CN107687003A - 一种基于1d金属有机框架物纳米纤维催化剂的制备方法和应用 - Google Patents

一种基于1d金属有机框架物纳米纤维催化剂的制备方法和应用 Download PDF

Info

Publication number
CN107687003A
CN107687003A CN201710792058.8A CN201710792058A CN107687003A CN 107687003 A CN107687003 A CN 107687003A CN 201710792058 A CN201710792058 A CN 201710792058A CN 107687003 A CN107687003 A CN 107687003A
Authority
CN
China
Prior art keywords
nano
fiber
metal
organic frame
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710792058.8A
Other languages
English (en)
Other versions
CN107687003B (zh
Inventor
匡轩
刘昭轩
赵璐
董彦芳
魏琴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Jinan
Original Assignee
University of Jinan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Jinan filed Critical University of Jinan
Priority to CN201710792058.8A priority Critical patent/CN107687003B/zh
Publication of CN107687003A publication Critical patent/CN107687003A/zh
Application granted granted Critical
Publication of CN107687003B publication Critical patent/CN107687003B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/091Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种基于1D金属有机框架物纳米纤维催化剂的制备方法以及基于该催化剂电解水析氧的应用,属于纳米催化、纳米材料、金属有机框架物材料技术领域。其主要步骤是将天冬氨酸碱溶液与硝酸铜‑硝酸钴溶液室温共混后,生成晶体,抽滤、干燥,制得Cu‑MOF纳米纤维负载Co(II)离子即CuCo‑MOF纳米纤维;将CuCo‑MOF纳米纤维空气氛加热制得碳基铜钴氧化物纳米纤维催化剂,即基于1D金属有机框架物纳米纤维催化剂。该催化剂制备所用原料成本低,制备工艺简单,反应能耗低,具有工业应用前景。该催化剂用于高效催化电解水析氧,具有良好的析氧电催化活性与电化学稳定性。

