WO2021035819A1 - 气凝胶吸附相变储能粉体、制备方法及其应用 - Google Patents

气凝胶吸附相变储能粉体、制备方法及其应用 Download PDF

Info

Publication number
WO2021035819A1
WO2021035819A1 PCT/CN2019/105807 CN2019105807W WO2021035819A1 WO 2021035819 A1 WO2021035819 A1 WO 2021035819A1 CN 2019105807 W CN2019105807 W CN 2019105807W WO 2021035819 A1 WO2021035819 A1 WO 2021035819A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase change
aerogel
energy storage
change energy
storage powder
Prior art date
Application number
PCT/CN2019/105807
Other languages
English (en)
French (fr)
Inventor
张立强
张秋兵
杨小玉
Original Assignee
张立强
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 张立强 filed Critical 张立强
Publication of WO2021035819A1 publication Critical patent/WO2021035819A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/0091Preparation of aerogels, e.g. xerogels
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/02Materials undergoing a change of physical state when used
    • C09K5/06Materials undergoing a change of physical state when used the change of state being from liquid to solid or vice versa
    • C09K5/063Materials absorbing or liberating heat during crystallisation; Heat storage materials

Definitions

  • the invention relates to the technical field of phase change powder, a preparation method and its application, and in particular to aerogel adsorption phase change energy storage powder, a preparation method and its application.
  • Aerogel is a new material with a three-dimensional nanoporous structure. It has excellent properties such as low density (0.003 ⁇ 0.8g ⁇ cm -3 ) and high porosity (80 ⁇ 99.8%). It is used in aerospace, chemical industry, and energy-saving buildings. , Military, communications, electronics, metallurgy and other fields have very broad application prospects. Due to the unique structural characteristics of aerogels, the loading of phase change core materials can be easily achieved.
  • One of the objectives of the present invention is to provide aerogel adsorption phase change energy storage powder to solve the deficiencies of the prior art.
  • Another object of the present invention is to provide a method for preparing the above-mentioned aerogel adsorption phase change energy storage powder.
  • Another object of the present invention is to provide the application of the aerogel adsorption phase change energy storage powder.
  • the present invention adopts the following technical solutions.
  • Aerogel adsorption phase change energy storage powder including the following components by weight:
  • phase change powder 100 parts of phase change powder and 5-50 parts of aerogel.
  • the specific surface area of the aerogel is 100-300 square meters/g, and the particle size is 5-60 nm.
  • the phase change powder is selected from any one or a combination of alkane wax, paraffin wax, fatty acid, PE wax and PP wax.
  • the alkane carbon number of the alkane wax is between 10-60.
  • the method for preparing aerogel adsorption phase change energy storage powder includes the following steps:
  • Step 1 Weigh each component according to the formula
  • Step 2 Put the phase change powder in the reactor and heat it until it is completely melted, and then slowly heat the aerogel into the liquid phase change powder in batches, and stir while changing the heating. After the aerogel is added, the reaction Vacuum in the kettle, and the continuous stirring time is 15-90min;
  • Step 3 Take out the aerogel adsorption phase change energy storage powder obtained by the process of step 2 and cool it to room temperature, then use a pulverizer to pulverize and pass through a 100-mesh sieve to obtain the aerogel adsorption phase change energy storage powder .
  • step 2 the degree of vacuum is between -0.06 and -0.10 MPa, and the vacuuming time lasts for 5-40 minutes.
  • said aerogel adsorption phase change energy storage powder is used in batteries, electronic circuits, display screens, wearable devices, home appliances, 5G communication equipment and 5G smart Terminal in order to achieve the effect of insulation, temperature control and heat insulation.
  • the present invention selects aerogel as the adsorption material, the aerogel has low thermal conductivity, good thermal insulation effect, stable physical and chemical properties, high temperature non-combustibility, complete waterproof, non-toxic, green and environmentally friendly, and is more environmentally friendly.
  • the surface area is large, and the adsorption capacity for phase change powders is very strong. Only a small amount of aerogel can be used to complete the adsorption of phase change materials. Of course, there should not be too little aerogel, too little can not be completely adsorbed Phase change materials; too much aerogels should not be too much. If there are too much, it will increase the cost and the weight of the product.
  • the weight ratio of the phase change powders that can be completely absorbed is optimal;
  • step 2 of its preparation method a vacuum adsorption process is adopted, and the molten phase change powder is more easily penetrated into the fluffy aerogel by stirring under vacuum conditions.
  • the adsorption effect of the phase change material in the deep hole is far greater than that of conventional immersion or stirring. After the phase change material enters the deep hole, it is difficult to overflow under high temperature conditions, and has extraordinary adsorption performance.
  • the aerogel adsorption phase change energy storage powder prepared by the above formula and method is used in batteries, electronic circuits, display screens, wearable devices, home appliances, 5G communication equipment and 5G smart terminals to achieve insulation, temperature control and heat insulation The effect is very widely used.
  • Aerogel adsorption phase change energy storage powder including the following components by weight:
  • the specific surface area of the aerogel is 300 square meters/g, and the particle size is 5 nm.
  • Aerogel adsorption phase change energy storage powder including the following components by weight:
