류밀도에서 더 낮은 과전압을 보여 우수한 특성을 가질 수 있다.
본 발명의 알칼리 수전해용 전극이 산화극으로 사용될 경우, OER 중 비정질 하이드록실 층(amorphous hydroxyl layer)이 생성될 수 있다. 따라서, OER 후 비정질 하이드록실 층을 포함할 수 있다.
한편, 본 발명의 알칼리 수전해용 전극이 환원극으로 사용될 경우, HER 중 층상 이중 수산화물 (layered double hydroxide, LDH)이 생성될 수 있다. 따라서, HER 후 층상 이중 수산화물을 포함할 수 있다.
본 발명의 알칼리 수전해용 전극은, Ni, Fe, Co, Mn, Cu, Zn, Mo, Ca, Nb, W 및 Ti로 이루어진 군에서 선택된 금속; 및 산화물을 포함할 수 있다. 즉, 본 발명의 알칼리 수전해용 전극은, 금속/세라믹 복합 물질일 수 있다. 이때, 산화물은 알루미나 (Al2O3), 지르코니아 (ZrO2), TiO2, MgO, CaO, BaO, SiO2, Y2O3, CeO2 , [(La1 - xSrx)CoO3 ](LSC), [(La1 - xSrx)FeO3 ] (LSF), [(La1 - xSrx)(Co1 - yFey)O3-δ] (LSCF), [(LaxSr1-x)TiO3-δ] (LST), [(BaxSr1 -x)(CoyFe1 -y)O3](BSCF), LaCoO3, LaNiO3, (LaxSr1 -x)VO3, Ca(VxMo1-x)O3, [Ba(ZrxCeyY1-(x+y))O3] (BZCY), 및 [Pr(Ba1-xSrx)(Fe2-yGey)O6] (PBSFG) 로 이루어진 군에서 선택된 적어도 어느 하나일 수 있다. 여기서, 0<x<1, 0<y<1, 0<δ<3 일 수 있다. 자세하게는, 0<x<0.7, 0<y<0.7, 0<δ<3 일 수 있다.
상기 알칼리 수전해용 전극의 평균 기공률이 50 내지 80 %일 수 있다. 이를 통해 과전압이 낮고. 화학적으로 안정하여 내구성이 우수하며, 비표면적이 넓은 전극을 확보할 수 있다.
이하, 본 발명은 실시예에 의해서 상세히 설명한다. 단, 하기 실시예는 본 발명을 예시하기 위한 것일 뿐 본 발명이 하기 실시예에 의해서 한정되는 것은 아니다.
실시예 2
니켈 나이트레이트(Nickel nitrate hexahydrate, Ni(NO3)2·6H2O) 및 아이언 나이트레이트(Iron nitrate monahydrate , Fe(NO3)3·9H2O)를 하기 표 2의 몰비에 따라 증류수에 용해시켜 습식 제조공법을 이용하여 합성하였다. 다원소 nitrate가 첨가된 solution은 합성을 용이하게 하는 킬레이트제 역할의 citric acid (99.5%, Kanto chemical Co., Inc)를 첨가하였으며, 수산화암모늄(Ammonium hydroxide)을 이용하여 pH=6 으로 적정하여 합성하였다. 수득된 혼합물을 80 ℃에서 7 시간동안 교반하여 겔을 생성한 다음, 공기 중에서 400 ℃에서 1 시간 동안 가열하여 니켈-철 산화물을 포함하는 숯(char)를 생성하였다. 숯 분말을 1370 MPa에서 가압하여 펠렛으로 제조하고, 산화 열처리 (400 ℃, 1 h, P(O2) 0.21 atm)를 하 고, 수소 분위기 하에서 3 시간 동안 환원 열처리 (450 ℃, 3 h, P( O2) 10-22 atm)를 진행하여 제조하였다.
몰비 환원 열처리 온도(℃) 기공률 (%)
비교예 (Ni sandblast 기판) - - 6
실시예 2-1 (Ni) - 450 63
실시예 2-2 (Ni-Fe) 9:1 450 64
실시예 2-3 (Ni-Fe) 7:3 450 73
실시예 2-4 (Ni-Fe) 5:5 450 74
실시예 2-5 (Ni-Fe) 3:7 450 79
실시예 2-6 (Ni-Fe) 1:9 450 76
