CN110394191A - 一种mof@mof纳米纤维复合催化剂的制备方法和应用 - Google Patents

一种mof@mof纳米纤维复合催化剂的制备方法和应用 Download PDF

Info

Publication number
CN110394191A
CN110394191A CN201910812990.1A CN201910812990A CN110394191A CN 110394191 A CN110394191 A CN 110394191A CN 201910812990 A CN201910812990 A CN 201910812990A CN 110394191 A CN110394191 A CN 110394191A
Authority
CN
China
Prior art keywords
mof
btc
preparation
dabco
bdc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910812990.1A
Other languages
English (en)
Inventor
侯莹
匡轩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Jinan
Original Assignee
University of Jinan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Jinan filed Critical University of Jinan
Priority to CN201910812990.1A priority Critical patent/CN110394191A/zh
Publication of CN110394191A publication Critical patent/CN110394191A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/22Organic complexes
    • B01J31/2204Organic complexes the ligands containing oxygen or sulfur as complexing atoms
    • B01J31/2208Oxygen, e.g. acetylacetonates
    • B01J31/2226Anionic ligands, i.e. the overall ligand carries at least one formal negative charge
    • B01J31/223At least two oxygen atoms present in one at least bidentate or bridging ligand
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/33Electric or magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/58Fabrics or filaments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • B01J37/341Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation
    • B01J37/343Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation of ultrasonic wave energy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • B01J37/341Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation
    • B01J37/344Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation of electromagnetic wave energy
    • B01J37/346Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation of electromagnetic wave energy of microwave energy
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/091Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds
    • C25B11/095Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds at least one of the compounds being organic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/10Complexes comprising metals of Group I (IA or IB) as the central metal
    • B01J2531/16Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/84Metals of the iron group
    • B01J2531/845Cobalt

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Toxicology (AREA)
  • Health & Medical Sciences (AREA)
  • Optics & Photonics (AREA)
  • Inorganic Chemistry (AREA)
  • Electrochemistry (AREA)
  • Metallurgy (AREA)
  • Electromagnetism (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种MOF@MOF纳米纤维复合催化剂的制备方法以及基于该催化剂用于催化室温氮气还原成氨的应用,属于电催化技术、纳米复合材料技术领域。其主要步骤是先用间苯三甲酸配体溶液、硝酸钴溶液和碳酸钠溶液室温混合均匀,制得Co3(BTC)2·12H2O纳米纤维材料;将Co3(BTC)2纳米纤维材料与醋酸铜‑对苯二甲酸‑三乙烯二胺的混合液共混,得到Co3(BTC)2·12H2O纳米纤维外延生长[Cu2(BDC)2(dabco)]DMF.3H2O的复合材料;将该复合材料置于250 W微波炉中活化3 min,得到MOF@MOF纳米纤维复合催化剂;将该催化剂用于催化室温氮气还原成氨的应用,该催化剂的制备所用成本低,工艺简单,耗时短,有很好的工业前景。

