CN107442125B - 一种碳基铜钴氧化物纳米片催化剂的制备方法和应用 - Google Patents

一种碳基铜钴氧化物纳米片催化剂的制备方法和应用 Download PDF

Info

Publication number
CN107442125B
CN107442125B CN201710792050.1A CN201710792050A CN107442125B CN 107442125 B CN107442125 B CN 107442125B CN 201710792050 A CN201710792050 A CN 201710792050A CN 107442125 B CN107442125 B CN 107442125B
Authority
CN
China
Prior art keywords
carbon
cobalt oxide
catalyst
oxide nanosheet
mof
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201710792050.1A
Other languages
English (en)
Other versions
CN107442125A (zh
Inventor
匡轩
孙旭
魏琴
张勇
吴丹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Jinan
Original Assignee
University of Jinan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Jinan filed Critical University of Jinan
Priority to CN201710792050.1A priority Critical patent/CN107442125B/zh
Publication of CN107442125A publication Critical patent/CN107442125A/zh
Application granted granted Critical
Publication of CN107442125B publication Critical patent/CN107442125B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/75Cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/396Distribution of the active metal ingredient
    • B01J35/399Distribution of the active metal ingredient homogeneously throughout the support particle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/031Precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/091Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种碳基铜钴氧化物纳米片催化剂的制备方法以及基于该催化剂电解水析氧的应用,属于纳米催化、纳米材料、金属有机框架物材料技术领域。其主要步骤将天冬氨酸碱溶液与硝酸铜‑硝酸钴溶液室温共混,室温生成沉淀、抽滤、干燥,制得Cu‑MOF纳米纤维负载Co(II)离子即CuCo‑MOF纳米纤维;将CuCo‑MOF纳米纤维空气氛加热制得。该催化剂制备所用原料成本低,制备工艺简单,反应能耗低,具有工业应用前景。该催化剂用于高效催化电解水析氧,具有良好的析氧电催化活性与电化学稳定性。