Description

一种基于1D金属有机框架物纳米纤维催化剂的制备方法和 应用
技术领域
本发明涉及一种基于1D金属有机框架物纳米纤维催化剂的制备方法以及基于该催化剂电解水析氧的应用,属于纳米催化、纳米材料、金属有机框架物材料技术领域。
背景技术
随着社会经济的高速发展和世界人口的不断增长,人类对化石燃料,如煤和石油等的耗用,给现有的能源储备和自然环境带来了前所未有的压力和挑战。为应对新生的能源消费以及现有人口生活质量提高的要求,世界各国均亟待寻找到可持续使用的清洁能源载体。电催化直接分解水制备氢气被认为实现该过程有效的方式。电催化分解水反应包括析氢(hydrogen evolution reaction,HER)和析氧(oxygen evolution reaction,OER)两个半反应,来自电阻、反应以及传输三个方面系统本征的能量损耗以及现有催化剂的价格、活性和稳定性方面的因素,都极大地限制了其推广和广泛应用。尽管析氧仅是一个副反应,但是为了驱动析氧反应给系统运行带来的功耗损失却最大,成为提高整体效率的瓶颈。寻找廉价易得且性能稳定的新型析氧电催化剂,对长远发展氢能、减小环境污染乃至缓解世界范围内的能源问题,具有广泛且重要的现实意义。
在很多已探索的体系中,二氧化铱(IrO2)和二氧化钌(RuO2)被认为最有效。然而,他们稀缺和昂贵的价格,限制了其广泛实际的应用,为此,开发高效、价廉且地球含量丰富的非贵金属析氧催化剂,降低析氧电消耗成为一个机遇和挑战。
价廉的铁、钴、镍催化剂,是已报道实现高活性析氧有前景的催化剂。此外,碳基或杂原子掺杂的复合材料也是析氧催化剂的创新性选择。除了材料组成之外,催化剂的活性和其形态密切相关。为此,研究开发具有资源丰富的新组成和新形态催化剂,对实现高活性析氧具有重要的意义。
作为一类新型多孔晶体材料,近年来,金属有机框架物(MOFs)在气体储存、分离、催化、识别和药物传输等领域获得了广泛的应用。MOFs周期性的多孔结构、高的比表面积以及结构的多样性,提供了以其为前体构建碳或(和)金属基纳米材料的独特优势。目前,源于MOFs前体或模板的功能材料的研究日益增多,例如,多孔碳、金属氧化物、金属/碳和金属氧化物/碳纳米材料已被报道,所构建的3D金属氧化物,用于高效超级电容器、锂离子电池和氧还原,已显现出优异的性质。2014年,Chaikittisilp和他的团队首次报道了以MOFs为前体制备电催化剂用于分解水的报道[Chaikittisilp, W., Torad, N. L., Li等,Chem.Eur. J., 2014, 20, 4217-4221],他们采用类沸石Co-MOF (ZIF-9)为前体制备纳米多孔CoxOy-C复合材料电催化OER。因直接高温热解MOFs前体的方法常常导致框架倒塌和团聚,为此,目前常采用的一个创新性策略是利用例如石墨烯、多壁碳纳米管(multiwalled carbonnanotubes,CNTs)的纳米碳材负载MOFs,再通过高温热解制备碳基复合材料电催化剂,以阻止产物团聚并提高其比表面积。例如,2016年,Aijaz和他的团队[Aijaz, A., Masa, J., Rösler, C.等,.Angew. Chem. Int. Ed., 2016, 55, 4087-4091]将Co-MOF在H2氛中高温还原并氧化煅烧,制得了一种Co@Co3O4纳米粒子镶嵌在碳纳米管接枝的氮掺杂的碳多面体高活性析氧催化剂。虽然MOFs种类繁多,但易于制备且转变为可控形态的电催化剂MOFs前体,数量有限,目前,以三维(3D) MOFs微晶或纳米晶体为前体制备析氧催化剂的研究已有报道,据我们所知,基于一维MOFs纳米纤维制备析氧催化剂的研究未见报道。
钴元素地球含量丰富,其氧化物价格低廉,然而,本体钴氧化物导电性差,其电催化析氧活性也差。本开发首先制备了Cu-MOF纳米纤维,在此基础上采用一步室温工艺,制备了负载Co2+纳米纤维CuCo-MOF,以该纳米纤维为前体,在空气中热解,制备了碳基过渡金属复合氧化物纳米纤维高效催化剂。
发明内容
本发明的技术任务之一是为了弥补现有技术的不足,提供一种基于1D金属有机框架物纳米纤维催化剂,即碳基铜钴氧化物纳米纤维催化剂的制备方法,该方法所用原料成本低,制备工艺简单,反应能耗低,具有工业应用前景。