Description

一种MOF@MOF纳米纤维复合催化剂的制备方法和应用
技术领域
本发明公开了一种MOF@MOF纳米纤维复合催化剂的制备方法以及基于该催化剂用于催化室温氮气还原成氨的应用,属于电催化技术、纳米复合材料技术等领域。
背景技术
电化学氮还原成氨反应是一种可通过可再生电力从空气和水为原料制备氨的方法。与工业Haber-Bosch工艺的氢气和氮气在高温(400-500 °C)和压力(200-300 atm)下合成氨不同,电化学氮还原成氨反应可在环境温度下用氮气和电子合成氨。尽管当前已做出了巨大的努力,但选择性地和有效地将氮还原成氨的电催化仍然不尽人意。大多数催化剂制备复杂,并且显示高的过电位,因此在水溶液中表现出有限的选择性(低于10%)和活性,因此,寻找有效的催化剂来提高反应活性和选择性是电化学氮还原反应的关键。
MOFs是近年来广泛关注的材料,因MOFs材料具有超大的比表面积与孔隙率、特殊的孔道结构、开放的金属位点,使其拥有巨大的吸附能力和负载能力;同时,MOFs材料结构可设计、可调控、结构变化十分灵活等优点。然而MOFs仍普遍存在水稳定性差和化学稳定性差等缺陷,MOFs框架结构中金属/金属配位中心的周围化学环境易发生改变是导致材料失去稳定性的直接原因。
众所周知,材料的活性和稳定性是实现工业应用的前提,为弥补这些缺陷,以MOFs作为负载前体,通过负载其他活性成分并部分热解,制备稳定负载在基材上的纳米金属颗粒、纳米金属氧化物等MOFs基复合材料,因这些材料具有更大的比表面积和孔隙率、更高的稳定性和催化效率,是MOFs材料开发应用的一个热点。
发明内容
本发明的技术任务之一是为了弥补现有技术的不足,提供一种MOF@MOF纳米纤维复合催化剂的制备方法,该制备方法所用成本低,工艺简单,耗时短,有很好的工业前景。
本发明的技术任务之二是提供所述催化剂的用途,即将该催化剂用于催化室温氮气还原成氨的应用,具有很高的催化效率、选择性和稳定性。
为实现上述目的,本发明采用的技术方案如下:
1. 一种MOF@MOF纳米纤维复合催化剂的制备方法
将0.8-1.0 mmol间苯三甲酸H3BTC配体溶于4-8 mL无水乙醇和4-8 mL水中,180 W超声1 min,得到澄清的间苯三甲酸H3BTC配体溶液;
将1.6-2.0 mmol Co(NO3)2·6H2O溶于8-16 mL H2O中,180 W超声1 min,得到澄清的硝酸钴溶液;
将1.0-1.2 mmol的醋酸铜、1.0-1.2 mmol分对苯二甲酸H2BDC配体和0.5-0.6 mmol的三乙烯二胺dabco配体与4-7 mL的N,N-二甲基甲酰胺DMF共混,得到醋酸铜-对苯二甲酸-三乙烯二胺的混合液;
将间苯三甲酸配体溶液和硝酸钴溶液室温混合均匀,并加入2.5-7.5 mL浓度为0.1mol/L的碳酸钠溶液,室温下静置5-10 min,离心分离,用水和乙醇洗涤三次,得到Co3(BTC)2·12H2O纳米纤维材料;
将Co3(BTC)2纳米纤维材料与醋酸铜-对苯二甲酸-三乙烯二胺的混合液共混,180 W水浴超声10-15 min后,离心分离,分别用水和乙醇洗涤三次,85 ℃干燥至恒重,得到Co3(BTC)2·12H2O纳米纤维外延生长[Cu2(BDC)2(dabco)]DMF.3H2O的复合材料,置于250 W微波炉中活化3 min,得到活化的Co3(BTC)2·12H2O纳米纤维外延生长[Cu2(BDC)2(dabco)]DMF.3H2O的复合材料,即MOF@MOF纳米纤维复合催化剂。
所述Co3(BTC)2·12H2O,其产率为75-80%;其基本结构单元是由3个Co2+,2个BTC3-和12个水分子构成。
所述[Cu2(BDC)2(dabco)]DMF·3H2O,其基本结构是由一个是由2个Cu2+,2个BDC2-、1个dabco分子和1个主体DMF分子和3个客体水分子构成。
2. 如上所述的制备方法制备的MOF@MOF纳米纤维复合催化剂用于催化室温氮气还原成氨的应用,步骤如下:
(1)制备工作电极
取8 mg MOF@MOF纳米纤维复合催化剂分散在含有1.5 mL乙醇和60 μL Nafion的溶液中,在180W的水浴中超声处理15 min后形成均匀的悬浮液,将10 μL该悬浊液滴涂在4 mm玻碳电极上,过夜晾干制得MOF@MOF纳米纤维复合材料工作电极;
(2)绘制标准曲线
采用氯化铵和浓度为0.1 M的KOH溶液配制系列NH3的标准溶液;
取2mL标准溶液,依次加入2 mL浓度为1.0 M的NaOH溶液、1 mL浓度为0.05 M的NaClO、0.2 mL质量分数为1%的亚硝基铁氰化钠溶液,快速摇动数次,25℃放置2 h,以UV-vis分光光度计检测该溶液657 nm波长处的吸光度峰值,绘制吸光度-浓度即A-c标准曲线;