  • the specific surface area of the aerogel is 280 square meters/g, and the particle size is 8 nm.
  • Aerogel adsorption phase change energy storage powder including the following components by weight:
  • the specific surface area of the aerogel is 220 square meters/g, and the particle size is 15 nm.
  • Aerogel adsorption phase change energy storage powder including the following components by weight:
  • the specific surface area of the aerogel is 260 square meters/g, and the particle size is 12 nm.
  • Aerogel adsorption phase change energy storage powder including the following components by weight:
  • the specific surface area of the aerogel is 280 square meters/g, and the particle size is 8 nm.
  • Aerogel adsorption phase change energy storage powder including the following components by weight:
  • the specific surface area of the aerogel is 100 square meters/g, and the particle size is 60 nm.
  • Aerogel adsorption phase change energy storage powder including the following components by weight:
  • the specific surface area of the aerogel is 280 square meters/g, and the particle size is 10 nm.
  • Aerogel adsorption phase change energy storage powder including the following components by weight:
  • the specific surface area of the aerogel is 300 square meters/g, and the particle size is 5 nm.
  • Aerogel adsorption phase change energy storage powder including the following components by weight:
  • the specific surface area of the aerogel is 200 square meters/g, and the particle size is 8 nm.
  • Aerogel adsorption phase change energy storage powder including the following components by weight:
  • the specific surface area of the aerogel is 180 square meters/g, and the particle size is 12 nm.
  • Aerogel adsorption phase change energy storage powder including the following components by weight:
  • the specific surface area of the aerogel is 100 square meters/g, and the particle size is 60 nm.
  • Aerogel adsorption phase change energy storage powder including the following components by weight:
  • the specific surface area of the aerogel is 260 square meters/g, and the particle size is 45 nm.
  • Aerogel adsorption phase change energy storage powder including the following components by weight:
  • the specific surface area of the aerogel is 130 square meters/g, and the particle size is 53 nm.
  • the preparation method of the aerogel adsorption phase change energy storage powder of Examples 1-6 includes the following steps:
  • Step 1 Weigh each component according to the formula
  • Step 2 Put the phase change powder in the reactor and heat it until it is completely melted, and then slowly heat the aerogel into the liquid phase change powder in batches, and stir while changing the heating. After the aerogel is added, the reaction Vacuum in the kettle, the degree of vacuum is -0.06MPa, the vacuum duration lasts for 40 minutes, and the continuous stirring time is 75 minutes;
  • Step 3 Take out the aerogel adsorption phase change energy storage powder obtained by the treatment of step 2 and cool it to room temperature, then use a pulverizer to pulverize and pass through an 80 mesh sieve to obtain the aerogel adsorption phase change energy storage powder .
  • the preparation method of the aerogel adsorption phase change energy storage powder of Examples 7-10 includes the following steps:
  • Step 1 Weigh each component according to the formula
  • Step 2 Put the phase change powder in the reactor and heat it until it is completely melted, and then slowly heat the aerogel into the liquid phase change powder in batches, and stir while changing the heating. After the aerogel is added, the reaction Vacuum in the kettle, the vacuum degree is -0.10MPa, the vacuum time lasts for 40 minutes, and the continuous stirring time is 90 minutes;
  • Step 3 Take out the aerogel adsorption phase change energy storage powder obtained by the process of step 2 and cool it to room temperature, then use a pulverizer to pulverize and pass through a 100-mesh sieve to obtain the aerogel adsorption phase change energy storage powder .
  • the preparation method of the aerogel adsorption phase change energy storage powder of Examples 11-13 includes the following steps:
  • Step 1 Weigh each component according to the formula
  • Step 2 Put the phase change powder in the reactor and heat it until it is completely melted, and then slowly heat the aerogel into the liquid phase change powder in batches, and stir while changing the heating. After the aerogel is added, the reaction Vacuum in the kettle, the vacuum degree is -0.04MPa, the vacuum time lasts for 5 minutes, and the continuous stirring time is 15 minutes;
  • Step 3 Take out the aerogel adsorption phase change energy storage powder obtained by the process of step 2 and cool it to room temperature, then use a pulverizer to pulverize, and pass through a 10-mesh sieve to obtain the aerogel adsorption phase change energy storage powder .
  • the aerogel adsorption phase change energy storage powder of Examples 1-13 is applied to batteries, electronic circuits, display screens, wearable devices, home appliances, and 5G communications Equipment and 5G smart terminals to achieve the effects of insulation, temperature control and heat insulation.
  • the experimental conditions are as follows: 1. DSC test temperature range: -20°C to 120°C; 2. DSC Test heating rate: 10°C/min; 3. Constant temperature and humidity box setting program, temperature is set to 85°C, humidity is set to 85%RH, time is 1000H; laboratory environmental conditions: 1. Temperature: 26 ⁇ 2°C; 2 .Humidity: 60% ⁇ 10RH; the test equipment is NETZSCH DSC214 Polyma constant temperature and humidity box, the model is TEMI 300, the test results are shown in Table 2:
  • the experimental conditions are as follows: 1. DSC test temperature range: -20°C ⁇ 120°C; 2. DSC test heating rate :10°C/min; 3. Hot and cold shock box setting program, -40°C(heat preservation 10min)*85°C(heat preservation 10min), 1000 cycles; laboratory environmental conditions: 1. Temperature: 26 ⁇ 2°C; 2. Humidity: 60% ⁇ 10RHl; Test equipment: NETZSCH DSC214 Polyma hot and cold shock box, the test results are shown in Table 3:

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Combustion & Propulsion (AREA)
  • Thermal Sciences (AREA)
  • Materials Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

气凝胶吸附相变储能粉体,包括以下重量份的各组份:相变粉体100份和气凝胶5~50份,本发明选用了气凝胶作为吸附材料,其疏松多孔,比表面积大,因此对相变粉体的吸附能力非常强,只需要采用较少重量份的气凝胶就可以完成对相变材料的吸附,制备方法采用了真空吸附的工艺,在真空条件下搅拌,熔化的相变粉体更容易深入地渗透到气凝胶蓬松的深孔内,相变材料进入深孔内之后,尽量少的气凝胶吸附了更多的相变材料,气凝胶吸附相变储能粉体的密度提高了10-15%,而气凝胶吸附相变储能粉体的相变焓增加了5-15%,性能得到了大幅提升,由于减少了气凝胶的用量,成本也大幅降低,而且应用非常广泛。

Description

气凝胶吸附相变储能粉体、制备方法及其应用 技术领域
本发明涉及相变粉体、制备方法及其应用技术领域,尤其涉及气凝胶吸附相变储能粉体、制备方法及其应用。
背景技术
气凝胶是一种具有三维纳米多孔结构的新材料,具有低密度(0.003~0.8g·cm -3),高孔隙率(80~99.8%)等优异性质,在航空航天、化工、节能建筑、军事、通讯、电子、冶金等领域有着十分广阔的应用前景。由于气凝胶具有独特的结构特点,可以很容易的实现相变芯材的负载。
而申请人在对气凝胶和相变材料进行深入研发后发现,普通的气凝胶难以对相变材料起到很好的吸附效果,尤其是气凝胶的粒径越细,比表面积越大的情况下,相变材料越难以渗入到气凝胶的空隙内部,无法达到优异的吸附效果,在受热的情况下,相变材料容易溢出,导致出油,通常的表现是在产品的表面出现一层油,造成不良,无法满足客户对品质的要求。
因此,如何尽量提高气凝胶的比表面积,在使用尽量少的气凝胶的情况下,让相变材料轻松地渗入气凝胶的孔隙内,提高吸附力,就变得非常重要,而气凝胶用量越少,相变焓越大。
发明内容
本发明的目的之一是提供气凝胶吸附相变储能粉体,以解决现有技术的不足。
本发明的另一目的在于提供上述气凝胶吸附相变储能粉体的制备方法。
本发明的又一目的在于提供上述气凝胶吸附相变储能粉体的应用。
为实现上述目的,本发明采用如下的技术方案。
气凝胶吸附相变储能粉体,包括以下重量份的各组份:
相变粉体100份和气凝胶5~50份。
具体地,所述气凝胶的比表面积为100-300㎡/g,粒径为5-60nm。
具体地,所述相变粉体选自烷烃蜡、石蜡、脂肪酸、PE蜡和PP蜡中的任意一种或者几种的组合。
具体地,所述烷烃蜡的烷烃碳原子数介于10-60之间。
上述的气凝胶吸附相变储能粉体的制备方法,包括以下步骤:
步骤1、按配方称取各组分;
步骤2、将相变粉体置于反应釜内加热至全部熔化,然后将气凝胶分批缓慢加热到液态的相变粉体中,变加热边搅拌,气凝胶添加完成后,在反应釜内抽真空,持续搅拌时间为15-90min;
步骤3、将经过步骤2处理获得的气凝胶吸附相变储能粉体取出冷却至常温,再使用粉碎机粉碎,过100目筛,获得所述的气凝胶吸附相变储能粉体。
具体地,步骤2中,真空度介于-0.06至-0.10MPa,抽真空的时间持续5-40min。
上述的气凝胶吸附相变储能粉体的应用,所述的气凝胶吸附相变储能粉体应用于电池,电子线路,显示屏,可穿戴设备,家电,5G通信设备和5G智能终端,以达到绝缘,控温和隔热的效果。
本发明的有益效果为:本发明选用了气凝胶作为吸附材料,气凝胶导热系数低,保温隔热效果好,理化性质稳定,高温不燃,完全防水,且无毒害,绿色环保,且比表面积大,对相变粉体的吸附能力非常强,只需要采用较少重量份的气凝胶就可以完成对相变材料的吸附,当然,气凝胶不能太少,太少无法 完全吸附住相变材料;气凝胶也不能太多,太多的话一方面增加成本和产品的重量,同时,降低了气凝胶吸附相变储能粉体的相变焓,降低了产品的储热性能,因此,针对不同的相变粉体,恰好能够完全吸附完相变粉体的重量比是最优的;