상기 표 2는 일반적으로 알칼라인 수전해용 전극의 기판으로 사용되는 Ni sandblast 기판과 본 발명의 실시예 2에 따라 제조된 기판의 기 공률이다. 표 2를 참고하면, 비교예인 상용화된 Ni sandblast 기판보 다 실시예에 따라 제조된 전극의 기공도가 매우 높은 것을 확인할 수 있다.
실험예1- 모폴로지 분석
도 8의 B는 NixFe1 -x의 결정 구조를 확인하기 위한 XRD (X-ray diffract ion) 분석 결과이다. 도 8의 B를 참고하면, Ni0 . 9Fe0 .1 및 Ni0 . 7Fe0 .3은 3 개 의 뚜렷한 회절 피크 (JCPDS Card No. 47-1417)를 갖는 면심입방구조 (face-centered cubic, FCC)를 나타냈다. 도 8의 B에서 볼 수 있듯이 Ni0 . 9Fe0 .1, Ni0 . 7Fe0 .3 및 Ni0.5Fe0.5에 대한 회절 피크는 Fe 함량이 증가함에 따라 음으로 이동하였다. 이는 Ni 원자가 Fe로 대 체됨에 따라 발생하는 격자 팽창으로 인한 것이다. Ni0 . 3Fe0 . 7 및 Ni0 . 1Fe0 .9에서는 Fe 의 비율이 증가할 때 체심입방구조(body-centered cubic, BCC)에 기인하는 피크가 나타 났으며, 이는 Ni-Fe 합금에서 Fe의 용해도 한계에 의해 BCC 구조의 상 형성에 기인할 수 있다.
NixFe1 -x의 결정 구조는 도 8의 C에 표시된 SAED (selected area electron diffraction) 패턴에 의해 확 인되었다. 회절 이미지의 [114] 영역 축은 정렬된 FCC 구조의 존재를 명확하게 보여준다. 이 결과는 FCC 상을 확인한 XRD 분석 결과와도 일치한다.
또한, 도 8의 C의 삽입이미지 및 도 8의 D를 참고하면, Ni와 Fe가 전극 위에 균일하게 분포되어 있음을 보여준다.
실험예 2 - 전기화학적 특성 분석
본 발명에서 몰비를 달 리한 실시예들의 HER 및 OER 활성을 분석하였다.
도 9의 A 내지 C를 참고하면, 실시예 들 중 Ni0 . 9Fe0 .1-CS(catalyzed substrate) 및 Ni0 . 7Fe0 .3-CS는 다른 몰비의 실시예들에 비해 가장 우수한 성능을 보여주었다. 특히, Ni0 . 9Fe0 .1-CS가 동일한 전류밀도에서 더 낮은 과전압을 보이며 HER 및 OER에 가장 활성이 좋음을 알 수 있다.
또한, 도 9의 D를 참고하면, Ni0 .7Fe0 .3-CS는 10mA cm-2의 전류 밀도 (j)에서 HER 및 OER에 대해 각각 33 mV 및 196 mV의 현저하게 낮은 과전위 (η)를 나타냈 다.
도 10을 참고하면, bulk 기판으로써 Ni plate, Ni foam 및 Pt plate와의 HER, OER 성능을 비교한 결과로, Ni0.7Fe0.3-CS 가 HER 및 OER에 대해 가장 높은 활성을 나타냈다.
도 11 및 도 12 는 조성별 NiFe 기판 전극의 HER 및 OER 반응의 impedance 분석(EI S)결과로, Ni0.9Fe0.1 와 Ni0 . 7Fe0 .3 이 HER 및 OER 반응 모두에서 가장 작은 impedance arc를 보 이는 것을 알 수 있다. 해당 impedance pattern은 전하전달저항 (ch arge transfer resistance)과 관련된 것으로, Ni0 . 9Fe0 . 1 와 Ni0.7Fe0.3이 전하 이동이 가장 용이 하여 전극으로서 뛰어난 활성을 보이는 것을 확인할 수 있다. 일반적 인 알칼라인 수전해용 전극의 경우에는 촉매를 기판에 증착 또는 성장시켜 사용하 기 때문에 촉매와 기판 사이의 전하전달저항이 크게 작용하기 때문에 높은 impedance 값을 보인다. 하지만 본 실시예를 통해 제조된 NiFe 기판전극의 경우에 는 기판자체가 추가적인 촉매사용 없이 고성능 전극으로 사용되기 때문에 촉매와 기판사이의 전하전달저항을 완전히 배제할 수 있어 일반적인 알칼리 수전해용 전극 들의 impedance값보다 매우 낮은 값을 보였다.