Description

一种碳基铜钴氧化物纳米片催化剂的制备方法和应用
技术领域
本发明涉及一种碳基铜钴氧化物纳米片催化剂的制备方法和应用,属于纳米催化、纳米材料、金属有机框架物材料技术领域。
背景技术
由于化石燃料对环境产生的严重污染,制备可持续发展的清洁绿色能源已成为一个重要的前沿研究领域。众所周知,水是地球上含氢氧元素最丰富的资源之一,水分解生成氢气和氧气,氢气放热燃烧又转变为水,该过程再生、清洁和绿色。电催化直接分解水制备氢气和氧气被认为实现该过程最有效的方式。电催化分解水反应包括析氢(hydrogenevolution reaction,HER)和析氧(oxygen evolution reaction,OER)两个半反应,其中,析氢更快,而析氧涉及键裂4个O-H共价键、两个水分子失四个电子以及耗能生成O-O共价键,需要克服更高的能垒才能实现。为此,学者付出了许多努力,开发高效析氧催化剂。在很多已探索的体系中,二氧化铱(IrO2)和二氧化钌(RuO2)被认为最有效。然而,他们稀缺和昂贵的价格,限制了其广泛实际的应用,为此,开发高效、价廉且地球含量丰富的非贵金属析氧催化剂,降低析氧电消耗成为一个机遇和挑战。
价廉的铁、钴、镍催化剂,是已报道实现高活性析氧有前景的催化剂。此外,碳基或杂原子掺杂的复合材料也是析氧催化剂的创新性选择。除了材料组成之外,催化剂的活性和其形态密切相关。为此,研究开发具有资源丰富的新组成和新形态催化剂,对实现高活性析氧具有重要的意义。
作为一类新型多孔晶体材料,近年来,金属有机框架物(MOFs)在气体储存、分离、催化、识别和药物传输等领域获得了广泛的应用。MOFs周期性的多孔结构、高的比表面积以及结构的多样性,提供了以其为前体构建碳或(和)金属基纳米材料的独特优势。目前,源于MOFs前体或模板的功能材料的研究日益增多,例如,多孔碳、金属氧化物、金属/碳和金属氧化物/碳纳米材料已被报道,所构建的3D金属氧化物,用于高效超级电容器、锂离子电池和氧还原,已显现出优异的性质。2014年,Chaikittisilp 和他的团队首次报道了以MOFs为前体制备电催化剂用于分解水的报道,他们采用类沸石Co-MOF (zeolitic imidazolateframework-9, ZIF-9)为前体制备纳米多孔CoxOy-C复合材料电催化OER。因直接高温热解MOFs前体的方法常常导致框架倒塌和团聚,为此,目前常采用的一个创新性策略是利用例如石墨烯、多壁碳纳米管(multiwalled carbon nanotubes,CNTs)的纳米碳材负载MOFs,再通过高温热解制备碳基复合材料电催化剂,以阻止产物团聚并提高其比表面积。例如,2016年,Aijaz和他的团队将Co-MOF在H2氛中高温还原并氧化煅烧,制得了一种Co@Co3O4纳米粒子镶嵌在碳纳米管接枝的氮掺杂的碳多面体高活性析氧催化剂。虽然MOFs种类繁多,但易于制备且转变为可控形态的电催化剂MOFs前体,数量有限,目前,以三维(3D) MOFs微晶或纳米晶体为前体制备析氧催化剂的研究已有报道,据我们所知,基于一维MOFs纳米纤维制备析氧催化剂的研究未见报道。
钴元素地球含量丰富,其氧化物价格低廉,然而,本体钴氧化物导电性差,其电催化析氧活性也差。本开发首先制备了Cu-MOF纳米纤维,在此基础上采用一步室温工艺,制备了负载Co2+纳米纤维CuCo-MOF,以该纳米纤维为前体,在空气中热解,制备了碳基过渡金属氧化物纳米片高效催化剂。
发明内容
本发明的技术任务之一是为了弥补现有技术的不足,提供一种碳基铜钴氧化物纳米片催化剂的制备方法,该方法所用原料成本低,制备工艺简单,反应能耗低,具有工业应用前景。
本发明的技术任务之二是提供所述一种碳基铜钴氧化物纳米片催化剂的用途,即将该碳基铜钴氧化物纳米片用于高效催化电解水析氧,该催化剂具有良好的析氧电催化活性与电化学稳定性。
