WO2021035820A1 - 石墨吸附相变储能粉体、制备方法及其应用 - Google Patents

石墨吸附相变储能粉体、制备方法及其应用 Download PDF

Info

Publication number
WO2021035820A1
WO2021035820A1 PCT/CN2019/105808 CN2019105808W WO2021035820A1 WO 2021035820 A1 WO2021035820 A1 WO 2021035820A1 CN 2019105808 W CN2019105808 W CN 2019105808W WO 2021035820 A1 WO2021035820 A1 WO 2021035820A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase change
graphite
energy storage
worm
change energy
Prior art date
Application number
PCT/CN2019/105808
Other languages
English (en)
French (fr)
Inventor
张立强
张秋兵
杨小玉
Original Assignee
张立强
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 张立强 filed Critical 张立强
Publication of WO2021035820A1 publication Critical patent/WO2021035820A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/02Materials undergoing a change of physical state when used
    • C09K5/06Materials undergoing a change of physical state when used the change of state being from liquid to solid or vice versa
    • C09K5/063Materials absorbing or liberating heat during crystallisation; Heat storage materials

Definitions

  • the invention relates to the technical field of phase change powder, a preparation method and its application, in particular to a graphite adsorption phase change energy storage powder, a preparation method and its application.
  • the Chinese invention patent with the application number "201410152867.9” and the name “an organic phase change heat storage material and its preparation method” contains the following components: 2%-10% by weight of expanded graphite, and 90%-98 % By weight of organic phase change material. Through the preparation method, the obtained phase change material has a low degree of undercooling, stable performance, and relatively strong heat transfer capability.
  • the heating container after heating the organic phase change material to liquefy, add a certain proportion of expandable graphite, and continue to stir, and finally obtain a stable and reliable composite organic phase change heat storage material.
  • One of the objectives of the present invention is to provide graphite adsorption phase change energy storage powder to solve the deficiencies of the prior art.
  • Another object of the present invention is to provide a method for preparing the above graphite adsorption phase change energy storage powder.
  • Another object of the present invention is to provide an application of the above graphite adsorption phase change energy storage powder.
  • the present invention adopts the following technical solutions.
  • Graphite adsorption phase change energy storage powder including the following components by weight:
  • phase change powder 100 parts of phase change powder and 5-9 parts of vermicular expanded graphite.
  • the particle size is 100-600 ml/g
  • the particle size is 100-200 mesh
  • the expansion ratio is 200-600 times
  • the bulk density is 0.2-0.5 g/cm 3 .
  • the phase change powder is selected from any one or a combination of alkane wax, paraffin wax, fatty acid, PE wax, and PP wax.
  • the alkane carbon number of the alkane wax is between 10-60.
  • the above-mentioned preparation method of graphite adsorption phase change energy storage powder includes the following steps:
  • Step 1 Weigh each component according to the formula
  • Step 2 Put the phase change powder in the reaction kettle and heat it until it is completely melted, and then slowly heat the worm-like expanded graphite into the liquid phase change powder in batches, and stir while heating. After the addition of the worm-like expanded graphite is completed, Vacuum in the reactor, and the continuous stirring time is 15-90min;
  • Step 3 Take out the graphite adsorption phase change energy storage powder obtained by the process of step 2 and cool it to room temperature, then use a pulverizer to pulverize, and pass through a 10-100 mesh sieve to obtain the graphite adsorption phase change energy storage powder.
  • step 2 the degree of vacuum is between -0.04 and -0.10 MPa, and the vacuuming time lasts for 5-40 minutes.
  • the said graphite adsorption phase change energy storage powder can be used in the fields of batteries, electronic circuits, display screens, wearable devices, home appliances, 5G communication equipment and 5G smart terminals, In order to achieve the effect of cooling, temperature control and energy storage.
  • the present invention selects vermicular expanded graphite as the adsorption material.
