WO2021035889A1 - 移动终端的充电方法、装置、终端及存储介质 - Google Patents

移动终端的充电方法、装置、终端及存储介质 Download PDF

Info

Publication number
WO2021035889A1
WO2021035889A1 PCT/CN2019/110667 CN2019110667W WO2021035889A1 WO 2021035889 A1 WO2021035889 A1 WO 2021035889A1 CN 2019110667 W CN2019110667 W CN 2019110667W WO 2021035889 A1 WO2021035889 A1 WO 2021035889A1
Authority
WO
WIPO (PCT)
Prior art keywords
charging
mobile terminal
power
constant
rechargeable battery
Prior art date
Application number
PCT/CN2019/110667
Other languages
English (en)
French (fr)
Inventor
孙长宇
王彦腾
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to KR1020197035043A priority Critical patent/KR102416457B1/ko
Priority to JP2019565326A priority patent/JP7232777B2/ja
Priority to RU2019141264A priority patent/RU2739448C1/ru
Publication of WO2021035889A1 publication Critical patent/WO2021035889A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/0071Regulation of charging or discharging current or voltage with a programmable schedule
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks
    • H02J1/04Constant-current supply systems
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/02Constructional features of telephone sets
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/00032Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by data exchange
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/00032Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by data exchange
    • H02J7/00034Charger exchanging data with an electronic device, i.e. telephone, whose internal battery is under charge
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present disclosure relates to the field of rechargeable batteries, and in particular to a charging method, device, terminal and storage medium of a mobile terminal.
  • the mobile terminal (such as a smart phone or a tablet computer) is provided with a rechargeable battery.
  • a rechargeable battery in the mobile terminal When the rechargeable battery in the mobile terminal is dead, it needs to be charged with a charger.
  • a typical charging process includes: a constant current (CC) charging phase and a constant voltage (constant voltage, CV) charging phase.
  • the constant current charging stage is the charging stage that keeps the charging current constant and the charging voltage gradually increases.
  • the constant voltage charging stage is the charging stage that keeps the charging voltage constant and the charging current gradually decreases.
  • the charging current in the CC charging phase is the largest. If the mobile terminal is equipped with a temperature protection mechanism, once the surface temperature of the rechargeable battery (or mobile terminal) reaches the temperature threshold, the charging current will be greatly reduced and the charging time will be prolonged.
  • the embodiments of the present disclosure provide a charging method, device, terminal, and storage medium for a mobile terminal, which can be used to solve the problem that after the surface temperature of a rechargeable battery (or mobile terminal) reaches a temperature threshold, the charging current is greatly reduced. This leads to a longer charging time.
  • the technical solution is as follows:
  • a charging method of a mobile terminal including:
  • a constant power is used to charge the rechargeable battery of the mobile terminal.
  • the charging the rechargeable battery of the mobile terminal with constant power includes:
  • the product of the charging voltage and the charging current at the same time is a constant value or a constant range.
  • the charging the rechargeable battery of the mobile terminal with constant power includes:
  • the charging the rechargeable battery of the mobile terminal with constant power includes:
  • the first constant power determined based on the average charging power is used to charge the rechargeable battery of the mobile terminal;
  • the second constant power determined based on the maximum output power is used to charge the rechargeable battery of the mobile terminal.
  • the charging the rechargeable battery of the mobile terminal with constant power includes:
  • the target time period is any one of a time period for replacing the constant current charging phase, a time period before the constant current charging phase, and a time period after the constant current charging phase.
  • a charging device for a mobile terminal including:
  • the constant power charging module is configured to use constant power to charge the rechargeable battery of the mobile terminal.
  • the constant power charging module is configured to charge the rechargeable battery of the mobile terminal in a manner that the charging voltage gradually increases and the charging current gradually decreases;
  • the product of the charging voltage and the charging current at the same time is a constant value or a constant range.
  • the constant power charging module is configured to use a constant power determined based on the maximum output power to supply the mobile terminal when the maximum output power of the charger is less than the maximum charging power supported by the mobile terminal. Rechargeable battery for charging,
  • the constant power charging module is configured to use the first constant power determined based on the average charging power when the maximum output power of the charger is greater than or equal to the average charging power supported by the mobile terminal.
  • the second constant power determined based on the maximum output power is used to charge the mobile terminal. The rechargeable battery of the terminal is charged.
  • the constant power charging module is configured to use constant power to charge the rechargeable battery of the mobile terminal within the target time period of the charging process
  • the target time period is any one of a time period for replacing the constant current charging phase, a time period before the constant current charging phase, and a time period after the constant current charging phase.
  • a mobile terminal a processor and a memory are provided;
  • the memory stores a computer program
  • the processor is configured to execute the computer program to implement the charging method of the mobile terminal as described above.
  • a chip includes a programmable logic circuit and/or program instructions, and is used to implement the charging method of a mobile terminal as described above when the chip is running.
  • a charging adapter (referred to as a charger) is provided, the charging adapter includes a charging circuit, and the charging circuit is used to implement the charging method of a mobile terminal as described above.
  • a computer-readable storage medium in which a computer program is stored, and when the computer program is executed by a processor, it is used to implement the mobile terminal as described above. Charging method.
  • the temperature can be kept relatively stable and constant without triggering the temperature protection, so that the charging is completed as soon as possible without triggering the temperature protection mechanism.
  • Fig. 1 is a schematic diagram of a charging system shown in an exemplary embodiment of the present disclosure
  • FIG. 2 is a schematic diagram of a current of a charging method for a mobile terminal provided by related technologies
  • FIG. 3 is a temperature schematic diagram of a charging method of a mobile terminal provided by related technologies
  • Fig. 4 is a flowchart showing a charging method of a mobile terminal according to an exemplary embodiment
  • FIG. 5 is a schematic diagram of the charging current of the 27W constant current charging scheme provided by related technologies
  • Fig. 6 is a schematic diagram of a charging current using a 24W constant power charging scheme provided by an embodiment of the present disclosure
  • Fig. 7 is a charging power comparison diagram showing a 27W constant current charging scheme and a 24W constant power charging scheme according to an exemplary embodiment
  • Fig. 8 is a flowchart showing a charging method of a mobile terminal according to an exemplary embodiment
  • Fig. 9 is a flowchart showing a charging method of a mobile terminal according to an exemplary embodiment
  • Fig. 10 is a block diagram showing a charging device of a mobile terminal according to an exemplary embodiment
  • Fig. 11 is a block diagram showing a mobile terminal according to an exemplary embodiment.
  • a rechargeable battery is provided in the mobile terminal.
  • a charger or charging adapter
  • the charging process includes the following stages: a pre-charge stage (also called trickle charge), a constant current (CC) charging stage, a constant voltage (CV) charging stage, and charging termination stage.
  • a pre-charge stage also called trickle charge
  • CC constant current
  • CV constant voltage
  • the pre-charging stage refers to: when the voltage of the rechargeable battery is low, in order to avoid damage to the rechargeable battery by direct fast charging, first charge the rechargeable battery with a lower charging current to activate the rechargeable battery.
  • the CC charging stage refers to the rapid charging of the rechargeable battery with a relatively large and constant charging current. During the CC charging process, the charging voltage will continuously increase.
  • the CV charging stage means that when the battery is basically fully charged, the voltage after the battery is fully charged is used as a constant voltage to continue charging. During the CV charging process, the charging current will continuously decrease.
  • Fig. 1 shows a structural block diagram of a charging system provided by an exemplary embodiment of the present disclosure.
  • the charging system includes: a mobile terminal 120 and a charger 140.
  • the mobile terminal 120 includes: an application processor (AP) 122, a charge management chip (charge IC) 124, a rechargeable battery 126, and a thermistor 128.
  • the application processor 122 is connected to the charging management chip 124
  • the charging management chip 124 is connected to the rechargeable battery 126
  • the thermistor 128 is connected to the charging management chip 124.
  • the application processor 122 and the charging management chip 124 are also connected to a charging interface on the mobile terminal 120.
  • the location of the thermistor 128 includes but is not limited to at least one of the battery surface of the rechargeable battery 126, the inside of the body of the mobile terminal 120, the surface of the body of the mobile terminal 120, and the middle frame position of the mobile terminal 120.
  • the thermistor 128 is an optional component.
  • the charger 140 includes a power plug end 142, a charging circuit 144, and a terminal plug end 146.
  • the power plug section 142 is used to connect to a mains power (such as 220V or 110V) socket
  • the charging circuit 144 is used to convert the mains power into a charging current and a charging voltage
  • the terminal plug end 146 is used to connect to the mobile terminal 120.
  • the terminal plug end 146 may be various versions of a USB interface or a lighting interface, for example, a Type-C USB interface.
  • the charging management chip 124 in the mobile terminal 120 is provided with a temperature protection mechanism, which is used to protect the mobile terminal 120 from generating too much heat.
  • FIGS 2 and 3 respectively show the charging current diagram and the battery temperature diagram after the temperature protection mechanism is triggered.
  • the thermistor 128 is used to measure the surface temperature of the rechargeable battery 126 at predetermined time intervals. When the surface temperature reaches a temperature threshold (such as At 40 degrees), reduce the charging current by L (the value of L is relatively large, such as 2A), and L is the temperature protection current adjustment value. When the surface temperature decreases to another temperature threshold (for example, 38.5 degrees), the charging current is restored to the current value before the decrease, and the above steps are repeated to avoid excessive temperature.
  • a temperature threshold such as At 40 degrees
  • L the value of L is relatively large, such as 2A
  • L is the temperature protection current adjustment value.