所述1.0 M的NaOH溶液,含质量分数均为5%的水杨酸和柠檬酸钠;
(3)电催化室温固氮
将H型两室电化学电池连接在电化学工作站上,两室间用Nafion 115质子交换膜隔开,两室均加入30 mL、浓度为0.1 M的KOH溶液;采用三电极体系,步骤(1)制得的MOF@MOF纳米纤维复合材料作为工作电极、Ag/AgCl作为参比电极置于阴极室中;铂片作为辅助电极置于阳极室中;阴极室通入N2 30 min后,使用-1.2~ -1.7 V vs. Ag/AgCl还原N2固氮,取催化反应2 h的反应液,分析氨的浓度,以测试电催化室温固氮性能;
所述分析氨的浓度,方法用步骤(2),仅仅是用2mL催化反应2 h的反应液,替代步骤(2)中的2mL标准溶液,根据标准曲线计算氨的产率;
所述1.0 M的NaOH溶液含质量分数均为5%的水杨酸和柠檬酸钠。
当外加电压为 -0.3 V vs RHE时,为该催化剂室温氮气还原成NH3的速率为30-35.0 μg NH3 h−1 mg-1,法拉第效率为13.0-15.5%。
本发明有益的技术效果如下:
(1)本发明MOF@MOF纳米纤维复合催化剂的制备,是基于简单的两步法合成,一是用间苯三甲酸配体溶液、硝酸钴溶液和碳酸钠溶液室温混合均匀,制得Co3(BTC)2·12H2O纳米纤维材料;二是将Co3(BTC)2纳米纤维材料与醋酸铜-对苯二甲酸-三乙烯二胺的混合液共混,得到Co3(BTC)2·12H2O纳米纤维外延生长[Cu2(BDC)2(dabco)]DMF.3H2O的复合材料,该制备方法所用成本低,工艺简单,耗时短,有很好的工业前景。
(2)本发明将Co3(BTC)2·12H2O纳米纤维外延生长[Cu2(BDC)2(dabco)]DMF.3H2O的复合材料置于250 W微波炉中活化3 min,使催化剂的比表面积更大,暴露更多的活性位点。同时,两种MOF Co3(BTC)2和[Cu2(BDC)2(dabco)]DMF.3H2O通过外延生长的方法结合到一起,各组分协同作用,使得该复合材料催化固氮成氨活性增加,室温电催化产氨的产率更高,选择性也更好。
具体实施方式
下面结合实施例对本发明作进一步描述,但本发明的保护范围不仅局限于实施例,该领域专业人员对本发明技术方案所作的改变,均应属于本发明的保护范围内。
实施例1 一种MOF@MOF纳米纤维复合催化剂的制备方法
将0.8 mmol间苯三甲酸H3BTC配体溶于4 mL无水乙醇和4 mL水中,180 W超声1 min,得到澄清的间苯三甲酸H3BTC配体溶液;
将1.6 mmol Co(NO3)2·6H2O溶于8 mL H2O中,180 W超声1 min,得到澄清的硝酸钴溶液;
将1.0 mmol的醋酸铜、1.0 mmol分对苯二甲酸H2BDC配体和0.5 mmol的三乙烯二胺dabco配体与4 mL的N,N-二甲基甲酰胺DMF共混,得到醋酸铜-对苯二甲酸-三乙烯二胺的混合液;
将间苯三甲酸配体溶液和硝酸钴溶液室温混合均匀,并加入2.5 mL浓度为0.1 mol/L的碳酸钠溶液,室温下静置5 min,离心分离,用水和乙醇洗涤三次,得到Co3(BTC)2·12H2O纳米纤维材料,产率为75%;
将Co3(BTC)2纳米纤维材料与醋酸铜-对苯二甲酸-三乙烯二胺的混合液共混,180 W水浴超声10 min后,离心分离,分别用水和乙醇洗涤三次,85 ℃干燥至恒重,得到Co3(BTC)2·12H2O纳米纤维外延生长[Cu2(BDC)2(dabco)]DMF.3H2O的复合材料,置于250 W微波炉中活化3 min,得到活化的Co3(BTC)2·12H2O纳米纤维外延生长[Cu2(BDC)2(dabco)]DMF.3H2O的复合材料,即MOF@MOF纳米纤维复合催化剂;
所述Co3(BTC)2·12H2O,其基本结构单元是由3个Co2+,2个BTC3-和12个水分子构成;
所述[Cu2(BDC)2(dabco)]DMF·3H2O,其基本结构是由一个是由2个Cu2+,2个BDC2-、1个dabco分子和1个主体DMF分子和3个客体水分子构成。
实施例2 一种MOF@MOF纳米纤维复合催化剂的制备方法
将0.9 mmol间苯三甲酸H3BTC配体溶于6 mL无水乙醇和6 mL水中,180 W超声1 min,得到澄清的间苯三甲酸H3BTC配体溶液;
将1.8 mmol Co(NO3)2·6H2O溶于12 mL H2O中,180 W超声1 min,得到澄清的硝酸钴溶液;
将1.1 mmol的醋酸铜、1.1 mmol分对苯二甲酸H2BDC配体和0.55 mmol的三乙烯二胺dabco配体与6 mL的N,N-二甲基甲酰胺DMF共混,得到醋酸铜-对苯二甲酸-三乙烯二胺的混合液;