为实现上述目的,本发明采用的技术方案如下:
1. 一种碳基铜钴氧化物纳米片催化剂的制备方法,步骤如下:
将硝酸铜和硝酸钴共溶于15-18 mL水,得到蓝色澄清的硝酸铜-硝酸钴混合液;将0.40 mmol 的L-天冬氨酸与0.50-0.58 mmol氢氧化钠溶于2.0 -4.0 mL水,得到澄清的天冬氨酸碱溶液;将天冬氨酸碱溶液加入到硝酸铜-硝酸钴混合液中,室温5min,生成沉淀;1h后抽滤,60℃干燥,制得Cu-MOF纳米纤维负载Co(II) 离子即CuCo-MOF纳米纤维;
将CuCo-MOF纳米纤维置于管式炉加热,制得碳基铜钴氧化物纳米片催化剂;
所述硝酸铜和硝酸钴,总量为0.63-3.28 mmol,硝酸铜与硝酸钴的量比为7:3—5:5;
所述Cu-MOF纳米纤维,化学式为[CuL(H2O)]n,L为天冬氨酸H2L的L(II) 离子;Cu-MOF纳米纤维的一个单元结构,由一个Cu(II)离子中心、一个L(II) 离子和一个H2O分子构成;
所述CuCo-MOF纳米纤维,是由Cu-MOF双纳米线以及3-10个纳米线负载Co(II) 离子沿纵向排列组成,纤维内纳米线间结合紧密,纳米线间晶界清晰可见,纤维表面沿纵向凹凸有序,凹凸尺寸不超过100 nm,纤维纵向最长可达1mm,直径宽约为80-600nm,纤维的横向裂纹也清晰可见;Cu和Co 元素均匀分布;
所述碳基铜钴氧化物纳米片催化剂,其长宽尺寸为8-10μm,厚度小于50 nm;
所述碳基铜钴氧化物纳米片催化剂,是CuO和Co2O3半导体纳米粒子负载在碳微晶上构成的纳米片状复合材料;
所述CuCo-MOF纳米纤维置于管式炉加热,是在空气氛下进行,升温速率为 3-5℃/min,加热至250-300℃,保温1.5-2.5 h,然后,以 2℃/ min 降温速率冷却到室温。
2. 如上所述的碳基铜钴氧化物纳米片作为电解水析氧催化剂的应用,步骤如下:
将6mg 碳基铜钴氧化物纳米片分散于250μL乙醇、720μL 水以及30μL、5 wt%全氟化树脂溶液中,室温120W至少超声10-15min,制得均匀混合液;滴加 6μL该混合液到玻碳电极上,室温干燥,制得碳基铜钴氧化物纳米片工作电极;
使用三电极电化学工作站,碳基铜钴氧化物纳米片工作电极,Pt 片 (5 mm×5 mm×0.1 mm)为对电极,Ag/AgCl电极为参比电极,在电解液为 0.5 M KOH水溶液中测试电催化分解水性能。
上述碳基铜钴氧化物纳米片电解水析氧,当电流密度J=10mA/cm2时,电位为1.50V vs RHE;塔菲尔斜率为67mV dec-1,均说明该材料高效的析氧催化活性;循环 500 次前后,该类材料极化曲线没有发现明显的变化,表明催化剂具有良好的稳定性。
本发明的有益的技术效果:
1. 本发明获得的碳基铜钴氧化物纳米片状催化剂,形貌规整、单一分散,具有高的比表面积等特点。
2. 本发明获得的碳基铜钴氧化物纳米片状催化剂是由一维金属有机框架物CuCo-MOF纳米纤维,空气氛条件250-300℃加热热解生成,制备过程工艺简单,简单易控,产物制备效率高,易于工业化。
3. 本发明提供了一种碳基铜钴氧化物纳米片作为电解水析氧催化剂的应用。由于该催化剂是由CuO和Co2O3半导体纳米粒子负载在碳微晶上构成的纳米片,暴露了更多且不同的活性位点,发挥了CuO、Co2O3半导体纳米粒子以及碳微晶的协同作用,使得基于该复合材料的催化析氧,催化效率高且稳定性好。
具体实施方式
下面结合实施例对本发明作进一步描述,但本发明的保护范围不仅局限于实施例,该领域专业人员对本发明技术方案所作的改变,均应属于本发明的保护范围内。
实施例1
1. 一种碳基铜钴氧化物纳米片催化剂的制备方法