  • the surface temperature decreases to another temperature threshold (for example, 38.5 degrees)
  • the charging current is restored to the current value before the decrease, and the above steps are repeated to avoid excessive temperature.
  • the temperature of the rechargeable battery rises quickly.
  • the application processor 122 triggers the charging management chip 124 to reduce the current value of the charging current by generating a pulse current. Because the pulse trigger type simply and roughly reduces the current value of the charging current, the overall charging time is delayed.
  • the maximum charging power of the CC charging stage determines the maximum output power of the charger. The greater the maximum output power of the charger, the higher the cost.
  • Constant Power (CP) charging mode Keep the charging power constant for a period of time during the entire charging process, charge smoothly without triggering the temperature protection mechanism (or the maximum heating time point), and at the same time reduce the requirement for the maximum output power of the charger.
  • CP Constant Power
  • Fig. 4 shows a flowchart of a charging method for a mobile terminal according to an exemplary embodiment of the present disclosure.
  • the method may be executed by the application processor 122, the charging management chip 124 or the charger 140.
  • the method includes:
  • Step 402 Use constant power to charge the rechargeable battery of the mobile terminal.
  • the charging management chip uses constant power to charge the rechargeable battery of the mobile terminal.
  • the charging management chip charges the rechargeable battery of the mobile terminal by gradually increasing the charging voltage and gradually decreasing the charging current.
  • the product of the charging voltage and the charging current at the same time (that is, the charging power) is a constant value or a constant range.
  • the constant range is a relatively small power range, and the charging power is allowed to fluctuate slightly within the constant range.
  • the charging power is 27W as a reference, and fluctuations in the range of ⁇ 1W are allowed.
  • the method provided in this embodiment uses constant power to charge the rechargeable battery of the mobile terminal, which can keep the temperature during the charging process relatively stable and constant without triggering the temperature protection, so that the temperature protection mechanism is not triggered. In this case, charge it as soon as possible.
  • FIG. 5 shows a schematic diagram of a charging curve using a 27W direct charging scheme.
  • the direct charging scheme adopts the CC charging method, and the power supply voltage is more than twice the 2:1 direct charging scheme of the battery.
  • Fig. 6 shows a schematic diagram of a charging curve when a 24W constant power charging scheme is adopted in an exemplary embodiment of the present disclosure.
  • Figure 7 shows a comparison diagram of the charging power curves of the 27W direct charging scheme and the 24W constant power charging scheme. It can be seen from FIG. 7 that the integral area (total work) of the charging power curve of the two charging schemes is the same, and the charging cut-off time of the two charging schemes is the same, that is, the charging speed is the same.
  • the maximum power point of the 24W constant power charging solution during the entire charging process is less than the 27W direct charging solution (CC charging mode)
  • the CP charging mode provided by the embodiment of the present disclosure has at least the following beneficial effects:
  • a charger with a smaller output power can achieve the same charging speed.
  • the charging power of the mobile terminal is determined by factors such as the allowable current of its own battery cell, the allowable current of the battery protection board, the current of the charging management chip, and the limitation of thermal heating. After a certain model of mobile terminal is designed, its charging power has an upper limit, which is generally known.
  • a mobile terminal that supports a maximum charging power of 27W uses a charger with a maximum output power of 18W
  • the related technology will regard a mobile terminal that supports a maximum charging power of 27W as supporting a maximum charging power of 18W. That is to say, the maximum power during the entire charging process is 18W (the charging power is lower than 18W most of the time), and when the CP charging mode provided by the embodiment of the present disclosure is used, the entire CC can be charged
  • the process is replaced by a CP charging mode with a maximum charging power of 18W, which greatly accelerates the charging speed.
  • the present disclosure provides the following two embodiments:
  • the first embodiment when the mobile terminal and the charger perform a handshake protocol (initialization phase after connecting with the charger), the charging mode is determined according to the power negotiation result:
  • the maximum output power of the charger> the maximum charging power supported by the mobile terminal.
  • the traditional CC charging mode is adopted. At this time, the mobile terminal is the bottleneck (cell or temperature rise), and the maximum current allowed by the rechargeable battery is fixed. ;
  • the maximum output power of the charger is less than the maximum charging power supported by the mobile terminal, and the CP (constant power) mode is adopted. At this time, the charger is the bottleneck, and the charging current is greater than the maximum current corresponding to the maximum power of the charger.
  • the second embodiment when the mobile terminal and the charger perform a handshake protocol (initialization phase after connecting with the charger), the mobile terminal nominally declares its average power to the charger, and determines the charging mode according to the power negotiation result:
  • the maximum output power of the charger > the average charging power supported by the mobile terminal.
  • the traditional CC charging mode is adopted. At this time, the mobile terminal is the bottleneck (cell or temperature rise), and the maximum current allowed by the rechargeable battery is fixed. ;
  • the maximum output power of the charger ⁇ the average charging power supported by the mobile terminal, using derating CP (constant power) mode or derating CC (constant current) mode for charging.
  • Fig. 8 shows a flowchart of a charging method for a mobile terminal provided by an exemplary embodiment of the present disclosure. This method can be executed by an application processor or a charger. The method includes:
  • Step 801 Obtain the maximum output power of the charger and the maximum charging power supported by the mobile terminal;
  • a handshake protocol will be carried out between the application processor in the mobile terminal and the charging circuit of the charger. Both the application processor and the charging circuit can learn the maximum output power of the charger and the maximum charging power supported by the mobile terminal.
  • Step 802 Determine whether the maximum output power is greater than the maximum charging power
  • step 803 When the maximum output power is greater than or equal to the maximum charging power, go to step 803; when the maximum output power is less than the maximum charging power, go to step 804;
  • Step 803 charging is performed in a constant current charging mode
  • Step 804 Use a constant power determined based on the maximum output power to charge the rechargeable battery of the mobile terminal.
  • the constant power is equal to the maximum output power of the charger, or the constant power is slightly less than the maximum output power of the charger.
  • the application processor sends a control instruction to the charger, and the control instruction is used to instruct the charger to enter the CP mode.
  • the charger After receiving the control command, the charger enters the CP mode, determines a constant power according to its maximum output power, and charges the rechargeable battery of the mobile terminal within the target time period during the charging process.
  • the application processor and the charger communicate continuously (periodically or triggered), and the application processor generates a control command according to the charging current and charging voltage of the charger, and the control command is used to adjust At least one of the charging current and the charging voltage of the charger is used to control the charging power of the charger to maintain a constant power (or a constant power range).
  • the target time period is a time period used to replace the CC charging phase, or a time period before the CC charging phase, or a time period after the CC charging phase.
  • the method provided in this embodiment uses constant power to charge the rechargeable battery of the mobile terminal, which can keep the temperature relatively stable and constant without triggering the temperature protection, so as to avoid triggering the temperature protection mechanism. It may be fully charged soon.
  • the method provided in this embodiment also uses a constant power determined based on the maximum output power to charge the rechargeable battery of the mobile terminal when the maximum output power of the charger is less than the maximum charging power supported by the mobile terminal, which can maximize the use of charging.
  • the maximum output power of the charger is used for charging, which improves the charging efficiency and charging speed.
  • Fig. 9 shows a flowchart of a charging method for a mobile terminal provided by an exemplary embodiment of the present disclosure. This method can be executed by an application processor or a charger. The method includes:
  • Step 901 Obtain the maximum output power of the charger and the average charging power supported by the mobile terminal;
  • a handshake protocol is performed between the application processor in the mobile terminal and the charging circuit of the charger. Both the application processor and the charging circuit can learn the maximum output power of the charger and the average charging power supported by the mobile terminal.
  • Step 902 Determine whether the maximum output power is greater than the average charging power
  • step 903 When the maximum output power is greater than or equal to the average charging power, go to step 903; when the maximum output power is less than the average charging power, go to step 904;
  • Step 903 When the maximum output power of the charger is greater than or equal to the average charging power supported by the mobile terminal, the first constant power determined based on the average charging power is used to charge the rechargeable battery of the mobile terminal;
  • the constant power is equal to the average charging power supported by the mobile terminal, or the constant power is slightly less than the average charging power supported by the mobile terminal.
  • Step 904 When the maximum output power of the charger is less than the average charging power supported by the mobile terminal, the second constant power determined based on the maximum output power is used to charge the rechargeable battery of the mobile terminal.
  • the constant power is equal to the maximum output power of the charger, or the constant power is slightly less than the maximum output power of the charger.
  • the application processor sends a control instruction to the charger, and the control instruction is used to instruct the charger to enter the CP mode.
  • the charger After receiving the control command, the charger enters the CP mode, determines a constant power according to its maximum output power, and charges the rechargeable battery of the mobile terminal within the target time period during the charging process.
  • the application processor and the charger communicate continuously (periodically or triggered), and the application processor generates a control command according to the charging current and charging voltage of the charger, and the control command is used to adjust At least one of the charging current and the charging voltage of the charger is used to control the charging power of the charger to maintain a constant power.
