WO2020237820A1 - 无线充电通信方法、装置、设备及存储介质 - Google Patents

无线充电通信方法、装置、设备及存储介质 Download PDF

Info

Publication number
WO2020237820A1
WO2020237820A1 PCT/CN2019/098351 CN2019098351W WO2020237820A1 WO 2020237820 A1 WO2020237820 A1 WO 2020237820A1 CN 2019098351 W CN2019098351 W CN 2019098351W WO 2020237820 A1 WO2020237820 A1 WO 2020237820A1
Authority
WO
WIPO (PCT)
Prior art keywords
wireless power
band communication
wireless charging
wireless
data packet
Prior art date
Application number
PCT/CN2019/098351
Other languages
English (en)
French (fr)
Inventor
吴凯棋
王彦腾
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to RU2019141196A priority Critical patent/RU2734714C1/ru
Priority to JP2019553006A priority patent/JP7116079B2/ja
Priority to KR1020197028121A priority patent/KR102252248B1/ko
Publication of WO2020237820A1 publication Critical patent/WO2020237820A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/005Mechanical details of housing or structure aiming to accommodate the power transfer means, e.g. mechanical integration of coils, antennas or transducers into emitting or receiving devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/80Circuit arrangements or systems for wireless supply or distribution of electric power involving the exchange of data, concerning supply or distribution of electric power, between transmitting devices and receiving devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/00032Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by data exchange
    • H02J7/00034Charger exchanging data with an electronic device, i.e. telephone, whose internal battery is under charge
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L69/00Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass
    • H04L69/14Multichannel or multilink protocols
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/80Services using short range communication, e.g. near-field communication [NFC], radio-frequency identification [RFID] or low energy communication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/56Allocation or scheduling criteria for wireless resources based on priority criteria
    • H04W72/566Allocation or scheduling criteria for wireless resources based on priority criteria of the information or information source or recipient
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • H04W88/06Terminal devices adapted for operation in multiple networks or having at least two operational modes, e.g. multi-mode terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/90Services for handling of emergency or hazardous situations, e.g. earthquake and tsunami warning systems [ETWS]