而为了进一步减少气凝胶的使用量,在其制备方法的步骤2中,采用了真空吸附的工艺,在真空条件下搅拌,熔化的相变粉体更容易深入地渗透到气凝胶蓬松的深孔内,深孔内对相变材料的吸附作用远远大于常规的浸渍或者搅拌,相变材料进入深孔内之后,在高温条件下也难以溢出,具有超常的吸附性能,如此,尽量少的气凝胶吸附了更多的相变材料,气凝胶吸附相变储能粉体的密度提高了10-15%,而气凝胶吸附相变储能粉体的相变焓增加了5-15%左右,性能得到了大幅提升,由于减少了气凝胶的用量,成本也大幅降低;
采用上述配方和方法制备的气凝胶吸附相变储能粉体应用于电池,电子线路,显示屏,可穿戴设备,家电,5G通信设备和5G智能终端,以达到绝缘,控温和隔热的效果,应用非常广泛。
具体实施方式
下面结合实施例对本发明作进一步的说明,这是本发明的较佳实施例。
实施例1
气凝胶吸附相变储能粉体,包括以下重量份的各组份:
C10烷烃蜡100份和气凝胶50份,所述气凝胶的比表面积300㎡/g,粒径为5nm。
实施例2
气凝胶吸附相变储能粉体,包括以下重量份的各组份:
C15烷烃蜡100份和气凝胶45份,所述气凝胶的比表面积为280㎡/g,粒径为8nm。
实施例3
气凝胶吸附相变储能粉体,包括以下重量份的各组份:
C20烷烃蜡100份和气凝胶40份,所述气凝胶的比表面积为220㎡/g,粒径为15nm。
实施例4
气凝胶吸附相变储能粉体,包括以下重量份的各组份:
C30烷烃蜡100份和气凝胶45份,所述气凝胶的比表面积为260㎡/g,粒径为12nm。
实施例5
气凝胶吸附相变储能粉体,包括以下重量份的各组份:
C40烷烃蜡100份和气凝胶48份,所述气凝胶的比表面积为280㎡/g,粒径为8nm。
实施例6
气凝胶吸附相变储能粉体,包括以下重量份的各组份:
C60烷烃蜡100份和气凝胶5份,所述气凝胶的比表面积为100㎡/g,粒径为60nm。
实施例7
气凝胶吸附相变储能粉体,包括以下重量份的各组份:
石蜡100份和气凝胶45份,所述气凝胶的比表面积为280㎡/g,粒径为10nm。
实施例8
气凝胶吸附相变储能粉体,包括以下重量份的各组份:
石蜡100份和气凝胶5份,所述气凝胶的比表面积为300㎡/g,粒径为5nm。
实施例9
气凝胶吸附相变储能粉体,包括以下重量份的各组份:
石蜡100份和气凝胶30份,所述气凝胶的比表面积为200㎡/g,粒径为8nm。
实施例10
气凝胶吸附相变储能粉体,包括以下重量份的各组份:
石蜡100份和气凝胶50份,所述气凝胶的比表面积为180㎡/g,粒径为12nm。
实施例11
气凝胶吸附相变储能粉体,包括以下重量份的各组份:
脂肪酸100份和气凝胶10份,所述气凝胶的比表面积为100㎡/g,粒径为60nm。
实施例12
气凝胶吸附相变储能粉体,包括以下重量份的各组份:
PE蜡100份和气凝胶45份,所述气凝胶的比表面积为260㎡/g,粒径为45nm。
实施例13
气凝胶吸附相变储能粉体,包括以下重量份的各组份:
PP蜡100份和气凝胶8份,所述气凝胶的比表面积为130㎡/g,粒径为53nm。
实施例14
实施例1-6的气凝胶吸附相变储能粉体的制备方法,包括以下步骤:
步骤1、按配方称取各组分;
步骤2、将相变粉体置于反应釜内加热至全部熔化,然后将气凝胶分批缓慢加热到液态的相变粉体中,变加热边搅拌,气凝胶添加完成后,在反应釜内抽真空,真空度为-0.06MPa,抽真空的时间持续40min,持续搅拌时间为75min;
步骤3、将经过步骤2处理获得的气凝胶吸附相变储能粉体取出冷却至常温,再使用粉碎机粉碎,过80目筛,获得所述的气凝胶吸附相变储能粉体。
实施例15
实施例7-10的气凝胶吸附相变储能粉体的制备方法,包括以下步骤:
步骤1、按配方称取各组分;