将总量为0.63 mmol、量比为7:3的硝酸铜与硝酸钴共溶于15 mL水,得到蓝色澄清的硝酸铜-硝酸钴混合液;将0.40 mmol 的L-天冬氨酸与0.50 mmol氢氧化钠溶于2.0 mL水,得到澄清的天冬氨酸碱溶液;将天冬氨酸碱溶液加入到硝酸铜-硝酸钴混合液中,室温5min,生成沉淀;1h后抽滤,60℃干燥,制得Cu-MOF纳米纤维负载Co(II) 离子即CuCo-MOF纳米纤维;
将CuCo-MOF纳米纤维置于管式炉中,空气氛下加热,升温速率为 3℃/min,加热至250℃,保温2.5 h,然后,以 2℃/ min 降温速率冷却到室温,制得碳基铜钴氧化物纳米片催化剂。
实施例2
将总量为3.28 mmol、量比为5:5的硝酸铜与硝酸钴,共溶于18 mL水中,得到蓝色澄清的硝酸铜-硝酸钴混合液;将0.40 mmol 的L-天冬氨酸与0.58 mmol氢氧化钠溶于4.0mL水,得到澄清的天冬氨酸碱溶液;将天冬氨酸碱溶液加入到硝酸铜-硝酸钴混合液中,室温5min,生成沉淀;1h后抽滤,60℃干燥,制得Cu-MOF纳米纤维负载Co(II) 离子即CuCo-MOF纳米纤维;
将CuCo-MOF纳米纤维置于管式炉中,空气氛下加热,升温速率为 5℃/min,加热至300℃,保温1.5 h,然后,以 2℃/ min 降温速率冷却到室温;制得碳基铜钴氧化物纳米片催化剂;
实施例3
将总量为0.63-3.28 mmol、量比为6:4的硝酸铜与硝酸钴共溶于16.5 mL水,得到蓝色澄清的硝酸铜-硝酸钴混合液;将0.40 mmol 的L-天冬氨酸与0.55 mmol氢氧化钠溶于3.0 mL水,得到澄清的天冬氨酸碱溶液;将天冬氨酸碱溶液加入到硝酸铜-硝酸钴混合液中,室温5min,生成沉淀;1h后抽滤,60℃干燥,制得Cu-MOF纳米纤维负载Co(II) 离子即CuCo-MOF纳米纤维;
将CuCo-MOF纳米纤维置于管式炉中,空气氛下加热,升温速率为 4℃/min,加热至275℃,保温2.0 h,然后,以 2℃/ min 降温速率冷却到室温。制得碳基铜钴氧化物纳米片催化剂。
实施例4
实施例1-3所述的Cu-MOF纳米纤维,化学式为[CuL(H2O)]n,L为天冬氨酸H2L的L(II) 离子;Cu-MOF纳米纤维的一个单元结构,由一个Cu(II)离子中心、一个L(II) 离子和一个H2O分子构成;
所述CuCo-MOF纳米纤维,是由Cu-MOF双纳米线以及3-10个纳米线负载Co(II) 离子沿纵向排列组成,纤维内纳米线间结合紧密,纳米线间晶界清晰可见,纤维表面沿纵向凹凸有序,凹凸尺寸不超过100 nm,纤维纵向最长可达1mm,直径宽约为80-600nm,纤维的横向裂纹也清晰可见;Cu和Co 元素均匀分布;
所述碳基铜钴氧化物纳米片催化剂,其长宽尺寸为8-10μm,厚度小于50 nm;
所述碳基铜钴氧化物纳米片催化剂,是CuO和Co2O3半导体纳米粒子负载在碳微晶上构成的纳米片状复合材料。
实施例5碳基铜钴氧化物纳米片作为电解水析氧催化剂的应用
分别称取实施例1-3制得的6mg碳基铜钴氧化物纳米片,分散于250μL乙醇、720μL水以及30μL、5 wt%全氟化树脂溶液中,室温120W至少超声10-15min,制得均匀混合液;滴加6μL该混合液到玻碳电极上,室温干燥,制得碳基铜钴氧化物纳米片工作电极;
使用三电极电化学工作站,碳基铜钴氧化物纳米片工作电极,Pt 片 (5 mm×5 mm×0.1 mm)为对电极,Ag/AgCl电极为参比电极,在电解液为 0.5 M KOH水溶液中测试电催化分解水性能;
上述碳基铜钴氧化物纳米片电解水析氧,当电流密度J=10mA/cm2时,电位为1.50V vs RHE;塔菲尔斜率为67mV dec-1,均说明该材料高效的析氧催化活性;循环 500 次前后,该类材料极化曲线没有发现明显的变化,表明催化剂具有良好的稳定性。