도 13은 조성별 NiFe 기판 전극의 HER 및 OER반응에서 double layer capacitance 측정 결과로 -0.2V Hg/ HgO(HER) 및 -0.04VHg / HgO(OER) 영역에서 조성별 NiFe 기판전극의 scan rate(20, 40, 60, 80, 100 mV/s)에 따른 산화·환원 전류 밀도 차 이를 나타낸 그래프이다.
하기 수학식 1은 scan rate에 따른 CV (Cyclic Voltammetry) 에서 산화·환원 전류밀도 차이와 double layer capacitance의 관계 를 나타낸 식이다.
[수학식 1]
△j=vCdl
상기 수학식 1의 관계를 이용하여 구한 double layer capacitance 값을 이용 하여 전극의 실제 전기화학적 활성면적을 계산하였다. 그 결과 도 13를 참고하면, HER 및 OER 반응에서 모두 NiFe 기판전극에서 Fe의 함량이 증가할수록 전기화학적 활성면적이 증가함을 알 수 있다.
도 14의 A 및 B는 고정형 3 전극 시스템을 사용할 때 양기능성 촉매(bifunctional catalyst)로 작용하는 본 발명의 실시 예(Ni0 . 7Fe0 .3-CS) 및 Ni/Fe 기 반의 다양한 전극들의 HER 및 OER 활성을 보여준다. 도면에서 확인한 바와 같이 본 발명의 실시예는 종래 Ni/Fe 기반의 다양한 전극들과 비교하여 HER 및 OER 모두에 대해 현저한 활성을 나타냄을 알 수 있다.
한편, 도 14의 C를 참고하면, NiFe-CS의 다공성 구조가 질량 수송에 미치는 영향을 확인하기 위해, 고정 전 극 시스템 및 RDE 시스템에서의 성능을 비교하였다. 그 결과, 고정 전극 시스템의 성능은 RDE 시스템의 성능과 거의 비슷했다. 이는 실 시예에 따른 제조 방법을 통해 제조된 촉매 기판의 표면적이 극적으로 향상되기 때 문에, 전극 성능이 질량 수송의 영향에 의해 제한되지 않음을 나타낸다.
도 14의 D는 N i0. 7Fe0 .3-CS의 HER/OER 성능을 종래의 NiFe 기반 양기능 성 HER/OER 촉매의 성능과 비교한 것이다. 그 결과, Ni0 .7Fe0 .3-CS는 HER/OER에 대해 각 각 280mV의 낮은 과전압으로 390mA cm-2 및 287mA cm-2의 가장 높은 전류 밀 도를 나타냈다.
도 14의 E는 우수한 HER/OER 성 능을 이해하기 위해 Tafel 플롯으로 동역학을 검증한 결과이다. 이 는 전기 촉매 반응에 대한 속도 결정 단계 (rate-determining step, RDS)의 지표이기 때문이다. 도 14의 E를 참고하면, Ni0 . 7Fe0 .3 -CS는 HER 및 OER에 대해 각각 68mV dec-1 및 42mV dec-1의 Tafel 기울기를 나타내었으며, 이는 대표적 인 HER 및 OER 촉매인 Pt/C (30-90mV dec-1) 및 IrO2 (46 mV dec- 1 이상)의 Tafel 기울기보다 더 낮음을 알 수 있다. 이러한 결과는 실 시예에 따른 전극이 본질적으로 유리한 촉매 특성을 나타냄을 시사한다.
도 14의 F는 Ni0 . 7Fe0 .3-CS의 향 상된 촉매 성능을 확인하기 위해 Ni0 . 7Fe0 .3-CS, Ni-CS 및 Ni plate의 Nyquist 플롯을 보여준다. 반원은 전하 전달 저항 (Rct)을 포 함한 분극 저항 (Rp)에 해당한다. Ni0 . 7Fe0 .3 -CS 및 Ni-CS의 Rp 값은 각각 1.3Ω 및 3.55Ω으로 결 정되었으며, 이는 Ni plate (~ 358Ω)보다 훨씬 작다. Ni0 . 7Fe0 . 3-CS의 Rp가 Ni-CS보다 작은 것은 Fe의 금속 도 핑에 기인한 것이며, 이는 Ni 기반 촉매의 국부적인 전자 구조를 변 경하여 촉매 활성 부위를 개선할 수 있음을 알 수 있다.