  • the vermicular expanded graphite is a loose and porous vermicular substance obtained by intercalation, washing, drying and high temperature expansion of natural flake graphite.
  • it also has softness, compression resilience, adsorption, ecological environment coordination, and biocompatibility that natural graphite does not have. Due to its loose and porous properties and large specific surface area, it has a very strong adsorption capacity for phase change powders.
  • phase change energy storage powder reduces the heat storage performance of the product. Therefore, for different powders, the weight ratio of the phase change powder that can be completely absorbed is the optimal;
  • step 2 of its preparation method a vacuum adsorption process is adopted.
  • the molten phase change powder can penetrate into the worm-like expanded graphite more easily.
  • the adsorption effect of the phase change material in the deep hole is far greater than that of conventional immersion or stirring.
  • the phase change material enters the deep hole, it is difficult to overflow under high temperature conditions, and has exceptional adsorption performance.
  • the phase change enthalpy of graphite adsorption phase-change energy storage powder has increased by 5%-10%, and the performance has been greatly improved. Due to the reduction of the worm-like expanded graphite The amount and cost are also greatly reduced;
  • the graphite adsorption phase change energy storage powder prepared by the above formula and method can be used in the fields of batteries, electronic circuits, display screens, wearable devices, home appliances, 5G communication equipment and 5G smart terminals to achieve cooling, temperature control and energy storage. effect.
  • Graphite adsorption phase change energy storage powder including the following components by weight:
  • the worm-like expanded graphite has an expansion rate of 500 ml/g, a particle size of 100 mesh, an expansion ratio of 400 times, and a bulk density of 0.2 g/cm 3 .
  • Graphite adsorption phase change energy storage powder including the following components by weight:
  • the worm-like expanded graphite 100 parts of paraffin wax and 9 parts of worm-like expanded graphite, the worm-like expanded graphite has an expansion rate of 600 ml/g, a particle size of 200 mesh, an expansion ratio of 600 times, and a bulk density of 0.5 g/cm 3 .
  • Graphite adsorption phase change energy storage powder including the following components by weight:
  • the worm-like expanded graphite has an expansion rate of 100 ml/g, a particle size of 150 mesh, an expansion ratio of 500 times, and a bulk density of 0.3 g/cm 3 .
  • Graphite adsorption phase change energy storage powder including the following components by weight:
  • the worm-like expanded graphite has an expansion rate of 520 ml/g, a particle size of 120 mesh, an expansion ratio of 450 times, and a bulk density of 0.2 g/cm 3 .
  • Graphite adsorption phase change energy storage powder including the following components by weight:
  • the worm-like expanded graphite 100 parts of PP wax and 8 parts of worm-like expanded graphite, the worm-like expanded graphite has an expansion rate of 550 ml/g, a particle size of 140 mesh, an expansion ratio of 460 times, and a bulk density of 0.2 g/cm 3 .
  • Graphite adsorption phase change energy storage powder including the following components by weight:
  • the worm-like expanded graphite has an expansion rate of 570 ml/g, a particle size of 200 mesh, an expansion ratio of 600 times, and a bulk density of 0.3 g/cm 3 .
  • Graphite adsorption phase change energy storage powder including the following components by weight:
  • the worm-like expanded graphite has an expansion rate of 500 ml/g, a particle size of 100 mesh, an expansion ratio of 400 times, and a bulk density of 0.4 g/cm 3 .
  • Graphite adsorption phase change energy storage powder including the following components by weight:
  • the worm-like expanded graphite has an expansion rate of 600 ml/g, a particle size of 200 mesh, an expansion ratio of 600 times, and a bulk density of 0.2 g/cm 3 .
  • Graphite adsorption phase change energy storage powder including the following components by weight:
  • the worm-like expanded graphite has an expansion rate of 600 ml/g, a particle size of 200 mesh, an expansion ratio of 600 times, and a bulk density of 0.35 g/cm 3 .
  • Graphite adsorption phase change energy storage powder including the following components by weight:
  • the worm-like expanded graphite has an expansion rate of 500 ml/g, a particle size of 150 mesh, an expansion ratio of 400 times, and a bulk density of 0.25 g/cm 3 .
  • Graphite adsorption phase change energy storage powder including the following components by weight:
  • the worm-like expanded graphite has an expansion rate of 600 ml/g, a particle size of 200 mesh, an expansion ratio of 600 times, and a bulk density of 0.35 g/cm 3 .
  • the preparation method of the graphite adsorption phase change energy storage powder of embodiment 1-2 includes the following steps:
  • Step 1 Weigh each component according to the formula
  • Step 2 Put the phase change powder in the reaction kettle and heat it until it is completely melted, and then slowly heat the worm-like expanded graphite into the liquid phase change powder in batches, and stir while heating. After the addition of the worm-like expanded graphite is completed, Vacuum in the reactor, the vacuum degree is -0.10MPa, the vacuum time lasts for 40 minutes, and the continuous stirring time is 90 minutes;
  • Step 3 Take out the graphite adsorption phase change energy storage powder obtained through the treatment of step 2 and cool it to room temperature, then use a pulverizer to pulverize, and pass through a 100-mesh sieve to obtain the graphite adsorption phase change energy storage powder.
  • the preparation method of the graphite adsorption phase change energy storage powder of embodiment 3-5 includes the following steps:
  • Step 1 Weigh each component according to the formula
  • Step 2 Put the phase change powder in the reaction kettle and heat it until it is completely melted, and then slowly heat the worm-like expanded graphite into the liquid phase change powder in batches, and stir while heating. After the addition of the worm-like expanded graphite is completed, Vacuum in the reactor, the vacuum degree is -0.04MPa, the vacuum time lasts for 5 minutes, and the continuous stirring time is 15 minutes;
  • Step 3 Take out the graphite adsorption phase change energy storage powder obtained through the treatment of step 2 and cool it to normal temperature, then use a pulverizer to pulverize, and pass through a 10-mesh sieve to obtain the graphite adsorption phase change energy storage powder.
  • the preparation method of the graphite adsorption phase change energy storage powder of Examples 6-11 includes the following steps:
  • Step 1 Weigh each component according to the formula
  • Step 2 Put the phase change powder in the reaction kettle and heat it until it is completely melted, and then slowly heat the worm-like expanded graphite into the liquid phase change powder in batches, and stir while heating. After the addition of the worm-like expanded graphite is completed, Vacuum in the reactor, the vacuum degree is -0.06MPa, the vacuum time lasts 40min, and the continuous stirring time is 75min;
  • Step 3 Take out the graphite adsorption phase change energy storage powder obtained through the treatment of step 2 and cool it to room temperature, then use a pulverizer to pulverize, and pass through an 80 mesh sieve to obtain the graphite adsorption phase change energy storage powder.
  • the graphite adsorption phase change energy storage powder can be used in batteries, electronic circuits, display screens, wearable devices, home appliances, 5G communication equipment and 5G intelligence In the terminal field, in order to achieve the effect of cooling, temperature control and energy storage.
  • the experimental conditions are as follows: 1. DSC test temperature range: -20°C to 120°C; 2. DSC test temperature rise Speed: 10°C/min; 3. Constant temperature and humidity box setting program, temperature is set to 85°C, humidity is set to 85%RH, time is 1000H; laboratory environmental conditions: 1. Temperature: 26 ⁇ 2°C; 2. Humidity :60% ⁇ 10RH; the test equipment is NETZSCH DSC214 Polyma constant temperature and humidity box, the model is TEMI 300, the test results are shown in Table 2:
  • the experimental conditions are as follows: 1. DSC test temperature range: -20°C ⁇ 120°C; 2. DSC test heating rate: 10 °C/min; 3. Hot and cold shock box setting program, -40°C(heat preservation 10min)*85°C(heat preservation 10min), 1000 cycles; laboratory environment conditions: 1. Temperature: 26 ⁇ 2°C; 2. Humidity: 60% ⁇ 10RHl; Test equipment: NETZSCH DSC214 Polyma thermal shock box, the test results are shown in Table 3:

Abstract

石墨吸附相变储能粉体,包括以下重量份的各组份:相变粉体100份和蠕虫状膨胀石墨5~9份,选用了蠕虫状膨胀石墨作为吸附材料,其疏松多孔,比表面积大,因此对相变粉体的吸附能力非常强,只需要采用较少重量份的蠕虫状膨胀石墨就可以完成对相变材料的吸附,制备方法采用了真空吸附的工艺,在真空条件下搅拌,熔化的相变粉体更容易深入地渗透到蠕虫状膨胀石墨蓬松的深孔内,相变材料进入深孔内之后,尽量少的蠕虫状膨胀石墨吸附了更多的相变材料,石墨吸附相变储能粉体的相变焓增加了5-10%,性能得到了大幅提升,由于减少了蠕虫状膨胀石墨的用量,成本也大幅降低,而且应用非常广泛。

Description

石墨吸附相变储能粉体、制备方法及其应用 技术领域
本发明涉及相变粉体、制备方法及其应用技术领域,尤其涉及石墨吸附相变储能粉体、制备方法及其应用。
背景技术
申请号为“201410152867.9”,名称为“一种有机相变储热材料及制备方法”的中国发明专利,其包含如下组分:2%-10%重量份膨胀处理的石墨,和90%-98%重量份的有机相变材料。通过该制备方法,得到的相变材料过冷度小,性能稳定,而且具有比较强传热能力。在加热容器中,加热有机相变材料使之发生液化后,添加一定比例的可膨胀石墨,并且持续不断的搅拌,最后得到稳定可靠的复合有机相变储热材料。
而申请人在对石墨和相变材料进行深入研发后发现,普通的膨胀石墨难以对相变材料起到很好的吸附效果,尤其膨胀石墨的膨胀倍数越大,空隙越致密,比表面积越大的情况下,相变材料越难以渗入到膨胀石墨的空隙内部,无法达到优异的吸附效果,在受热的情况下,相变材料容易溢出,导致出油,通常的表现是在产品的表面出现一层油,造成不良,无法满足客户对品质的要求。
因此,如何尽量提高膨胀石墨的比表面积,在使用尽量少的膨胀石墨的情况下,让相变材料轻松地渗入膨胀石墨的空隙内,提高吸附力,就变得非常重要,而膨胀石墨用量越少,相变焓越大,储能效果越好。
发明内容
本发明的目的之一是提供石墨吸附相变储能粉体,以解决现有技术的不足。
本发明的另一目的在于提供上述石墨吸附相变储能粉体的制备方法。
本发明的又一目的在于提供上述石墨吸附相变储能粉体的应用。
为实现上述目的,本发明采用如下的技术方案。
石墨吸附相变储能粉体,包括以下重量份的各组份:
相变粉体100份和蠕虫状膨胀石墨5~9份。
具体地,100-600ml/g,粒度为100-200目,膨胀倍数为200-600倍,堆积密度为0.2~0.5g/cm 3
具体地,所述相变粉体选自烷烃蜡、石蜡、脂肪酸、PE蜡、PP蜡中的任意一种或者几种的组合。
具体地,所述烷烃蜡的烷烃碳原子数介于10-60之间。
上述的石墨吸附相变储能粉体的制备方法,包括以下步骤:
步骤1、按配方称取各组分;
步骤2、将相变粉体置于反应釜内加热至全部熔化,然后将蠕虫状膨胀石墨分批缓慢加热到液态的相变粉体中,变加热边搅拌,蠕虫状膨胀石墨添加完成后,在反应釜内抽真空,持续搅拌时间为15-90min;
步骤3、将经过步骤2处理获得的石墨吸附相变储能粉体取出冷却至常温,再使用粉碎机粉碎,过10~100目筛,获得所述的石墨吸附相变储能粉体。
具体地,步骤2中,真空度介于-0.04至-0.10MPa,抽真空的时间持续5-40min。
上述的石墨吸附相变储能粉体的应用,所述的石墨吸附相变储能粉体可以用于电池,电子线路,显示屏,可穿戴设备,家电,5G通信设备和5G智能终端领域,以达到降温,控温储能的效果。
本发明的有益效果为:本发明选用了蠕虫状膨胀石墨作为吸附材料,蠕虫 状膨胀石墨由天然鳞片石墨经插层、水洗、干燥、高温膨化得到的一种疏松多孔的蠕虫状物质,膨胀石墨除了具备天然石墨本身的耐冷热、耐腐蚀、自润滑、耐辐射、导电性等优良性能以外,还具有天然石墨所没有的柔软、压缩回弹性、吸附性、生态环境协调性、生物相容性、耐辐射性等特性,由于疏松多孔,比表面积大,因此对相变粉体的吸附能力非常强,只需要采用较少重量份的蠕虫状膨胀石墨就可以完成对相变材料的吸附,当然,蠕虫状膨胀石墨不能太少,太少无法完全吸附住相变材料;蠕虫状膨胀石墨也不能太多,太多的话一方面增加成本和降低产品的热焓值,同时,降低了石墨吸附相变储能粉体相变焓,降低了产品的储热性能,因此,针对不同的粉体,恰好能够完全吸附完相变粉体的重量比是最优的;