Claims (6)

1.一种碳基铜钴氧化物纳米片催化剂的制备方法,其特征在于,步骤如下:
将硝酸铜和硝酸钴共溶于15-18mL水,得到蓝色澄清的硝酸铜-硝酸钴混合液;将0.40mmol的L-天冬氨酸与0.50-0.58mmol氢氧化钠溶于2.0-4.0mL水,得到澄清的天冬氨酸碱溶液;将天冬氨酸碱溶液加入到硝酸铜-硝酸钴混合液中,室温5min,生成沉淀;1h后抽滤,60℃干燥,制得Cu-MOF纳米纤维负载Co(II)离子即CuCo-MOF纳米纤维;
将CuCo-MOF纳米纤维置于管式炉加热,制得碳基铜钴氧化物纳米片催化剂;所述硝酸铜和硝酸钴,总量为0.63-3.28mmol,硝酸铜与硝酸钴的量比为7:3—5:5;
所述Cu-MOF纳米纤维,化学式为[CuL(H2O)]n,L为天冬氨酸H2L的L(II)离子;Cu-MOF纳米纤维的一个单元结构,由一个Cu(II)离子中心、一个L(II)离子和一个H2O分子构成。
2.如权利要求1所述的一种碳基铜钴氧化物纳米片催化剂的制备方法,其特征在于,所述CuCo-MOF纳米纤维,是由Cu-MOF双纳米线以及3-10个纳米线负载Co(II)离子沿纵向排列组成,纤维内纳米线间结合紧密,纳米线间晶界清晰可见,纤维表面沿纵向凹凸有序,凹凸尺寸不超过100nm,纤维纵向最长可达1mm,直径宽80-600nm,纤维的横向裂纹也清晰可见;Cu和Co元素均匀分布。
3.如权利要求1所述的一种碳基铜钴氧化物纳米片催化剂的制备方法,其特征在于,所述碳基铜钴氧化物纳米片催化剂,其长宽尺寸为8-10μm,厚度小于50nm。
4.如权利要求1所述的一种碳基铜钴氧化物纳米片催化剂的制备方法,其特征在于,所述碳基铜钴氧化物纳米片催化剂,是CuO和Co2O3半导体纳米粒子负载在碳微晶上构成的纳米片状复合材料。
5.如权利要求1所述的一种碳基铜钴氧化物纳米片催化剂的制备方法,其特征在于,所述CuCo-MOF纳米纤维置于管式炉加热,是在空气气 氛下进行,升温速率为3-5℃/min,加热至250-300℃,保温1.5-2.5h,然后,以2℃/min降温速率冷却到室温。
6.如权利要求1所述的制备方法制备的碳基铜钴氧化物纳米片催化剂作为电解水析氧催化剂的应用。
CN201710792050.1A 2017-09-05 2017-09-05 一种碳基铜钴氧化物纳米片催化剂的制备方法和应用 Expired - Fee Related CN107442125B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710792050.1A CN107442125B (zh) 2017-09-05 2017-09-05 一种碳基铜钴氧化物纳米片催化剂的制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710792050.1A CN107442125B (zh) 2017-09-05 2017-09-05 一种碳基铜钴氧化物纳米片催化剂的制备方法和应用

Publications (2)

Publication Number Publication Date
CN107442125A CN107442125A (zh) 2017-12-08
CN107442125B true CN107442125B (zh) 2020-01-17

Family

ID=60495791

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710792050.1A Expired - Fee Related CN107442125B (zh) 2017-09-05 2017-09-05 一种碳基铜钴氧化物纳米片催化剂的制备方法和应用

Country Status (1)

Country Link
CN (1) CN107442125B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11883808B2 (en) 2017-08-30 2024-01-30 Uchicago Argonne, Llc Nanofiber electrocatalyst