本发明的技术任务之二是提供所述碳基铜钴氧化物纳米纤维催化剂的用途,即将该碳基铜钴氧化物纳米纤维用于高效催化电解水析氧,该催化剂具有良好的析氧电催化活性与电化学稳定性。
为实现上述目的,本发明采用的技术方案如下:
1. 一种基于1D金属有机框架物纳米纤维催化剂的制备方法,步骤如下:
将硝酸铜和硝酸钴共溶于15-18 mL水,得到蓝色澄清的硝酸铜-硝酸钴混合液;将0.40mmol 的L-天冬氨酸与0.50-0.58 mmol氢氧化钠溶于2.0 -4.0 mL水,得到澄清的天冬氨酸碱溶液;将天冬氨酸碱溶液加入到硝酸铜-硝酸钴混合液中,室温5min,生成沉淀;1h后抽滤,60℃干燥,制得Cu-MOF纳米纤维负载Co(II) 离子即CuCo-MOF纳米纤维;
将CuCo-MOF纳米纤维置于管式炉加热,制得碳基铜钴氧化物纳米纤维催化剂,即基于1D金属有机框架物纳米纤维催化剂;
1)所述硝酸铜和硝酸钴,量比为4:5—1:9,总量为0.63—3.28 mmol;
2)所述Cu-MOF纳米纤维,属金属有机框架物,化学式为[CuL(H2O)]n,L为天冬氨酸H2L的L(II) 离子;Cu-MOF纳米纤维的一个单元结构,由一个Cu(II)离子中心、一个L(II) 离子和一个H2O分子构成;
3)所述CuCo-MOF纳米纤维,是由Cu-MOF双纳米线以及3-10个纳米线负载Co(II) 离子沿纵向排列组成,纤维内纳米线间结合紧密,纳米线间晶界清晰可见,纤维表面沿纵向凹凸有序,凹凸尺寸不超过100 nm,纤维纵向最长可达1mm,直径宽约为80-600nm,纤维的横向裂纹也清晰可见;Cu和Co 元素均匀分布。
所述碳基铜钴氧化物纳米纤维催化剂,纵向长度可达1mm,纤维径宽为90-120 nm;
4)所述基于1D金属有机框架物纳米纤维催化剂,是CuO和Co2O3半导体纳米粒子负载在碳微晶上构成的纳米纤维复合材料。
5)所述CuCo-MOF纳米纤维置于管式炉加热,是在空气氛下进行,升温速率为 3-5℃/min,加热至250-300 ℃,保温1.5-2.5 h,然后,以 2 ℃/ min 降温速率冷却到室温。
2. 上述基于1D金属有机框架物的纳米纤维催化剂作为电解水析氧催化剂的应用,步骤如下:
将6 mg 基于1D金属有机框架物的纳米纤维催化剂分散于250 μL乙醇、720 μL 水以及30 μL、5 wt%全氟化树脂溶液中,室温120 W至少超声10-15 min,制得均匀混合液;滴加 6μL该混合液到玻碳电极上,室温干燥,制得基于1D金属有机框架物的纳米纤维催化剂工作电极;
使用三电极电化学工作站,基于1D金属有机框架物的纳米纤维催化剂工作电极,Pt 片(5 mm×5 mm×0.1 mm)为对电极,Ag/AgCl电极为参比电极,在电解液为 0.5 M KOH水溶液中测试电催化分解水性能。
上述基于1D金属有机框架物的纳米纤维催化剂电解水析氧,当电流密度J=10 mA/cm2时,电位为1.53 V(vs RHE);塔菲尔斜率为73 mV dec-1,均说明该材料高效的析氧催化活性;循环 500 次前后,该类材料极化曲线没有发现明显的变化,表明催化剂具有良好的稳定性。
本发明的有益的技术效果:
1. 本发明获得的基于1D金属有机框架物纳米纤维催化剂是由一维金属有机框架物CuCo-MOF纳米纤维,空气氛条件250-300℃加热热解生成,制备过程工艺简单,简单易控,产物制备效率高,易于工业化。
2. 本发明基于1D金属有机框架物的纳米纤维,形貌规整、单一分散,比表面积高。由于该催化剂是由CuO和Co2O3半导体纳米粒子负载在碳微晶上构成的纳米纤维,暴露了更多且不同的活性位点,发挥了CuO、Co2O3半导体纳米粒子以及碳微晶的协同作用,使得基于该复合材料的催化析氧,催化效率高且稳定性好。
具体实施方式
下面结合实施例对本发明作进一步描述,但本发明的保护范围不仅局限于实施例,该领域专业人员对本发明技术方案所作的改变,均应属于本发明的保护范围内。
实施例1
1. 一种基于1D金属有机框架物纳米纤维催化剂的制备方法