而为了进一步减少蠕虫状膨胀石墨的使用量,在其制备方法的步骤2中,采用了真空吸附的工艺,在真空条件下搅拌,熔化的相变粉体更容易深入地渗透到蠕虫状膨胀石墨蓬松的深孔内,深孔内对相变材料的吸附作用远远大于常规的浸渍或者搅拌,相变材料进入深孔内之后,在高温条件下也难以溢出,具有超常的吸附性能,如此,尽量少的蠕虫状膨胀石墨吸附了更多的相变材料,石墨吸附相变储能粉体的相变焓增加了5%-10%,性能得到了大幅提升,由于减少了蠕虫状膨胀石墨的用量,成本也大幅降低;
采用上述配方和方法制备的石墨吸附相变储能粉体可以用于电池,电子线路,显示屏,可穿戴设备,家电,5G通信设备和5G智能终端领域,以达到降温,控温储能的效果。
具体实施方式
下面结合实施例对本发明作进一步的说明,这是本发明的较佳实施例。
实施例1
石墨吸附相变储能粉体,包括以下重量份的各组份:
石蜡100份和蠕虫状膨胀石墨5份,所述蠕虫状膨胀石墨的膨胀率为500ml/g,粒度为100目,膨胀倍数为400倍,堆积密度为0.2g/cm 3
实施例2
石墨吸附相变储能粉体,包括以下重量份的各组份:
石蜡100份和蠕虫状膨胀石墨9份,所述蠕虫状膨胀石墨的膨胀率为600ml/g,粒度为200目,膨胀倍数为600倍,堆积密度为0.5g/cm 3
实施例3
石墨吸附相变储能粉体,包括以下重量份的各组份:
脂肪酸100份和蠕虫状膨胀石墨6份,所述蠕虫状膨胀石墨的膨胀率为100ml/g,粒度为150目,膨胀倍数为500倍,堆积密度为0.3g/cm 3
实施例4
石墨吸附相变储能粉体,包括以下重量份的各组份:
PE蜡100份和蠕虫状膨胀石墨7份,所述蠕虫状膨胀石墨的膨胀率为520ml/g,粒度为120目,膨胀倍数为450倍,堆积密度为0.2g/cm 3
实施例5
石墨吸附相变储能粉体,包括以下重量份的各组份:
PP蜡100份和蠕虫状膨胀石墨8份,所述蠕虫状膨胀石墨的膨胀率为550ml/g,粒度为140目,膨胀倍数为460倍,堆积密度为0.2g/cm 3
实施例6
石墨吸附相变储能粉体,包括以下重量份的各组份:
C40烷烃蜡100份和蠕虫状膨胀石墨8.5份,所述蠕虫状膨胀石墨的膨胀率为570ml/g,粒度为200目,膨胀倍数为600倍,堆积密度为0.3g/cm 3
实施例7
石墨吸附相变储能粉体,包括以下重量份的各组份:
C30烷烃蜡100份和蠕虫状膨胀石墨8.8份,所述蠕虫状膨胀石墨的膨胀率为500ml/g,粒度为100目,膨胀倍数为400倍,堆积密度为0.4g/cm 3
实施例8
石墨吸附相变储能粉体,包括以下重量份的各组份:
C20烷烃蜡100份和蠕虫状膨胀石墨7.3份,所述蠕虫状膨胀石墨的膨胀率为600ml/g,粒度为200目,膨胀倍数为600倍,堆积密度为0.2g/cm 3
实施例9
石墨吸附相变储能粉体,包括以下重量份的各组份:
C10烷烃蜡100份和蠕虫状膨胀石墨7.3份,所述蠕虫状膨胀石墨的膨胀率为600ml/g,粒度为200目,膨胀倍数为600倍,堆积密度为0.35g/cm 3
实施例10
石墨吸附相变储能粉体,包括以下重量份的各组份:
C60烷烃蜡100份和蠕虫状膨胀石墨6.2份,所述蠕虫状膨胀石墨的膨胀率为500ml/g,粒度为150目,膨胀倍数为400倍,堆积密度为0.25g/cm 3
实施例11
石墨吸附相变储能粉体,包括以下重量份的各组份:
C35烷烃蜡100份和蠕虫状膨胀石墨5.8份,所述蠕虫状膨胀石墨的膨胀率为600ml/g,粒度为200目,膨胀倍数为600倍,堆积密度为0.35g/cm 3
实施例12
实施例1-2的石墨吸附相变储能粉体的制备方法,包括以下步骤:
步骤1、按配方称取各组分;
步骤2、将相变粉体置于反应釜内加热至全部熔化,然后将蠕虫状膨胀石墨分批缓慢加热到液态的相变粉体中,变加热边搅拌,蠕虫状膨胀石墨添加完成后,在反应釜内抽真空,真空度为-0.10MPa,抽真空的时间持续40min,持续搅拌时间为90min;
步骤3、将经过步骤2处理获得的石墨吸附相变储能粉体取出冷却至常温,再使用粉碎机粉碎,过100目筛,获得所述的石墨吸附相变储能粉体。
实施例13
实施例3-5的石墨吸附相变储能粉体的制备方法,包括以下步骤:
步骤1、按配方称取各组分;
步骤2、将相变粉体置于反应釜内加热至全部熔化,然后将蠕虫状膨胀石墨 分批缓慢加热到液态的相变粉体中,变加热边搅拌,蠕虫状膨胀石墨添加完成后,在反应釜内抽真空,真空度为-0.04MPa,抽真空的时间持续5min,持续搅拌时间为15min;
步骤3、将经过步骤2处理获得的石墨吸附相变储能粉体取出冷却至常温,再使用粉碎机粉碎,过10目筛,获得所述的石墨吸附相变储能粉体。
实施例14
实施例6-11的石墨吸附相变储能粉体的制备方法,包括以下步骤:
步骤1、按配方称取各组分;
步骤2、将相变粉体置于反应釜内加热至全部熔化,然后将蠕虫状膨胀石墨分批缓慢加热到液态的相变粉体中,变加热边搅拌,蠕虫状膨胀石墨添加完成后,在反应釜内抽真空,真空度为-0.06MPa,抽真空的时间持续40min,持续搅拌时间为75min;
步骤3、将经过步骤2处理获得的石墨吸附相变储能粉体取出冷却至常温,再使用粉碎机粉碎,过80目筛,获得所述的石墨吸附相变储能粉体。
实施例15
实施例1-11的石墨吸附相变储能粉体的应用,所述的石墨吸附相变储能粉体可用于电池,电子线路,显示屏,可穿戴设备,家电,5G通信设备和5G智能终端领域,以达到降温,控温储能的效果。
实施例1-11的石墨吸附相变储能粉体的制备方法配比:
Figure PCTCN2019105808-appb-000001
实施例1-11的石墨吸附相变储能粉体在相同环境温度下测试性能如表1所示:
Figure PCTCN2019105808-appb-000002
表1
申请人对实施例1-11的石墨吸附相变储能粉体在高温高湿条件下进行老化试验,实验条件如下:1.DSC测试温度段:-20℃~120℃;2.DSC测试升温速率:10℃/min;3.恒温恒湿箱设置程序,温度设为85℃,湿度设为85%RH,时间为1000H;实验室环境条件:1.温度:26±2℃;2.湿度:60%±10RH;测试设备为NETZSCH DSC214 Polyma恒温恒湿箱,型号为TEMI 300,测试结果如表2所示:
Figure PCTCN2019105808-appb-000003
表2
从表2中可以看出,实施例1-实施例11的石墨吸附相变储能粉体在经过高温高湿老化试验后,相变焓的降低幅度低于10%,经久耐用,而市场上现有的 相变粉体在同样的测试条件下,相变焓的降低幅度有些在10-20%,有些相变焓的降低幅度在30-50%,使用一段时间之后,相变粉体就会从载体中溢出,性能大幅下降,不够耐用,难以满足客户的需求。
申请人对实施例1-11的石墨吸附相变储能粉体进行冷热冲击老化试验,实验条件如下:1.DSC测试温度段:-20℃~120℃;2.DSC测试升温速率:10℃/min;3.冷热冲击箱设置程序,-40℃(保温10min)*85℃(保温10min),1000个循环;实验室环境条件:1.温度:26±2℃;2.湿度:60%±10RHl;测试设备:NETZSCH DSC214 Polyma冷热冲击箱,测试结果如表3所示:
Figure PCTCN2019105808-appb-000004
表3
从表3中可以看出,实施例1-实施例11的石墨吸附相变储能粉体经过冷热冲击老化试验后,相变焓的降低幅度低于10%,经久耐用,而市场上现有的相变粉体在同样的测试条件下,相变焓的降低幅度有些在10-20%,有些相变焓的 降低幅度在30-50%,使用一段时间之后,相变粉体就会从载体中溢出,性能大幅下降,不够耐用,难以满足客户的需求。
对于C20烷烃蜡,申请人又单独进行了横向比较,石墨吸附相变储能粉体的配比如表4所示,并进行了测试,结果如下:
Figure PCTCN2019105808-appb-000005
表4
从表4中可以看出,蠕虫状膨胀石墨的比重越大,石墨吸附相变储能粉体的相变焓越小,因此,只有当蠕虫状膨胀石墨的含量恰好可以将相变材料完全吸附时的占比,就是最佳占比。
最后应当说明的是,以上实施例仅用以说明本发明的技术方案,而非对本发明保护范围的限制,尽管参照较佳实施例对本发明作了详细地说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的实质和范围。