전기 화학적 장기 안정성은 촉 매의 성능을 평가하는 또 다른 필수 파라미터이다. 도 14의 G를 참 고하면, HER/OER에 대한 Ni0 . 7Fe0 .3-CS 촉매의 안정성은 100 시간에 걸쳐 전류 밀도가 10 에서 100mA cm- 2로 변경된 다단계 시간 전위차 법에 의해 확인되었다.
하기 표 3에서 볼 수 있듯이 Ni0 . 7Fe0 .3-CS 는 장기 HER/OER 작동 중에 과전압의 미미한 증가를 나타내어 우수한 안정성 을 확인할 수 있다.
Reaction Δoη (mV)
@10 mA cm -2
Δoη (mV)
@20 mA cm -2
Δoη (mV)
@50 mA cm -2
Δoη (mV)
@100 mA cm -2
HER -3.4 8.87 8.57 -1.26
OER 0.31 -0.92 -0.9 0
또한, 도 15를 참고하면, Ni0 .7Fe0 .3-CS는 HER 및 OER에 대해 99.3 % 및 97.2 %의 높은 패러데이 효율을 보여 주며 수소와 산소의 비율은 2:1에 가까운 결 과를 나타냈다. 이를 통해 다른 전자의 손실이나 부반응없이 물 분할 반응이 일어 나는 것을 확인할 수 있다.따라서, NiFe-CS는 HER와 OER 모두에 대해 낮은 과전위로 작 동하는 우수한 비귀금속 3 차원 다공성 구조의 알칼리 수전해용 전 극 중 하나로 평가될 수 있다.
실험예 3 - 표면 구조 분석
TEM 및 X-선 광전자 분광법 (XPS)을 사용하여 fresh sample과 HER 및 OER 후 수집된 샘플의 Ni0.7Fe0.3-CS의 표면 구조를 분석하였다. 도 16의 A는 Ni 0.7Fe0 .3-CS의 fresh sa mple의 TEM 이미지이고, 풍부한 기공을 가진 NiFe-합금 프레임을 보여준 다.
도 16의 B를 참고하면, OER 후 NiFe-합금 프레임의 표면층은 SAED 패턴을 통 해 확인할 수 있고, 뚜렷한 고리 패턴이 없어 비정질 층이 형성됨을 알 수 있다. 도 17은 OER 후 EDS 원소 매핑 결과이며, 도 17를 참고하면, 주로 산소 원자로 구 성되어 있으며, 이는 무정형 상이 하이드록실 종으로 구성되어 있음을 확인할 수 있다.
도 16의 C를 참고하면, HER 후 샘플의 경우 표면층은 가교 구조를 보였으며, (2 0 26), (2 0 14) 및 (2 0 8)의 세 가지 뚜렷한 회절면을 보이는 SAED 패턴에 의 해 NiFe 층상 이중 수산화물 (layered double hydroxide, LDH) 상으로 확인되었다. 도 18는 HER 후 EDS 원소 매핑 결과이며, 도 18를 참고하면 Fe, Ni 및 O 원소는 NiFe 합금 프레임에서 균일하게 분포하는 반면 NiFe LDH 층에서는 O가 Ni 및 Fe보 다 더 두드러짐을 알 수 있다.
도 16의 D, E 및 F를 참고하면, OER과 HER 이후 각각 무 정형 하이드록실 층과 NiFe LDH 상의 화학적 상태는 XPS로 확인되었 다. fresh sample은 산화물과 수산화물의 혼합물과 함께 Ni 0 및 Fe0 금속 상태의 존재를 보여주었다. 반응 후 Ni 및 Fe 의 금속 피크가 약화됨에 따라 Ni3 + 및 Fe3 +의 현저한 향 상이 관찰되었으며, 이는 표면에 하이드록실 층과 NiFe LDH가 형성되 었음을 나타낸다. 특히 도 16의 F를 참고하면, fresh sample은 격자 산소 (M-O)와 수산화물 (M-OH)의 두 피크를 보였으며, 수산화물의 강 도는 반응 후 극적으로 향상되었음을 알 수 있다.