将量比为4:5、总量为0.63 mmol的硝酸铜和硝酸钴共溶于15 mL水,得到蓝色澄清的硝酸铜-硝酸钴混合液;将0.40 mmol 的L-天冬氨酸与0.50 mmol氢氧化钠溶于2.0mL水,得到澄清的天冬氨酸碱溶液;将天冬氨酸碱溶液加入到硝酸铜-硝酸钴混合液中,室温5min,生成沉淀;1h后抽滤,60℃干燥,制得Cu-MOF纳米纤维负载Co(II) 离子即CuCo-MOF纳米纤维;
将CuCo-MOF纳米纤维置于管式炉中,在空气氛下加热,升温速率为 3-5℃/min,加热至250℃,保温1.5 h,然后,以 2℃/ min 降温速率冷却到室温,制得碳基铜钴氧化物纳米纤维催化剂,即基于1D金属有机框架物纳米纤维催化剂。
实施例2
1. 一种基于1D金属有机框架物纳米纤维催化剂的制备方法
将量比为1:9、总量为3.28 mmol的硝酸铜和硝酸钴共溶于18 mL水,得到蓝色澄清的硝酸铜-硝酸钴混合液;将0.40 mmol 的L-天冬氨酸与0.58 mmol氢氧化钠溶于4.0 mL水,得到澄清的天冬氨酸碱溶液;将天冬氨酸碱溶液加入到硝酸铜-硝酸钴混合液中,室温5min,生成沉淀;1h后抽滤,60℃干燥,制得Cu-MOF纳米纤维负载Co(II) 离子即CuCo-MOF纳米纤维;
将CuCo-MOF纳米纤维置于管式炉中,在空气氛下,升温速率为 3-5℃/min,加热至300℃,保温2.5 h,然后,以 2℃/ min 降温速率冷却到室温,制得碳基铜钴氧化物纳米纤维催化剂,即基于1D金属有机框架物纳米纤维催化剂。
实施例3
1. 一种基于1D金属有机框架物纳米纤维催化剂的制备方法,步骤如下:
将量比为3:7、总量为2.0 mmol的硝酸铜和硝酸钴共溶于17 mL水,得到蓝色澄清的硝酸铜-硝酸钴混合液;将0.40 mmol 的L-天冬氨酸与0.55 mmol氢氧化钠溶于3.0 mL水,得到澄清的天冬氨酸碱溶液;将天冬氨酸碱溶液加入到硝酸铜-硝酸钴混合液中,室温5min,生成沉淀;1h后抽滤,60℃干燥,制得Cu-MOF纳米纤维负载Co(II) 离子即CuCo-MOF纳米纤维;
将CuCo-MOF纳米纤维置于管式炉中。在空气氛下,升温速率为 3-5℃/min,加热至270℃,保温2 h,然后,以 2℃/ min 降温速率冷却到室温,制得碳基铜钴氧化物纳米纤维催化剂,即基于1D金属有机框架物纳米纤维催化剂。
实施例4
实施例1-3所述的Cu-MOF纳米纤维,化学式为[CuL(H2O)]n,L为天冬氨酸H2L的L(II)离子;Cu-MOF纳米纤维的一个单元结构,由一个Cu(II)离子中心、一个L(II) 离子和一个H2O分子构成;
所述CuCo-MOF纳米纤维,是由Cu-MOF双纳米线以及3-10个纳米线负载Co(II) 离子沿纵向排列组成,纤维内纳米线间结合紧密,纳米线间晶界清晰可见,纤维表面沿纵向凹凸有序,凹凸尺寸不超过100 nm,纤维纵向最长可达1mm,直径宽约为80-600nm,纤维的横向裂纹也清晰可见;Cu和Co 元素均匀分布;
所述基于1D金属有机框架物纳米纤维催化剂,纵向长度可达1mm,纤维径宽为90-120nm,是CuO和Co2O3半导体纳米粒子负载在碳微晶上构成的纳米纤维复合材料。
实施例5 基于1D金属有机框架物纳米纤维催化剂作为电解水析氧催化剂的应用
分别称取实施例1-3制得的6mg基于1D金属有机框架物纳米纤维催化剂,分散于250μL乙醇、720μL 水以及30μL、5 wt%全氟化树脂溶液中,室温120W至少超声10-15min,制得均匀混合液;滴加 6μL该混合液到玻碳电极上,室温干燥,制得基于1D金属有机框架物纳米纤维工作电极;
使用三电极电化学工作站,基于1D金属有机框架物纳米纤维工作电极,Pt 片 (5 mm×5 mm×0.1 mm)为对电极,Ag/AgCl电极为参比电极,在电解液为 0.5 M KOH水溶液中测试电催化分解水性能;
上述基于1D金属有机框架物纳米纤维工作电极电解水析氧,当电流密度J=10mA/cm2时,电位为1.53 V(vs RHE),塔菲尔斜率为73mV dec-1,说明该材料高效的析氧催化活性;循环 500 次前后,该类材料极化曲线没有发现明显的变化,表明催化剂具有良好的稳定性。。

