WO2021035816A1 - 双组份储热灌封材料及其制备方法 - Google Patents
双组份储热灌封材料及其制备方法 Download PDFInfo
- Publication number
- WO2021035816A1 WO2021035816A1 PCT/CN2019/105804 CN2019105804W WO2021035816A1 WO 2021035816 A1 WO2021035816 A1 WO 2021035816A1 CN 2019105804 W CN2019105804 W CN 2019105804W WO 2021035816 A1 WO2021035816 A1 WO 2021035816A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- phase change
- component
- parts
- energy storage
- aerogel
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/04—Oxygen-containing compounds
- C08K5/09—Carboxylic acids; Metal salts thereof; Anhydrides thereof
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K9/00—Use of pretreated ingredients
- C08K9/12—Adsorbed ingredients, e.g. ingredients on carriers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L23/00—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
- C08L23/02—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
- C08L23/04—Homopolymers or copolymers of ethene
- C08L23/06—Polyethene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L23/00—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
- C08L23/02—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
- C08L23/10—Homopolymers or copolymers of propene
- C08L23/12—Polypropene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L33/00—Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
- C08L33/04—Homopolymers or copolymers of esters
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L63/00—Compositions of epoxy resins; Compositions of derivatives of epoxy resins
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L75/00—Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
- C08L75/04—Polyurethanes
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L83/00—Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
- C08L83/04—Polysiloxanes
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L91/00—Compositions of oils, fats or waxes; Compositions of derivatives thereof
- C08L91/06—Waxes
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K5/00—Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
- C09K5/02—Materials undergoing a change of physical state when used
- C09K5/06—Materials undergoing a change of physical state when used the change of state being from liquid to solid or vice versa
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2205/00—Polymer mixtures characterised by other features
- C08L2205/02—Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
- C08L2205/025—Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group containing two or more polymers of the same hierarchy C08L, and differing only in parameters such as density, comonomer content, molecular weight, structure
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2205/00—Polymer mixtures characterised by other features
- C08L2205/03—Polymer mixtures characterised by other features containing three or more polymers in a blend
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2205/00—Polymer mixtures characterised by other features
- C08L2205/03—Polymer mixtures characterised by other features containing three or more polymers in a blend
- C08L2205/035—Polymer mixtures characterised by other features containing three or more polymers in a blend containing four or more polymers in a blend
Definitions
- the invention relates to the technical field of potting materials and preparation methods thereof, in particular to a two-component heat storage potting material and preparation methods thereof.
- the electronic potting glue is liquid before curing and has fluidity.
- the viscosity of the glue varies according to the material, performance, and production process of the product.
- the potting glue can only realize its use value after it is completely cured. After curing, it can play the role of waterproof, moisture-proof, dust-proof, insulation, heat conduction, confidentiality, corrosion resistance, temperature resistance and shock resistance.
- the existing electronic potting glue does not have the function of heat storage and temperature control, and the cost is high.
- Phase change energy storage technology is a technology that can store energy at high density in the form of phase change latent heat.
- phase change materials are usually added to potting materials, but phase change materials have good fluidity when heated. It is easy to overflow and cause oil. The usual performance is that a layer of oil appears on the surface of the product, causing defects and failing to meet customer quality requirements.
- One of the objectives of the present invention is to provide a two-component heat storage potting material to solve the deficiencies of the prior art.
- Another object of the present invention is to provide a method for preparing the above-mentioned two-component heat storage potting material.
- Two-component heat storage potting material including the following components by weight:
- Component A 20 ⁇ 70 parts of resin, 20 ⁇ 70 parts of phase change material;
- component 20-70 parts of resin curing agent, 20-70 parts of phase change material, wherein the weight ratio of component A and component B is 1:1, the phase change material in component A and component B It is graphite adsorption phase change energy storage powder or aerogel adsorption phase change energy storage powder.
- the resin is any one of acrylic resin, polyurethane resin, epoxy resin and silicone resin.
- the graphite adsorption phase change energy storage powder includes the following components by weight:
- phase change powder 100 parts of phase change powder and 5-9 parts of vermicular expanded graphite.