Definitions

  • the embodiments of the present application relate to the field of wireless charging technology, and in particular to a wireless charging communication method, device, equipment, and storage medium.
  • Wireless charging includes electromagnetic induction, electromagnetic resonance, electric field coupling, and radio waves.
  • the wireless charging standard proposed by the Wireless Power Consortium (WPC) stipulates that a charger that supports wireless charging and a device to be charged can perform necessary communication based on the working frequency band of wireless charging. This communication method is called belt Internal communication.
  • the embodiments of the present disclosure provide a wireless charging communication method, device, equipment, and storage medium.
  • the technical solution is as follows:
  • a wireless charging communication method which is applied to a wireless power receiving device, and the method includes:
  • in-band communication is used to send data packets to the wireless power transmitting device
  • the transmission delay requirement of the emergency data is higher than the transmission delay requirement of the non-emergency data.
  • determining that emergency data needs to be transmitted during the wireless charging process includes:
  • control error value is greater than the error threshold, it is determined that the emergency data needs to be transmitted during the wireless charging process
  • control error value is less than the error threshold value, it is determined that the non-emergency data needs to be transmitted during the wireless charging process.
  • determining that emergency data needs to be transmitted during the wireless charging process includes:
  • the sending a data packet to the wireless power transmitting device in the in-band communication mode includes:
  • a first data packet is sent to the wireless power transmitting device in the in-band communication mode, where the first data packet is used to instruct to stop power transmission.
  • determining that emergency data needs to be transmitted during the wireless charging process includes:
  • the sending a data packet to the wireless power transmitting device in the in-band communication mode includes:
  • a second data packet is sent to the wireless power transmitting device in the in-band communication mode, where the second data packet is used to instruct to stop power transmission.
  • determining that emergency data needs to be transmitted during the wireless charging process includes:
  • timer state is the expired state, it is determined that the emergency data needs to be transmitted during the wireless charging process
  • the sending a data packet to the wireless power transmitting device in the in-band communication mode includes:
  • the method further includes:
  • the data packet corresponding to the emergency data is generated first.
  • the out-of-band communication mode includes at least one of Bluetooth, Near Field Communication (NFC), and ZigBee.
  • NFC Near Field Communication
  • ZigBee ZigBee
  • a wireless charging communication method which is applied to a wireless power transmission device, and the method includes:
  • Determining a communication method used when sending the data packet where the communication method includes an in-band communication method and an out-of-band communication method;
  • the method further includes:
  • the out-of-band communication mode includes at least one of Bluetooth, NFC, and ZigBee.
  • a wireless charging communication device which is applied to a wireless power receiving device, and the device includes:
  • the in-band communication module is configured to use the in-band communication method to send data packets to the wireless power transmitting device if urgent data needs to be transmitted during the wireless charging process;
  • the out-of-band communication module is configured to use out-of-band communication to send data packets to the wireless power transmitting device if non-emergency data needs to be transmitted during the wireless charging process;
  • the transmission delay requirement of the emergency data is higher than the transmission delay requirement of the non-emergency data.
  • the device further includes:
  • the first obtaining module is configured to obtain the control error value contained in the control error packet CEP, where the CEP is used to instruct the wireless power transmitting device to adjust at least one of voltage, current, and operating frequency;
  • the first determining module is configured to determine that the emergency data needs to be transmitted during the wireless charging process if the control error value is greater than an error threshold;
  • the non-urgent data determining module is configured to determine that the non-urgent data needs to be transmitted during the wireless charging process if the control error value is less than the error threshold.
  • the device further includes:
  • the second obtaining module is configured to obtain the output current of the wireless power receiving device
  • a second determining module configured to determine that the emergency data needs to be transmitted during the wireless charging process if the output current is greater than a first threshold
  • the in-band communication module includes:
  • the first communication submodule is configured to send a first data packet to the wireless power transmitting device in the in-band communication mode, where the first data packet is used to instruct to stop power transmission.
  • the device further includes:
  • the third obtaining module is configured to obtain the device temperature of the wireless power receiving device
  • the third determining module is configured to determine that the emergency data needs to be transmitted during the wireless charging process if the temperature of the device is greater than a second threshold;
  • the in-band communication module includes:
  • the second communication sub-module is configured to send a second data packet to the wireless power transmitting device in the in-band communication mode, where the second data packet is used to instruct to stop power transmission.
  • the device further includes:
  • a fourth acquiring module configured to acquire a timer status of a timer in the wireless power receiving device, the timer being used to trigger the wireless power receiving device to send a third data packet;
  • a fourth determining module configured to determine that the emergency data needs to be transmitted during the wireless charging process if the timer state is the time-out state;
  • the in-band communication module includes:
  • the third communication sub-module is configured to send the third data packet to the wireless power transmitting device in the in-band communication manner.
  • the device further includes:
  • the priority generation module is configured to preferentially generate data packets corresponding to the emergency data if the emergency data needs to be transmitted during the wireless charging process.
  • the out-of-band communication mode includes at least one of Bluetooth, near field communication NFC, and ZigBee.
  • a wireless charging communication device which is applied to a wireless power transmission device, and the device includes:
  • a data packet receiving module configured to receive data packets sent by the wireless power receiving device
  • a communication mode determining module configured to determine a communication mode used when sending the data packet, the communication mode including an in-band communication mode and an out-of-band communication mode;
  • the priority processing module is configured to preferentially process data packets sent in the in-band communication mode.
  • the device further includes:
  • the first communication waiting module is configured to determine that the in-band communication fails if the data packet sent in the in-band communication mode is not received within the first predetermined time period;
  • the second communication waiting module is configured to determine that the out-of-band communication fails if the data packet sent in the out-of-band communication mode is not received within a second predetermined time period;
  • the communication stop module is configured to stop wireless charging if in-band communication fails and out-of-band communication fails.
  • the out-of-band communication mode includes at least one of Bluetooth, NFC, and ZigBee.
  • a wireless charging communication device applied to a wireless power receiving device including:
  • a memory for storing executable instructions of the processor
  • the processor is configured to:
  • in-band communication is used to send data packets to the wireless power transmitting device
  • the transmission delay requirement of the emergency data is higher than the transmission delay requirement of the non-emergency data.
  • a wireless charging communication device which is applied to a wireless power transmission device, and the device includes:
  • a memory for storing executable instructions of the processor
  • the processor is configured to:
  • Determining a communication method used when sending the data packet where the communication method includes an in-band communication method and an out-of-band communication method;
  • a computer-readable storage medium wherein the storage medium stores at least one instruction, and the at least one instruction is configured to be executed by a processor to implement the above-mentioned aspect The wireless charging communication method on the wireless power receiving device side.
  • a computer-readable storage medium wherein the storage medium stores at least one instruction, and the at least one instruction is configured to be executed by a processor to implement the above-mentioned aspect The wireless charging communication method on the wireless power transmitting device side.
  • a wireless charging system wherein the wire charging system includes: a wireless power receiving device and a wireless power transmitting device;
  • the wireless power receiving device includes the wireless power receiving device as described in the foregoing aspect
  • the wireless power transmitting device includes the wireless power transmitting device as described in the foregoing aspect.
  • the in-band communication method is used to send data packets to the wireless power transmitting device; if non-urgent data needs to be transmitted during the wireless charging process, the out-of-band communication method is used to send data to the wireless power transmitting device Packet; Compared with the single in-band communication method used in the related technology, the method provided in the embodiment of this application is used.
  • the out-of-band communication method with better communication quality is used to send. Low data packets can help improve the demodulation success rate of data packets.
  • in-band communication is used to send data packets that require high transmission delay to ensure that the wireless power transmission device can respond in time. Need to transmit data packets in case of urgent data for processing.
  • Fig. 1 shows a schematic diagram of an implementation environment provided by an exemplary embodiment of the present application
  • Fig. 2 shows a schematic structural diagram of a wireless power transmitting device and a wireless power receiving device provided by an exemplary embodiment of the present application
  • FIG. 3 shows a flowchart of a wireless charging communication method provided by an exemplary embodiment of the present application
  • FIG. 4 shows a flowchart of a wireless charging communication method provided by another exemplary embodiment of the present application.
  • FIG. 5 shows a flowchart of a wireless charging communication method provided by another exemplary embodiment of the present application.
  • Fig. 6 shows a flowchart of a wireless charging communication method provided by another exemplary embodiment of the present application.
  • FIG. 7 shows a flowchart of a wireless charging communication method provided by another exemplary embodiment of the present application.
  • Fig. 8 shows a structural block diagram of a wireless charging communication device provided by an exemplary embodiment of the present application
  • Fig. 9 shows a structural block diagram of a wireless charging communication device provided by an exemplary embodiment of the present application.
  • Fig. 10 shows a structural diagram of a wireless charging communication device provided by an exemplary embodiment of the present application.
  • the "plurality” mentioned herein means two or more.
  • “And/or” describes the association relationship of the associated objects, indicating that there can be three types of relationships, for example, A and/or B, which can mean: A alone exists, A and B exist at the same time, and B exists alone.
  • the character “/” generally indicates that the associated objects are in an "or” relationship.
  • FIG. 1 shows an environmental schematic diagram of an implementation environment provided by an exemplary embodiment of the present application.
  • the implementation environment includes a wireless power transmitting device 10 and a wireless power receiving device 20.
  • the wireless power transmitting device 10 refers to a device used to provide power to an electric device in wireless charging.
  • the name of the wireless power transmitting device 10 may be different.
  • the wireless power transmitting device 10 when the wireless power transmitting device 10 is used to wirelessly charge portable electronic devices such as mobile phones, tablets, wearable devices, etc., the wireless power transmitting device 10 may be referred to as a charger, a charging tray, a power adapter, a wireless charger, etc. .
  • the wireless power transmitting device 10 when the wireless power transmitting device 10 is used to wirelessly charge vehicles such as electric vehicles, the wireless power transmitting device 10 may be referred to as a charging pile, a wireless charging pile, or the like.
  • the wireless power receiving device 20 refers to a device for receiving power in wireless charging, that is, an electric device.
  • the wireless power receiving device 20 may be any electric device that supports wireless charging, such as a mobile phone, a tablet computer, a wearable device, an electric car, etc., which is not limited in the embodiment of the present disclosure.
  • the wireless charging communication mode between the wireless power transmitting device 10 and the wireless power receiving device 20 includes at least one of in-band communication or out-of-band communication.
  • in-band communication is a communication method based on the working frequency band of wireless charging
  • out-of-band communication is a communication method using the non-working frequency band of wireless charging.
  • the wireless power transmitting device 10 and the wireless power receiving device 20 communicate based on the working frequency band of wireless charging; in the out-of-band communication process, the wireless power transmitting device 10 and the wireless power receiving device 20 pass through out-of-band communication
  • the communication component communicates in the working frequency band of the out-of-band communication component (frequency band outside the working frequency band of wireless charging).
  • the out-of-band communication component may be at least one of a Bluetooth chip, an NFC chip, and a ZigBee chip.
  • the wireless power transmitting device 10 and the wireless power receiving device 20 perform out-of-band communication through a Bluetooth chip as an example for description.
  • the wireless power transmitting device 10 is provided with a wireless power transmitting chip 101 connected to a first CPU 102, and the first CPU 102 is connected to a first Bluetooth chip 103;
  • the wireless power receiving device 20 is provided with a wireless power receiving chip 201 and a second The CPU 202 is connected, and the second CPU 202 is connected to the second Bluetooth chip 203.
  • the wireless power receiving device 20 communicates with the second CPU 202 through the wireless power receiving chip 201, and sends data packets that need to be transmitted to the second CPU 202, and the second CPU 202 sends the data packets to the second Bluetooth chip 203 , So that the second Bluetooth chip 203 sends the data packet to the first Bluetooth chip 103 through the Bluetooth connection (out-of-band communication).
  • the wireless power transmitting device 10 receives the data packet transmitted out-of-band by the wireless power receiving device 20 through the first Bluetooth chip 103, the data packet is sent to the first CPU 102, and the first CPU 102 sends the data packet to the wireless power
  • the sending chip 101 allows the wireless power sending chip 101 to analyze and process the data packet.
  • the wireless power transmitting device 10 may feed back the data packet sent by the wireless power receiving device 20 through a similar process, which will not be repeated in this embodiment.
  • FIG. 3 shows a flowchart of a wireless charging communication method provided by an exemplary embodiment of the present application.
  • the method is used in the implementation environment shown in FIG. 1 as an example for description, and the method includes:
  • Step 301 If urgent data needs to be transmitted during the wireless charging process, the wireless power receiving device uses in-band communication to send data packets to the wireless power transmitting device.
  • the wireless power receiving device determines whether the device needs to transmit emergency data or non-urgent data, and if it needs to transmit emergency data, execute step 301; if it needs to transmit non-urgent data, execute step 302.
  • the transmission delay requirement of emergency data is higher than the transmission delay requirement of non-emergency data, that is, compared with non-emergency data, emergency data needs to be transmitted to the wireless power transmitting device faster, so that the wireless power transmitting device can process it as soon as possible.
  • in-band communication has two communication links between the transmitting end (wireless power transmitting device) and the receiving end (wireless power receiving device).
  • the communication from the receiving end to the transmitting end adopts Amplitude Shift Keying (ASK) modulation mode
  • the communication from the transmitting end to the receiving end adopts Frequency Shift Keying (FSK) modulation mode.
  • ASK Amplitude Shift Keying
  • FSK Frequency Shift Keying
  • the wireless power receiving device When emergency data needs to be transmitted, the wireless power receiving device generates corresponding data packets according to the current situation where the emergency data needs to be transmitted, and uses the ASK modulation method to send the data packets to the wireless power transmitting device to instruct the wireless power transmitting device to receive The packets are processed.
  • Step 302 If non-emergency data needs to be transmitted during the wireless charging process, the wireless power receiving device uses out-of-band communication to send data packets to the wireless power transmitting device.
  • Non-urgent data is to exclude urgent data transmission data.
  • the transmission delay requirement of non-urgent data is lower than the transmission delay requirement of urgent data.
  • the wireless power receiving device can transmit data packets through out-of-band communication. In-band communication has longer transmission delay, but its communication quality is higher than in-band communication. Therefore, when transmitting non-emergency data, the wireless power receiving device uses out-of-band communication to send data packets to ensure the transmission quality of data packets. Improve the success rate of data packet parsing by wireless power transmission equipment.
  • the wireless power receiving device determines to use out-of-band communication, it also needs to turn on the out-of-band communication function.
  • the wireless charging pad wireless power transmitting device