  • the target time period is a time period used to replace the CC charging phase, or a time period before the CC charging phase, or a time period after the CC charging phase.
  • the method provided in this embodiment uses constant power to charge the rechargeable battery of the mobile terminal, which can keep the temperature relatively stable and constant without triggering the temperature protection, so as to avoid triggering the temperature protection mechanism. It may be fully charged soon.
  • the method provided in this embodiment also uses a constant power determined based on the average output power to charge the rechargeable battery of the mobile terminal when the maximum output power of the charger is greater than the average charging power supported by the mobile terminal, which can maximize the use of charging.
  • the maximum output power of the charger is used for charging, which improves the charging efficiency and charging speed.
  • the method provided in this embodiment also uses a constant power determined based on the maximum output power to charge the rechargeable battery of the mobile terminal when the maximum output power of the charger is less than the average charging power supported by the mobile terminal, which can maximize the use of charging.
  • the maximum output power of the charger is used for charging, which improves the charging efficiency and charging speed.
  • the CP charging mode and the CC charging mode can be mixed.
  • the CC charging mode and then the CP charging mode, or the CP charging mode and then the CC charging mode can be used instead of pure mutual substitution. This can be combined with the charging strategy and temperature rise of the specific project.
  • the present disclosure only proposes a CP charging mode to replace the CC charging mode or mixed use with the CC charging mode.
  • the actual charging process may not only include simple CC charging mode and CV charging mode, but may also include step CC charging mode, step constant voltage step CV charging mode and other stages of charging process.
  • the embodiments of the present disclosure may also include CP charging mode, step CP charging mode is used in combination with other modes.
  • FIG. 10 is a block diagram of a charging device for a mobile terminal according to an exemplary embodiment of the present disclosure, the device including: a constant power charging module 1020;
  • the constant power charging module 1020 is configured to use constant power to charge the rechargeable battery of the mobile terminal.
  • the constant power charging module 1020 is configured to charge the rechargeable battery of the mobile terminal in a manner that the charging voltage gradually increases and the charging current gradually decreases;
  • the product of the charging voltage and the charging current at the same time is a constant value or a constant range.
  • the constant power charging module 1020 is configured to use a constant power direction determined based on the maximum output power when the maximum output power of the charger is less than the maximum charging power supported by the mobile terminal. Charging the rechargeable battery of the mobile terminal,
  • the constant power charging module 1020 is configured to use the first determined based on the average charging power when the maximum output power of the charger is greater than or equal to the average charging power supported by the mobile terminal.
  • a constant power is used to charge the rechargeable battery of the mobile terminal; when the maximum output power of the charger is less than the average charging power supported by the mobile terminal, a second constant power determined based on the maximum output power is used to charge the battery. The rechargeable battery of the mobile terminal is charged.
  • the constant power charging module 1020 is configured to use constant power to charge the rechargeable battery of the mobile terminal within the target time period of the charging process.
  • the target time period is any one of a time period for replacing the constant current charging phase, a time period before the constant current charging phase, and a time period after the constant current charging phase
  • Fig. 11 is a block diagram showing a charging device 1100 for a mobile terminal according to an exemplary embodiment.
  • the apparatus 1100 may be a mobile phone, a digital broadcasting terminal, a messaging device, a game console, a tablet device, a medical device, a fitness device, a personal digital assistant, etc.
  • the device 1100 may include one or more of the following components: a processing component 1102, a memory 1104, a power supply component 1106, a multimedia component 1108, an audio component 1111, an input/output (I/O) interface 1112, a sensor component 1114, And communication component 1116.
  • a processing component 1102 a memory 1104, a power supply component 1106, a multimedia component 1108, an audio component 1111, an input/output (I/O) interface 1112, a sensor component 1114, And communication component 1116.
  • the processing component 1102 generally controls the overall operations of the device 1100, such as operations associated with display, telephone calls, data communications, camera operations, and recording operations.
  • the processing component 1102 may include one or more processors 1120 to execute instructions to complete all or part of the steps of the foregoing method.
  • the processing component 1102 may include one or more modules to facilitate the interaction between the processing component 1102 and other components.
  • the processing component 1102 may include a multimedia module to facilitate the interaction between the multimedia component 1108 and the processing component 1102.
  • the memory 1104 is configured to store various types of data to support operations on the device 1100. Examples of these data include instructions for any application or method operating on the device 1100, contact data, phone book data, messages, pictures, videos, etc.
  • the memory 1104 can be implemented by any type of volatile or non-volatile storage device or their combination, such as static random access memory (SRAM), electrically erasable programmable read-only memory (EEPROM), erasable and Programmable read only memory (EPROM), programmable read only memory (PROM), read only memory (ROM), magnetic memory, flash memory, magnetic disk or optical disk.
  • SRAM static random access memory
  • EEPROM electrically erasable programmable read-only memory
  • EPROM erasable and Programmable read only memory
  • PROM programmable read only memory
  • ROM read only memory
  • magnetic memory flash memory
  • flash memory magnetic disk or optical disk.
  • the power supply component 1106 provides power for various components of the device 1100.
  • the power supply component 1106 may include a power management system, one or more power supplies, and other components associated with generating, managing, and distributing power for the device 1100.
  • the multimedia component 1108 includes a screen that provides an output interface between the device 1100 and the user.
  • the screen may include a liquid crystal display (LCD) and a touch panel (TP). If the screen includes a touch panel, the screen may be implemented as a touch screen to receive input signals from the user.
  • the touch panel includes one or more touch sensors to sense touch, sliding, and gestures on the touch panel. The touch sensor may not only sense the boundary of a touch or slide action, but also detect the duration and pressure related to the touch or slide operation.
  • the multimedia component 1108 includes a front camera and/or a rear camera. When the device 1100 is in an operation mode, such as a shooting mode or a video mode, the front camera and/or the rear camera can receive external multimedia data. Each front camera and rear camera can be a fixed optical lens system or have focal length and optical zoom capabilities.
  • the audio component 1111 is configured to output and/or input audio signals.
  • the audio component 1111 includes a microphone (MIC), and when the device 1100 is in an operation mode, such as a call mode, a recording mode, and a voice recognition mode, the microphone is configured to receive an external audio signal.
  • the received audio signal may be further stored in the memory 1104 or transmitted via the communication component 1116.
  • the audio component 1111 further includes a speaker for outputting audio signals.
  • the I/O interface 1112 provides an interface between the processing component 1102 and a peripheral interface module.
  • the above-mentioned peripheral interface module may be a keyboard, a click wheel, a button, and the like. These buttons may include, but are not limited to: home button, volume button, start button, and lock button.
  • the sensor component 1114 includes one or more sensors for providing the device 1100 with various aspects of state evaluation.
  • the sensor component 1114 can detect the open/close status of the device 1100 and the relative positioning of components.
  • the component is the display and the keypad of the device 1100.
  • the sensor component 1114 can also detect the position change of the device 1100 or a component of the device 1100. , The presence or absence of contact between the user and the device 1100, the orientation or acceleration/deceleration of the device 1100, and the temperature change of the device 1100.
  • the sensor component 1114 may include a proximity sensor configured to detect the presence of nearby objects when there is no physical contact.
  • the sensor component 1114 may also include a light sensor, such as a CMOS or CCD image sensor, for use in imaging applications.
  • the sensor component 1114 may also include an acceleration sensor, a gyroscope sensor, a magnetic sensor, a pressure sensor or a temperature sensor.
  • the communication component 1116 is configured to facilitate wired or wireless communication between the device 1100 and other devices.
  • the device 1100 can access a wireless network based on a communication standard, such as WiFi, 2G, or 3G, or a combination thereof.
  • the communication component 1116 receives a broadcast signal or broadcast related information from an external broadcast management system via a broadcast channel.
  • the communication component 1116 further includes a near field communication (NFC) module to facilitate short-range communication.
  • NFC near field communication
  • the apparatus 1100 may be implemented by one or more application specific integrated circuits (ASIC), digital signal processors (DSP), digital signal processing equipment (DSPD), programmable logic devices (PLD), field programmable A gate array (FPGA), controller, microcontroller, microprocessor, or other electronic components are implemented to implement the above methods.
  • ASIC application specific integrated circuits
  • DSP digital signal processors
  • DSPD digital signal processing equipment
  • PLD programmable logic devices
  • FPGA field programmable A gate array
  • controller microcontroller, microprocessor, or other electronic components are implemented to implement the above methods.
  • non-transitory computer-readable storage medium including instructions, such as the memory 1104 including instructions, and the foregoing instructions may be executed by the processor 420 of the device 1100 to complete the foregoing method.
  • the non-transitory computer-readable storage medium may be ROM, random access memory (RAM), CD-ROM, magnetic tape, floppy disk, optical data storage device, etc.
  • a non-transitory computer-readable storage medium When the instructions in the storage medium are executed by the processor of the terminal, the terminal can execute the method for charging a mobile terminal as provided in the above method embodiment.
  • the embodiments of the present disclosure also provide a chip, the chip includes a programmable logic circuit and/or program instructions, when the chip is running, it is used to implement the charging method of the mobile terminal as described in the above aspect.
  • the embodiment of the present disclosure also provides a charging adapter, the charging adapter includes a charging circuit, and the charging circuit is used to implement the charging method of the mobile terminal as described above