Claims (8)

1.一种基于1D金属有机框架物纳米纤维催化剂的制备方法,其特征在于,步骤如下:
将硝酸铜和硝酸钴共溶于15-18 mL水,得到蓝色澄清的硝酸铜-硝酸钴混合液;将0.40mmol 的L-天冬氨酸与0.50-0.58 mmol氢氧化钠溶于2.0 -4.0 mL水,得到澄清的天冬氨酸碱溶液;将天冬氨酸碱溶液加入到硝酸铜-硝酸钴混合液中,室温5min,生成沉淀;1h后抽滤,60℃干燥,制得Cu-MOF纳米纤维负载Co(II) 离子即CuCo-MOF纳米纤维;
将CuCo-MOF纳米纤维置于管式炉加热,制得碳基铜钴氧化物纳米纤维催化剂,即基于1D金属有机框架物纳米纤维催化剂。
2.如权利要求1所述的一种基于1D金属有机框架物纳米纤维催化剂的制备方法,其特征在于,所述硝酸铜和硝酸钴,量比为4:5—1:9,总量为0.63—3.28 mmol。
3.如权利要求1所述的一种基于1D金属有机框架物纳米纤维催化剂的制备方法,其特征在于,所述Cu-MOF纳米纤维,属金属有机框架物,化学式为[CuL(H2O)]n,L为天冬氨酸H2L的L(II) 离子;Cu-MOF纳米纤维的一个单元结构,由一个Cu(II)离子中心、一个L(II) 离子和一个H2O分子构成。
4.如权利要求1所述的一种基于1D金属有机框架物纳米纤维催化剂的制备方法,其特征在于,所述CuCo-MOF纳米纤维,是由Cu-MOF双纳米线以及3-10个纳米线负载Co(II) 离子沿纵向排列组成,纤维内纳米线间结合紧密,纳米线间晶界清晰可见,纤维表面沿纵向凹凸有序,凹凸尺寸不超过100 nm,纤维纵向最长可达1mm,直径宽约为80-600nm,纤维的横向裂纹也清晰可见;Cu和Co 元素均匀分布。
5.如权利要求1所述的一种基于1D金属有机框架物纳米纤维催化剂的制备方法,其特征在于,所述碳基铜钴氧化物纳米纤维催化剂,纵向长度可达1mm,纤维径宽为90-120 nm。
6.如权利要求1所述的一种基于1D金属有机框架物纳米纤维催化剂的制备方法,其特征在于,所述基于1D金属有机框架物纳米催化剂,是CuO和Co2O3半导体纳米粒子负载在碳微晶上构成的纳米纤维复合材料。
7.如权利要求1所述的一种基于1D金属有机框架物纳米纤维催化剂的制备方法,其特征在于,所述CuCo-MOF纳米纤维置于管式炉加热,是在空气氛下进行,升温速率为 3-5℃/min,加热至250-300℃,保温1.5-2.5 h,然后,以 2℃/ min 降温速率冷却到室温。
8.如权利要求1所述的制备方法制备的基于1D金属有机框架物的纳米纤维催化剂作为电解水析氧催化剂的应用。
CN201710792058.8A 2017-09-05 2017-09-05 一种基于1d金属有机框架物纳米纤维催化剂的制备方法和应用 Expired - Fee Related CN107687003B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710792058.8A CN107687003B (zh) 2017-09-05 2017-09-05 一种基于1d金属有机框架物纳米纤维催化剂的制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710792058.8A CN107687003B (zh) 2017-09-05 2017-09-05 一种基于1d金属有机框架物纳米纤维催化剂的制备方法和应用