Claims (7)

  1. 石墨吸附相变储能粉体,其特征在于,包括以下重量份的各组份:
    相变粉体100份和蠕虫状膨胀石墨5~9份。
  2. 根据权利要求1所述的石墨吸附相变储能粉体,其特征在于:所述蠕虫状膨胀石墨的膨胀率为100-600ml/g,粒度为100-200目,膨胀倍数为200-600倍,堆积密度为0.2~0.5g/cm 3
  3. 根据权利要求1所述的石墨吸附相变储能粉体,其特征在于:所述相变粉体选自烷烃蜡、石蜡、脂肪酸、PE蜡、PP蜡的任意一种或者几种的组合。
  4. 根据权利要求3所述的石墨吸附相变储能粉体,其特征在于:所述烷烃蜡的烷烃碳原子数介于10-60之间。
  5. 根据权利要求1-4任一项所述的石墨吸附相变储能粉体的制备方法,其特征在于,包括以下步骤:
    步骤1、按配方称取各组份;
    步骤2、将相变粉体置于反应釜内加热至全部熔化,然后将蠕虫状膨胀石墨分批缓慢加热到液态的相变粉体中,变加热边搅拌,蠕虫状膨胀石墨添加完成后,在反应釜内抽真空,持续搅拌时间为15-90min;
    步骤3、将经过步骤2处理获得的石墨吸附相变储能粉体取出冷却至常温,再使用粉碎机粉碎,过10~100目筛,获得所述的石墨吸附相变储能粉体。
  6. 根据权利要求5所述的石墨吸附相变储能粉体的制备方法,其特征在于,步骤2中,真空度介于-0.04至-0.10MPa,抽真空的时间持续5-40min。
  7. 根据权利要求1-5任一项所述的石墨吸附相变储能粉体的应用,其特征在于:所述的石墨吸附相变储能粉体应用于电池,电子线路,显示屏,可穿戴设备,家电,5G通信设备和5G智能终端,以达到降温,控温储能的效果。
PCT/CN2019/105808 2019-08-26 2019-09-12 石墨吸附相变储能粉体、制备方法及其应用 WO2021035820A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910792143.3 2019-08-26
CN201910792143.3A CN110484216A (zh) 2019-08-26 2019-08-26 石墨吸附相变储能粉体、制备方法及其应用

Publications (1)

Publication Number Publication Date
WO2021035820A1 true WO2021035820A1 (zh) 2021-03-04

Family

ID=68554130

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/105808 WO2021035820A1 (zh) 2019-08-26 2019-09-12 石墨吸附相变储能粉体、制备方法及其应用

Country Status (2)

Country Link
CN (1) CN110484216A (zh)
WO (1) WO2021035820A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110922918A (zh) * 2019-12-17 2020-03-27 张立强 双组份储热灌封材料及其制备方法
CN111349408A (zh) * 2020-03-14 2020-06-30 广东力王新材料有限公司 基于硅酸盐的相变粉体二次吸附方法
CN111234740A (zh) * 2020-03-14 2020-06-05 广东力王新材料有限公司 双组分储热灌封材料
CN112662380A (zh) * 2020-12-27 2021-04-16 南京天诗新材料科技有限公司 一种相变蜡的封装方法及设备
CN113943555A (zh) * 2021-11-18 2022-01-18 北京华能长江环保科技研究院有限公司 基于电厂粉煤灰高值储热材料合成系统及合成方法
CN115819021A (zh) * 2022-11-30 2023-03-21 重庆海润节能技术股份有限公司 一种用于垂直螺旋埋管地源热泵的回填材料及回填方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100999657A (zh) * 2006-12-22 2007-07-18 华南理工大学 有机物/膨胀石墨复合相变储热材料及其制备方法与储热装置
CN101724381A (zh) * 2009-12-22 2010-06-09 中国科学技术大学 一种高导热性定形相变储能材料及其制备方法
CN102181270A (zh) * 2011-04-28 2011-09-14 华南理工大学 一种用于锂电池散热的复合相变材料及装置
CN103374338A (zh) * 2012-04-17 2013-10-30 夏华松 多孔品质大鳞片石墨基相变储能复合材料及制备方法
CN105018038A (zh) * 2014-04-16 2015-11-04 上海艾尔派克包装材料有限公司 一种有机相变储热材料及其制备方法
WO2017001323A1 (de) * 2015-06-30 2017-01-05 Sgl Carbon Se Verwendung eines verbundwerkstoffes zum wärmemanagement
CN107172868A (zh) * 2017-07-17 2017-09-15 河北建筑工程学院 电子设备的壳体及其制备方法
CN108163851A (zh) * 2017-12-25 2018-06-15 杭州龙灿液态金属科技有限公司 一种高频感应加热装置、制备石墨蠕虫的方法以及石墨蠕虫的应用