Abstract

本公开是关于一种移动终端的充电方法、装置、终端及存储介质,应用于充电领域,所述方法包括:采用恒定功率向所述移动终端的充电电池进行充电。本公开通过采用恒定功率向移动终端的充电电池进行充电,能够保持温度相对平稳和恒定而不触发温度保护,从而在不触发温度保护机制的情况下,尽可能快的充电完毕。

Description

移动终端的充电方法、装置、终端及存储介质
交叉引用
本申请要求于2019年8月30日提交的申请号为201910814859.9、发明创造名称为“移动终端的充电方法、装置、终端及存储介质”的中国专利申请的优先权,该中国专利申请的全部内容通过引用全部并入本文。
技术领域
本公开涉及充电电池领域,特别涉及一种移动终端的充电方法、装置、终端及存储介质。
背景技术
移动终端(比如智能手机或平板电脑)上设置有充电电池。当移动终端中的充电电池没电时,需要使用充电器进行充电。典型的充电过程包括:恒流(Constant Current,CC)充电阶段和恒压(Constant Voltage,CV)充电阶段。恒流充电阶段是保持充电电流不变,充电电压逐渐升高的充电阶段,恒压充电阶段是保持充电电压不变,充电电流逐渐变小的充电阶段。
CC充电阶段的充电电流最大,若移动终端内设置有温度保护机制,一旦充电电池(或移动终端)的表面温度达到了温度阈值,就会大幅度的降低充电电流导致充电时间延长。
发明内容
本公开实施例提供了一种移动终端的充电方法、装置、终端及存储介质,可以用于解决充电电池(或移动终端)的表面温度达到了温度阈值后,对充电电流的降低幅度较大,导致整个充电时间较长的问题。所述技术方案如下:
根据本公开的一个方面,提供了一种移动终端的充电方法,所述方法包括:
采用恒定功率向所述移动终端的充电电池进行充电。
在一个可能的设计中,所述采用恒定功率向所述移动终端的充电电池进行充电,包括:
采用充电电压逐渐升高且充电电流逐渐变小的方式向所述移动终端的充电电池进行充电;
其中,同一时刻的所述充电电压和所述充电电流的乘积为恒定值或恒定范围。
在一个可能的设计中,所述采用恒定功率向所述移动终端的充电电池进行充电,包括:
当充电器的最大输出功率小于所述移动终端支持的最大充电功率时,在充电过程的目标时间段内,采用基于所述最大输出功率的恒定功率向所述移动终端的充电电池进行充电,
在一个可能的设计中,所述采用恒定功率向所述移动终端的充电电池进行充电,包括:
当充电器的最大输出功率大于或等于所述移动终端支持的平均充电功率时,采用基于所述平均充电功率确定的第一恒定功率向所述移动终端的充电电池进行充电;
当所述充电器的最大输出功率小于所述移动终端支持的平均充电功率时,采用基于所述最大输出功率确定的第二恒定功率向所述移动终端的充电电池进行充电。
在一个可能的设计中,所述采用恒定功率向所述移动终端的充电电池进行充电,包括:
在充电过程的目标时间段内,采用恒定功率向所述移动终端的充电电池进行充电;
其中,所述目标时间段是用于替换恒流充电阶段的时间段、位于所述恒流充电阶段之前的时间段、位于所述恒流充电阶段之后的时间段中的任意一种。
根据本公开的另一方面,提供了一种移动终端的充电装置,所述装置包括:
恒定功率充电模块,被配置为采用恒定功率向所述移动终端的充电电池进行充电。
在一个可能的设计中,所述恒定功率充电模块,被配置为采用充电电压逐渐升高且充电电流逐渐变小的方式向所述移动终端的充电电池进行充电;
其中,同一时刻的所述充电电压和所述充电电流的乘积为恒定值或恒定范围。
在一个可能的设计中,所述恒定功率充电模块,被配置为当充电器的最大输出功率小于所述移动终端支持的最大充电功率时,采用基于最大输出功率确定的恒定功率向所述移动终端的充电电池进行充电,
在一个可能的设计中,所述恒定功率充电模块,被配置为当充电器的最大输出功率大于或等于所述移动终端支持的平均充电功率时,采用基于所述平均充电功率确定的第一恒定功率向所述移动终端的充电电池进行充电;当所述充电器的最大输出功率小于所述移动终端支持的平均充电功率时,采用基于所述最大输出功率确定的第二恒定功率向所述移动终端的充电电池进行充电。
在一个可能的设计中,所述恒定功率充电模块,被配置为在充电过程的目标时间段内,采用恒定功率向所述移动终端的充电电池进行充电;
其中,所述目标时间段是用于替换恒流充电阶段的时间段、位于所述恒流充电阶段之前的时间段、位于所述恒流充电阶段之后的时间段中的任意一种。
根据本公开的另一方面,提供了一种移动终端,处理器和存储器;
所述存储器存储有计算机程序,所述处理器用于执行所述计算机程序用于实现如 上所述的移动终端的充电方法。
根据本公开的另一方面,提供了一种芯片,所述芯片包括可编程逻辑电路和/或程序指令,当所述芯片运行时用于实现如上所述的移动终端的充电方法。
根据本公开的另一方面,提供了一种充电适配器(简称充电器),所述充电适配器包括充电电路,所述充电电路用于实现如上所述的移动终端的充电方法。
根据本公开的另一方面,提供了一种计算机可读存储介质,所述计算机可读存储介质中存储有计算机程序,所述计算机程序被处理器执行时用于实现如上所述的移动终端的充电方法。
本公开实施例提供的技术方案可以包括以下有益效果:
通过采用恒定功率向移动终端的充电电池进行充电,能够保持温度相对平稳和恒定而不触发温度保护,从而在不触发温度保护机制的情况下,尽可能快的充电完毕。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本公开。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本公开的实施例,并与说明书一起用于解释本公开的原理。
图1是本公开的一示例性实施例示出的一种充电系统的示意图;
图2是相关技术提供的移动终端的充电方法的电流示意图;
图3是相关技术提供的移动终端的充电方法的温度示意图;
图4是根据一示例性实施例示出的移动终端的充电方法的流程图;
图5是采用相关技术提供的27W恒流充电方案的充电电流示意图;
图6是采用本公开实施例提供的24W恒定功率充电方案的充电电流示意图;
图7是根据一示例性实施例示出的27W恒流充电方案和24W恒定功率充电方案的充电功率对比图;
图8是根据一示例性实施例示出的移动终端的充电方法的流程图;
图9是根据一示例性实施例示出的移动终端的充电方法的流程图;
图10是根据一示例性实施例示出的移动终端的充电装置的框图;
图11是根据一示例性实施例示出的一种移动终端的框图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本公开相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本公开的一些方面相一致的装置和方法的例子。
移动终端中设置有充电电池。当充电电池没电时,采用充电器(或称充电适配器)与移动终端相连后,对充电电池进行充电。示例性的,充电过程包括如下阶段:预充电(pre-charge)阶段(也称涓流充电),恒流(Constant Current,CC)充电阶段,恒压(Constant Voltage,CV)充电阶段以及充电终止阶段。
预充电阶段是指:在充电电池的电压较低时,为了避免直接快速充电对充电电池造成损害,先以较低的充电电流进行充电,以激活充电电池。
CC充电阶段是指:以较大且恒定的充电电流对充电电池进行快速充电,在该CC充电过程中,充电电压会不断地升高。
CV充电阶段是指:在电池基本充满时,以电池充满后的电压为恒定电压继续充电,在该CV充电过程中,充电电流会不断地降低。
图1示出了本公开的一个示例性实施例提供的充电系统的结构框图。该充电系统包括:移动终端120和充电器140。
移动终端120包括:应用处理器(AP)122、充电管理芯片(charge IC)124、充电电池126和热敏电阻128。应用处理器122与充电管理芯片124相连,充电管理芯片124与充电电池126相连,热敏电阻128与充电管理芯片124。其中,应用处理器122和充电管理芯片124还与移动终端120上的充电接口相连。热敏电阻128的设置位置包括但不限于:充电电池126的电池表面、移动终端120的机体内部、移动终端120的机体表面、移动终端120的中框位置中的至少一个。其中,热敏电阻128是可选部件。
充电器140包括:电源插头端142、充电电路144和终端插头端146。电源插头段142用于连接市电(比如220V或110V)插座,充电电路144用于将市电转变为充电电流和充电电压,终端插头端146用于连接移动终端120。终端插头端146可以是各种版本的USB接口或lighting接口,比如,Type-C类型的USB接口。
由于充电过程会导致充电电池126发热,在一些实施例中,移动终端120中的充电管理芯片124内设置有温度保护机制,该温度保护机制用于保护移动终端120的发热量不会太高。