  • the out-of-band communication method is Bluetooth
  • the mobile phone interface will appear Prompt box, the prompt box is used to prompt the user to manually turn on the Bluetooth function; or, the Bluetooth is automatically turned on in the background of the mobile phone to achieve out-of-band communication between the mobile phone and the wireless charging pad.
  • Step 303 The wireless power transmitting device receives the data packet sent by the wireless power receiving device.
  • the wireless power transmitting device turns on the in-band communication mode and the out-of-band communication mode.
  • the wireless power transmitting device can only receive data packets sent by the wireless power receiving device through in-band communication during the wireless charging process.
  • the wireless power transmitting device simultaneously activates the in-band communication mode and The out-of-band communication mode ensures that the data packets sent by the wireless power receiving device through in-band communication or out-of-band communication can be received normally.
  • the wireless power transmitting device detects whether the wireless power receiving device supports out-of-band communication, and when it does, the in-band communication mode and the band are simultaneously enabled during the wireless charging process. Out-of-band communication mode; otherwise, only in-band communication mode is enabled.
  • Step 304 The wireless power transmitting device determines a communication mode used when sending data packets.
  • the communication method includes in-band communication and out-of-band communication.
  • the wireless power transmitting device receives data packets sent by the wireless power receiving device in an in-band communication mode, and/or, receiving data packets sent by the wireless power receiving device in an out-of-band communication mode.
  • the wireless power transmitting device determines the communication method used by the wireless power receiving device to transmit the data packet, and the data packet sent by the wireless power receiving device when it needs to transmit emergency data is determined to be In-band communication is adopted, and the data packet sent by the wireless power receiving device when it needs to transmit non-emergency data is determined to adopt out-of-band communication.
  • Step 305 The wireless power transmitting device preferentially processes the data packet transmitted in the in-band communication mode.
  • the data packets sent by different communication methods have different processing priorities, and the wireless power transmitting device will process according to Prioritize the processing of data packets, rather than sequentially processing them in the order they are received.
  • the wireless power transmitting device receives the data packet sent by the in-band communication method and the data packet sent by the out-of-band communication method, wherein the processing priority of the data packet sent by the in-band communication method It is higher than the processing priority of data packets sent through out-of-band communication, that is, when the wireless power transmitting device receives data packets sent through in-band communication, it will give priority to processing data packets sent through in-band communication.
  • the in-band communication method is used to send data packets to the wireless power transmitting device; if non-emergency data needs to be transmitted during wireless charging, the belt The external communication mode sends data packets to the wireless power transmitting device; compared to the single in-band communication mode used in the related technology, the method provided in the embodiment of this application is adopted.
  • a band with better communication quality is used. Sending data packets with low transmission delay requirements through out-of-band communication helps improve the demodulation success rate of data packets.
  • When urgent data needs to be transmitted use in-band communication to send data with high transmission delay requirements. Packets to ensure that the wireless power transmitting device can process data packets in a timely manner when urgent data needs to be transmitted.
  • the wireless power receiving device when emergency data needs to be transmitted during the wireless charging process, the wireless power receiving device preferentially generates the corresponding emergency data For the non-urgent data to be transmitted, the wireless power receiving device generates the data packet corresponding to the non-urgent data after generating the data packet corresponding to the urgent data.
  • the wireless power receiving device determines that it needs to transmit emergency data in at least one of the following emergency states: the control error value contained in the CEP is greater than the error threshold, and the output current of the wireless power receiving device The device temperature of the wireless power receiving device is greater than the first threshold value, and the device temperature of the wireless power receiving device is greater than the second threshold value.
  • FIG. 4 shows a flowchart of a wireless charging communication method provided by another exemplary embodiment of the present application.
  • This embodiment takes an emergency state related to CEP as an example for description.
  • the method includes:
  • Step 401 The wireless power receiving device obtains the control error value contained in the CEP.
  • CEP is used to instruct the wireless power transmitting device to adjust at least one of voltage, current, and operating frequency.
  • CEP contains a control error value.
  • the control error value ranges from -128 to +127, that is, the control error value has Positive and negative.
  • the wireless power receiving device transmits CEP to the wireless power transmitting device through in-band communication at a predetermined time interval (such as 250ms), and the wireless power transmitting device receives the CEP and demodulates the control error contained therein. value.
  • the control error value is positive, the wireless power transmitting device increases the current of the primary coil (the primary coil is located in the wireless power transmitting device), or increases its own voltage, or, when the voltage of the wireless power transmitting device reaches the maximum value, Reduce its own operating frequency.
  • the control error value is negative, the wireless power transmitting device reduces the current of the primary coil, or increases its own operating frequency, or, when the operating frequency of the wireless power transmitting device reaches the maximum value, it reduces its own voltage.
  • the wireless power receiving device needs to detect the control error value of the CEP before transmitting the CEP to determine whether the control error value is greater than the error threshold. If the control error value is greater than the error threshold, step 402 is executed, if If the control error value is less than the error threshold, step 404 is executed.
  • the error threshold is a positive value, and when the wireless power receiving device compares the control error value with the error threshold, it compares the absolute value of the control error value with the error threshold.
  • Step 402 If the control error value is greater than the error threshold, the wireless power receiving device determines that emergency data needs to be transmitted during the wireless charging process, and uses in-band communication to send the CEP to the wireless power transmitting device.
  • control error value is greater than the error threshold, it indicates that the amount of adjustment at the wireless power transmitting device is large (large current, voltage or operating frequency adjustment is required). If the wireless power transmitting device is adjusted too slowly, it may cause the wireless power receiving device to suffer Therefore, when the control error value is greater than the error threshold, the wireless power receiving device uses in-band communication to transmit the CEP, so that the wireless power receiving device sends the CEP to the wireless power transmitting device as soon as possible, thereby ensuring that the wireless power transmitting device can be timely Process the CEP in the case of urgent data transmission.
  • control error value is -90.
  • the wireless power receiving device determines that emergency data needs to be transmitted during the wireless charging process and adopts in-band communication. Send CEP to the wireless power transmitting device.
  • Step 403 The wireless power transmitting device receives the CEP sent by the wireless power receiving device in the in-band communication mode.
  • the wireless power transmitting device simultaneously enables in-band communication and out-of-band communication, when the wireless power receiving device transmits CEP in the in-band communication mode, the wireless power transmitting device can receive the CEP in the in-band communication mode in time.
  • Step 404 If the control error value is less than the error threshold, the wireless power receiving device determines that non-emergency data needs to be transmitted during the wireless charging process, and uses out-of-band communication to send the CEP to the wireless power transmitting device.
  • the wireless power receiving device uses an out-of-band communication method with better communication quality but higher transmission delay to transmit CEP, so as to ensure the transmission quality of CEP and improve the wireless power transmission device’s response to CEP.
  • the resolution success rate is the lowest transmission rate.
  • control error value is +10.
  • the wireless power receiving device determines that non-emergency data needs to be transmitted during the wireless charging process, and uses out-of-band communication Ways to send CEP to the wireless power transmitting device.
  • Step 405 The wireless power transmitting device receives the CEP sent by the wireless power receiving device in an out-of-band communication manner.
  • the wireless power transmitting device since the wireless power transmitting device simultaneously enables in-band communication and out-of-band communication, when the wireless power receiving device transmits CEP in out-of-band communication, the wireless power transmitting device can receive CEP in out-of-band communication in time.
  • Step 406 The wireless power transmitting device preferentially processes the CEP transmitted through in-band communication.
  • the wireless power transmitting device obtains the CEP, and adjusts at least one of voltage, current, and operating frequency according to the number of control errors in the CEP.
  • the wireless power transmission device receives the CEP sent through in-band communication and the CEP sent through out-of-band communication, wherein the processing priority of the CEP sent through in-band communication is higher than The processing priority of the CEP sent by the out-of-band communication method, that is, when the wireless power transmitting device receives the CEP sent by the in-band communication method, it will give priority to the CEP sent by the in-band communication method.
  • the wireless power receiving device obtains the control error value contained in the CEP.
  • the control error value is greater than the error threshold, it is determined that emergency data needs to be transmitted during the wireless charging process, and the in-band communication method is used to transmit the wireless power
  • the sending device sends CEP; when the control error value is less than the error threshold, it is determined that non-urgent data needs to be transmitted during the wireless charging process, and the out-of-band communication method is used to send CEP to the wireless power sending device; compared to the single in-band communication used in related technologies
  • the CEP is sent by the method provided in the embodiment of this application.
  • the out-of-band communication method with better communication quality is used to send the CEP with lower transmission delay requirements, which helps to improve the CEP. Demodulation success rate, and non-timely emergency data needs to be transmitted during line charging.
  • In-band communication is used to send CEPs that require higher transmission delays to ensure that wireless power transmission equipment can promptly perform CEPs when urgent data needs to be transmitted. deal with.
  • FIG. 5 shows a flowchart of a wireless charging communication method provided by another exemplary embodiment of the present application.
  • This embodiment takes an emergency state related to output current as an example for description.
  • the method includes:
  • Step 501 The wireless power receiving device obtains the output current of the wireless power receiving device.
  • the abnormal output current of the wireless power receiving device may be related to a short circuit and excessive receiving power. If the wireless charging is continued under the condition of abnormal output current, the wireless power receiving device may be damaged. Therefore, during the wireless charging process, the wireless power receiving device continuously obtains the output current and detects whether the output current is greater than the first threshold. If it is greater than, it is determined that the output current is abnormal, and step 502 is executed.
  • Step 502 If the output current is greater than the first threshold, the wireless power receiving device determines that urgent data needs to be transmitted during the wireless charging process, and uses in-band communication to send the first data packet to the wireless power transmitting device.
  • the wireless power receiving device determines that urgent data needs to be transmitted during the current wireless charging process, and chooses to transmit to the wireless power transmitting device using in-band communication with a lower transmission delay The first data packet, instead of using the out-of-band communication method with high transmission delay.
  • the first data packet when urgent data needs to be transmitted, the first data packet is used to instruct to stop power transmission.
  • the first data packet may be an End Power Transfer (EPT) packet based on the QI protocol, which is not done in this embodiment. limited.
  • EPT End Power Transfer
  • the wireless power receiving device obtains that the current output current is 2A. Since the current output current is greater than the first threshold of 1A, the wireless power receiving device determines that emergency data needs to be transmitted during the wireless charging process and adopts The in-band communication method sends EPT packets to the wireless power transmitting device.
  • Step 503 The wireless power transmitting device receives the first data packet sent by the wireless power receiving device in an in-band communication manner.
  • the wireless power transmitting device Since the wireless power transmitting device enables in-band communication and out-of-band communication at the same time, when the wireless power receiving device transmits the first data packet through in-band communication, the wireless power transmitting device can receive the first data in in-band communication in time package.
  • Step 504 The wireless power transmitting device performs demodulation processing on the first data packet.
  • the wireless power transmitting device when urgent data needs to be transmitted, the wireless power transmitting device obtains the first data packet, and stops power transmission according to the first data packet.
  • the wireless power receiving device and the wireless power transmitting device re-establish wireless charging communication and perform power transmission.
  • the wireless power receiving device obtains its own output current, and when the output current is greater than the first threshold, determines that urgent data needs to be transmitted during the wireless charging process, thereby adopting in-band communication with lower transmission delay
  • the first data packet is sent to the wireless power transmitting device to ensure that the wireless power transmitting device can stop power transmission according to the first data packet in time, and avoid continuing power transmission to cause damage to the wireless power receiving device.
  • FIG. 6 shows a flowchart of a wireless charging communication method provided by another exemplary embodiment of the present application.
  • This embodiment takes an emergency state related to the temperature of the device as an example for description.
  • the method includes:
  • Step 601 The wireless power receiving device obtains the device temperature of the wireless power receiving device.
  • the wireless power receiving device continuously obtains the device temperature during the wireless charging process, and detects whether the device temperature is greater than the second If the threshold is greater than, it is determined that the temperature of the device is too high, and step 602 is executed.
  • the wireless power receiving chip 201 when the wireless power receiving device needs to obtain the device temperature, the wireless power receiving chip 201 sends a request for obtaining the device temperature to the second CPU 202, and the second CPU 202 receives the device temperature. After the request, the current device temperature is fed back to the wireless power receiving chip 201.
  • the wireless power receiving chip 201 compares the acquired device temperature with a second threshold to determine whether emergency data needs to be transmitted during the wireless charging process. If the device temperature is higher than the second threshold Threshold, it is determined that urgent data needs to be transmitted during wireless charging.
  • Step 602 If the device temperature is greater than the second threshold, the wireless power receiving device determines that emergency data needs to be transmitted during the wireless charging process, and uses in-band communication to send the second data packet to the wireless power transmitting device.
  • the wireless power receiving device determines that urgent data needs to be transmitted during the current wireless charging process, and selects an in-band communication method with a lower transmission delay to send the first data to the wireless power transmitting device. Two data packets, instead of using out-of-band communication with high transmission delay.
  • the second data packet when urgent data needs to be transmitted, the second data packet is used to instruct to stop power transmission, and the second data packet may be an EPT packet, which is not limited in this embodiment.
  • the wireless power receiving device acquires that the current device temperature is 60 degrees Celsius. Since the current device temperature is greater than the second threshold 50 degrees Celsius, the wireless power receiving device determines that emergency data needs to be transmitted during the wireless charging process, and Use in-band communication to send EPT packets to the wireless power transmitting device.
  • Step 603 The wireless power transmitting device receives the second data packet sent by the wireless power receiving device in the in-band communication manner.
  • the wireless power transmitting device Since the wireless power transmitting device enables in-band communication and out-of-band communication at the same time, when the wireless power receiving device transmits the second data packet through in-band communication, the wireless power transmitting device can receive the second data in in-band communication in time package.
  • Step 604 The wireless power transmitting device performs demodulation processing on the second data packet.
  • the wireless power transmitting device when urgent data needs to be transmitted, the wireless power transmitting device obtains the second data packet, and stops power transmission according to the second data packet.
  • the wireless power receiving device and the wireless power transmitting device re-establish wireless charging communication and perform power transmission.