将间苯三甲酸配体溶液和硝酸钴溶液室温混合均匀,并加入5.0 mL浓度为0.1 mol/L的碳酸钠溶液,室温下静置7 min,离心分离,用水和乙醇洗涤三次,得到Co3(BTC)2·12H2O纳米纤维材料,产率为77%;
将Co3(BTC)2纳米纤维材料与醋酸铜-对苯二甲酸-三乙烯二胺的混合液共混,180 W水浴超声12 min后,离心分离,分别用水和乙醇洗涤三次,85 ℃干燥至恒重,得到Co3(BTC)2·12H2O纳米纤维外延生长[Cu2(BDC)2(dabco)]DMF.3H2O的复合材料,置于250 W微波炉中活化3 min,得到活化的Co3(BTC)2·12H2O纳米纤维外延生长[Cu2(BDC)2(dabco)]DMF.3H2O的复合材料,即MOF@MOF纳米纤维复合催化剂;
所述Co3(BTC)2·12H2O和[Cu2(BDC)2(dabco)]DMF·3H2O的结构,同实施例1。
实施例3 一种MOF@MOF纳米纤维复合催化剂的制备方法
将1.0 mmol间苯三甲酸H3BTC配体溶于8 mL无水乙醇和8 mL水中,180 W超声1 min,得到澄清的间苯三甲酸H3BTC配体溶液;
将2.0 mmol Co(NO3)2·6H2O溶16 mL H2O中,180 W超声1 min,得到澄清的硝酸钴溶液;
将1.2 mmol的醋酸铜、1.2 mmol分对苯二甲酸H2BDC配体和0.6 mmol的三乙烯二胺dabco配体与7 mL的N,N-二甲基甲酰胺DMF共混,得到醋酸铜-对苯二甲酸-三乙烯二胺的混合液;
将间苯三甲酸配体溶液和硝酸钴溶液室温混合均匀,并加入7.5 mL浓度为0.1 mol/L的碳酸钠溶液,室温下静置10 min,离心分离,用水和乙醇洗涤三次,得到Co3(BTC)2·12H2O纳米纤维材料,产率为80%;
将Co3(BTC)2纳米纤维材料与醋酸铜-对苯二甲酸-三乙烯二胺的混合液共混,180 W水浴超声15 min后,离心分离,分别用水和乙醇洗涤三次,85 ℃干燥至恒重,得到Co3(BTC)2·12H2O纳米纤维外延生长[Cu2(BDC)2(dabco)]DMF.3H2O的复合材料,置于250 W微波炉中活化3 min,得到活化的Co3(BTC)2·12H2O纳米纤维外延生长[Cu2(BDC)2(dabco)]DMF.3H2O的复合材料,即MOF@MOF纳米纤维复合催化剂;
所述Co3(BTC)2·12H2O和[Cu2(BDC)2(dabco)]DMF·3H2O的结构,同实施例1。
实施例4
实施例1或实施例2或实施例3制备的MOF@MOF纳米纤维复合催化剂用于催化室温氮气还原成氨的应用
(1)制备工作电极
取8 mg MOF@MOF纳米纤维复合催化剂分散在含有1.5 mL乙醇和60 μL Nafion的溶液中,在超声处理15 min后形成均匀的悬浮液,将10 μL该悬浊液滴涂在4 mm玻碳电极上,过夜晾干制得MOF@MOF纳米纤维复合材料工作电极;
(2)绘制标准曲线
采用氯化铵和浓度为0.1 M的KOH溶液配制系列NH3的标准溶液;
取2mL标准溶液,依次加入2 mL浓度为1.0 M的NaOH溶液、1 mL浓度为0.05 M的NaClO、0.2 mL质量分数为1%的亚硝基铁氰化钠溶液,快速摇动数次,25℃放置2 h,以UV-vis分光光度计检测该溶液657 nm波长处的吸光度峰值,绘制吸光度-浓度即A-c标准曲线;
所述1.0 M的NaOH溶液,含质量分数均为5%的水杨酸和柠檬酸钠;
(3)电催化室温固氮
将H型两室电化学电池连接在电化学工作站上,两室间用Nafion 115质子交换膜隔开,两室均加入30 mL、浓度为0.1 M的KOH溶液;采用三电极体系,步骤(1)制得的MOF@MOF纳米纤维复合材料作为工作电极、Ag/AgCl作为参比电极置于阴极室中;铂片作为辅助电极置于阳极室中;阴极室通入N2 30 min后,使用-1.2~ -1.7 V vs. Ag/AgCl还原N2固氮,取催化反应2 h的反应液,分析氨的浓度,以测试电催化室温固氮性能;
所述分析氨的浓度,方法用步骤(2),仅仅是用2mL催化反应2 h的反应液,替代步骤(2)中的2mL标准溶液,根据标准曲线计算氨的产率;
所述1.0 M的NaOH溶液含质量分数均为5%的水杨酸和柠檬酸钠。
(4)当外加电压为 -0.3 V vs RHE时,实施例1制备的催化剂室温氮气还原成NH3的速率为30 μg NH3 h−1 mg-1,法拉第效率为13%;实施例2制备的催化剂室温氮气还原成NH3的速率为35.0 μg NH3 h−1 mg-1,法拉第效率为15.5%;实施例3制备的催化剂室温氮气还原成NH3的速率为33.0 μg NH3 h−1 mg-1,法拉第效率为14.6%。