비정질 하이드록실 층의 형성은 라만 분석에 의해서도 확인할 수 있다. 도 19은 저온 소결 및 환원에 의 해 준비된 Ni0 . 7Fe0 .3-CS의 fresh sample과 테스트 후 샘 플의 라만 스펙트럼을 비교한 결과이다. fresh sample은 세 가지 특징적인 수산화 물의 피크인 468, 554 및 674 cm-1을 나타냈다. 두 개의 저 대역 피크 ~ 468 및 554cm-1은 Ni-수산화물(Ni-hydroxide)에 해당하는 반면, 고 대역 피크 ~ 674cm-1 은 Ni 사이트에서 Fe 도핑 후에 나타났다. 따라서 이러한 특징은 Fe 도핑에 의한 무질서한 Ni-수산화물에 해당하고, Fe 도핑시 국부 결합 성질의 변화로 인해 Ni-수산화물의 피크가 이동하게 된다. 또한, 테스트 후 피크가 크게 확장되어 추가 결합 구조가 형성되었음을 나타 낸다. 일반적으로 라만 피크의 확장은 비정질 상 및 비균질 국소 환경의 형성에 의해 생성된 다양한 국소 결합 구조의 존재에 기인 할 수 있 다. 따라서 이러한 결과는 반응 중에 비정질 수산화물이 형성되었음을 나타낸다. NiFe (옥시)수산화물 (NiFe (oxy)hydroxide)은 일반적으로 알칼리 전해질에서 수소 와 산소 발생 반응 모두에 대해 활성상으로 작용하기 때문에, 수산화물 형성 부위 로 표면적을 최대화하기 위한 설계는 과전압을 낮춤으로써 전기 촉매 활성을 향상 시키는 핵심 요소이다.
도 16의 G 및 도 20의 B, C는 전기 화학적 이중층 커패시턴스 (Cdl)에 의해 추정된 활성 표면적을 보여주며, 이는 전기 화학적 활성 표면적 (ECSA)에 비례한다. 도 16의 H 및 도 20의 D를 참고하면, Ni0.7Fe0.3-CS는 HER 및 OER에 대해 각각 237.3 mF cm-2 및 348.97 mF cm-2의 가장 높은 Cdl 값을 나타 냈으며, 이는 다른 NiFe 기반 촉매보다 훨씬 높았다. 이를 통해, 본 발명이 물 분자의 흡/탈착 및 전해질과의 접촉에 촉매적으로 유리함 을 알 수 있다. 열 성장 또는 증착 방법에 의해 기판 상에 나노 스케 일 구조의 촉매가 배치되는 다른 종래의 전극과 비교하여 본 발명의 촉매화된 기판 자체가 훨씬 더 높은 활성 표면적을 가짐을 알 수 있다. 또한, 본 발명의 촉매 기판은 다공성 구조와 우수한 전하/질량 전달 특성을 가진 풍부한 활성 부위를 가지고 있으며, 이를 통해 촉매 성분을 정밀하게 제어 할 수 있으며, HER / OER 활성을 극적으로 향상시키는 데 중요한 역할을 할 수 있다.
따라서, 본 발명의 실시예들을 이용한 실험 결과를 통해 원소 및 환원 온도, 반응 site 등 전극의 성능을 향상시킬 수 있는 다양한 공정 변수 제어가 가능 함을 알 수 있으며, 이 외에도 딥 코팅 (dip-coating) 및 에칭 (etching) 등 다양 한 공정을 추가로 접목하여 전극의 제조 및 성능을 향상시킬 수 있는 가능성을 제 시하였다.
이제까지 본 발명에 대하여 그 바람직한 실시예들을 중심으로 살펴보았다. 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자는 본 발명이 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 변형된 형태로 구현될 수 있음을 이해할 수 있을 것이다. 그러므로 개시된 실시예들은 한정적인 관점이 아니라 설명적인 관점에서 고려되어야 한다. 본 발명의 범위는 전술한 설명이 아니라 특허청구범위에 나타나 있으며, 그와 동등한 범위 내에 있는 모든 차이점은 본 발명에 포함된 것으로 해석되어야 할 것이다.
본 발명의 알칼리 수전해용 전극의 제조 방법은 제조 과정이 간단하고 원료 소재의 복합화를 통해 다양한 조성의 전극을 제조할 수 있으며, 대면적 전극 제조에 용이하여 상용화에 유리하다.