  • the wireless power receiving device obtains its own device temperature, and when the device temperature is greater than the second threshold, it is determined that urgent data needs to be transmitted during the wireless charging process, thereby adopting in-band communication with lower transmission delay
  • the second data packet is sent to the wireless power transmitting device to ensure that the wireless power transmitting device can stop power transmission according to the second data packet in time, and avoiding the continuous power transmission to cause damage to the wireless power receiving device.
  • FIG. 7 shows a flowchart of a wireless charging communication method provided by another exemplary embodiment of the present application.
  • This embodiment takes an emergency state related to a timer state as an example for description.
  • the method includes:
  • Step 701 The wireless power receiving device acquires the timer status of the timer in the wireless power receiving device.
  • the timer is used to trigger the wireless power receiving device to send a third data packet to the wireless power transmitting device when the timer duration is reached.
  • the third data packet is used to instruct the wireless power transmitting device to adjust the transmission power, adjust the transmission current, and adjust the Transmitting voltage or stopping power transmission, etc., the embodiment of the present application does not limit the specific use of the third data packet.
  • the timer duration of the first timer is the first duration
  • the first timer is used to trigger the wireless power receiving device to send the EPT packet to the wireless power sending device when the first duration is reached, thereby stopping Power transmission
  • the timer duration of the second counter is the second duration
  • the second timer is used to trigger the wireless power receiving device to send CEP to the wireless power sending device when the second duration is reached, thereby instructing the wireless power sending device to reduce transmission power.
  • the timer state includes an expired state (timer duration reached) and an unexpired state (timer duration not reached).
  • the wireless power receiving device performs step 702; When it is detected that the timer state is not yet time, the wireless power receiving device continues to detect the timer state.
  • Step 702 If the timer state is the time-out state, the wireless power receiving device determines that urgent data needs to be transmitted during the wireless charging process, and uses in-band communication to send a third data packet to the wireless power transmitting device.
  • the wireless power receiving device transmits the third data packet through in-band communication with a lower transmission delay instead of using transmission delay. Higher out-of-band communication method.
  • the wireless power receiving device turns off the timer.
  • Step 703 The wireless power transmitting device receives the third data packet sent by the wireless power receiving device in the in-band communication mode.
  • the wireless power transmitting device Since the wireless power transmitting device enables in-band communication and out-of-band communication at the same time, when the wireless power receiving device transmits the third data packet through in-band communication, the wireless power transmitting device can receive the third data in in-band communication in time package.
  • Step 704 The wireless power transmitting device performs demodulation processing on the third data packet.
  • the wireless power transmitting device stops power transmission according to the third data packet; if the third data packet (CEP) is sent by the wireless power transmitting device when the second timer is in the expired state.
  • the wireless power transmitting device adjusts at least one of the voltage, current or operating frequency according to the third data packet to reduce transmission power.
  • the wireless power receiving device acquires the timer status of the timer, and when the timer status is the timed state, it is determined that urgent data needs to be transmitted during the wireless charging process.
  • the in-band communication mode sends the third data packet to the wireless power transmitting device to ensure that the wireless power transmitting device can timely process the third data packet in the case of urgent data transmission.
  • the wireless power transmitting device when using in-band communication, if the wireless power transmitting device does not receive the data packet sent by the wireless power receiving device within a predetermined period of time (for example, 1.25s), the wireless power transmitting device will stop power output to reduce power consumption. .
  • a predetermined period of time for example, 1.25s
  • in-band communication and out-of-band communication have their own delay mechanisms.
  • the wireless power transmitting device determines that the in-band communication fails; If the data packet sent by the out-of-band communication method is not received within the time period (for example, 3s), the wireless power transmitting device determines that the out-of-band communication fails.
  • the first predetermined duration is less than the second predetermined duration.
  • the wireless power transmission device stops power output, thereby reducing power consumption.
  • the steps with the wireless power transmitting device as the main body of execution can be realized as the wireless charging communication method on the side of the wireless power transmitting device, and the steps with the wireless power receiving device as the main body can be realized as the wireless power The wireless charging communication method on the receiving device side is not described in detail in this embodiment.
  • FIG. 8 shows a structural block diagram of a wireless charging communication device provided by an embodiment of the present application.
  • the device can be implemented as all or part of the wireless power receiving device through software, hardware or a combination of both.
  • the device includes:
  • the in-band communication module 801 is configured to use in-band communication to send data packets to the wireless power transmitting device if urgent data needs to be transmitted during the wireless charging process;
  • the out-of-band communication module 802 is configured to use out-of-band communication to send data packets to the wireless power transmission device if non-emergency data needs to be transmitted during the wireless charging process;
  • the transmission delay requirement of the emergency data is higher than the transmission delay requirement of the non-emergency data.
  • the device further includes:
  • the first obtaining module is configured to obtain the control error value contained in the control error packet CEP, where the CEP is used to instruct the wireless power transmitting device to adjust at least one of voltage, current, and operating frequency;
  • the first determining module is configured to determine that the emergency data needs to be transmitted during the wireless charging process if the control error value is greater than an error threshold;
  • the non-urgent data determining module is configured to determine that the non-urgent data needs to be transmitted during the wireless charging process if the control error value is less than the error threshold.
  • the device further includes:
  • the second obtaining module is configured to obtain the output current of the wireless power receiving device
  • a second determining module configured to determine that the emergency data needs to be transmitted during the wireless charging process if the output current is greater than a first threshold
  • the in-band communication module 801 includes:
  • the first communication submodule is configured to send a first data packet to the wireless power transmitting device in the in-band communication mode, where the first data packet is used to instruct to stop power transmission.
  • the device further includes:
  • the third obtaining module is configured to obtain the device temperature of the wireless power receiving device
  • the third determining module is configured to determine that the emergency data needs to be transmitted during the wireless charging process if the temperature of the device is greater than a second threshold;
  • the in-band communication module 801 includes:
  • the second communication sub-module is configured to send a second data packet to the wireless power transmitting device in the in-band communication mode, where the second data packet is used to instruct to stop power transmission.
  • the device further includes:
  • a fourth acquiring module configured to acquire a timer status of a timer in the wireless power receiving device, the timer being used to trigger the wireless power receiving device to send a third data packet;
  • a fourth determining module configured to determine that the emergency data needs to be transmitted during the wireless charging process if the timer state is the time-out state;
  • the in-band communication module 801 includes:
  • the third communication submodule is configured to send the third data packet to the wireless power transmitting device in the in-band communication manner.
  • the device further includes:
  • the priority generation module is configured to preferentially generate data packets corresponding to the emergency data if the emergency data needs to be transmitted during the wireless charging process.
  • the out-of-band communication mode includes at least one of Bluetooth, near field communication NFC, and ZigBee.
  • FIG. 9 shows a structural block diagram of a wireless charging communication device provided by another embodiment of the present application.
  • the device can be implemented as all or part of the wireless power transmitting device through software, hardware or a combination of the two.
  • the device includes:
  • the data packet receiving module 901 is configured to receive data packets sent by the wireless power receiving device
  • the communication mode determining module 902 is configured to determine a communication mode used when sending the data packet, the communication mode including an in-band communication mode and an out-of-band communication mode;
  • the priority processing module 903 is configured to preferentially process data packets sent in the in-band communication mode.
  • the device further includes:
  • the first communication waiting module is configured to determine that the in-band communication fails if the data packet sent in the in-band communication mode is not received within the first predetermined time period;
  • the second communication waiting module is configured to determine that the out-of-band communication fails if the data packet sent in the out-of-band communication mode is not received within a second predetermined time period;
  • the communication stop module is configured to stop wireless charging if in-band communication fails and out-of-band communication fails.
  • the out-of-band communication mode includes at least one of Bluetooth, NFC, and ZigBee.
  • FIG. 10 shows a structural block diagram of a wireless charging communication device 1000 provided by an exemplary embodiment of the present application.
  • the wireless charging communication 1000 can be implemented as a wireless power receiving device or a wireless power transmitting device.
  • the wireless charging communication device 1000 in this application may include one or more of the following components: a processing component 1002, a memory 1004, a power supply component 1006, a multimedia component 1008, an audio component 1010, an input/output (I/O) interface 1012, a sensor component 1014, and communication component 1016.
  • the processing component 1002 generally controls overall operations of the terminal 1000, such as operations associated with display, telephone calls, data communication, camera operations, and recording operations.
  • the processing component 1002 may include one or more processors 1018 to execute instructions.
  • the processing component 1002 may include one or more modules to facilitate the interaction between the processing component 1002 and other components.
  • the processing component 1002 may include a multimedia module to facilitate the interaction between the multimedia component 1008 and the processing component 1002.
  • the memory 1004 is configured to store various types of data to support operations in the terminal 1000. Examples of these data include instructions for any application or method operated on the terminal 1000, contact data, phone book data, messages, pictures, videos, etc.
  • the memory 1004 can be implemented by any type of volatile or non-volatile storage devices or their combination, such as static random access memory (SRAM), electrically erasable programmable read-only memory (EEPROM), erasable Programmable Read Only Memory (EPROM), Programmable Read Only Memory (PROM), Read Only Memory (ROM), Magnetic Memory, Flash Memory, Magnetic Disk or Optical Disk.
  • SRAM static random access memory
  • EEPROM electrically erasable programmable read-only memory
  • EPROM erasable Programmable Read Only Memory
  • PROM Programmable Read Only Memory
  • ROM Read Only Memory
  • Magnetic Memory Flash Memory
  • Magnetic Disk Magnetic Disk or Optical Disk.
  • the power supply component 1006 provides power for various components of the terminal 1000.
  • the power supply component 1006 may include a power management system and one or more power supplies.
  • the power supply component 1006 may also include other related components for generating, managing, and distributing power to the terminal 100011.
  • the multimedia component 1008 includes a screen that provides an output interface between the terminal 1000 and the user.
  • the screen may include a liquid crystal display (LCD) and a touch panel (TP). If the screen includes a touch panel, the screen may be implemented as a touch screen to receive input signals from the user.
  • the touch panel includes one or more touch sensors to sense touch, sliding, and gestures on the touch panel. The touch sensor can not only sense the boundary of the touch or slide action, but also detect the duration and pressure associated with the touch or slide operation.
  • the screen may also be the flexible display screen provided in the above embodiment.
  • the multimedia component 1008 includes a front camera and/or a rear camera. When the terminal 1000 is in an operation mode, such as a shooting mode or a video mode, the front camera and/or the rear camera can receive external multimedia data. Each front camera and rear camera can be a fixed optical lens system or have focal length and optical zoom capabilities.
  • the audio component 1010 is configured to output and/or input audio signals.
  • the audio component 1010 includes a microphone (MIC), and when the terminal 1000 is in an operation mode, such as a call mode, a recording mode, and a voice recognition mode, the microphone is configured to receive external audio signals.
  • the received audio signal may be further stored in the memory 1004 or transmitted via the communication component 1016.
  • the audio component 1010 further includes a speaker for outputting audio signals.
  • the I/O interface 1012 provides an interface between the processing component 1002 and a peripheral interface module.
  • the peripheral interface module may be a keyboard, a click wheel, a button, and the like. These buttons may include but are not limited to: home button, volume button, start button, and lock button.
  • the sensor component 1014 includes one or more sensors for providing the terminal 1000 with various status assessments.
  • the sensor component 1014 can detect the open/close state of the terminal 1000; for another example, the sensor component 1014 is the display and keypad of the terminal 1000, and the sensor component 1014 can also detect the position change of the terminal 1000 or a component of the terminal. The presence or absence of contact, the orientation or acceleration/deceleration of the terminal 1000 and the temperature change of the terminal 1000.
  • the sensor assembly 1014 may include a proximity sensor configured to detect the presence of nearby objects when there is no physical contact.
  • the sensor component 1014 may also include a light sensor, such as a CMOS or CCD image sensor, for use in imaging applications.
  • the sensor component 1014 may also include an acceleration sensor, a gyroscope sensor, a magnetic sensor, a pressure sensor or a temperature sensor.
  • the communication component 1016 is configured to facilitate wired or wireless communication between the terminal 1000 and other devices.
  • the terminal 1000 can access a wireless network based on a communication standard, such as WiFi, or 2G, or 3G, or 1G, or 5G, or a combination thereof.
  • the communication component 1016 receives a broadcast signal or broadcast related information from an external broadcast management system via a broadcast channel.
  • the communication component 1016 also includes a near field communication (NFC) module to facilitate short-range communication.
  • NFC near field communication
  • the terminal 1000 may be configured by one or more application specific integrated circuits (ASIC), digital signal processors (DSP), digital signal processing devices (DSPD), programmable logic devices (PLD), field programmable Implementation of gate array (FPGA), controller, microcontroller, microprocessor or other electronic components.
  • ASIC application specific integrated circuits
  • DSP digital signal processors
  • DSPD digital signal processing devices
  • PLD programmable logic devices
  • FPGA field programmable Implementation of gate array
  • controller microcontroller, microprocessor or other electronic components.
  • a non-transitory computer-readable storage medium including instructions, such as a memory 1004 including instructions, which can be executed by the processor 1018 of the terminal 1000 to control the telescopic mechanical components in a static state, Switch between the extended state and the retracted state.
  • the non-transitory computer-readable storage medium may be ROM, random access memory (RAM), CD-ROM, magnetic tape, floppy disk, optical data storage device, etc.
  • the embodiments of the present application also provide a computer-readable medium that stores at least one instruction, and the at least one instruction is loaded and executed by the processor to implement the wireless charging communication described in each of the above embodiments. method.
  • the embodiments of the present application also provide a computer program product, and the computer program product stores at least one instruction, and the at least one instruction is loaded and executed by the processor to implement the wireless charging communication method described in each of the above embodiments.
  • the functions described in the embodiments of the present application may be implemented by hardware, software, firmware, or any combination thereof. When implemented by software, these functions can be stored in a computer-readable medium or transmitted as one or more instructions or codes on the computer-readable medium.
  • the computer-readable medium includes a computer storage medium and a communication medium, where the communication medium includes any medium that facilitates the transfer of a computer program from one place to another.
  • the storage medium may be any available medium that can be accessed by a general-purpose or special-purpose computer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Power Engineering (AREA)
  • Signal Processing (AREA)
  • Computer Security & Cryptography (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例公开了一种无线充电通信方法、装置、设备及存储介质,属于无线充电技术领域。所述方法包括:若无线充电过程中需传输紧急数据,则采用带内通信方式向无线功率发送设备发送数据包;若无线充电过程中需传输非紧急数据,则采用带外通信方式向无线功率发送设备发送数据包;其中,紧急数据的传输时延要求高于非紧急数据的传输时延要求。本申请中,在需传输非紧急数据时,采用通信质量较好的带外通信方式发送对传输时延要求较低的数据包,有助于提高数据包的解调成功率,而在需传输紧急数据时,采用带内通信方式发送对传输时延要求较高的数据包,确保无线功率发送设备能够及时对需传输紧急数据情况下的数据包进行处理。