步骤2、将相变粉体置于反应釜内加热至全部熔化,然后将气凝胶分批缓慢加热到液态的相变粉体中,变加热边搅拌,气凝胶添加完成后,在反应釜内抽真 空,真空度为-0.10MPa,抽真空的时间持续40min,持续搅拌时间为90min;
步骤3、将经过步骤2处理获得的气凝胶吸附相变储能粉体取出冷却至常温,再使用粉碎机粉碎,过100目筛,获得所述的气凝胶吸附相变储能粉体。
实施例16
实施例11-13的气凝胶吸附相变储能粉体的制备方法,包括以下步骤:
步骤1、按配方称取各组分;
步骤2、将相变粉体置于反应釜内加热至全部熔化,然后将气凝胶分批缓慢加热到液态的相变粉体中,变加热边搅拌,气凝胶添加完成后,在反应釜内抽真空,真空度为-0.04MPa,抽真空的时间持续5min,持续搅拌时间为15min;
步骤3、将经过步骤2处理获得的气凝胶吸附相变储能粉体取出冷却至常温,再使用粉碎机粉碎,过10目筛,获得所述的气凝胶吸附相变储能粉体。
实施例17
实施例1-13的气凝胶吸附相变储能粉体的应用,所述的气凝胶吸附相变储能粉体应用于电池,电子线路,显示屏,可穿戴设备,家电,5G通信设备和5G智能终端,以达到绝缘,控温和隔热的效果。
实施例1-13的气凝胶吸附相变储能粉体的制备方法配比:
Figure PCTCN2019105807-appb-000001
在相同环境温度下测试性能如表1所示:
Figure PCTCN2019105807-appb-000002
表1
申请人对实施例1-13的气凝胶吸附相变储能粉体在高温高湿条件下进行老化试验,实验条件如下:1.DSC测试温度段:-20℃~120℃;2.DSC测试升温速率:10℃/min;3.恒温恒湿箱设置程序,温度设为85℃,湿度设为85%RH,时间为1000H;实验室环境条件:1.温度:26±2℃;2.湿度:60%±10RH;测试设备为NETZSCH DSC214 Polyma恒温恒湿箱,型号为TEMI 300,测试结果如表2所 示:
Figure PCTCN2019105807-appb-000003
表2
从表2中可以看出,实施例1-实施例13的气凝胶吸附相变储能粉体在经过高温高湿老化试验后,相变焓的降低幅度低于10%,经久耐用,而市场上现有的相变粉体在同样的测试条件下,相变焓的降低幅度有些在10-20%,有些相变焓的降低幅度在30-50%,使用一段时间之后,相变粉体就会从载体中溢出,性能大幅下降,不够耐用,难以满足客户的需求。
申请人对实施例1-13的气凝胶吸附相变储能粉体进行冷热冲击老化试验,实验条件如下:1.DSC测试温度段:-20℃~120℃;2.DSC测试升温速率:10℃/min;3.冷热冲击箱设置程序,-40℃(保温10min)*85℃(保温10min),1000个循环;实验室环境条件:1.温度:26±2℃;2.湿度:60%±10RHl;测试设备:NETZSCH DSC214 Polyma冷热冲击箱,测试结果如表3所示:
Figure PCTCN2019105807-appb-000004
表3
从表3中可以看出,实施例1-实施例13的气凝胶吸附相变储能粉体经过冷热冲击老化试验后,相变焓的降低幅度低于10%,经久耐用,而市场上现有的 相变粉体在同样的测试条件下,相变焓的降低幅度有些在10-20%,有些相变焓的降低幅度在30-50%,使用一段时间之后,相变粉体就会从载体中溢出,性能大幅下降,不够耐用,难以满足客户的需求。
对于C20烷烃蜡,申请人又单独进行了横向比较,气凝胶吸附相变储能粉体的配比如表4所示,并进行了测试,结果如下:
Figure PCTCN2019105807-appb-000005
表4
从表4中可以看出,气凝胶的比重越大,气凝胶吸附相变储能粉体的相变焓越小,因此,只有当气凝胶的含量恰好可以将相变材料完全吸附时的占比,就是最佳占比。
最后应当说明的是,以上实施例仅用以说明本发明的技术方案,而非对本发明保护范围的限制,尽管参照较佳实施例对本发明作了详细地说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的实质和范围。