Publications (2)

Publication Number Publication Date
CN107687003A true CN107687003A (zh) 2018-02-13
CN107687003B CN107687003B (zh) 2019-03-12

Family

ID=61156046

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710792058.8A Expired - Fee Related CN107687003B (zh) 2017-09-05 2017-09-05 一种基于1d金属有机框架物纳米纤维催化剂的制备方法和应用

Country Status (1)

Country Link
CN (1) CN107687003B (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108486605A (zh) * 2018-03-14 2018-09-04 济南大学 一种具有优异电解水性能的碳包覆硒化镍钴纳米材料及其制备方法
CN109134518A (zh) * 2018-08-30 2019-01-04 济南大学 一种金属有机框架物Cd-MOF晶体材料及其制备方法和应用
CN109647407A (zh) * 2019-02-12 2019-04-19 济南大学 一种基于双金属mof纳米晶复合材料的制备方法和应用
CN109675640A (zh) * 2019-02-12 2019-04-26 济南大学 一种碳氮基铁钴氧化物纳米簇mof催化剂的制备方法和应用
CN110057893A (zh) * 2019-05-05 2019-07-26 济南大学 一种mof/高分子核壳纳米纤维复合材料的制备方法和应用
CN110394191A (zh) * 2019-08-30 2019-11-01 济南大学 一种mof@mof纳米纤维复合催化剂的制备方法和应用
CN113244961A (zh) * 2021-05-24 2021-08-13 上海师范大学 双金属CoCu-MOF可见光催化剂及其制备方法和应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104151336A (zh) * 2014-08-08 2014-11-19 复旦大学 一种多级孔结构的金属有机框架化合物的制备方法
CN105327714A (zh) * 2015-11-30 2016-02-17 山东师范大学 一种纳米Cu-有机配合物/Ag复合材料的制备方法和应用
CN105524007A (zh) * 2015-11-30 2016-04-27 山东师范大学 一种纳米Cu-有机配合物晶体的制备方法和应用
CN105566654A (zh) * 2016-01-28 2016-05-11 浙江省肿瘤医院 一维结构金属有机框架化合物及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104151336A (zh) * 2014-08-08 2014-11-19 复旦大学 一种多级孔结构的金属有机框架化合物的制备方法
CN105327714A (zh) * 2015-11-30 2016-02-17 山东师范大学 一种纳米Cu-有机配合物/Ag复合材料的制备方法和应用
CN105524007A (zh) * 2015-11-30 2016-04-27 山东师范大学 一种纳米Cu-有机配合物晶体的制备方法和应用
CN105566654A (zh) * 2016-01-28 2016-05-11 浙江省肿瘤医院 一维结构金属有机框架化合物及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
INHAR IMAZ.ET AL.: ""Amino Acid Based Metal-Organic Nanofibers"", 《J.AM.CHEM.SOC.》 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108486605A (zh) * 2018-03-14 2018-09-04 济南大学 一种具有优异电解水性能的碳包覆硒化镍钴纳米材料及其制备方法
CN109134518A (zh) * 2018-08-30 2019-01-04 济南大学 一种金属有机框架物Cd-MOF晶体材料及其制备方法和应用
CN109647407A (zh) * 2019-02-12 2019-04-19 济南大学 一种基于双金属mof纳米晶复合材料的制备方法和应用
CN109675640A (zh) * 2019-02-12 2019-04-26 济南大学 一种碳氮基铁钴氧化物纳米簇mof催化剂的制备方法和应用
CN110057893A (zh) * 2019-05-05 2019-07-26 济南大学 一种mof/高分子核壳纳米纤维复合材料的制备方法和应用
CN110057893B (zh) * 2019-05-05 2021-06-01 济南大学 一种mof/高分子核壳纳米纤维复合材料的制备方法和应用
CN110394191A (zh) * 2019-08-30 2019-11-01 济南大学 一种mof@mof纳米纤维复合催化剂的制备方法和应用
CN113244961A (zh) * 2021-05-24 2021-08-13 上海师范大学 双金属CoCu-MOF可见光催化剂及其制备方法和应用