- the worm-like expanded graphite has an expansion ratio of 100-600 ml/g, a particle size of 100-200 mesh, an expansion ratio of 200-600 times, and a bulk density of 0.2-0.5 g/cm3.
- the aerogel adsorption phase change energy storage powder includes the following components by weight:
- phase change powder 100 parts of phase change powder and 5-50 parts of aerogel, the specific surface area of the aerogel is 100-300 square meters/g, and the particle size is 5-60 nm.
- the A component further includes 0.1-2 parts of a catalyst
- the catalyst is any one of a platinum catalyst, a tin compound catalyst, a titanium compound catalyst, and an amine compound.
- the phase change powder is selected from any one or a combination of alkane wax, paraffin wax, fatty acid, PE wax and PP wax, and the alkane carbon number of the alkane wax is between 10-60.
- the preparation method of the two-component heat storage potting material includes the following steps:
- Step 1 Preparation of graphite adsorption phase change energy storage powder or aerogel adsorption phase change energy storage powder;
- Step 2 Mixing: Place component A and component B in a planetary mixer at a speed of 30 rpm and stir for 1 hour. Mix component A and component B uniformly for later use to obtain the Two-component heat storage potting material.
- the preparation method of the graphite adsorption phase change energy storage powder includes the following steps:
- Step 1 Weigh each component according to the formula
- Step 2 Put the phase change powder in the reaction kettle and heat it until it is completely melted, and then slowly heat the worm-like expanded graphite into the liquid phase change powder in batches, and stir while heating. After the addition of the worm-like expanded graphite is completed, Vacuum in the reactor, the vacuum degree is between -0.04 to -0.10MPa, the vacuum time lasts for 5-40min, and the continuous stirring time is 15-90min;
- Step 3 Take out the graphite adsorption phase change energy storage powder obtained by the process of step 2 and cool it to room temperature, then use a pulverizer to pulverize, and pass through a 10-100 mesh sieve to obtain the graphite adsorption phase change energy storage powder.
- the preparation method of the aerogel adsorption phase change energy storage powder includes the following steps:
- Step 1 Weigh each component according to the formula
- Step 2 Put the phase change powder in the reactor and heat it until it is completely melted, and then slowly heat the aerogel into the liquid phase change powder in batches, and stir while changing the heating. After the aerogel is added, the reaction Vacuum in the kettle, the vacuum degree is between -0.04 to -0.10MPa, the vacuuming time lasts for 5-40min, and the continuous stirring time is 15-90min;
- Step 3 Take out the aerogel adsorption phase change energy storage powder obtained in step 2 and cool it to room temperature, then use a pulverizer to pulverize, and pass through a 10-100 mesh sieve to obtain the aerogel adsorption phase change energy storage Powder.
- the two-component heat storage potting material of the present invention has the following beneficial effects: the two-component heat storage potting material of the present invention has the following performance: specific heat capacity (J/(g ⁇ K)) ⁇ 2.0 ; Phase transition enthalpy (J/g) is about 30 ⁇ 180, which is the endothermic value; Phase transition temperature (°C) 25 ⁇ 90; Specific gravity (g/cc): 0.8 ⁇ 1.8 Surface drying time: 15min ⁇ 25min; initial curing time : 1h ⁇ 2h; complete curing time ⁇ 24h; shear strength (aluminum/aluminum) ⁇ 4MPA; phase change material is graphite adsorption phase change energy storage powder or aerogel adsorption phase change energy storage powder;
- the graphite adsorption phase change energy storage powder uses vermicular expanded graphite as the adsorption material.
- the vermicular expanded graphite is a loose and porous vermicular substance obtained by intercalation, washing, drying, and high temperature expansion of natural flake graphite.
- graphite also has softness, compression resilience, adsorption, ecological environment coordination, and biological characteristics that natural graphite does not have.