Claims (7)

  1. 气凝胶吸附相变储能粉体,其特征在于,包括以下重量份的各组份:
    相变粉体100份和气凝胶5~50份。
  2. 根据权利要求1所述的气凝胶吸附相变储能粉体,其特征在于:所述气凝胶的比表面积为100-300㎡/g,粒径为5-60nm。
  3. 根据权利要求1所述的气凝胶吸附相变储能粉体,其特征在于:所述相变粉体选自烷烃蜡、石蜡、脂肪酸、PE蜡和PP蜡中的任意一种或者几种的组合。
  4. 根据权利要求3所述的气凝胶吸附相变储能粉体,其特征在于:所述烷烃蜡的烷烃碳原子数介于10-60之间。
  5. 根据权利要求1-4任一项所述的气凝胶吸附相变储能粉体的制备方法,其特征在于,包括以下步骤:
    步骤1、按配方称取各组分;
    步骤2、将相变粉体置于反应釜内加热至全部熔化,然后将气凝胶分批缓慢加热到液态的相变粉体中,变加热边搅拌,气凝胶添加完成后,在反应釜内抽真空,持续搅拌时间为15-90min;
    步骤3、将经过步骤2处理获得的气凝胶吸附相变储能粉体取出冷却至常温,再使用粉碎机粉碎,过10~100目筛,获得所述的气凝胶吸附相变储能粉体。
  6. 根据权利要求5所述的气凝胶吸附相变储能粉体的制备方法,其特征在于,步骤2中,真空度介于-0.06至-0.10MPa,抽真空的时间持续5-40min。
  7. 根据权利要求1-4任一项所述的气凝胶吸附相变储能粉体的应用,其特征在于:所述的气凝胶吸附相变储能粉体应用于电池,电子线路,显示屏,可穿戴设备,家电,5G通信设备和5G智能终端,以达到绝缘,控温和隔热的效果。
PCT/CN2019/105807 2019-08-26 2019-09-12 气凝胶吸附相变储能粉体、制备方法及其应用 WO2021035819A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910792145.2A CN110499145A (zh) 2019-08-26 2019-08-26 气凝胶吸附相变储能粉体、制备方法及其应用
CN201910792145.2 2019-08-26