Claims (15)

  1. 금속염을 용매에 용해하고 합성하여 습식 파우더를 제조하는 단계;
    상기 습식 파우더를 산화 열처리하는 단계; 및
    상기 산화 열처리된 파우더를 환원 열처리하는 단계를 포함하는 알칼리 수전해용 전극의 제조 방법.
  2. 금속염을 용매에 용해하고 합성하여 습식 파우더를 제조하는 단계;
    상기 습식 파우더를 겔(gel)화 하는 단계;
    상기 겔을 저온 열처리하여 숯(char)으로 제조하는 단계;
    상기 숯을 몰딩하여 기판을 제조하는 단계;
    상기 기판을 산화 열처리하는 단계; 및
    상기 기판을 환원 열처리하는 단계를 포함하는 알칼리 수전해용 전극의 제조 방법.
  3. 제1항 또는 제2항에 있어서,
    상기 금속염은 Ni, Fe, Co, Mn, Cu, Zn, Mo, Ca, Nb, W 및 Ti로 이루어진 군에서 선택된 적어도 어느 하나의 금속염인 알칼리 수전해용 전극의 제조 방법.
  4. 제1항 또는 제2항에 있어서,
    상기 습식 파우더를 제조하는 단계에서는,
    페치니 공법(Pechini process), 졸-겔 법(sol-gel) 및 콜로이달 공법(Colloidal process)로 이루어진 군에서 선택된 어느 하나의 방법으로 제조하는 알칼리 수전해용 전극의 제조 방법.
  5. 제1항 또는 제2항에 있어서,
    상기 산화 열처리하는 단계는,
    공기 중에 300 ℃ 내지 700 ℃의 온도에서 30 분 내지 2 시간 수행되는 알칼리 수전해용 전극의 제조 방법.
  6. 제1항 또는 제2항에 있어서,
    상기 환원 열처리하는 단계는,
    수소 분위기 하 400 ℃ 내지 700 ℃의 온도에서 1 시간 내지 4 시간 수행되는 알칼리 수전해용 전극의 제조 방법.
  7. 제2항에 있어서,
    상기 겔화 하는 단계는,
    70 ℃ 내지 90 ℃에서 진행되는 알칼리 수전해용 전극의 제조 방법.
  8. 제2항에 있어서,
    상기 숯으로 제조하는 단계는,
    300 ℃ 내지 700 ℃에서 열처리하는 알칼리 수전해용 전극의 제조 방법.
  9. 제1항 또는 제2항에 따라 제조되는 알칼리 수전해용 전극으로써,
    Ni, Fe, Co, Mn, Cu, Zn, Mo, Ca, Nb, W 및 Ti로 이루어진 군에서 선택된 적어도 어느 하나를 포함하고, 나노 다공성 형태의 알칼리 수전해용 전극.
  10. 제1항 또는 제2항에 따라 제조되는 알칼리 수전해용 전극으로써,
    Ni, Fe, Co, Mn, Cu, Zn, Mo, Ca, Nb, W 및 Ti로 이루어진 군에서 선택된 금속; 및 산화물을 포함하는 알칼리 수전해용 전극.
  11. 제10항에 있어서,
    상기 산화물은 알루미나 (Al2O3), 지르코니아 (ZrO2), TiO2, [(La1-xSrx)CoO3-δ](LSC), [(La1-xSrx)FeO3-δ] (LSF), [(La1-xSrx)(Co1-yFey)O3-δ] (LSCF), [(LaxSr1-x)TiO3-δ] (LST), [(BaxSr1-x)(CoyFe1-y)O3](BSCF), LaCoO3, LaNiO3, (LaxSr1-x)VO3, Ca(VxMo1-x)O3, [Ba(ZrxCeyY1-(x+y))O3] (BZCY), 및 [Pr(Ba1-xSrx)(Fe2-yGey)O6] (PBSFG) 로 이루어진 군에서 선택된 적어도 어느 하나이고, 상기 화학식에서 0<x<1, 0<y<1, 0<δ<3 인 알칼리 수전해용 전극.
  12. 제10항에 있어서,
    상기 알칼리 수전해용 전극의 평균 기공률이 50 내지 80 %인 것을 특징으로 하는 알칼리 수전해용 전극.
  13. 제2항에 따라 제조되는 알칼리 수전해용 전극으로써,
    상기 알칼리 수전해용 전극은 NixFe1-x를 포함하고,
    x>0.5인 것을 특징으로 하는 나노 다공성 형태의 알칼리 수전해용 전극.
  14. 제13항에 있어서,
    상기 알칼리 수전해용 전극은,
    산소 발생 반응(oxygen evolution reaction (OER)) 중 비정질 하이드록실 층(amorphous hydroxyl layer)이 생성되는 것을 특징으로 하는 알칼리 수전해용 전극.
  15. 제13항에 있어서,
    상기 알칼리 수전해용 전극은,
    수소 발생 반응(Hydrogen evolution reaction (HER)) 중 층상 이중 수산화물 (layered double hydroxide, LDH)이 생성되는 것을 특징으로하는 알칼리 수전해용 전극.
PCT/KR2021/006612 2020-05-29 2021-05-27 고성능 알칼리 수전해용 전극 및 이의 제조 방법 WO2021242028A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/753,136 US20220333258A1 (en) 2020-05-29 2021-05-27 Electrode for high-performance alkaline water electrolysis, and manufacturing method therefor