Claims (5)

1.一种MOF@MOF纳米纤维复合催化剂的制备方法,其特征在于,步骤如下:
将0.8-1.0 mmol间苯三甲酸H3BTC配体溶于4-8 mL无水乙醇和4-8 mL水中,180 W超声1min,得到澄清的间苯三甲酸H3BTC配体溶液;
将1.6-2.0 mmol Co(NO3)2·6H2O溶于8-16 mL H2O中,180 W超声1 min,得到澄清的硝酸钴溶液;
将1.0-1.2 mmol的醋酸铜、1.0-1.2 mmol对苯二甲酸H2BDC配体和0.5-0.6 mmol的三乙烯二胺dabco配体与4-7 mL的N,N-二甲基甲酰胺DMF共混,得到醋酸铜-对苯二甲酸-三乙烯二胺的混合液;
将间苯三甲酸配体溶液和硝酸钴溶液室温混合均匀,并加入2.5-7.5 mL浓度为0.1mol·L-1的碳酸钠溶液,室温下静置5-10 min,离心分离,用水和乙醇洗涤三次,得到Co3(BTC)2·12H2O纳米纤维材料;
将Co3(BTC)2纳米纤维材料与醋酸铜-对苯二甲酸-三乙烯二胺的混合液共混,180 W水浴超声10-15 min后,离心分离,分别用水和乙醇洗涤三次,85 ℃干燥至恒重,得到Co3(BTC)2·12H2O纳米纤维外延生长[Cu2(BDC)2(dabco)]DMF.3H2O的复合材料;
将得到的复合材料置于250 W微波炉中活化3 min,得到活化的Co3(BTC)2·12H2O纳米纤维外延生长[Cu2(BDC)2(dabco)]DMF.3H2O的复合材料,即MOF@MOF纳米纤维复合催化剂。
2.根据权利要求1所述的一种MOF@MOF纳米纤维复合催化剂的制备方法,其特征在于,所述Co3(BTC)2·12H2O,其产率为75-80%。
3.根据权利要求1所述的一种MOF@MOF纳米纤维复合催化剂的制备方法,其特征在于,所述Co3(BTC)2·12H2O,其基本结构单元是由3个Co2+,2个BTC3-和12个水分子构成。
4.根据权利要求1所述的一种MOF@MOF纳米纤维复合催化剂的制备方法,其特征在于,所述[Cu2(BDC)2(dabco)]DMF·3H2O,其基本结构是由一个是由2个Cu2+,2个BDC2-、1个dabco分子和1个主体DMF分子和3个客体水分子构成。
5.根据权利要求1所述的制备方法制备的MOF@MOF纳米纤维复合催化剂用于催化室温氮气还原成氨的应用。
CN201910812990.1A 2019-08-30 2019-08-30 一种mof@mof纳米纤维复合催化剂的制备方法和应用 Pending CN110394191A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910812990.1A CN110394191A (zh) 2019-08-30 2019-08-30 一种mof@mof纳米纤维复合催化剂的制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910812990.1A CN110394191A (zh) 2019-08-30 2019-08-30 一种mof@mof纳米纤维复合催化剂的制备方法和应用