Also Published As

Publication number Publication date
CN107687003B (zh) 2019-03-12

Similar Documents

Publication Publication Date Title
CN107442125A (zh) 一种碳基铜钴氧化物纳米片催化剂的制备方法和应用
CN107687003B (zh) 一种基于1d金属有机框架物纳米纤维催化剂的制备方法和应用
Nemiwal et al. Graphene-based electrocatalysts: Hydrogen evolution reactions and overall water splitting
Liu et al. CoO nanoparticles embedded in three-dimensional nitrogen/sulfur co-doped carbon nanofiber networks as a bifunctional catalyst for oxygen reduction/evolution reactions
Aftab et al. Mixed CoS2@ Co3O4 composite material: An efficient nonprecious electrocatalyst for hydrogen evolution reaction
Liang et al. Oxygen reduction electrocatalyst based on strongly coupled cobalt oxide nanocrystals and carbon nanotubes
Cheng et al. Recent Progress of Sn‐Based Derivative Catalysts for Electrochemical Reduction of CO2
CN107486233B (zh) 一种氮化碳掺杂碳基钴氧化物纳米催化剂的制备方法和应用
CN109248703B (zh) 一种负载Ni3Fe的氮掺杂碳纳米复合材料的制备方法及其所得材料和应用
Wu et al. All roads lead to Rome: An energy-saving integrated electrocatalytic CO2 reduction system for concurrent value-added formate production
CN108080034A (zh) 一种基于镍基三维金属有机框架物催化剂制备方法和应用
CN105148991B (zh) 一种氮/硫/氯共掺杂多级孔碳催化剂及其制备方法
Shan-Shan et al. Progress on electrocatalysts of hydrogen evolution reaction based on carbon fiber materials
Senthil et al. A facile one-pot synthesis of microspherical-shaped CoS2/CNT composite as Pt-free electrocatalyst for efficient hydrogen evolution reaction
Meng et al. Carbon-based nanomaterials as sustainable noble-metal-free electrocatalysts
Zhang et al. Cu3P/RGO promoted Pd catalysts for alcohol electro-oxidation
CN109148903A (zh) 3d海胆球状碳基镍钴双金属氧化物复合材料的制备方法
CN107142488A (zh) 一种多孔多壳式磷化镍空心微球及其制备方法和应用
Ji et al. Three-dimensional graphene-based nanomaterials as electrocatalysts for oxygen reduction reaction
CN107999079A (zh) 一种基于Cu(II)-MOF/Ni复合材料的制备方法和应用
Zhang et al. Recent development of transition metal doped carbon materials derived from biomass for hydrogen evolution reaction
Veeramani et al. Metal organic framework derived nickel phosphide/graphitic carbon hybrid for electrochemical hydrogen generation reaction
CN107570166B (zh) 一种复合碳和过渡元素氧化物纳米催化剂制备方法和应用
Liu et al. Cobalt nanoparticle decorated graphene aerogel for efficient oxygen reduction reaction electrocatalysis
CN112892528A (zh) 一种贵金属/碳纳米复合催化剂、其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20190312

Termination date: 20190905