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR1020200065437A KR102425855B1 (ko) 2020-05-29 2020-05-29 고성능 알칼리 수전해용 전극 및 이의 제조 방법
KR10-2020-0065437 2020-05-29
KR10-2021-0006026 2021-01-15
KR1020210006026A KR102552378B1 (ko) 2021-01-15 2021-01-15 고성능 알칼리 수전해용 전극 및 이의 제조 방법

Publications (1)

Publication Number Publication Date
WO2021242028A1 true WO2021242028A1 (ko) 2021-12-02

Family

ID=78744819

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/006612 WO2021242028A1 (ko) 2020-05-29 2021-05-27 고성능 알칼리 수전해용 전극 및 이의 제조 방법

Country Status (2)

Country Link
US (1) US20220333258A1 (ko)
WO (1) WO2021242028A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114990621A (zh) * 2022-05-31 2022-09-02 河南大学 表面氮氧共掺杂铁钼双金属材料及其制备方法和应用

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116426963B (zh) * 2023-06-14 2023-08-08 河南师范大学 基于pom/mof衍生的镍铁钨纳米材料及其制备方法和应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009179871A (ja) * 2008-01-31 2009-08-13 Kyushu Univ 電気分解セル、及び水素製造装置
KR20100134346A (ko) * 2009-06-15 2010-12-23 한국생산기술연구원 고체산화물 연료전지의 연료극 및 그 제조방법
KR20150117768A (ko) * 2014-04-10 2015-10-21 국립대학법인 울산과학기술대학교 산학협력단 수소 및 산소를 생성하는 고체 산화물 수전해 셀
KR20160072188A (ko) * 2013-10-29 2016-06-22 고쿠리츠다이가쿠호진 요코하마 고쿠리츠다이가쿠 알칼리 수전해용 양극 및 그의 제조 방법
KR101729229B1 (ko) * 2016-09-12 2017-05-02 충남대학교산학협력단 알칼리 수전해용 스테인리스강 전극 및 그의 제조방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009179871A (ja) * 2008-01-31 2009-08-13 Kyushu Univ 電気分解セル、及び水素製造装置
KR20100134346A (ko) * 2009-06-15 2010-12-23 한국생산기술연구원 고체산화물 연료전지의 연료극 및 그 제조방법
KR20160072188A (ko) * 2013-10-29 2016-06-22 고쿠리츠다이가쿠호진 요코하마 고쿠리츠다이가쿠 알칼리 수전해용 양극 및 그의 제조 방법
KR20150117768A (ko) * 2014-04-10 2015-10-21 국립대학법인 울산과학기술대학교 산학협력단 수소 및 산소를 생성하는 고체 산화물 수전해 셀
KR101729229B1 (ko) * 2016-09-12 2017-05-02 충남대학교산학협력단 알칼리 수전해용 스테인리스강 전극 및 그의 제조방법