Description

无线充电通信方法、装置、设备及存储介质
本申请基于申请号为201910467388.9、申请日为2019年5月31日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本申请实施例涉及无线充电技术领域,特别涉及一种无线充电通信方法、装置、设备及存储介质。
背景技术
目前,一些手机支持无线充电。无线充电包括电磁感应、电磁共振、电场耦合、无线电波等方式。
无线充电联盟(Wireless Power Consortium,WPC)提出的无线充电标准规定,支持无线充电的充电器和被充电设备之间,能够基于无线充电的工作频段进行必要的通信,这种通信方式被称为带内通信。
然而,由于无线充电工作场景复杂,导致带内通信的通信质量不佳,进而影响带内通信信息的解调成功率。
发明内容
本公开实施例提供了一种无线充电通信方法、装置、设备及存储介质。所述技术方案如下:
根据本公开实施例的一方面,提供了一种无线充电通信方法,应用于无线功率接收设备,所述方法包括:
若无线充电过程中需传输紧急数据,则采用带内通信方式向无线功率发送设备发送数据包;
若无线充电过程中需传输非紧急数据,则采用带外通信方式向所述无线功率发送设备发送数据包;
其中,所述紧急数据的传输时延要求高于所述非紧急数据的传输时延要求。
可选地,判断所述无线充电过程中需传输紧急数据,包括:
获取控制误差包CEP中包含的控制误差值,所述CEP用于指示所述无线功率发送设备调节电压、电流和工作频率中的至少一种;
若所述控制误差值大于误差阈值,则确定无线充电过程中需传输所述紧急数据;
若所述控制误差值小于所述误差阈值,则确定无线充电过程中需传输所述非紧急数据。
可选地,判断所述无线充电过程中需传输紧急数据,包括:
获取所述无线功率接收设备的输出电流;
若所述输出电流大于第一阈值,则确定无线充电过程中需传输所述紧急数据;
所述采用带内通信方式向无线功率发送设备发送数据包,包括:
采用所述带内通信方式向所述无线功率发送设备发送第一数据包,所述第一数据包用于指示停止功率传输。
可选地,判断所述无线充电过程中需传输紧急数据,包括:
获取所述无线功率接收设备的设备温度;
若所述设备温度大于第二阈值,则确定无线充电过程中需传输所述紧急数据;
所述采用带内通信方式向无线功率发送设备发送数据包,包括:
采用所述带内通信方式向所述无线功率发送设备发送第二数据包,所述第二数据包用于指示停止功率传输。
可选地,判断所述无线充电过程中需传输紧急数据,包括:
获取所述无线功率接收设备中计时器的计时器状态,所述计时器用于触发所述无线功率接收设备发送第三数据包;
若所述计时器状态为到时状态,则确定无线充电过程中需传输所述紧急数据;
所述采用带内通信方式向无线功率发送设备发送数据包,包括:
采用所述带内通信方式向所述无线功率发送设备发送所述第三数据包。
可选的,所述方法还包括:
若无线充电过程中需传输所述紧急数据,则优先生成所述紧急数据对应的数据包。
可选的,所述带外通信方式包括蓝牙、近场通信(Near Field Communication,NFC)和ZigBee中的至少一种。
根据本公开实施例的另一方面,提供了一种无线充电通信方法,应用于无线功率发送设备,所述方法包括:
接收无线功率接收设备发送的数据包;
确定发送所述数据包时采用的通信方式,所述通信方式包括带内通信方式和带外通信方式;
优先处理采用所述带内通信方式发送的数据包。
可选的,所述方法还包括:
若在第一预定时长内未接收到采用所述带内通信方式发送的数据包,则确定带内通信失败;
若在第二预定时长内未接收到采用所述带外通信方式发送的数据包,则确定带外通信失败;
若带内通信失败且带外通信失败,则停止无线充电。
可选的,所述带外通信方式包括蓝牙、NFC和ZigBee中的至少一种。
根据本公开实施例的另一方面,提供了一种无线充电通信装置,应用于无线功率接收设备中,所述装置包括:
带内通信模块,被配置为若无线充电过程中需传输紧急数据,则采用带内通信方式向无线功率发送设备发送数据包;
带外通信模块,被配置为若无线充电过程中需传输非紧急数据,则采用带外通信方式向所述无线功率发送设备发送数据包;
其中,所述紧急数据的传输时延要求高于所述非紧急数据的传输时延要求。
可选的,所述装置还包括:
第一获取模块,被配置为获取控制误差包CEP中包含的控制误差值,所述CEP用于指示所述无线功率发送设备调节电压、电流和工作频率中的至少一种;
第一确定模块,被配置为若所述控制误差值大于误差阈值,则确定无线充电过程中需传输所述紧急数据;
非紧急数据确定模块,被配置为若所述控制误差值小于所述误差阈值,则确定无线充电过程中需传输所述非紧急数据。
可选的,所述装置还包括:
第二获取模块,被配置为获取所述无线功率接收设备的输出电流;
第二确定模块,被配置为若所述输出电流大于第一阈值,则确定无线充电过程中需传输所述紧急数据;
可选的,所述带内通信模块,包括:
第一通信子模块,被配置为采用所述带内通信方式向所述无线功率发送设备发送第一数据包,所述第一数据包用于指示停止功率传输。
可选的,所述装置还包括:
第三获取模块,被配置为获取所述无线功率接收设备的设备温度;
第三确定模块,被配置为若所述设备温度大于第二阈值,则确定无线充电过程中需传输所述紧急数据;
可选的,所述带内通信模块,包括:
第二通信子模块,被配置为采用所述带内通信方式向所述无线功率发送设备发送第二数据包,所述第二数据包用于指示停止功率传输。
可选的,所述装置还包括:
第四获取模块,被配置为获取所述无线功率接收设备中计时器的计时器状态,所述计时器用于触发所述无线功率接收设备发送第三数据包;
第四确定模块,被配置为若所述计时器状态为到时状态,则确定无线充电过程中需传输所述紧急数据;
可选的,所述带内通信模块,包括:
第三通信子模块,被配置为采用所述带内通信方式向所述无线功率 发送设备发送所述第三数据包。
可选的,所述装置还包括:
优先生成模块,被配置为若无线充电过程中需传输所述紧急数据,则优先生成所述紧急数据对应的数据包。
可选的,所述带外通信方式包括蓝牙、近场通信NFC和ZigBee中的至少一种。
根据本公开实施例的另一方面,提供了一种无线充电通信装置,应用于无线功率发送设备中,所述装置包括:
数据包接收模块,被配置为接收无线功率接收设备发送的数据包;
通信方式确定模块,被配置为确定发送所述数据包时采用的通信方式,所述通信方式包括带内通信方式和带外通信方式;
优先处理模块,被配置为优先处理采用所述带内通信方式发送的数据包。
可选的,所述装置还包括:
第一通信等待模块,被配置为若在第一预定时长内未接收到采用所述带内通信方式发送的数据包,则确定带内通信失败;
第二通信等待模块,被配置为若在第二预定时长内未接收到采用所述带外通信方式发送的数据包,则确定带外通信失败;
通信停止模块,被配置为若带内通信失败且带外通信失败,则停止无线充电。
可选的,所述带外通信方式包括蓝牙、NFC和ZigBee中的至少一种。
根据本公开实施例的另一方面,提供了一种无线充电通信设备,应用于无线功率接收设备,所述设备包括:
处理器;
用于存储所述处理器的可执行指令的存储器;
其中,所述处理器被配置为:
若无线充电过程中需传输紧急数据,则采用带内通信方式向无线功率发送设备发送数据包;
若无线充电过程中需传输非紧急数据,则采用带外通信方式向所述 无线功率发送设备发送数据包;
其中,所述紧急数据的传输时延要求高于所述非紧急数据的传输时延要求。
根据本公开实施例的另一方面,提供了一种无线充电通信设备,应用于无线功率发送设备,所述设备包括:
处理器;
用于存储所述处理器的可执行指令的存储器;
其中,所述处理器被配置为:
接收无线功率接收设备发送的数据包;
确定发送所述数据包时采用的通信方式,所述通信方式包括带内通信方式和带外通信方式;
优先处理采用所述带内通信方式发送的数据包。
根据本公开实施例的另一方面,提供了一种计算机可读存储介质,其特征在于,所述存储介质存储有至少一条指令,所述至少一条指令用于被处理器执行以实现如上述方面所述的无线功率接收设备侧的无线充电通信方法。
根据本公开实施例的另一方面,提供了一种计算机可读存储介质,其特征在于,所述存储介质存储有至少一条指令,所述至少一条指令用于被处理器执行以实现如上述方面所述的无线功率发送设备侧的无线充电通信方法。
根据本公开实施例的另一方面,提供了一种无线充电系统,其特征在于,所述线充电系统包括:无线功率接收设备和无线功率发送设备;
所述无线功率接收设备包括如上述方面所述的无线功率接收设备;
所述无线功率发送设备包括如上述方面所述的无线功率发送设备。
本公开实施例提供的技术方案可以包括以下有益效果:
无线充电过程中,若需传输紧急数据,则采用带内通信方式向无线功率发送设备发送数据包;若无线充电过程中需传输非紧急数据,则采用带外通信方式向无线功率发送设备发送数据包;相较于相关技术中采 用单一的带内通信方式,采用本申请实施例提供的方法,在需传输非紧急数据时,采用通信质量较好的带外通信方式发送对传输时延要求较低的数据包,有助于提高数据包的解调成功率,而在需传输紧急数据时,采用带内通信方式发送对传输时延要求较高的数据包,确保无线功率发送设备能够及时对需传输紧急数据情况下的数据包进行处理。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本公开。
附图说明
图1示出了本申请一个示例性实施例提供的实施环境的环境示意图;
图2示出了本申请一个示例性实施例提供的无线功率发送设备以及无线功率接收设备的结构示意图;
图3示出了本申请一个示例性实施例提供的无线充电通信方法的流程图;
图4示出了本申请另一个示例性实施例提供无线充电通信方法的流程图;
图5示出了本申请另一个示例性实施例提供无线充电通信方法的流程图;
图6示出了本申请另一个示例性实施例提供无线充电通信方法的流程图;
图7示出了本申请另一个示例性实施例提供无线充电通信方法的流程图;
图8示出了本申请一个示例性实施例提供的无线充电通信装置的结构框图;
图9示出了本申请一个示例性实施例提供的无线充电通信装置的结构框图;
图10示出了本申请一个示例性实施例提供的无线充电通信设备的结构图。
具体实施例
为使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明实施方式作进一步地详细描述。
在本文中提及的“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。
请参考图1,其示出了本申请一个示例性实施例提供的实施环境的环境示意图,该实施环境中包括无线功率发送设备10和无线功率接收设备20。
无线功率发送设备10是指无线充电中用于给用电设备提供功率的设备。在不同的业务场景中,无线功率发送设备10的名称可能有所不同。例如,当无线功率发送设备10是用于给手机、平板电脑、可穿戴设备等便携式电子设备进行无线充电时,无线功率发送设备10可以称为充电器、充电盘、电源适配器、无线充电器等。又例如,当无线功率发送设备10是用于给电动汽车等交通工具进行无线充电时,无线功率发送设备10可以称为充电桩、无线充电桩等。
无线功率接收设备20是指无线充电中用于接收功率的设备,也即用电设备。无线功率接收设备20可以是任何支持无线充电的用电设备,如手机、平板电脑、可穿戴设备、电动汽车等设备,本公开实施例对此不作限定。
在一种可能的实施方式中,无线功率发送设备10和无线功率接收设备20之间的无线充电通信方式包括带内通信或带外通信中的至少一种。其中,带内通信是一种基于无线充电的工作频段进行通信的方式,带外通信是一种采用无线充电的非工作频段进行通信的方式。图1中,带内通信过程中,无线功率发送设备10和无线功率接收设备20基于无线充电的工作频段进行通信;带外通信过程中,无线功率发送设备10和无线功率接收设备20通过带外通信组件,在带外通信组件的工作频段(无线 充电的工作频段以外的频段)进行通信,可选的,该带外通信组件可以是蓝牙芯片、NFC芯片、ZigBee芯片中的至少一种。
在图1的基础上,如图2所示,以无线功率发送设备10和无线功率接收设备20通过蓝牙芯片进行带外通信为例进行说明。
如图2所示,无线功率发送设备10设置有无线功率发送芯片101与第一CPU102相连,第一CPU102与第一蓝牙芯片103相连;无线功率接收设备20设置有无线功率接收芯片201与第二CPU202相连,第二CPU202与第二蓝牙芯片203相连。
带外通信过程中,无线功率接收设备20通过无线功率接收芯片201与第二CPU202进行通信,将需要传输的数据包发送给第二CPU202,由第二CPU202将数据包发送给第二蓝牙芯片203,以便第二蓝牙芯片203通过蓝牙连接(带外通信)将数据包发送给第一蓝牙芯片103。相应的,无线功率发送设备10通过第一蓝牙芯片103接收到无线功率接收设备20带外传输的数据包后,将该数据包发送给第一CPU102,由第一CPU102将数据包发送给无线功率发送芯片101,以便无线功率发送芯片101对该数据包进行解析处理。类似的,无线功率发送设备10可以通过类似的过程对无线功率接收设备20发送的数据包进行反馈,本实施例在此不再赘述。
请参考图3,其示出了本申请一个示例性实施例提供的无线充电通信方法的流程图。本实施例以该方法用于图1所示的实施环境为例进行说明,该方法包括:
步骤301,若无线充电过程中需传输紧急数据,无线功率接收设备则采用带内通信方式向无线功率发送设备发送数据包。
在一种可能的实施方式中,无线功率接收设备判断设备需传输紧急数据还是非紧急数据,若需传输紧急数据,则执行步骤301;若需传输非紧急数据,则执行步骤302。可选的,紧急数据的传输时延要求高于非紧急数据的传输时延要求,即相较于非紧急数据,紧急数据需要更快传输至无线功率发送设备,以便无线功率发送设备尽快处理。
可选的,带内通信在发射端(无线功率发送设备)与接收端(无线功率接收设备)之间有两种通信链路。其中,从接收端到发射端的通信采用幅移键控(Amplitude Shift Keying,ASK)调制方式,从发射端到接收端的通信采用频移键控(Frequency Shift Keying,FSK)调制方式。
在需传输紧急数据时,无线功率接收设备根据当前所处的需传输紧急数据的情况生成相应的数据包,并采用ASK调制方式向无线功率发送设备发送数据包,指示无线功率发送设备对接收到的数据包进行处理。
步骤302,若无线充电过程中需传输非紧急数据,无线功率接收设备则采用带外通信方式向无线功率发送设备发送数据包。
非紧急数据即排除紧急数据的传输数据,非紧急数据的传输时延要求低于紧急数据的传输时延要求,无线功率接收设备可通过带外通信进行数据包的传输,带外通信相较于带内通信的传输时延更长,但是其通信质量高于带内通信,因此在传输非紧急数据时,无线功率接收设备采用带外通信方式发送数据包,以此保障数据包的传输质量,提高无线功率发送设备对数据包的解析成功率。
其中,当无线功率接收设备确定采用带外通信时,还需要开启带外通信功能。在一种可能的应用场景中,当手机(无线功率接收设备)与无线充电板(无线功率发送设备)之间需要进行带外通信时,且带外通信方式为蓝牙方式,则手机界面会出现提示框,提示框用于提示用户手动开启蓝牙功能;或者,手机后台进行蓝牙的自动开启,从而实现手机与无线充电板之间的带外通信。
步骤303,无线功率发送设备接收无线功率接收设备发送的数据包。
在无线充电过程中,无线功率发送设备开启带内通信模式和带外通信模式。不同于相关技术中,无线功率发送设备在无线充电过程中,仅能够通过带内通信方式接收无线功率接收设备发送的数据包,本申请实施例中,无线功率发送设备同时开启带内通信模式和带外通信模式,确保无线功率接收设备通过带内通信或带外通信发送的数据包均能够被正常接收。
可选的,进入无线充电过程前(比如在识别配置阶段),无线功率发送设备检测无线功率接收设备是否支持带外通信,并在支持时,在无线充电过程中同时开启带内通信模式和带外通信模式;否则,仅开启带内通信模式。
步骤304,无线功率发送设备确定发送数据包时采用的通信方式。
其中,通信方式包括带内通信方式和带外通信方式。可选的,无线功率发送设备接收无线功率接收设备采用带内通信方式发送的数据包,和/或,接收无线功率接收设备采用带外通信方式发送的数据包。
在一种可能的实施方式中,无线功率发送设备在接收到数据包后,确定无线功率接收设备发送数据包时采用的通信方式,无线功率接收设备在需传输紧急数据时发送的数据包确定为采用带内通信方式,无线功率接收设备在需传输非紧急数据时发送的数据包确定为采用带外通信方式。
步骤305,无线功率发送设备优先处理采用带内通信方式发送的数据包。
可选的,为了提高无线功率发送设备对紧急数据的处理速度,以便尽快解除无线功率接收设备的紧急状态,采用不同通信方式发送的数据包具有不同的处理优先级,无线功率发送设备即根据处理优先级对数据包进行处理,而非按照接收顺序依次处理。
在一种可能的实施方式中,无线功率发送设备接收到通过带内通信方式发送的数据包和通过带外通信方式发送的数据包,其中,通过带内通信方式发送的数据包的处理优先级高于通过带外通信方式发送的数据包的处理优先级,即当无线功率发送设备接收到通过带内通信方式发送的数据包时,优先处理通过带内通信方式发送的数据包。
综上所述,本公开实施例中,若无线充电过程中需传输紧急数据,则采用带内通信方式向无线功率发送设备发送数据包;若无线充电过程中需传输非紧急数据,则采用带外通信方式向无线功率发送设备发送数据包;相较于相关技术中采用单一的带内通信方式,采用本申请实施例提供的方法,在需传输非紧急数据时,采用通信质量较好的带外通信方 式发送对传输时延要求较低的数据包,有助于提高数据包的解调成功率,而在需传输紧急数据时,采用带内通信方式发送对传输时延要求较高的数据包,确保无线功率发送设备能够及时对需传输紧急数据情况下的数据包进行处理。
为了进一步提高紧急数据的处理效率,针对无线功率接收设备生成数据包的过程,在一种可能的实施方式中,在无线充电过程中需传输紧急数据时,无线功率接收设备优先生成紧急数据对应的数据包,而对于需传输的非紧急数据,无线功率接收设备则在生成紧急数据对应的数据包后,生成非紧急数据对应的数据包。
在一种可能的实施方式中,无线充电过程中,无线功率接收设备在如下至少一种紧急状态下确定需要传输紧急数据:CEP中包含的控制误差值大于误差阈值、无线功率接收设备的输出电流大于第一阈值、无线功率接收设备的设备温度大于第二阈值、无线功率接收设备中计时器的计时器状态为到时状态。下面采用示意性的实施例对上述各种需传输紧急数据的情况进行说明。
请参考图4,其示出了本申请另一个示例性实施例提供的无线充电通信方法的流程图,此实施例以与CEP相关的紧急状态为例进行说明。该方法包括:
步骤401,无线功率接收设备获取CEP中包含的控制误差值。
其中,CEP用于指示无线功率发送设备调节电压、电流和工作频率中的至少一种,CEP包含有控制误差值,该控制误差值的范围在-128至+127之间,即控制误差值具有正负性。
相关技术中,无线充电过程中,无线功率接收设备按照预定时间间隔(比如250ms)通过带内通信方式向无线功率发送设备发送CEP,由无线功率发送设备接收CEP并解调出其中包含的控制误差值。当控制误差值为正数时,无线功率发送设备提高初级线圈的电流(初级线圈位于无线功率发送设备内),或,提高自身的电压,或,当无线功率发送设 备的电压达到最大值时,降低自身的工作频率。当控制误差值为负数时,无线功率发送设备降低初级线圈的电流,或,提高自身的工作频率,或,当无线功率发送设备的工作频率达到最大值时,降低自身的电压。
而在本发明的实施例中,无线功率接收设备在传输CEP之前需要对CEP的控制误差值进行检测,判断控制误差值是否大于误差阈值,若控制误差值大于误差阈值,则执行步骤402,若控制误差值小于误差阈值,则执行步骤404。
可选的,该误差阈值为正值,且无线功率接收设备比较控制误差值与误差阈值时,将控制误差值的绝对值与误差阈值进行比较。
步骤402,若控制误差值大于误差阈值,则无线功率接收设备确定无线充电过程中需传输紧急数据,并采用带内通信方式向无线功率发送设备发送CEP。
若控制误差值大于误差阈值,表明无线功率发送设备处的调整量较大(需要进行较大电流、电压或工作频率调整),若无线功率发送设备调整过慢,可能会导致无线功率接收设备受损,因此在控制误差值大于误差阈值的情况下,无线功率接收设备采用带内通信方式发送CEP,使得无线功率接收设备尽快地将CEP发送给无线功率发送设备,从而确保无线功率发送设备能够及时对需传输紧急数据情况下的CEP进行处理。
在一个示意性的例子中,控制误差值为-90,当检测到控制误差值的绝对值大于误差阈值80时,无线功率接收设备确定无线充电过程中需传输紧急数据,并采用带内通信方式向无线功率发送设备发送CEP。