图2和图3分别示出了触发温度保护机制后的充电电流图和电池温度图,热敏电阻128用于每隔预定时间间隔测量充电电池126的表面温度,当表面温度达到温度阈值(比如40度)时,将充电电流降低L(L的值相对较大,比如2A),L为温度保护电流调整值。当表面温度降低至另一温度阈值(比如38.5度)时,将充电电流恢复至降低前的电流值,重复上述步骤以避免温度过高。
由于相关技术中CC充电阶段的充电电流较大,充电电池的温度上升很快。当充电电池的表面温度触发温度保护机制时,应用处理器122会通过产生脉冲电流的方式 来触发充电管理芯片124降低充电电流的电流值。由于脉冲触发式是简单粗暴的降低充电电流的电流值,导致整体的充电时间延缓。
同时,CC充电阶段的最大充电功率决定了充电器的最大输出功率,充电器的最大输出功率越大则成本越高。
由于用户还可能混用不同品牌和型号的充电器,若使用降额充电时(比如支持最大充电功率27W的手机使用最大输出功率18W的充电器),因为采用CC充电方式的大部分时间都低于最大输出功率18W,因此会浪费充电器的充电器功率。
本公开的一个目的是设计一个新的充电阶段的模式:恒定功率(Constant Power,CP)充电模式。让整个充电过程中的一段时间内的充电功率保持恒定,平稳充电而不会触发温度保护机制(或者最大发热时间点),同时降低了对充电器的最大输出功率的要求。
图4示出了本公开一个示例性实施例提供的移动终端的充电方法的流程图。该方法可以由应用处理器122、充电管理芯片124或充电器140来执行。该方法包括:
步骤402,采用恒定功率向移动终端的充电电池进行充电。
在充电过程的某个时间段中,充电管理芯片采用恒定功率向移动终端的充电电池进行充电。
示例性的,充电管理芯片采用充电电压逐渐升高且充电电流逐渐变小的方式向移动终端的充电电池进行充电。其中,同一时刻的充电电压和充电电流的乘积(也即充电功率)为恒定值或恒定范围。
恒定范围是一个相对较小的功率范围,允许充电功率在该恒定范围内略微波动。在一个示例中,以充电功率27W为基准,允许±1W范围内的波动。
综上所述,本实施例提供的方法,通过采用恒定功率向移动终端的充电电池进行充电,能够保持充电过程中的温度相对平稳和恒定而不触发温度保护,从而在不触发温度保护机制的情况下,尽可能快的充电完毕。
图5示出了采用27W直充方案的充电曲线的示意图。该直充方案是采用CC充电方式,电源电压是电池的两倍多的2:1直充方案。图6示出了本公开的一个示例性实施例采用24W的恒定功率充电方案时的充电曲线的示意图。图7示出了27W直充方案和24W恒定功率充电方案的充电功率曲线的对比图。从图7可以看出,两个充电方案的充电功率曲线的积分面积(总功)相同,两个充电方案的充电截止时间相同,也即充电速度相同。但是24W恒定功率充电方案在整个充电过程中的最大功率点小于27W直充方案(CC充电模式),那么本公开实施例提供的CP充电模式,至少具有如下有益效果:
(1)对移动终端的结构热设计的要求小,升温速度会比CC充电模式小,甚至不 会触发温度保护机制,以避免造成降低充电电流和限制CPU频率的现象。
(2)对充电器的最大功率输出要求小,可以降低充电器的成本。
(3)采用更小输出功率的充电器达到相同充电速度的效果。
移动终端的充电功率会受自身电芯的允许进电流的大小、电池保护板允许电流的大小、充电管理芯片的电流大小、以及热升温限制等因素决定。某个型号的移动终端设计后,它的充电功率是有上限的,一般是已知的。
由于用户可能会混用不同类型的充电器,如果支持最大充电功率为27W的移动终端使用最大输出功率为18W的充电器,相关技术中会把支持最大充电功率27W的移动终端当成支持最大充电功率18W的移动终端进行充电,也就是说整个充电过程中的最大功率为18W(大部分时间的充电功率是低于18W的),而采用本公开实施例提供的CP充电模式时,可以让整个CC充电过程用最大充电功率为18W的CP充电模式取代,大大加快了充电速度。
对于用户使用降额充电器的使用场景(充电器的最大输出功率小于移动终端支持的最大充电功率)时,本公开提供有如下两种实施例:
第一种实施例:当移动终端和充电器进行握手协议(与充电器相连后的初始化阶段)时,根据功率协商结果确定充电模式:
(1)充电器的最大输出功率>=移动终端支持的最大充电功率,采用传统的CC充电模式,此时移动终端是瓶颈(电芯或温升),充电电池允许进的最大电流是固定的;
(2)充电器的最大输出功率<移动终端支持的最大充电功率,采用CP(恒定功率)模式,此时充电器是瓶颈,充电电流大于充电器的最大功率时所对应的最大电流。
第二种实施例:当移动终端和充电器进行握手协议(与充电器相连后的初始化阶段)时,移动终端向充电器标称自身的平均功率,根据功率协商结果确定充电模式:
(1)充电器的最大输出功率>=移动终端支持的平均充电功率,采用传统的CC充电模式,此时移动终端是瓶颈(电芯或温升),充电电池允许进的最大电流是固定的;
(2)充电器的最大输出功率<=移动终端支持的平均充电功率,采用降额CP(恒定功率)模式或降额CC(恒流)模式充电。
下面采用图8对第一种实施例进行阐述。
图8示出了本公开一个示例性实施例提供的移动终端的充电方法的流程图。该方法可以由应用处理器或充电器来执行。该方法包括:
步骤801,获取充电器的最大输出功率和移动终端支持的最大充电功率;
当移动终端和充电器在电性相连后,移动终端内的应用处理器和充电器的充电电 路之间会进行握手协议。应用处理器和充电电路两者能够获知充电器的最大输出功率和移动终端支持的最大充电功率。
步骤802,判断最大输出功率是否大于最大充电功率;
当最大输出功率大于或等于最大充电功率时,进入步骤803;当最大输出功率小于最大充电功率时,进入步骤804;
步骤803,采用恒流充电模式进行充电;
步骤804,采用基于最大输出功率确定的恒定功率向移动终端的充电电池进行充电。
示例性的,该恒定功率等于充电器的最大输出功率,或,该恒定功率略小于充电器的最大输出功率。
当该方法由充电器执行时,应用处理器向充电器发送控制指令,该控制指令用于指示充电器进入CP模式。充电器接收该控制指令后,进入CP模式,根据自身的最大输出功率确定出恒定功率,在充电过程中的目标时间段内向移动终端的充电电池进行充电。
当该方法由应用处理器执行时,应用处理器和充电器不断(周期性或触发性)的通信,由应用处理器根据充电器的充电电流和充电电压生成控制指令,该控制指令用于调整充电器的充电电流和充电电压中的至少一个,以控制充电器的充电功率保持为恒定功率(或恒定功率范围)。
可选地,该目标时间段是用于替代CC充电阶段的时间段,或,位于CC充电阶段之前的时间段,或位于CC充电阶段之后的时间段。
综上所述,本实施例提供的方法,通过采用恒定功率向移动终端的充电电池进行充电,能够保持温度相对平稳和恒定而不触发温度保护,从而在不触发温度保护机制的情况下,尽可能快的充电完毕。
本实施例提供的方法,还通过在充电器的最大输出功率小于移动终端支持的最大充电功率时,采用基于最大输出功率确定的恒定功率向移动终端的充电电池进行充电,能够最大限度地利用充电器的最大输出功率进行充电,提高充电效率和充电速度。
下面采用图9对第二种实施例进行阐述。
图9示出了本公开一个示例性实施例提供的移动终端的充电方法的流程图。该方法可以由应用处理器或充电器来执行。该方法包括:
步骤901,获取充电器的最大输出功率和移动终端支持的平均充电功率;
当移动终端和充电器在电性相连后,移动终端内的应用处理器和充电器的充电电路之间会进行握手协议。应用处理器和充电电路两者能够获知充电器的最大输出功率和移动终端支持的平均充电功率。
步骤902,判断最大输出功率是否大于平均充电功率;
当最大输出功率大于或等于平均充电功率时,进入步骤903;当最大输出功率小于平均充电功率时,进入步骤904;
步骤903,当充电器的最大输出功率大于或等于移动终端支持的平均充电功率时,采用基于平均充电功率确定的第一恒定功率向移动终端的充电电池进行充电;
示例性的,该恒定功率等于移动终端支持的平均充电功率,或,该恒定功率略小于移动终端支持的平均充电功率。
步骤904,当充电器的最大输出功率小于移动终端支持的平均充电功率时,采用基于最大输出功率确定的第二恒定功率向移动终端的充电电池进行充电。
示例性的,该恒定功率等于充电器的最大输出功率,或,该恒定功率略小于充电器的最大输出功率。
当该方法由充电器执行时,应用处理器向充电器发送控制指令,该控制指令用于指示充电器进入CP模式。充电器接收该控制指令后,进入CP模式,根据自身的最大输出功率确定出恒定功率,在充电过程中的目标时间段内向移动终端的充电电池进行充电。
当该方法由应用处理器执行时,应用处理器和充电器不断(周期性或触发性)的通信,由应用处理器根据充电器的充电电流和充电电压生成控制指令,该控制指令用于调整充电器的充电电流和充电电压中的至少一个,以控制充电器的充电功率保持为恒定功率。