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114990621A (zh) * 2022-05-31 2022-09-02 河南大学 表面氮氧共掺杂铁钼双金属材料及其制备方法和应用
CN114990621B (zh) * 2022-05-31 2023-10-27 河南大学 表面氮氧共掺杂铁钼双金属材料及其制备方法和应用

Also Published As

Publication number Publication date
US20220333258A1 (en) 2022-10-20

Similar Documents

Publication Publication Date Title
US6844099B1 (en) Method for solid oxide cell anode preparation
US7855003B2 (en) Ceramic and alloy anode solid oxide fuel cell
WO2021242028A1 (ko) 고성능 알칼리 수전해용 전극 및 이의 제조 방법
US20080011604A1 (en) Process and Device for Water Electrolysis Comprising a Special Oxide Electrode Material
KR101796575B1 (ko) 용리된 금속 합금 촉매체를 포함하는 전극 소재의 제조 방법 및 이를 이용하여 제조한 전극 소재를 포함하는 고체 산화물 연료전지, 금속공기전지 및 고체 산화물 수전해 셀
Li et al. Investigation on Nd1–xCaxBaCo2O5+ δ double perovskite as new oxygen electrode materials for reversible solid oxide cells
US20230077350A1 (en) Solid oxide electrolyte materials for electrochemical cells
Ju et al. Phase transition of doped LaFeO3 anode in reducing atmosphere and their power generation property in intermediate temperature solid oxide fuel cell
KR20190131744A (ko) 용출 및 치환된 전이원소를 가지는 촉매체를 포함하는 전극 소재의 제조 방법 및 이를 이용하여 제조한 전극 소재를 포함하는 고체 산화물 연료전지, 금속공기전지 및 고체 산화물 수전해 셀
Vecino-Mantilla et al. Insights on a Ruddlesden-Popper phase as an active layer for a solid oxide fuel cell fed with dry biogas
CN115044928A (zh) 一种质子导体型固体氧化物电化学池氧电极材料及其制备方法
Larralde et al. Defective Sr 0.9 Mo 0.9 O 3− δ perovskites with exsolved Ni nanoparticles as high-performance composite anodes for solid-oxide fuel cells
CN115650312A (zh) 一种质子导体可逆电池空气电极、制备方法和用途
US20140154613A1 (en) Air electrode catalyst material, solid oxide fuel cell system, and method of manufacturing the air electrode catalyst material
Yu et al. Superior Durability and Activity of a Benchmark Triple‐Conducting Cathode by Tuning Thermo‐Mechanical Compatibility for Protonic Ceramic Fuel Cells
KR102552378B1 (ko) 고성능 알칼리 수전해용 전극 및 이의 제조 방법
KR102137988B1 (ko) 페로브스카이트 구조를 가지는 대칭형 고체 산화물 연료전지, 그 제조 방법 및 대칭형 고체 산화물 수전해 셀
KR102425855B1 (ko) 고성능 알칼리 수전해용 전극 및 이의 제조 방법
KR20210033744A (ko) 이산화탄소 분해용 고체산화물 전해전지의 캐소드 조성물, 이산화탄소 분해용 고체산화물 전해전지 및 캐소드 조성물의 제조 방법
Chen et al. Degradation and durability of electrodes of solid oxide fuel cells
Sun et al. Synthesis and electrochemical characterization of pure and composite cathode materials for solid oxide fuel cells
KR102554185B1 (ko) 나노구조체가 형성된 페로브스카이트 공기극 및 이의 제조 방법
US20220372639A1 (en) Electrode material, method for the production thereof, and use of same
EP2205538A1 (en) Solid oxide fuel cell
Zhou et al. CO2-tolerant and cobalt-free La4Ni3-xCuxO10±δ (x= 0, 0.3, 0.5 and 0.7) cathodes for intermediate-temperature solid oxide fuel cells

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21814088

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21814088

Country of ref document: EP

Kind code of ref document: A1