步骤403,无线功率发送设备接收无线功率接收设备采用带内通信方式发送的CEP。
由于无线功率发送设备同时开启带内通信与带外通信,因此当无线功率接收设备通过带内通信方式发送CEP时,无线功率发送设备能够及时地在带内通信方式下接收CEP。
步骤404,若控制误差值小于误差阈值,则无线功率接收设备确定无线充电过程中需传输非紧急数据,并采用带外通信方式向无线功率发 送设备发送CEP。
若控制误差值小于误差阈值,表明无线功率发送设备处的调整量较小,即便无线功率发送设备调整较慢,也不会对无线功率接收设备造成较大影响。因此在无线充电过程中需传输非紧急数据时,无线功率接收设备采用通信质量较好但是传输延迟较高的带外通信方式发送CEP,以此保障CEP的传输质量,提高无线功率发送设备对CEP的解析成功率。
在一个示意性的例子中,控制误差值为+10,当检测到控制误差值的绝对值小于误差阈值80时,无线功率接收设备确定无线充电过程中需传输非紧急数据,并采用带外通信方式向无线功率发送设备发送CEP。
步骤405,无线功率发送设备接收无线功率接收设备采用带外通信方式发送的CEP。
同样的,由于无线功率发送设备同时开启带内通信与带外通信,因此当无线功率接收设备通过带外通信方式发送CEP时,无线功率发送设备能够及时地在带外通信方式下接收CEP。
步骤406,无线功率发送设备优先处理通过带内通信方式发送的CEP。
相应的,无线功率发送设备获取CEP,并根据CEP中的控制误差数调节电压、电流和工作频率中的至少一种。
在一种可能的实施方式中,无线功率发送设备接收到通过带内通信方式发送的CEP和通过带外通信方式发送的CEP,其中,通过带内通信方式发送的CEP的处理优先级高于通过带外通信方式发送的CEP的处理优先级,即当无线功率发送设备接收到通过带内通信方式发送的CEP时,优先处理通过带内通信方式发送的CEP。
本实施例中,无线充电过程中,无线功率接收设备获取CEP中包含的控制误差值,当控制误差值大于误差阈值时确定无线充电过程中需传输紧急数据,并采用带内通信方式向无线功率发送设备发送CEP;当控制误差值小于误差阈值时确定无线充电过程中需传输非紧急数据,并采用带外通信方式向无线功率发送设备发送CEP;相较于相关技术中采用单一的带内通信方式发送CEP,采用本申请实施例提供的方法,在线充 电过程中需传输紧急数据时,采用通信质量较好的带外通信方式发送对传输时延要求较低的CEP,有助于提高CEP的解调成功率,而线充电过程中需传输非时紧急数据,采用带内通信方式发送对传输时延要求较高的CEP,确保无线功率发送设备能够及时对需传输紧急数据情况下的CEP进行处理。
请参考图5,其示出了本申请另一个示例性实施例提供的无线充电通信方法的流程图,此实施例以与输出电流相关的紧急状态为例进行说明。该方法包括:
步骤501,无线功率接收设备获取无线功率接收设备的输出电流。
在一种可能的实施方式中,无线功率接收设备的输出电流异常可能与电路短路与接收功率过大有关,若在输出电流异常的情况下继续进行无线充电,可能会造成无线功率接收设备受损,因此在无线充电过程中,无线功率接收设备持续获取输出电流,并检测输出电流是否大于第一阈值,若大于,则确定输出电流异常,并执行步骤502。
步骤502,若输出电流大于第一阈值,则无线功率接收设备确定无线充电过程中需传输紧急数据,并采用带内通信方式向无线功率发送设备发送第一数据包。
为了保障无线功率发送设备安全,若输出电流大于第一阈值,无线功率接收设备确定当前无线充电过程中需传输紧急数据,并选择采用传输时延较低的带内通信方式向无线功率发送设备发送第一数据包,而非采用传输时延较高的带外通信方式。
其中,在需传输紧急数据时,第一数据包用于指示停止功率传输,该第一数据包可以是基于QI协议下的终止传输(End Power Transfer,EPT)包,本实施例对此不做限定。
在一个示意性的例子中,无线功率接收设备获取到当前的输出电流为2A,由于当前的输出电流大于第一阈值1A时,因此无线功率接收设备确定无线充电过程中需传输紧急数据,并采用带内通信方式向无线功率发送设备发送EPT包。
步骤503,无线功率发送设备接收无线功率接收设备采用带内通信方式发送的第一数据包。
由于无线功率发送设备同时开启带内通信与带外通信,因此当无线功率接收设备通过带内通信方式发送第一数据包时,无线功率发送设备能够及时地在带内通信方式下接收第一数据包。
步骤504,无线功率发送设备对第一数据包进行解调处理。
在一种可能的实施方式中,在需传输紧急数据时,无线功率发送设备获取第一数据包,并根据第一数据包停止功率传输。当无线功率接收设备的输出电流处于正常范围内时,无线功率接收设备与无线功率发送设备重新建立无线充电通信,并进行功率传输。
本实施例中,无线充电过程中,无线功率接收设备获取自身的输出电流,并在输出电流大于第一阈值时确定无线充电过程中需传输紧急数据,从而采用传输时延较低的带内通信方式向无线功率发送设备发送第一数据包,确保无线功率发送设备能够及时根据第一数据包停止功率传输,避免继续功率传输对无线功率接收设备造成损害。
请参考图6,其示出了本申请另一个示例性实施例提供的无线充电通信方法的流程图,此实施例以与设备温度相关的紧急状态为例进行说明。该方法包括:
步骤601,无线功率接收设备获取无线功率接收设备的设备温度。
由于设备在充电过程中会产生热量,且当设备温度过高时,继续充电可能会造成设备损坏,因此,无线功率接收设备在无线充电过程中持续获取设备温度,并检测设备温度是否大于第二阈值,若大于,则确定设备温度过高,并执行步骤602。
如图2所示结构中,在一种可能的实施方式中,当无线功率接收设备需要获取设备温度时,无线功率接收芯片201向第二CPU202发送获取设备温度的请求,第二CPU202接收到该请求后将当前设备温度反馈给无线功率接收芯片201,无线功率接收芯片201将所获取的设备温度与第二阈值进行比较,判断无线充电过程中是否需传输紧急数据,若设 备温度高于第二阈值,则确定无线充电过程中需传输紧急数据。
步骤602,若设备温度大于第二阈值,则无线功率接收设备确定无线充电过程中需传输紧急数据,并采用带内通信方式向无线功率发送设备发送第二数据包。
为了保障无线功率发送设备安全,若设备温度大于第二阈值,无线功率接收设备确定当前无线充电过程中需传输紧急数据,并选择传输时延较低的带内通信方式向无线功率发送设备发送第二数据包,而非采用传输时延较高的带外通信方式。
其中,在需传输紧急数据时,第二数据包用于指示停止功率传输,该第二数据包可以是EPT包,本实施例对此不做限定。
在一个示意性的例子中,无线功率接收设备获取到当前的设备温度为60摄氏度,由于当前的设备温度大于第二阈值50摄氏度,因此无线功率接收设备确定无线充电过程中需传输紧急数据,并采用带内通信方式向无线功率发送设备发送EPT包。
步骤603,无线功率发送设备接收无线功率接收设备采用带内通信方式发送的第二数据包。
由于无线功率发送设备同时开启带内通信与带外通信,因此当无线功率接收设备通过带内通信方式发送第二数据包时,无线功率发送设备能够及时地在带内通信方式下接收第二数据包。
步骤604,无线功率发送设备对第二数据包进行解调处理。
在一种可能的实施方式中,在需传输紧急数据时,无线功率发送设备获取第二数据包,并根据第二数据包停止功率传输。当无线功率接收设备的设备温度处于正常范围内时,无线功率接收设备与无线功率发送设备重新建立无线充电通信,并进行功率传输。
本实施例中,无线充电过程中,无线功率接收设备获取自身的设备温度,并在设备温度大于第二阈值时确定无线充电过程中需传输紧急数据,从而采用传输时延较低的带内通信方式向无线功率发送设备发送第二数据包,确保无线功率发送设备能够及时根据第二数据包停止功率传输,避免继续功率传输对无线功率接收设备造成损害。
请参考图7,其示出了本申请另一个示例性实施例提供的无线充电通信方法的流程图,此实施例以与计时器状态相关的紧急状态为例进行说明。该方法包括:
步骤701,无线功率接收设备获取无线功率接收设备中计时器的计时器状态。
其中,该计时器用于在达到计时器时长时,触发无线功率接收设备向无线功率发送设备发送第三数据包,该第三数据包用于指示无线功率发送设备调整传输功率、调整传输电流、调整传输电压或停止功率传输等等,本申请实施例并不对第三数据包的具体用途进行限定。
在一种可能的实施方式中,第一计时器的计时器时长为第一时长,第一计时器用于在达到第一时长时,触发无线功率接收设备向无线功率发送设备发送EPT包,从而停止功率传输;或者,第二计数器的计时器时长为第二时长,第二计时器用于在达到第二时长时,触发无线功率接收设备向无线功率发送设备发送CEP,从而指示无线功率发送设备降低传输功率。
可选的,计时器状态包括到时状态(到达计时器时长)和未到时状态(未达到计时器时长),当检测到计时器状态为到时状态时,无线功率接收设备执行步骤702;当检测到计时器状态为未到时状态时,无线功率接收设备则继续检测计时器状态。
步骤702,若计时器状态为到时状态,则无线功率接收设备确定无线充电过程中需传输紧急数据,并采用带内通信方式向无线功率发送设备发送第三数据包。
为了使无线功率发送设备能够尽快处理第三数据包,当计时器处于到时状态时,无线功率接收设备通过传输时延较低的带内通信方式发送第三数据包,而非采用传输时延较高的带外通信方式。
可选的,采用带内通信方式向无线功率发送设备发送第三数据包后,无线功率接收设备关闭计时器。
步骤703,无线功率发送设备接收无线功率接收设备采用带内通信 方式发送的第三数据包。
由于无线功率发送设备同时开启带内通信与带外通信,因此当无线功率接收设备通过带内通信方式发送第三数据包时,无线功率发送设备能够及时地在带内通信方式下接收第三数据包。
步骤704,无线功率发送设备对第三数据包进行解调处理。
在一种可能的实施方式中,若第三数据包(EPT包)是无线功率发送设备在第一计时器处于到时状态时发送,无线功率发送设备则根据第三数据包停止功率传输;若第三数据包(CEP)是无线功率发送设备在第二计时器处于到时状态时发送,无线功率发送设备则根据第三数据包调整电压、电流或工作频率中的至少一种,以降低传输功率。
本实施例中,无线充电过程中,无线功率接收设备获取计时器的计时器状态,并在计时器状态为到时状态时确定无线充电过程中需传输紧急数据,从而采用传世时延较低的带内通信方式向无线功率发送设备发送第三数据包,确保无线功率发送设备能够及时对需传输紧急数据情况下的第三数据包进行处理。
相关技术中,采用带内通信时,无线功率发送设备若在预定时长内(比如1.25s)未接收到无线功率接收设备发送的数据包,无线功率发送设备将停止功率输出,以此降低功耗。
而在本申请各个实施例中,由于设备之间存在带内和带外两种通信方式,因此带内通信与带外通信具有各自的延时机制。在一种可能的实施方式中,若在第一预定时长内(比如1.25s)未接收到采用带内通信方式发送的数据包,无线功率发送设备则确定带内通信失败;若在第二预定时长内(比如3s)未接收到采用带外通信方式发送的数据包,无线功率发送设备则确定带外通信失败。可选的,第一预定时长小于第二预定时长。此外,当带内通信失败且带外通信失败时,无线功率发送设备停止功率输出,以此降低功耗。
需要说明的是,上述各个实施例中,以无线功率发送设备为执行主 体的步骤可以实现成为无线功率发送设备侧的无线充电通信方法,以无线功率接收设备为执行主体的步骤可以实现成为无线功率接收设备侧的无线充电通信方法,本实施例在此不再赘述。
请参考图8,其示出了本申请一个实施例提供的无线充电通信装置的结构框图。该装置可以通过软件、硬件或者两者的结合实现成为无线功率接收设备的全部或一部分。该装置包括:
带内通信模块801,被配置为若无线充电过程中需传输紧急数据,则采用带内通信方式向无线功率发送设备发送数据包;
带外通信模块802,被配置为若无线充电过程中需传输非紧急数据,则采用带外通信方式向所述无线功率发送设备发送数据包;
其中,所述紧急数据的传输时延要求高于所述非紧急数据的传输时延要求。
可选的,所述装置还包括:
第一获取模块,被配置为获取控制误差包CEP中包含的控制误差值,所述CEP用于指示所述无线功率发送设备调节电压、电流和工作频率中的至少一种;
第一确定模块,被配置为若所述控制误差值大于误差阈值,则确定无线充电过程中需传输所述紧急数据;
非紧急数据确定模块,被配置为若所述控制误差值小于所述误差阈值,则确定无线充电过程中需传输所述非紧急数据。
可选的,所述装置还包括:
第二获取模块,被配置为获取所述无线功率接收设备的输出电流;
第二确定模块,被配置为若所述输出电流大于第一阈值,则确定无线充电过程中需传输所述紧急数据;
可选的,所述带内通信模块801,包括:
第一通信子模块,被配置为采用所述带内通信方式向所述无线功率发送设备发送第一数据包,所述第一数据包用于指示停止功率传输。
可选的,所述装置还包括:
第三获取模块,被配置为获取所述无线功率接收设备的设备温度;
第三确定模块,被配置为若所述设备温度大于第二阈值,则确定无线充电过程中需传输所述紧急数据;
可选的,所述带内通信模块801,包括:
第二通信子模块,被配置为采用所述带内通信方式向所述无线功率发送设备发送第二数据包,所述第二数据包用于指示停止功率传输。
可选的,所述装置还包括:
第四获取模块,被配置为获取所述无线功率接收设备中计时器的计时器状态,所述计时器用于触发所述无线功率接收设备发送第三数据包;
第四确定模块,被配置为若所述计时器状态为到时状态,则确定无线充电过程中需传输所述紧急数据;
可选的,所述带内通信模块801,包括:
第三通信子模块,被配置为采用所述带内通信方式向所述无线功率发送设备发送所述第三数据包。
可选的,所述装置还包括:
优先生成模块,被配置为若无线充电过程中需传输所述紧急数据,则优先生成所述紧急数据对应的数据包。
可选的,所述带外通信方式包括蓝牙、近场通信NFC和ZigBee中的至少一种。
请参考图9,其示出了本申请另一个实施例提供的无线充电通信装置的结构框图。该装置可以通过软件、硬件或者两者的结合实现成为无线功率发送设备的全部或一部分。该装置包括:
数据包接收模块901,被配置为接收无线功率接收设备发送的数据包;
通信方式确定模块902,被配置为确定发送所述数据包时采用的通信方式,所述通信方式包括带内通信方式和带外通信方式;
优先处理模块903,被配置为优先处理采用所述带内通信方式发送 的数据包。
可选的,所述装置还包括:
第一通信等待模块,被配置为若在第一预定时长内未接收到采用所述带内通信方式发送的数据包,则确定带内通信失败;
第二通信等待模块,被配置为若在第二预定时长内未接收到采用所述带外通信方式发送的数据包,则确定带外通信失败;
通信停止模块,被配置为若带内通信失败且带外通信失败,则停止无线充电。
可选的,所述带外通信方式包括蓝牙、NFC和ZigBee中的至少一种。
请参考图10,其示出了本申请一个示例性实施例提供的无线充电通信设备1000的结构方框图。该无线充电通信1000可以实现成为无线功率接收设备或无线功率发送设备。本申请中的无线充电通信设备1000可以包括一个或多个如下组件:处理组件1002,存储器1004,电源组件1006,多媒体组件1008,音频组件1010,输入/输出(I/O)接口1012,传感器组件1014,以及通信组件1016。
处理组件1002通常控制终端1000的整体操作,诸如与显示,电话呼叫,数据通信,相机操作和记录操作相关联的操作。处理组件1002可以包括一个或多个处理器1018来执行指令。此外,处理组件1002可以包括一个或多个模块,便于处理组件1002和其它组件之间的交互。例如,处理组件1002可以包括多媒体模块,以方便多媒体组件1008和处理组件1002之间的交互。
存储器1004被配置为存储各种类型的数据以支持在终端1000的操作。这些数据的示例包括用于在终端1000上操作的任何应用程序或方法的指令,联系人数据,电话簿数据,消息,图片,视频等。存储器1004可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,如静态随机存取存储器(SRAM),电可擦除可编程只读存储器(EEPROM),可擦除可编程只读存储器(EPROM),可编程只读存储 器(PROM),只读存储器(ROM),磁存储器,快闪存储器,磁盘或光盘。
电源组件1006为终端1000的各种组件提供电力。电源组件1006可以包括电源管理系统,一个或多个电源。电源组件1006还可以包括其它用于为终端100011生成、管理和分配电力相关联的组件。
多媒体组件1008包括在终端1000和用户之间的提供一个输出接口的屏幕。在一些实施例中,屏幕可以包括液晶显示器(LCD)和触摸面板(TP)。如果屏幕包括触摸面板,屏幕可以被实现为触摸屏,以接收来自用户的输入信号。触摸面板包括一个或多个触摸传感器以感测触摸、滑动和触摸面板上的手势。触摸传感器可以不仅感测触摸或滑动动作的边界,而且还检测与触摸或滑动操作相关的持续时间和压力。该屏幕也可以是上述实施例中提供的柔性显示屏。在一些实施例中,多媒体组件1008包括一个前置摄像头和/或后置摄像头。当终端1000处于操作模式,如拍摄模式或视频模式时,前置摄像头和/或后置摄像头可以接收外部的多媒体数据。每个前置摄像头和后置摄像头可以是一个固定的光学透镜系统或具有焦距和光学变焦能力。
音频组件1010被配置为输出和/或输入音频信号。例如,音频组件1010包括一个麦克风(MIC),当终端1000处于操作模式,如呼叫模式、记录模式和语音识别模式时,麦克风被配置为接收外部音频信号。所接收的音频信号可以被进一步存储在存储器1004或经由通信组件1016发送。在一些实施例中,音频组件1010还包括一个扬声器,用于输出音频信号。
I/O接口1012为处理组件1002和外围接口模块之间提供接口,上述外围接口模块可以是键盘,点击轮,按钮等。这些按钮可包括但不限于:主页按钮、音量按钮、启动按钮和锁定按钮。
传感器组件1014包括一个或多个传感器,用于为终端1000提供各个方面的状态评估。例如,传感器组件1014可以检测到终端1000的打开/关闭状态;又例如传感器组件1014为终端1000的显示器和小键盘,传感器组件1014还可以检测终端1000或终端一个组件的位置改变,用 户与终端1000接触的存在或不存在,终端1000方位或加速/减速和终端1000的温度变化。传感器组件1014可以包括接近传感器,被配置用来在没有任何的物理接触时检测附近物体的存在。传感器组件1014还可以包括光传感器,如CMOS或CCD图像传感器,用于在成像应用中使用。在一些实施例中,该传感器组件1014还可以包括加速度传感器,陀螺仪传感器,磁传感器,压力传感器或温度传感器。
通信组件1016被配置为便于终端1000和其它设备之间有线或无线方式的通信。终端1000可以接入基于通信标准的无线网络,如WiFi,或2G,或3G,或1G,或5G或它们的组合。在一个示例性实施例中,通信组件1016经由广播信道接收来自外部广播管理系统的广播信号或广播相关信息。在一个示例性实施例中,通信组件1016还包括近场通信(NFC)模块,以促进短程通信。
在示例性实施例中,终端1000可以被一个或多个应用专用集成电路(ASIC)、数字信号处理器(DSP)、数字信号处理设备(DSPD)、可编程逻辑器件(PLD)、现场可编程门阵列(FPGA)、控制器、微控制器、微处理器或其它电子元件实现。
在示例性实施例中,还提供了一种包括指令的非临时性计算机可读存储介质,例如包括指令的存储器1004,上述指令可由终端1000的处理器1018执行以控制伸缩机械部件在静止状态、向外伸展状态和向内收缩状态之间切换。例如,非临时性计算机可读存储介质可以是ROM、随机存取存储器(RAM)、CD-ROM、磁带、软盘和光数据存储设备等。
本申请实施例还提供了一种计算机可读介质,该计算机可读介质存储有至少一条指令,所述至少一条指令由所述处理器加载并执行以实现如上各个实施例所述的无线充电通信方法。
本申请实施例还提供了一种计算机程序产品,该计算机程序产品存储有至少一条指令,所述至少一条指令由所述处理器加载并执行以实现如上各个实施例所述的无线充电通信方法。
本领域技术人员应该可以意识到,在上述一个或多个示例中,本申请实施例所描述的功能可以用硬件、软件、固件或它们的任意组合来实现。当使用软件实现时,可以将这些功能存储在计算机可读介质中或者作为计算机可读介质上的一个或多个指令或代码进行传输。计算机可读介质包括计算机存储介质和通信介质,其中通信介质包括便于从一个地方向另一个地方传送计算机程序的任何介质。存储介质可以是通用或专用计算机能够存取的任何可用介质。
以上所述仅为本申请的较佳实施例,并不用以限制本申请,凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (17)