可选地,该目标时间段是用于替代CC充电阶段的时间段,或,位于CC充电阶段之前的时间段,或位于CC充电阶段之后的时间段。
综上所述,本实施例提供的方法,通过采用恒定功率向移动终端的充电电池进行充电,能够保持温度相对平稳和恒定而不触发温度保护,从而在不触发温度保护机制的情况下,尽可能快的充电完毕。
本实施例提供的方法,还通过在充电器的最大输出功率大于移动终端支持的平均充电功率时,采用基于平均输出功率确定的恒定功率向移动终端的充电电池进行充电,能够最大限度地利用充电器的最大输出功率进行充电,提高充电效率和充电速度。
本实施例提供的方法,还通过在充电器的最大输出功率小于移动终端支持的平均充电功率时,采用基于最大输出功率确定的恒定功率向移动终端的充电电池进行充电,能够最大限度地利用充电器的最大输出功率进行充电,提高充电效率和充电速度。
需要说明的是,CP充电模式和CC充电模式是可以混合使用的,比如可以先CC充电模式再CP充电模式,或者先CP充电模式再CC充电模式,而不是纯粹的相互替代关系。这里可以和具体项目的充电策略和温升问题相结合。
需要说明的是,本公开只是提出一个CP充电模式用来取代CC充电模式或者和CC充电模式混合使用。但实际的充电过程,可以不止简单的CC充电模式,CV充电 模式,还可能包括阶梯恒流(step CC)充电模式,阶梯恒压step CV充电模式等阶段充电过程,本公开实施例也可以包括CP充电模式,step CP充电模式和其他模式结合使用的。
图10是根据本公开一个示例性实施例提供的一种移动终端的充电装置的框图,所述装置包括:恒定功率充电模块1020;
恒定功率充电模块1020,被配置为采用恒定功率向所述移动终端的充电电池进行充电。
在一个可选的示例中,所述恒定功率充电模块1020,被配置为采用充电电压逐渐升高且充电电流逐渐变小的方式向所述移动终端的充电电池进行充电;
其中,同一时刻的所述充电电压和所述充电电流的乘积为恒定值或恒定范围。
在一个可选的示例中,所述恒定功率充电模块1020,被配置为当充电器的最大输出功率小于所述移动终端支持的最大充电功率时,采用基于所述最大输出功率确定的恒定功率向所述移动终端的充电电池进行充电,
在一个可选的示例中,所述恒定功率充电模块1020,被配置为当充电器的最大输出功率大于或等于所述移动终端支持的平均充电功率时,采用基于所述平均充电功率确定的第一恒定功率向所述移动终端的充电电池进行充电;当所述充电器的最大输出功率小于所述移动终端支持的平均充电功率时,采用基于所述最大输出功率确定的第二恒定功率向所述移动终端的充电电池进行充电。
在一个可选的示例中,所述恒定功率充电模块1020,被配置为在充电过程的目标时间段内,采用恒定功率向所述移动终端的充电电池进行充电。其中,所述目标时间段是用于替换恒流充电阶段的时间段、位于所述恒流充电阶段之前的时间段、位于所述恒流充电阶段之后的时间段中的任意一种
图11是根据一示例性实施例示出的一种移动终端的充电装置1100的框图。例如,装置1100可以是移动电话,数字广播终端,消息收发设备,游戏控制台,平板设备,医疗设备,健身设备,个人数字助理等。
参照图11,装置1100可以包括以下一个或多个组件:处理组件1102,存储器1104,电源组件1106,多媒体组件1108,音频组件1111,输入/输出(I/O)的接口1112,传感器组件1114,以及通信组件1116。
处理组件1102通常控制装置1100的整体操作,诸如与显示,电话呼叫,数据通信,相机操作和记录操作相关联的操作。处理组件1102可以包括一个或多个处理器1120来执行指令,以完成上述的方法的全部或部分步骤。此外,处理组件1102可以包括一个或多个模块,便于处理组件1102和其他组件之间的交互。例如,处理组件1102可以包括多媒体模块,以方便多媒体组件1108和处理组件1102之间的交互。
存储器1104被配置为存储各种类型的数据以支持在装置1100的操作。这些数据的示例包括用于在装置1100上操作的任何应用程序或方法的指令,联系人数据,电话簿数据,消息,图片,视频等。存储器1104可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,如静态随机存取存储器(SRAM),电可擦除可编程只读存储器(EEPROM),可擦除可编程只读存储器(EPROM),可编程只读存储器(PROM),只读存储器(ROM),磁存储器,快闪存储器,磁盘或光盘。
电源组件1106为装置1100的各种组件提供电源。电源组件1106可以包括电源管理系统,一个或多个电源,及其他与为装置1100生成、管理和分配电源相关联的组件。
多媒体组件1108包括在所述装置1100和用户之间的提供一个输出接口的屏幕。在一些实施例中,屏幕可以包括液晶显示器(LCD)和触摸面板(TP)。如果屏幕包括触摸面板,屏幕可以被实现为触摸屏,以接收来自用户的输入信号。触摸面板包括一个或多个触摸传感器以感测触摸、滑动和触摸面板上的手势。所述触摸传感器可以不仅感测触摸或滑动动作的边界,而且还检测与所述触摸或滑动操作相关的持续时间和压力。在一些实施例中,多媒体组件1108包括一个前置摄像头和/或后置摄像头。当装置1100处于操作模式,如拍摄模式或视频模式时,前置摄像头和/或后置摄像头可以接收外部的多媒体数据。每个前置摄像头和后置摄像头可以是一个固定的光学透镜系统或具有焦距和光学变焦能力。
音频组件1111被配置为输出和/或输入音频信号。例如,音频组件1111包括一个麦克风(MIC),当装置1100处于操作模式,如呼叫模式、记录模式和语音识别模式时,麦克风被配置为接收外部音频信号。所接收的音频信号可以被进一步存储在存储器1104或经由通信组件1116发送。在一些实施例中,音频组件1111还包括一个扬声器,用于输出音频信号。
I/O接口1112为处理组件1102和外围接口模块之间提供接口,上述外围接口模块可以是键盘,点击轮,按钮等。这些按钮可包括但不限于:主页按钮、音量按钮、启动按钮和锁定按钮。
传感器组件1114包括一个或多个传感器,用于为装置1100提供各个方面的状态评估。例如,传感器组件1114可以检测到装置1100的打开/关闭状态,组件的相对定位,例如所述组件为装置1100的显示器和小键盘,传感器组件1114还可以检测装置1100或装置1100一个组件的位置改变,用户与装置1100接触的存在或不存在,装置1100方位或加速/减速和装置1100的温度变化。传感器组件1114可以包括接近传感器,被配置用来在没有任何的物理接触时检测附近物体的存在。传感器组件1114还可以包括光传感器,如CMOS或CCD图像传感器,用于在成像应用中使用。在一些实施例中,该传感器组件1114还可以包括加速度传感器,陀螺仪传感器,磁传感器,压力传感器或温度传感器。
通信组件1116被配置为便于装置1100和其他设备之间有线或无线方式的通信。装置1100可以接入基于通信标准的无线网络,如WiFi,2G或3G,或它们的组合。在一个示例性实施例中,通信部件1116经由广播信道接收来自外部广播管理系统的广播信号或广播相关信息。在一个示例性实施例中,所述通信组件1116还包括近场通信(NFC)模块,以促进短程通信。
在示例性实施例中,装置1100可以被一个或多个应用专用集成电路(ASIC)、数字信号处理器(DSP)、数字信号处理设备(DSPD)、可编程逻辑器件(PLD)、现场可编程门阵列(FPGA)、控制器、微控制器、微处理器或其他电子元件实现,用于执行上述方法。
在示例性实施例中,还提供了一种包括指令的非临时性计算机可读存储介质,例如包括指令的存储器1104,上述指令可由装置1100的处理器420执行以完成上述方法。例如,所述非临时性计算机可读存储介质可以是ROM、随机存取存储器(RAM)、CD-ROM、磁带、软盘和光数据存储设备等。
一种非临时性计算机可读存储介质,当所述存储介质中的指令由终端的处理器执行时,使得终端能够执行如上述方法实施例所提供的一种移动终端的充电方法。
本公开实施例还提供了一种芯片,所述芯片包括可编程逻辑电路和/或程序指令,当所述芯片运行时用于实现如上方面所述的移动终端的充电方法。
本公开实施例还提供了一种充电适配器,所述充电适配器包括充电电路,所述充电电路用于实现如上所述的移动终端的充电方法
应当理解的是,在本文中提及的“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本公开的其它实施方案。本公开旨在涵盖本公开的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本公开的真正范围和精神由下面的权利要求指出。
应当理解的是,本公开并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本公开的范围仅由所附的权利要求来限制。