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10978718B2 (en) 2017-08-29 2021-04-13 Uchicago Argonne, Llc Carbon dioxide reduction electro catalysts prepared for metal organic frameworks
CN108187749B (zh) * 2017-12-29 2020-06-23 潍坊学院 一种多功能电解水用海绵体催化剂的制备方法
CN108796535B (zh) * 2018-05-29 2020-10-23 武汉工程大学 一种具备三金属铜-钴-钼/泡沫镍多孔电极材料及其制备方法与应用
CN109321933B (zh) * 2018-08-30 2020-05-22 济南大学 一种mof/碳点纳米复合材料催化剂的制备方法和应用
CN109126885A (zh) * 2018-09-13 2019-01-04 武汉工程大学 一种铜钴双金属有机框架/纳米纤维复合材料及其制备方法和应用
CN109267093B (zh) 2018-10-09 2020-04-10 苏州大学 超薄Ni-Fe-MOF纳米片及其制备方法和应用
CN109692711A (zh) * 2019-02-12 2019-04-30 济南大学 一种CeO2和Co3O4杂化Ce-MOF/Co-MOF复合催化剂的制备方法及应用
CN109647407A (zh) * 2019-02-12 2019-04-19 济南大学 一种基于双金属mof纳米晶复合材料的制备方法和应用
CN109675640A (zh) * 2019-02-12 2019-04-26 济南大学 一种碳氮基铁钴氧化物纳米簇mof催化剂的制备方法和应用
CN109987600B (zh) * 2019-03-07 2022-07-29 温州大学 一种在金属基底上制备原位石墨烯包裹金属氧化物纳米花结构的方法
CN109999822B (zh) * 2019-04-02 2021-10-15 福建师范大学 一种碳纳米管负载钼掺杂的四氧化三钴催化剂的制备
CN110038604B (zh) * 2019-05-10 2022-07-19 辽宁大学 CuCo/Ti3C2Tx复合材料及其制备方法和应用
CN110394191A (zh) * 2019-08-30 2019-11-01 济南大学 一种mof@mof纳米纤维复合催化剂的制备方法和应用
KR102403412B1 (ko) * 2019-09-06 2022-05-31 한국재료연구원 입체 나노시트 구조를 갖는 촉매를 포함하는 수전해전극, 그 제조방법 및 그를 포함하는 수전해장치
CN110665510B (zh) * 2019-09-19 2022-04-29 西安工程大学 一种用于合成气制低碳醇的铜钴基催化剂的制备方法
US11633722B2 (en) 2020-09-30 2023-04-25 Uchicago Argonne, Llc Catalyst for water splitting
CN112264018B (zh) * 2020-11-02 2022-09-23 华南师范大学 一种镍钴氧化物纳米片管状催化剂及其制备方法和用途
CN112376068B (zh) * 2020-11-12 2021-10-15 北京化工大学 一种3d催化材料及其制备方法和应用
CN113181913A (zh) * 2021-04-08 2021-07-30 湖北文理学院 一种铜碳复合催化剂及其制备方法
CN113713816B (zh) * 2021-07-20 2024-09-24 湖南大学 金属有机骨架材料衍生的铜钴/碳催化剂的制备和应用
CN114941155A (zh) * 2022-05-07 2022-08-26 南京信息工程大学 一种双功能电解池的制备工艺
CN116640033A (zh) * 2023-06-28 2023-08-25 南京理工大学 含有金属氧化物的燃速催化剂及其制备方法与应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105013512A (zh) * 2015-06-08 2015-11-04 中国科学院长春应用化学研究所 一种自支撑过渡金属硫化物催化剂及其制备方法和应用
CN105524007A (zh) * 2015-11-30 2016-04-27 山东师范大学 一种纳米Cu-有机配合物晶体的制备方法和应用