  1. 一种无线充电通信方法,其特征在于,应用于无线功率接收设备,所述方法包括:
    若无线充电过程中需传输紧急数据,则采用带内通信方式向无线功率发送设备发送数据包;
    若无线充电过程中需传输非紧急数据,则采用带外通信方式向所述无线功率发送设备发送数据包;
    其中,所述紧急数据的传输时延要求高于所述非紧急数据的传输时延要求。
  2. 根据权利要求1所述的方法,其特征在于,判断所述无线充电过程中需传输紧急数据,包括:
    获取控制误差包CEP中包含的控制误差值,所述CEP用于指示所述无线功率发送设备调节电压、电流和工作频率中的至少一种;
    若所述控制误差值大于误差阈值,则确定无线充电过程中需传输所述紧急数据;
    若所述控制误差值小于所述误差阈值,则确定无线充电过程中需传输所述非紧急数据。
  3. 根据权利要求1所述的方法,其特征在于,判断所述无线充电过程中需传输紧急数据,包括:
    获取所述无线功率接收设备的输出电流;
    若所述输出电流大于第一阈值,则确定无线充电过程中需传输所述紧急数据;
    所述采用带内通信方式向无线功率发送设备发送数据包,包括:
    采用所述带内通信方式向所述无线功率发送设备发送第一数据包,所述第一数据包用于指示停止功率传输。
  4. 根据权利要求1所述的方法,其特征在于,判断所述无线充电过 程中需传输紧急数据,包括:
    获取所述无线功率接收设备的设备温度;
    若所述设备温度大于第二阈值,则确定无线充电过程中需传输所述紧急数据;
    所述采用带内通信方式向无线功率发送设备发送数据包,包括:
    采用所述带内通信方式向所述无线功率发送设备发送第二数据包,所述第二数据包用于指示停止功率传输。
  5. 根据权利要求1所述的方法,其特征在于,判断所述无线充电过程中需传输紧急数据,包括:
    获取所述无线功率接收设备中计时器的计时器状态,所述计时器用于触发所述无线功率接收设备发送第三数据包;
    若所述计时器状态为到时状态,则确定无线充电过程中需传输所述紧急数据;
    所述采用带内通信方式向无线功率发送设备发送数据包,包括:
    采用所述带内通信方式向所述无线功率发送设备发送所述第三数据包。
  6. 根据权利要求1至5任一所述的方法,其特征在于,所述方法还包括:
    若无线充电过程中需传输所述紧急数据,则优先生成所述紧急数据对应的数据包。
  7. 根据权利要求1至5任一所述的方法,其特征在于,所述带外通信方式包括蓝牙、近场通信NFC和ZigBee中的至少一种。
  8. 一种无线充电通信方法,其特征在于,应用于无线功率发送设备,所述方法包括:
    接收无线功率接收设备发送的数据包;
    确定发送所述数据包时采用的通信方式,所述通信方式包括带内通信方式和带外通信方式;
    优先处理采用所述带内通信方式发送的数据包。
  9. 根据权利要求8所述的方法,其特征在于,所述方法还包括:
    若在第一预定时长内未接收到采用所述带内通信方式发送的数据包,则确定带内通信失败;
    若在第二预定时长内未接收到采用所述带外通信方式发送的数据包,则确定带外通信失败;
    若带内通信失败且带外通信失败,则停止无线充电。
  10. 根据权利要求8或9所述的方法,其特征在于,所述带外通信方式包括蓝牙、NFC和ZigBee中的至少一种。
  11. 一种无线充电通信装置,其特征在于,所述装置用于无线功率接收设备,所述装置包括:
    带内通信模块,被配置为若无线充电过程中需传输紧急数据,则采用带内通信方式向无线功率发送设备发送数据包;
    带外通信模块,被配置为若无线充电过程中需传输非紧急数据,则采用带外通信方式向所述无线功率发送设备发送数据包;
    其中,所述紧急数据的传输时延要求高于所述非紧急数据的传输时延要求。
  12. 一种无线充电通信装置,其特征在于,所述装置用于无线功率发送设备,所述装置包括:
    数据包接收模块,被配置为接收无线功率接收设备发送的数据包;
    通信方式确定模块,被配置为确定发送所述数据包时采用的通信方式,所述通信方式包括带内通信方式和带外通信方式;
    优先处理模块,被配置为优先处理采用所述带内通信方式发送的数 据包。
  13. 一种无线充电通信设备,应用于无线功率发送设备,所述设备包括:
    处理器;
    用于存储所述处理器的可执行指令的存储器;
    其中,所述处理器被配置为:
    若无线充电过程中需传输紧急数据,则采用带内通信方式向无线功率发送设备发送数据包;
    若无线充电过程中需传输非紧急数据,则采用带外通信方式向所述无线功率发送设备发送数据包;
    其中,所述紧急数据的传输时延要求高于所述非紧急数据的传输时延要求。
  14. 一种无线充电通信设备,应用于无线功率接收设备,所述设备包括:
    处理器;
    用于存储所述处理器的可执行指令的存储器;
    其中,所述处理器被配置为:
    接收无线功率接收设备发送的数据包;
    确定发送所述数据包时采用的通信方式,所述通信方式包括带内通信方式和带外通信方式;
    优先处理采用所述带内通信方式发送的数据包。
  15. 一种计算机可读存储介质,其特征在于,所述存储介质存储有至少一条指令,所述至少一条指令用于被处理器执行以实现如权利要求1至7任一所述的无线充电通信方法。
  16. 一种计算机可读存储介质,其特征在于,所述存储介质存储有 至少一条指令,所述至少一条指令用于被处理器执行以实现如权利要求8至10任一所述的无线充电通信方法。
  17. 一种无线充电系统,其特征在于,所述无线充电系统包括:无线功率接收设备和无线功率发送设备;
    所述无线功率接收设备包括权利要求13所述的无线功率接收设备;
    所述无线功率发送设备包括权利要求14所述的无线功率发送设备。
PCT/CN2019/098351 2019-05-31 2019-07-30 无线充电通信方法、装置、设备及存储介质 WO2020237820A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
RU2019141196A RU2734714C1 (ru) 2019-05-31 2019-07-30 Способ связи, устройство связи и оборудование связи для беспроводной зарядки, а также носитель данных
JP2019553006A JP7116079B2 (ja) 2019-05-31 2019-07-30 無線充電通信方法、無線充電通信装置、無線充電システム、プログラムおよび記憶媒体
KR1020197028121A KR102252248B1 (ko) 2019-05-31 2019-07-30 무선충전 통신방법, 장치, 디바이스, 프로그램 및 저장매체