Publications (1)

Publication Number Publication Date
CN110394191A true CN110394191A (zh) 2019-11-01

Family

ID=68329562

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910812990.1A Pending CN110394191A (zh) 2019-08-30 2019-08-30 一种mof@mof纳米纤维复合催化剂的制备方法和应用

Country Status (1)

Country Link
CN (1) CN110394191A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111330645A (zh) * 2020-03-12 2020-06-26 济南大学 一种降解对硝基苯酚和同时室温固氮的双功能mof纳米催化剂制备方法和应用
CN112981429A (zh) * 2021-02-24 2021-06-18 江南大学 一种金属有机框架与氢氧化物异质结电催化剂及其原位制备法与应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107442125A (zh) * 2017-09-05 2017-12-08 济南大学 一种碳基铜钴氧化物纳米片催化剂的制备方法和应用
CN107687003A (zh) * 2017-09-05 2018-02-13 济南大学 一种基于1d金属有机框架物纳米纤维催化剂的制备方法和应用
CN109622054A (zh) * 2019-02-12 2019-04-16 济南大学 一种半导体纳米粒子/碳点多孔整体催化剂的制备方法和应用
CN109622053A (zh) * 2019-02-12 2019-04-16 济南大学 一种CuO纳米粒子掺杂Cu-MOF/碳点复合催化剂的制备方法和应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107442125A (zh) * 2017-09-05 2017-12-08 济南大学 一种碳基铜钴氧化物纳米片催化剂的制备方法和应用
CN107687003A (zh) * 2017-09-05 2018-02-13 济南大学 一种基于1d金属有机框架物纳米纤维催化剂的制备方法和应用
CN109622054A (zh) * 2019-02-12 2019-04-16 济南大学 一种半导体纳米粒子/碳点多孔整体催化剂的制备方法和应用
CN109622053A (zh) * 2019-02-12 2019-04-16 济南大学 一种CuO纳米粒子掺杂Cu-MOF/碳点复合催化剂的制备方法和应用