Publications (1)

Publication Number Publication Date
WO2021035819A1 true WO2021035819A1 (zh) 2021-03-04

Family

ID=68589715

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/105807 WO2021035819A1 (zh) 2019-08-26 2019-09-12 气凝胶吸附相变储能粉体、制备方法及其应用

Country Status (2)

Country Link
CN (1) CN110499145A (zh)
WO (1) WO2021035819A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114934393A (zh) * 2022-05-24 2022-08-23 河南爱彼爱和新材料有限公司 相变气凝胶复合涂料及其制备方法、隔热垫

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110922918A (zh) * 2019-12-17 2020-03-27 张立强 双组份储热灌封材料及其制备方法
CN111234740A (zh) * 2020-03-14 2020-06-05 广东力王新材料有限公司 双组分储热灌封材料
CN111454694A (zh) * 2020-04-03 2020-07-28 中国石油大学(北京) 相变保温材料及其制备方法和应用
CN111799529B (zh) * 2020-09-10 2021-01-29 北京航空航天大学 一种基于高热导率相变材料的电池热管理系统及管理方法
CN112758917A (zh) * 2021-01-12 2021-05-07 广州科技职业技术大学 一种内部呈环流排列的石墨烯气凝胶的制备方法
CN116657224B (zh) * 2023-07-21 2024-02-13 佛山日克耐热材料有限公司 一种气凝胶粉渗透装置的控制方法及其系统

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100070917A (ko) * 2008-12-18 2010-06-28 제일모직주식회사 상변화물질-에어로겔 복합체 및 그 제조 방법
CN107311152A (zh) * 2016-04-27 2017-11-03 中国科学院苏州纳米技术与纳米仿生研究所 石墨烯气凝胶、其制备方法及应用
CN107617396A (zh) * 2017-10-25 2018-01-23 中国科学院苏州纳米技术与纳米仿生研究所 相变微球、其制备方法及应用
CN107674652A (zh) * 2017-08-31 2018-02-09 北京化工大学 一种任意形状三维石墨烯导热相变复合材料及其制备方法
US20180079944A1 (en) * 2016-09-20 2018-03-22 Aspen Aerogels,Inc. Aerogel composites having thermal storage capacity
CN107880855A (zh) * 2017-12-27 2018-04-06 淮阴工学院 一种石蜡‑疏水性聚倍半硅氧烷气凝胶复合定形相变材料及其制备方法
CN109021930A (zh) * 2018-08-13 2018-12-18 陕西理工大学 一种碳气凝胶复合定形相变储能材料及其制备方法
CN109266311A (zh) * 2018-09-11 2019-01-25 淮阴工学院 一种黏土基复合储能材料的制备方法
CN109517221A (zh) * 2018-11-09 2019-03-26 西南交通大学 纤维素-石墨烯纳米片复合气凝胶及其制备方法、以及相变材料、其制备方法及应用
CN110452667A (zh) * 2019-08-27 2019-11-15 国科瑞华(天津)材料科技有限公司 石墨烯增强相变材料制备方法和石墨烯增强相变材料