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910467388.9 2019-05-31
CN201910467388.9A CN112020044B (zh) 2019-05-31 2019-05-31 无线充电通信方法、装置、设备及存储介质

Publications (1)

Publication Number Publication Date
WO2020237820A1 true WO2020237820A1 (zh) 2020-12-03

Family

ID=69157630

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/098351 WO2020237820A1 (zh) 2019-05-31 2019-07-30 无线充电通信方法、装置、设备及存储介质

Country Status (7)

Country Link
US (1) US11316386B2 (zh)
EP (1) EP3745750B1 (zh)
JP (1) JP7116079B2 (zh)
KR (1) KR102252248B1 (zh)
CN (1) CN112020044B (zh)
RU (1) RU2734714C1 (zh)
WO (1) WO2020237820A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220098632A (ko) * 2021-01-04 2022-07-12 삼성전자주식회사 무선 충전 방법 및 이를 지원하는 전자 장치
EP4216399A1 (en) 2021-03-24 2023-07-26 Samsung Electronics Co., Ltd. Wireless power transmission device for transmitting charging power to wireless power reception device, and operating method therefor
CN113437773B (zh) * 2021-05-26 2022-04-12 荣耀终端有限公司 一种降低充电场景下边带辐射杂散的方法、装置及终端
JP2023047756A (ja) * 2021-09-27 2023-04-06 キヤノン株式会社 送電装置、受電装置、制御方法及びプログラム
WO2023085855A1 (ko) * 2021-11-12 2023-05-19 엘지전자 주식회사 무선 전력 전송 시스템에서 아웃 오브 밴드 통신의 연결 방법 및 장치

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160197486A1 (en) * 2015-01-07 2016-07-07 Qualcomm Incorporated Method and apparatus for wireless power in-band signaling by load generation
CN107690741A (zh) * 2015-06-26 2018-02-13 英特尔公司 无线电力传送系统的通知技术
CN109075617A (zh) * 2018-07-18 2018-12-21 北京小米移动软件有限公司 通信方法及装置、电力接收设备、电力发送设备

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005269784A (ja) * 2004-03-19 2005-09-29 Meidensha Corp ニッケル水素電池の充放電制御装置
JP5124991B2 (ja) * 2006-05-30 2013-01-23 ソニー株式会社 通信システム、通信装置、通信方法、並びにプログラム
US9479341B2 (en) * 2006-08-22 2016-10-25 Centurylink Intellectual Property Llc System and method for initiating diagnostics on a packet network node
JP4725611B2 (ja) * 2008-07-16 2011-07-13 セイコーエプソン株式会社 送電制御装置、送電装置、受電制御装置、受電装置及び電子機器
US8493849B2 (en) * 2009-02-13 2013-07-23 Miraveo, Inc. Systems and methods for creating, managing and communicating users and applications on spontaneous area networks
KR101640772B1 (ko) * 2010-06-10 2016-07-19 삼성전자주식회사 무선 전력 수신기의 송전 영역 유도 장치 및 방법
US8886780B2 (en) * 2010-08-05 2014-11-11 Verizon Patent And Licensing Inc. Optimizing services in extreme environments for bundled services in a fixed broadband wireless installation
US9048881B2 (en) * 2011-06-07 2015-06-02 Fu Da Tong Technology Co., Ltd. Method of time-synchronized data transmission in induction type power supply system
CN103563214A (zh) * 2011-06-03 2014-02-05 丰田自动车株式会社 非接触受电装置、具备该非接触受电装置的车辆、非接触送电装置以及非接触电力传送系统
JP2015502729A (ja) * 2011-11-04 2015-01-22 ワイトリシティ コーポレーションWitricity Corporation 無線エネルギー伝送モデリングツール
KR101338732B1 (ko) * 2011-11-10 2013-12-06 엘지이노텍 주식회사 무선전력 송신장치, 무선전력 수신장치, 무선전력 전송 방법, 무선전력 수신 방법, 정보 전송 방법 및 정보 수신 방법
JP5801268B2 (ja) * 2012-09-03 2015-10-28 株式会社東芝 送電装置、受電装置および無線電力伝送システム
WO2014108785A1 (en) * 2013-01-11 2014-07-17 Koninklijke Philips N.V. Wireless inductive power transfer.
DE102013215729A1 (de) * 2013-03-26 2014-10-02 Bayerische Motoren Werke Aktiengesellschaft Verfahren und Vorrichtung zur Auswahl eines Funkübertragungskanals in einem Funksystem
US9381821B2 (en) * 2013-05-15 2016-07-05 Qualcomm Incorporated Systems, methods, and apparatus related to electric vehicle wired and wireless charging
CN104281802A (zh) * 2013-07-01 2015-01-14 宏达国际电子股份有限公司 无线充电验证的方法及相关无线充电系统
US9446674B2 (en) 2013-07-15 2016-09-20 Qualcomm Incorporated Systems, methods, and apparatus related to mutual detection and identification of electric vehicle and charging station
JP6381947B2 (ja) * 2013-09-04 2018-08-29 日東電工株式会社 携帯機器、充電システム、及び、電源回路基板等
US9722490B2 (en) * 2013-09-05 2017-08-01 Intersil Americas LLC Smooth transition of a power supply from a first mode, such as a pulse-frequency-modulation (PFM) mode, to a second mode, such as a pulse-width-modulation (PWM) mode
US9847667B2 (en) * 2014-02-26 2017-12-19 Htc Corporation Method of handling wireless charging authentication
US10075020B2 (en) * 2014-06-24 2018-09-11 Samsung Electronics Co., Ltd Method for transmitting signal by wireless power transmitter in wireless charging system, wireless power transmitter and wireless power receiver
US9762085B2 (en) * 2014-10-03 2017-09-12 Qualcomm Incorporated System and method for prevention of wireless charging cross connection
KR102391190B1 (ko) * 2015-03-13 2022-04-28 삼성전자주식회사 무선 충전 시스템에서 무선 전력 수신기의 로드 생성 방법 및 무선 전력 수신기
KR20160133140A (ko) * 2015-05-12 2016-11-22 엘지이노텍 주식회사 무선 전력 송신 방법, 무선 전력 수신 방법 및 이를 위한 장치
JP2017017932A (ja) * 2015-07-03 2017-01-19 リズム時計工業株式会社 付加機能を有する充電池の充電方法
US10199871B2 (en) * 2016-06-29 2019-02-05 Qualcomm Incorporated Apparatus and method for wireless power charging of subsequent receiver
CN107426826A (zh) * 2017-04-27 2017-12-01 成都瑞沣信息科技有限公司 基于射频能量收集的无线传感器网络mac协议设计方法
US10256674B2 (en) * 2017-05-23 2019-04-09 Witricity Corporation Wireless charging transmitter with foreign object and living object detection systems
US10686330B2 (en) * 2017-07-06 2020-06-16 Qualcomm Incorporated Smart priority detection for wired and wireless charging
CN107863989A (zh) * 2017-12-07 2018-03-30 深圳电器公司 电话线路故障监测系统及监测方法
US10110030B1 (en) * 2018-04-09 2018-10-23 Apple Inc. Wireless charging systems with multiple power receiving devices

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160197486A1 (en) * 2015-01-07 2016-07-07 Qualcomm Incorporated Method and apparatus for wireless power in-band signaling by load generation
CN107690741A (zh) * 2015-06-26 2018-02-13 英特尔公司 无线电力传送系统的通知技术
CN109075617A (zh) * 2018-07-18 2018-12-21 北京小米移动软件有限公司 通信方法及装置、电力接收设备、电力发送设备

Also Published As

Publication number Publication date
EP3745750A1 (en) 2020-12-02
CN112020044B (zh) 2021-10-01
KR102252248B1 (ko) 2021-05-17
US11316386B2 (en) 2022-04-26
KR20200139079A (ko) 2020-12-11
EP3745750B1 (en) 2023-09-06
RU2734714C1 (ru) 2020-10-22
JP2021528938A (ja) 2021-10-21
JP7116079B2 (ja) 2022-08-09
CN112020044A (zh) 2020-12-01
US20200381958A1 (en) 2020-12-03

Similar Documents

Publication Publication Date Title
WO2020237820A1 (zh) 无线充电通信方法、装置、设备及存储介质
WO2017016163A1 (zh) 充电方法及装置
JP2021528938A5 (zh)
WO2020015160A1 (zh) 反向充电设备、反向充电电流的调节方法及装置
WO2020082277A1 (zh) 网络参数配置方法、装置及计算机可读存储介质
US11937296B2 (en) Monitoring method and apparatus, device, and storage medium
WO2019028739A1 (zh) 保护用户设备的方法、装置、用户设备及基站
US20220393496A1 (en) Charge control method, charge control apparatus and storage medium
EP3917116A1 (en) Detecting maximum transmission unit value
WO2021184337A1 (zh) 无线充电鉴权方法、装置、通信设备及存储介质
CN112073559A (zh) 图像采集方法、终端及存储介质
US11575274B2 (en) Bidirectional charging method and device, terminal and storage medium
CN112637415B (zh) 充电控制方法及装置、移动终端、存储介质
WO2021129128A1 (zh) 一种移动终端的无线充电方法及移动终端
CN109450032B (zh) 无线充电的处理方法、装置及设备
CN111988110B (zh) 无线充电方法及装置
CN114498784A (zh) 充电方法、装置、电子设备及存储介质
WO2020014982A1 (zh) 通信方法及装置、电力发送设备、电力接收设备
CN113258626A (zh) 无线充电方法及装置、充电设备及存储介质
WO2020133200A1 (zh) 载波配置方法及装置
KR102416457B1 (ko) 이동 단말기의 충전 방법, 장치, 단말기, 프로그램 및 저장 매체
CN115441522A (zh) 充电控制方法、充电控制装置及存储介质
CN113178952A (zh) 一种无线充电设备和无线充电系统
CN113225106A (zh) 无线充电座、数据传输方法及装置
CN115719982A (zh) 无线充电方法、系统、设备及存储介质

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019553006

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19931107

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19931107

Country of ref document: EP

Kind code of ref document: A1