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111330645A (zh) * 2020-03-12 2020-06-26 济南大学 一种降解对硝基苯酚和同时室温固氮的双功能mof纳米催化剂制备方法和应用
CN112981429A (zh) * 2021-02-24 2021-06-18 江南大学 一种金属有机框架与氢氧化物异质结电催化剂及其原位制备法与应用

Similar Documents

Publication Publication Date Title
Liang et al. A two-dimensional MXene-supported metal–organic framework for highly selective ambient electrocatalytic nitrogen reduction
CN107486233B (zh) 一种氮化碳掺杂碳基钴氧化物纳米催化剂的制备方法和应用
CN109622053B (zh) 一种CuO纳米粒子掺杂Cu-MOF/碳点复合催化剂的制备方法和应用
CN109759143B (zh) 一种Co3O4 NP/CD/Co-MOF复合材料的制备方法和应用
CN108579788A (zh) 一种复合型钴钒氮化物纳米线电催化剂及其制备方法和应用
CN109622054B (zh) 一种半导体纳米粒子/碳点多孔整体催化剂的制备方法和应用
CN109280936B (zh) CuO电极制备方法及电催化合成醇类化合物的应用
CN107687003B (zh) 一种基于1d金属有机框架物纳米纤维催化剂的制备方法和应用
CN109692711A (zh) 一种CeO2和Co3O4杂化Ce-MOF/Co-MOF复合催化剂的制备方法及应用
Yao et al. Dual-phase engineering of MoN/Co4N with tailored electronic structure for enhanced hydrogen evolution
He et al. Hydrophobicity modulation on a ferriporphyrin-based metal–organic framework for enhanced ambient electrocatalytic nitrogen fixation
CN110354890A (zh) 一种基于RuCl3/Cu-MOF复合催化剂的制备方法和应用
CN109647407A (zh) 一种基于双金属mof纳米晶复合材料的制备方法和应用
CN110354891A (zh) 一种基于Ce-MOF的复合催化剂的制备方法及应用
CN111359603A (zh) 一种铋基自支撑电催化剂及其制备方法和在氮气还原产氨中的应用
CN109772408A (zh) 一种镍-氮共掺杂的碳电催化剂及其制备方法和应用
CN107359356B (zh) 一种直接甲醇燃料电池阳极催化剂及制备方法
CN109647408B (zh) 一种基于Co-MOF的多孔复合自支撑催化剂的制备方法和应用
CN105789639A (zh) 一种燃料电池用金团簇/碳纳米管复合催化剂的制备方法
CN109082676B (zh) 一种Pd/VN空心纳米球电催化剂及其制备方法和应用
CN102744058B (zh) 一种Pd/TiO2@CNT催化剂及其制备方法
CN110394191A (zh) 一种mof@mof纳米纤维复合催化剂的制备方法和应用
CN109675640A (zh) 一种碳氮基铁钴氧化物纳米簇mof催化剂的制备方法和应用
CN112663076A (zh) 一种具有中空结构的铁掺杂二硒化钼纳米材料及其制备方法与电催化氮还原应用
CN113699549B (zh) 一种钌&锡双金属氧化物电催化材料及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20191101

WD01 Invention patent application deemed withdrawn after publication