Claims (14)

  1. 一种移动终端的充电方法,其特征在于,所述方法包括:
    采用恒定功率向所述移动终端的充电电池进行充电。
  2. 根据权利要求1所述的方法,其特征在于,所述采用恒定功率向所述移动终端的充电电池进行充电,包括:
    采用充电电压逐渐升高且充电电流逐渐变小的方式向所述移动终端的充电电池进行充电;
    其中,同一时刻的所述充电电压和所述充电电流的乘积为恒定值或恒定范围。
  3. 根据权利要求1所述的方法,其特征在于,所述采用恒定功率向所述移动终端的充电电池进行充电,包括:
    当充电器的最大输出功率小于所述移动终端支持的最大充电功率时,采用基于所述最大输出功率确定的恒定功率向所述移动终端的充电电池进行充电。
  4. 根据权利要求1所述的方法,其特征在于,所述采用恒定功率向所述移动终端的充电电池进行充电,包括:
    当充电器的最大输出功率大于或等于所述移动终端支持的平均充电功率时,采用基于所述平均充电功率确定的第一恒定功率向所述移动终端的充电电池进行充电;
    当所述充电器的最大输出功率小于所述移动终端支持的平均充电功率时,采用基于所述最大输出功率确定的第二恒定功率向所述移动终端的充电电池进行充电。
  5. 根据权利要求1至4任一所述的方法,其特征在于,所述采用恒定功率向所述移动终端的充电电池进行充电,包括:
    在充电过程的目标时间段内,采用所述恒定功率向所述移动终端的充电电池进行充电;
    其中,所述目标时间段是用于替换恒流充电阶段的时间段、位于所述恒流充电阶段之前的时间段、位于所述恒流充电阶段之后的时间段中的任意一种。
  6. 一种移动终端的充电装置,其特征在于,所述装置包括:
    恒定功率充电模块,被配置为采用恒定功率向所述移动终端的充电电池进行充电。
  7. 根据权利要求6所述的装置,其特征在于,
    所述恒定功率充电模块,被配置为采用充电电压逐渐升高且充电电流逐渐变小的方式 向所述移动终端的充电电池进行充电;
    其中,同一时刻的所述充电电压和所述充电电流的乘积为恒定值或恒定范围。
  8. 根据权利要求6所述的装置,其特征在于,
    所述恒定功率充电模块,被配置为当充电器的最大输出功率小于所述移动终端支持的最大充电功率时,采用基于所述最大输出功率确定的恒定功率向所述移动终端的充电电池进行充电。
  9. 根据权利要求6所述的装置,其特征在于,
    所述恒定功率充电模块,被配置为当充电器的最大输出功率大于或等于所述移动终端支持的平均充电功率时,采用基于所述平均充电功率确定的第一恒定功率向所述移动终端的充电电池进行充电;当所述充电器的最大输出功率小于所述移动终端支持的平均充电功率时,采用基于所述最大输出功率确定的第二恒定功率向所述移动终端的充电电池进行充电。
  10. 根据权利要求6至9任一所述的装置,其特征在于,
    所述恒定功率充电模块,被配置为在充电过程的目标时间段内,采用恒定功率向所述移动终端的充电电池进行充电;
    其中,所述目标时间段是用于替换恒流充电阶段的时间段、位于所述恒流充电阶段之前的时间段、位于所述恒流充电阶段之后的时间段中的任意一种。
  11. 一种移动终端,其特征在于,所述移动终端包括:处理器和存储器;
    所述存储器存储有计算机程序,所述处理器用于执行所述计算机程序以实现如上权利要求1至5任一所述的移动终端的充电方法。
  12. 一种芯片,其特征在于,所述芯片包括可编程逻辑电路和/或程序指令,当所述芯片运行时用于实现如权利要求1至5任一所述的移动终端的充电方法。
  13. 一种充电适配器,其特征在于,所述充电适配器包括充电电路,所述充电电路用于实现如权利要求1至5任一所述的移动终端的充电方法。
  14. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有计算机程序,所述计算机程序被处理器执行时用于实现如上权利要求1至5任一所述的移动终端的充电方法。
PCT/CN2019/110667 2019-08-30 2019-10-11 移动终端的充电方法、装置、终端及存储介质 WO2021035889A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020197035043A KR102416457B1 (ko) 2019-08-30 2019-10-11 이동 단말기의 충전 방법, 장치, 단말기, 프로그램 및 저장 매체
JP2019565326A JP7232777B2 (ja) 2019-08-30 2019-10-11 移動端末の充電方法、装置、端末、プログラム及び記憶媒体
RU2019141264A RU2739448C1 (ru) 2019-08-30 2019-10-11 Способ и устройство зарядки для мобильного терминала, терминал и носитель данных

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910814859.9 2019-08-30
CN201910814859.9A CN112448054B (zh) 2019-08-30 2019-08-30 移动终端的充电方法、装置、终端及存储介质

Publications (1)

Publication Number Publication Date
WO2021035889A1 true WO2021035889A1 (zh) 2021-03-04

Family

ID=69172675

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/110667 WO2021035889A1 (zh) 2019-08-30 2019-10-11 移动终端的充电方法、装置、终端及存储介质

Country Status (7)

Country Link
US (1) US11444477B2 (zh)
EP (1) EP3787143A1 (zh)
JP (1) JP7232777B2 (zh)
KR (1) KR102416457B1 (zh)
CN (1) CN112448054B (zh)
RU (1) RU2739448C1 (zh)
WO (1) WO2021035889A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105186663A (zh) * 2015-10-15 2015-12-23 江苏兆合电气有限公司 基于超级电容的不间断电源系统
CN105914831A (zh) * 2016-05-20 2016-08-31 西安交通大学 基于ss拓扑的磁耦合谐振无线电能传输系统参数设计方法
CN205565772U (zh) * 2016-02-22 2016-09-07 天津市天楚科技有限公司 具有充电管理的移动电源
CN106058990A (zh) * 2016-07-04 2016-10-26 李文杰 一种可自动分配充电电流的充电器