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102827584A (zh) * 2012-08-31 2012-12-19 河南科技大学 一种高相变热定型相变材料及其制备方法
CN106590537A (zh) * 2015-10-20 2017-04-26 北京林业大学 一种太阳能干燥用相变储热材料及其制备方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100999657A (zh) * 2006-12-22 2007-07-18 华南理工大学 有机物/膨胀石墨复合相变储热材料及其制备方法与储热装置
CN101724381A (zh) * 2009-12-22 2010-06-09 中国科学技术大学 一种高导热性定形相变储能材料及其制备方法
CN102181270A (zh) * 2011-04-28 2011-09-14 华南理工大学 一种用于锂电池散热的复合相变材料及装置
CN103374338A (zh) * 2012-04-17 2013-10-30 夏华松 多孔品质大鳞片石墨基相变储能复合材料及制备方法
CN105018038A (zh) * 2014-04-16 2015-11-04 上海艾尔派克包装材料有限公司 一种有机相变储热材料及其制备方法
WO2017001323A1 (de) * 2015-06-30 2017-01-05 Sgl Carbon Se Verwendung eines verbundwerkstoffes zum wärmemanagement
CN107172868A (zh) * 2017-07-17 2017-09-15 河北建筑工程学院 电子设备的壳体及其制备方法
CN108163851A (zh) * 2017-12-25 2018-06-15 杭州龙灿液态金属科技有限公司 一种高频感应加热装置、制备石墨蠕虫的方法以及石墨蠕虫的应用

Also Published As

Publication number Publication date
CN110484216A (zh) 2019-11-22

Similar Documents

Publication Publication Date Title
WO2021035820A1 (zh) 石墨吸附相变储能粉体、制备方法及其应用
WO2021035819A1 (zh) 气凝胶吸附相变储能粉体、制备方法及其应用
WO2021035816A1 (zh) 双组份储热灌封材料及其制备方法
Sun et al. Flexible graphene aerogel-based phase change film for solar-thermal energy conversion and storage in personal thermal management applications
Tao et al. Phase change material based on polypyrrole/Fe3O4-functionalized hollow kapok fiber aerogel matrix for solar/magnetic-thermal energy conversion and storage
CN109019590B (zh) 木质素基多级孔碳材料及其制备方法
Xiao et al. Solar thermal energy storage based on sodium acetate trihydrate phase change hydrogels with excellent light-to-thermal conversion performance
WO2020253094A1 (zh) 一种氮化硼纳米管气凝胶/相变导热复合材料及其制备方法
CN104559936B (zh) 一种中温用相变蓄热材料及其制备方法
Li et al. Erythritol impregnated within surface-roughened hydrophilic metal foam for medium-temperature solar-thermal energy harvesting
CN107369563B (zh) 一种硫化镍颗粒/纤维素基复合碳气凝胶材料的制备方法
CN109504351B (zh) 一种聚醚基复合相变储能材料及其制备方法
CN110257019B (zh) 一种具有光热转换功能的相变复合材料及其制备方法
WO2021035818A1 (zh) 相变化储热沥青及其制备方法
Luo et al. Nature‐Inspired Solar‐Thermal Gradient Reduced Graphene Oxide Aerogel‐based Bilayer Phase Change Composites for Self‐Adaptive Personal Thermal Management
CN110655910A (zh) 一种石墨烯气凝胶相变储能材料的制备方法
CN105647482A (zh) 一种三元脂肪酸/改性膨胀蛭石复合相变储能材料
WO2021000519A1 (zh) 相变储热塑料、制备方法及其应用
CN107256806A (zh) 一种电极材料及超级电容器
CN109370536A (zh) 复合相变储热材料、制备方法及保温材料
WO2021056870A1 (zh) 一种复合相变调节剂及其复合相变储热材料的制备方法和应用
CN112480874A (zh) 一种三水醋酸钠/膨胀石墨复合相变储能材料的制备方法
CN110872489A (zh) 相变热熔胶及其制备方法
Wei et al. Wood Lamella‐Inspired Photothermal Stearic Acid‐Eutectic Gallium‐Indium‐Based Phase Change Aerogel for Thermal Management and Infrared Stealth
CN101798497B (zh) 复合相变储能材料及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19943128

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19943128

Country of ref document: EP

Kind code of ref document: A1