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107586537B (zh) * 2017-07-26 2021-03-26 同济大学 一种复合相变材料及其制备方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100070917A (ko) * 2008-12-18 2010-06-28 제일모직주식회사 상변화물질-에어로겔 복합체 및 그 제조 방법
CN107311152A (zh) * 2016-04-27 2017-11-03 中国科学院苏州纳米技术与纳米仿生研究所 石墨烯气凝胶、其制备方法及应用
US20180079944A1 (en) * 2016-09-20 2018-03-22 Aspen Aerogels,Inc. Aerogel composites having thermal storage capacity
CN107674652A (zh) * 2017-08-31 2018-02-09 北京化工大学 一种任意形状三维石墨烯导热相变复合材料及其制备方法
CN107617396A (zh) * 2017-10-25 2018-01-23 中国科学院苏州纳米技术与纳米仿生研究所 相变微球、其制备方法及应用
CN107880855A (zh) * 2017-12-27 2018-04-06 淮阴工学院 一种石蜡‑疏水性聚倍半硅氧烷气凝胶复合定形相变材料及其制备方法
CN109021930A (zh) * 2018-08-13 2018-12-18 陕西理工大学 一种碳气凝胶复合定形相变储能材料及其制备方法
CN109266311A (zh) * 2018-09-11 2019-01-25 淮阴工学院 一种黏土基复合储能材料的制备方法
CN109517221A (zh) * 2018-11-09 2019-03-26 西南交通大学 纤维素-石墨烯纳米片复合气凝胶及其制备方法、以及相变材料、其制备方法及应用
CN110452667A (zh) * 2019-08-27 2019-11-15 国科瑞华(天津)材料科技有限公司 石墨烯增强相变材料制备方法和石墨烯增强相变材料

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114934393A (zh) * 2022-05-24 2022-08-23 河南爱彼爱和新材料有限公司 相变气凝胶复合涂料及其制备方法、隔热垫
CN114934393B (zh) * 2022-05-24 2023-05-23 河南爱彼爱和新材料有限公司 相变气凝胶复合涂料及其制备方法、隔热垫

Also Published As

Publication number Publication date
CN110499145A (zh) 2019-11-26

Similar Documents

Publication Publication Date Title
WO2021035819A1 (zh) 气凝胶吸附相变储能粉体、制备方法及其应用
WO2021035820A1 (zh) 石墨吸附相变储能粉体、制备方法及其应用
WO2021035816A1 (zh) 双组份储热灌封材料及其制备方法
Tao et al. Phase change material based on polypyrrole/Fe3O4-functionalized hollow kapok fiber aerogel matrix for solar/magnetic-thermal energy conversion and storage
Li et al. Hierarchical 3D reduced graphene porous-carbon-based PCMs for superior thermal energy storage performance
Luo et al. Nature‐Inspired Solar‐Thermal Gradient Reduced Graphene Oxide Aerogel‐based Bilayer Phase Change Composites for Self‐Adaptive Personal Thermal Management
Jiesheng et al. Research on the preparation and properties of lauric acid/expanded perlite phase change materials
WO2020253094A1 (zh) 一种氮化硼纳米管气凝胶/相变导热复合材料及其制备方法
CN104559936A (zh) 一种中温用相变蓄热材料及其制备方法
CN107369563B (zh) 一种硫化镍颗粒/纤维素基复合碳气凝胶材料的制备方法
CN110257019B (zh) 一种具有光热转换功能的相变复合材料及其制备方法
CN105647482A (zh) 一种三元脂肪酸/改性膨胀蛭石复合相变储能材料
CN114561192B (zh) 一种镀镍泡沫和MXene协同支撑的多功能相变复合材料及其制备方法
CN110655910A (zh) 一种石墨烯气凝胶相变储能材料的制备方法
CN107555434A (zh) 一种基于琼脂的掺氮多孔碳材料及其制备方法和应用
Liu et al. Metal‐Organic Framework Confined Solvent Ionic Liquid Enables Long Cycling Life Quasi‐Solid‐State Lithium Battery in Wide Temperature Range
WO2021035818A1 (zh) 相变化储热沥青及其制备方法
Zhang et al. Enhanced Thermal Energy Storage Performance of Polyethylene Glycol by Using Interfacial Interaction of Copper‐Based Metal Oxide
CN115011053B (zh) 一种高反射分形结构水凝胶、其制备方法及应用
WO2021109067A1 (zh) 相变热熔胶及其制备方法
CN106976864B (zh) 一种微孔碳气凝胶及其制备方法
CN109705813B (zh) 一种蓄热恒温纳米复合相变材料及其制备方法
CN110903666A (zh) 相变化储热沥青及其制备方法
CN105498690A (zh) 一种复合吸附材料及其制备方法
Zhang et al. Leak-free and shape-stabilized phase change composites with radial spherical SiO 2 scaffolds for thermal management

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19943171

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19943171

Country of ref document: EP

Kind code of ref document: A1