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105013512A (zh) * 2015-06-08 2015-11-04 中国科学院长春应用化学研究所 一种自支撑过渡金属硫化物催化剂及其制备方法和应用
CN105524007A (zh) * 2015-11-30 2016-04-27 山东师范大学 一种纳米Cu-有机配合物晶体的制备方法和应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Structural evolution of a metal–organic framework and derived hybrids composed of metallic cobalt and copper encapsulated in nitrogen-doped porous carbon cubes with high catalytic performance;Hui Li et al.;《CrystEngComm》;20161121;第19卷;第64-71页 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11883808B2 (en) 2017-08-30 2024-01-30 Uchicago Argonne, Llc Nanofiber electrocatalyst

Also Published As

Publication number Publication date
CN107442125A (zh) 2017-12-08

Similar Documents

Publication Publication Date Title
CN107442125B (zh) 一种碳基铜钴氧化物纳米片催化剂的制备方法和应用
Wu et al. Rational design of cobalt–nickel double hydroxides for flexible asymmetric supercapacitor with improved electrochemical performance
CN108080034B (zh) 一种基于镍基三维金属有机框架物催化剂制备方法和应用
Cheng et al. Recent progress of Sn‐based derivative catalysts for electrochemical reduction of CO2
Liu et al. A Janus cobalt nanoparticles and molybdenum carbide decorated N-doped carbon for high-performance overall water splitting
Huang et al. K2HPO4-mediated photocatalytic H2 production over NiCoP/RP heterojunction
CN107687003B (zh) 一种基于1d金属有机框架物纳米纤维催化剂的制备方法和应用
CN107999079B (zh) 一种基于Cu(II)-MOF/Ni复合材料的制备方法和应用
CN107486233B (zh) 一种氮化碳掺杂碳基钴氧化物纳米催化剂的制备方法和应用
CN105148991B (zh) 一种氮/硫/氯共掺杂多级孔碳催化剂及其制备方法
Veeramani et al. Metal organic framework derived nickel phosphide/graphitic carbon hybrid for electrochemical hydrogen generation reaction
CN107570166B (zh) 一种复合碳和过渡元素氧化物纳米催化剂制备方法和应用
He et al. Recent innovations of silk-derived electrocatalysts for hydrogen evolution reaction, oxygen evolution reaction and oxygen reduction reaction
Zhang et al. Recent development of transition metal doped carbon materials derived from biomass for hydrogen evolution reaction
CN107012473A (zh) 一种双金属复合材料及其制备方法和应用
Ma et al. Lignin-derived hierarchical porous flower-like carbon nanosheets decorated with biomass carbon quantum dots for efficient oxygen reduction
Li et al. Bimetal-MOF and bacterial cellulose-derived three-dimensional N-doped carbon sheets loaded Co/CoFe nanoparticles wrapped graphite carbon supported on porous carbon nanofibers: An efficient multifunctional electrocatalyst for Zn-air batteries and overall water splitting
Foruzin et al. Ultrasonication construction of the nano-petal NiCoFe-layered double hydroxide: An excellent water oxidation electrocatalyst
CN112481638A (zh) 生物基碳材料负载无机物复合电催化剂及其制备方法
Liu et al. Constructing heterostructured CoSe2/Ni3Se4@ N-doped carbon nanosheets/ketjen black carbon as a robust oxygen evolution electrocatalyst
CN107570211B (zh) 一种均三嗪基金属有机框架物/Ni复合材料的制备方法和应用
Xie et al. Ultrasmall Co-NiP embedded into lantern shaped composite achieved by coordination confinement phosphorization for overall water splitting
CN109301249B (zh) 一种泡沫镍原位负载SnO2纳米粒子掺杂石墨碳复合材料制备方法和应用
Wang et al. Characterization and electrocatalytic properties of electrospun Pt‐IrO2 nanofiber catalysts for oxygen evolution reaction
Keshipour et al. A Review on Hydrogen Generation by Photo‐, Electro‐, and Photoelectro‐Catalysts Based on Chitosan, Chitin, Cellulose, and Carbon Materials Obtained from These Biopolymers

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20200117

Termination date: 20200905

CF01 Termination of patent right due to non-payment of annual fee