Family Cites Families (77)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1095307A1 (ru) * 1982-10-12 1984-05-30 Предприятие П/Я Г-4514 Устройство дл зар да аккумул торной батареи посто нной мощностью
US5382893A (en) * 1991-05-16 1995-01-17 Compaq Computer Corporation Maximum power regulated battery charger
JPH08106921A (ja) * 1994-10-03 1996-04-23 Nissan Motor Co Ltd 自動車用バッテリの充電方法及び装置
JP3157688B2 (ja) * 1994-12-05 2001-04-16 松下電器産業株式会社 組電池の充電制御方法及び充電制御装置
US5696436A (en) * 1995-10-27 1997-12-09 Motorola Inc. Method and system for battery charging
US5994878A (en) * 1997-09-30 1999-11-30 Chartec Laboratories A/S Method and apparatus for charging a rechargeable battery
US5998972A (en) * 1998-04-30 1999-12-07 Apple Computer, Inc. Method and apparatus for rapidly charging a battery of a portable computing device
KR20000002336A (ko) 1998-06-18 2000-01-15 윤종용 온도 보상 회로를 갖는 휴대용 전자 장치의 정전력 충전 회로
KR100600619B1 (ko) * 2001-10-03 2006-07-13 트로잔 배터리 컴파니 배터리 충전 시스템 및 방법
US6664765B2 (en) * 2002-01-30 2003-12-16 Denso Corporation Lithium-ion battery charger power limitation method
US7176654B2 (en) * 2002-11-22 2007-02-13 Milwaukee Electric Tool Corporation Method and system of charging multi-cell lithium-based batteries
TWI231639B (en) * 2003-02-06 2005-04-21 Terakawa Soji Charger for mobile phone and operation method for the same and charging apparatus for mobile phone and charging method for the same
US7411371B2 (en) * 2003-02-28 2008-08-12 Arizona Public Service Company Battery charger and method of charging a battery
EP1691466A4 (en) * 2003-11-19 2012-11-07 Shindengen Electric Mfg CONTINUOUS-CONTINUOUS CHARGER AND CONVERTER WITH THIS CHARGER
KR100542215B1 (ko) * 2003-12-23 2006-01-10 삼성에스디아이 주식회사 2차 전지의 충전방법 및 충전장치
JP2005278249A (ja) * 2004-03-23 2005-10-06 Nissan Motor Co Ltd 組電池の容量調整装置および容量調整方法
WO2007011734A2 (en) * 2005-07-15 2007-01-25 Schumacher Electric Corporation Battery charger and method utilizing alternating dc charging current
EP1821386A2 (en) * 2006-02-17 2007-08-22 Power Systems Co., Ltd. Charging apparatus for capacitor storage type power source and discharging apparatus for capacitor storage type power source
JP5048963B2 (ja) * 2006-04-06 2012-10-17 パナソニック株式会社 電池システム
US8222870B2 (en) * 2007-03-07 2012-07-17 O2Micro, Inc Battery management systems with adjustable charging current
JP4805223B2 (ja) * 2007-07-27 2011-11-02 レノボ・シンガポール・プライベート・リミテッド 充電システムおよび充電方法
JP2009081902A (ja) * 2007-09-25 2009-04-16 Sanyo Electric Co Ltd 充電装置
US9707835B2 (en) * 2008-04-01 2017-07-18 3B Technologies Ii Efficient vehicle power systems
CN101282045B (zh) * 2008-04-28 2010-08-11 炬力集成电路设计有限公司 一种电池充电装置及其控制方法
US7977921B2 (en) * 2008-08-15 2011-07-12 National Semiconductor Corporation AC-to-DC voltage conversion and charging circuitry
US7743649B1 (en) * 2008-12-18 2010-06-29 Gm Global Technology Operations, Inc. Cranking capability estimation for a vehicular starting system
JP2010200530A (ja) * 2009-02-26 2010-09-09 Omron Corp 充電制御装置および方法、充電装置および方法、並びに、プログラム
US20110007491A1 (en) * 2009-07-10 2011-01-13 Protonex Technology Corporation Portable power manager enclosure
JP5455215B2 (ja) * 2009-12-17 2014-03-26 Necエナジーデバイス株式会社 電池モジュール制御システム
CN103097175A (zh) * 2010-04-26 2013-05-08 东能源公司 分布式电力系统的调度控制器
US8479024B2 (en) * 2010-08-31 2013-07-02 Dell Products L.P. System and method for customizing information handling system internal power source and service offerings based on usage profiles
US20120109555A1 (en) * 2010-11-01 2012-05-03 Daniel Humphrey Adaptive rating for backup power supply
CN103314503B (zh) * 2010-11-15 2015-10-21 三菱自动车工业株式会社 电动车辆的充电控制装置
CN102931693B (zh) * 2011-08-10 2014-12-10 联发科技(新加坡)私人有限公司 充电控制方法、装置以及充电系统和便携式设备
WO2013046690A1 (ja) * 2011-09-30 2013-04-04 パナソニック株式会社 リチウムイオン電池の充電方法及び電池搭載機器
TWI427309B (zh) * 2011-10-21 2014-02-21 Simplo Technology Company Ltd 電壓校正方法
JP2013099060A (ja) * 2011-10-31 2013-05-20 Dmk Battery Co Ltd 充放電制御機能を備えた携帯端末充電装置
TWI578147B (zh) * 2011-11-30 2017-04-11 緯創資通股份有限公司 電子系統的電源功耗控制方法以及相關的電子系統
JP2013183496A (ja) * 2012-02-29 2013-09-12 Equos Research Co Ltd 電力伝送システム
JP2013192394A (ja) * 2012-03-14 2013-09-26 Ricoh Co Ltd 充電制御回路及び電池装置
KR101466442B1 (ko) * 2012-07-23 2014-11-28 엘에스산전 주식회사 배터리 충전 장치 및 이의 배터리 충전 방법
CN102904309B (zh) * 2012-10-19 2015-07-15 惠州Tcl移动通信有限公司 实现移动设备恒功率动态充电的方法、系统及移动设备
JP5708668B2 (ja) * 2013-01-18 2015-04-30 トヨタ自動車株式会社 蓄電システム
JP6201763B2 (ja) * 2013-01-22 2017-09-27 株式会社Gsユアサ 蓄電ユニットの接続情報取得装置
CN103138021B (zh) * 2013-03-07 2015-06-24 清华大学 一种电池充电方法
WO2014167914A1 (ja) * 2013-04-10 2014-10-16 日産自動車株式会社 バッテリ充電システム及びバッテリ充電方法
JP2015220956A (ja) * 2014-05-21 2015-12-07 三菱自動車工業株式会社 充電装置
FR3038153A1 (fr) * 2015-06-23 2016-12-30 Commissariat Energie Atomique Procede de gestion de la production d'energie d'un systeme energetique et dispositif gestionnaire associe
CN107852019B (zh) * 2015-07-21 2021-04-27 株式会社村田制作所 充电方法、电池装置、充电装置、劣化诊断方法、电池组、电动车辆和蓄电装置
CN106558897B (zh) * 2015-09-30 2020-09-01 南京德朔实业有限公司 充电器及充电方法
DE102015219202A1 (de) * 2015-10-05 2017-04-06 Bayerische Motoren Werke Aktiengesellschaft Optimierung von Lade-/Entladeplänen für Elektrofahrzeuge
EP3411933A1 (en) * 2016-02-02 2018-12-12 Koninklijke Philips N.V. A multifunctional power distribution apparatus
WO2017141641A1 (ja) * 2016-02-15 2017-08-24 シャープ株式会社 送電装置、給電システムおよび受電装置
CN105515137B (zh) 2016-02-22 2019-02-26 天津市天楚科技有限公司 具有充电管理的移动电源
US10065518B2 (en) * 2016-05-18 2018-09-04 GM Global Technology Operations LLC Method and apparatus to control an off-board charging device
US10447054B2 (en) * 2016-05-20 2019-10-15 Robert Bosch Gmbh Staircase charging
US10014773B2 (en) * 2016-08-31 2018-07-03 General Electric Company Hybrid active power link module device and associated systems and methods
KR20180037473A (ko) * 2016-10-04 2018-04-12 삼성전자주식회사 모바일 결제 방법, 전자 장치 및 외부 결제 장치
KR101905997B1 (ko) * 2016-11-09 2018-10-08 현대자동차주식회사 차량탑재형 충전장치
TWI624754B (zh) * 2016-12-23 2018-05-21 廣達電腦股份有限公司 電子裝置、電子系統、以及控制方法
CN108321915B (zh) * 2017-01-16 2020-08-04 宏碁股份有限公司 电子装置及电子装置的操作方法
KR20180085313A (ko) * 2017-01-18 2018-07-26 삼성전자주식회사 충전 제어 방법 및 이를 지원하는 전자 장치
KR102254353B1 (ko) * 2017-03-10 2021-05-21 주식회사 엘지화학 이차전지의 충전방법
CN107069120A (zh) * 2017-03-22 2017-08-18 广州小鹏汽车科技有限公司 一种电动车汽车锂离子电池的快充装置和方法
CN110945738B (zh) * 2017-07-31 2023-04-28 日产自动车株式会社 充电时间运算方法和充电控制装置
CN108110349B (zh) * 2017-12-15 2020-05-05 宁德时代新能源科技股份有限公司 一种电池充电的方法及装置、计算机可读存储介质
JP7119464B2 (ja) * 2018-03-20 2022-08-17 トヨタ自動車株式会社 車両用充電システム及び充電制御方法
JP7076543B2 (ja) * 2018-05-31 2022-05-27 本田技研工業株式会社 充電制御装置、輸送機器、及びプログラム
JP7115082B2 (ja) * 2018-07-09 2022-08-09 株式会社デンソー 充電制御装置及び充電制御システム
WO2020044932A1 (ja) * 2018-08-31 2020-03-05 三洋電機株式会社 二次電池の充電システム
JP7128709B2 (ja) * 2018-10-04 2022-08-31 日本たばこ産業株式会社 吸引成分生成装置
CN109672242B (zh) * 2018-12-20 2021-02-26 惠州Tcl移动通信有限公司 终端充电控制方法、装置及存储介质
CN109861331B (zh) * 2019-02-21 2024-05-07 海汇新能源汽车有限公司 纯电动汽车用高效充电控制装置及其控制策略
CN112994126A (zh) * 2019-12-13 2021-06-18 北京小米移动软件有限公司 充电电路、电子设备、充电方法和装置
US20210265674A1 (en) * 2020-02-25 2021-08-26 Samsung Sdi Co., Ltd. Method and detector for detecting inhomogeneous cell performance of a battery system
CN111934395B (zh) * 2020-09-15 2021-01-05 深圳英集芯科技有限公司 切换控制电路、充电芯片及电子装置
CN213937519U (zh) * 2020-11-10 2021-08-10 东莞市爱客德电子科技有限公司 一种充电坞电路及充电坞

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105186663A (zh) * 2015-10-15 2015-12-23 江苏兆合电气有限公司 基于超级电容的不间断电源系统
CN205565772U (zh) * 2016-02-22 2016-09-07 天津市天楚科技有限公司 具有充电管理的移动电源
CN105914831A (zh) * 2016-05-20 2016-08-31 西安交通大学 基于ss拓扑的磁耦合谐振无线电能传输系统参数设计方法
CN106058990A (zh) * 2016-07-04 2016-10-26 李文杰 一种可自动分配充电电流的充电器

Also Published As

Publication number Publication date
JP7232777B2 (ja) 2023-03-03
KR20210028047A (ko) 2021-03-11
RU2739448C1 (ru) 2020-12-24
JP2022502984A (ja) 2022-01-11
US20210066941A1 (en) 2021-03-04
CN112448054A (zh) 2021-03-05
CN112448054B (zh) 2023-02-17
US11444477B2 (en) 2022-09-13
EP3787143A1 (en) 2021-03-03
KR102416457B1 (ko) 2022-07-04

Similar Documents

Publication Publication Date Title
JP7121865B2 (ja) 逆方向充電装置、逆方向充電電流調整方法及び装置
WO2017016163A1 (zh) 充电方法及装置
WO2017012267A1 (zh) 充电方法及装置
EP3832841A1 (en) Charging circuit, electronic device, charging control method and device
WO2016112726A1 (zh) 控制终端设备充电的方法及装置
CN106067571B (zh) 为电池充电的方法及电子设备
KR20210049709A (ko) 배터리 충전 방법, 배터리 충전 장치 및 저장 매체
WO2020237820A1 (zh) 无线充电通信方法、装置、设备及存储介质
CN113224822B (zh) 一种充电控制方法、装置以及存储介质
CN113824195A (zh) 充电控制方法及装置、终端、计算机可读存储介质
CN107124012B (zh) 充电方法、装置、充电器、终端和系统
WO2021035889A1 (zh) 移动终端的充电方法、装置、终端及存储介质
CN112448053B (zh) 移动终端的充电方法、装置、终端及存储介质
CN111509789B (zh) 充电方法及装置
CN115173495A (zh) 充电控制方法、装置以及存储介质
CN111600351A (zh) 充电电池、终端设备、充电方法、充电系统以及充电装置
US20230120651A1 (en) Charging method, electronic device and storage medium
WO2021073538A1 (zh) 充电控制方法、设备及可读存储介质
CN216489841U (zh) 充放电电路及电子设备
WO2023240533A1 (zh) 一种电池控制方法、装置、终端及存储介质
CN114006429A (zh) 充电方法、装置、终端设备及计算机可读存储介质
CN116131375A (zh) 充电模组、充电方法、电子设备及存储介质
CN114498792A (zh) 充电方法、装置、设备及存储介质
CN116418078A (zh) 供电方法及装置、电子设备、存储介质
CN114696417A (zh) 充电转换装置、充电方法及装置、电子设备和存储介质

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019565326

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19942787

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19942787

Country of ref document: EP

Kind code of ref document: A1