- phase change powder Capacitive, radiation resistance and other characteristics, due to loose and porous, large specific surface area, so the adsorption capacity of phase change powder is very strong, only need to use less weight parts of worm-like expanded graphite to complete the adsorption of phase change materials
- the worm-like expanded graphite cannot be too little, too little can not completely adsorb the phase change material; the worm-like expanded graphite can not be too much, on the one hand, if it is too much, it will increase the cost and reduce the enthalpy value of the product, and at the same time, it will reduce the graphite
- the phase change enthalpy of the adsorption phase change energy storage powder reduces the heat storage performance of the product. Therefore, for different powders, the weight ratio of the phase change powder that can be completely absorbed is the optimal;
- step 2 of its preparation method a vacuum adsorption process is adopted.
- the molten phase change powder can penetrate into the worm-like expanded graphite more easily.
- the adsorption effect of the phase change material in the deep hole is far greater than that of conventional immersion or stirring.
- the phase change material enters the deep hole, it is difficult to overflow under high temperature conditions, and has exceptional adsorption performance.
- the phase change enthalpy of graphite adsorption phase-change energy storage powder has increased by 5%-10%, and the performance has been greatly improved. Due to the reduction of the worm-like expanded graphite The amount and cost are also greatly reduced;
- Aerogel adsorption phase change energy storage powder uses aerogel as the adsorption material. Aerogel has low thermal conductivity, good thermal insulation effect, stable physical and chemical properties, non-combustible at high temperature, completely waterproof, non-toxic, green and environmentally friendly, and The specific surface area is large, and the adsorption capacity for phase change powders is very strong. Only a small part of aerogel can be used to complete the adsorption of phase change materials.
- step 2 of its preparation method a vacuum adsorption process is adopted, and the molten phase change powder is more easily penetrated into the fluffy aerogel by stirring under vacuum conditions.
- the adsorption effect of the phase change material in the deep hole is far greater than that of conventional immersion or stirring. After the phase change material enters the deep hole, it is difficult to overflow under high temperature conditions, and has extraordinary adsorption performance.
- the two-component heat storage potting material adopting the above formula and preparation method has excellent heat storage and temperature control performance, and the cost is much lower than the potting glue on the market.
- Two-component heat storage potting material including the following components by weight: component A: 20 parts of acrylic resin, 20 parts of phase change material and 0.2 parts of stannous octoate; component B: 20 parts of polyurethane curing agent, phase 20 parts of the change material, the weight ratio of the A component and the B component is 1:1, wherein the phase change material is graphite adsorption phase change energy storage powder, and the graphite adsorption phase change energy storage powder includes the following Parts by weight of each component: 100 parts of paraffin wax and 5 parts of worm-like expanded graphite.
- the worm-like expanded graphite has an expansion rate of 500ml/g, a particle size of 100 mesh, an expansion ratio of 400 times, and a bulk density of 0.2g/cm 3 .
- Two-component heat storage potting material including the following components by weight: component A: 70 parts of acrylic resin, 70 parts of phase change material and 0.6 parts of stannous octoate; component B: 70 parts of polyurethane curing agent, phase 70 parts of the change material, the weight ratio of the A component and the B component is 1:1, wherein the phase change material is graphite adsorption phase change energy storage powder, wherein the graphite adsorption phase change energy storage powder includes the following Parts by weight of each component: 100 parts of paraffin wax and 9 parts of worm-like expanded graphite.
- the worm-like expanded graphite has an expansion rate of 600ml/g, a particle size of 200 mesh, an expansion ratio of 600 times, and a bulk density of 0.5g/cm. 3 .
- Two-component heat storage potting material including the following components by weight: component A: 20 parts of polyurethane resin, 20 parts of phase change material and 0.2 parts of stannous octoate; component B: 20 parts of polyurethane curing agent, phase 20 parts of the change material, the weight ratio of the A component and the B component is 1:1, wherein the phase change material is graphite adsorption phase change energy storage powder, wherein the graphite adsorption phase change energy storage powder includes the following Parts by weight of each component: 100 parts of fatty acid and 6 parts of worm-like expanded graphite.
- the worm-like expanded graphite has an expansion rate of 100ml/g, a particle size of 150 mesh, an expansion ratio of 500 times, and a bulk density of 0.3g/cm 3 .
- Two-component heat storage potting material including the following components by weight: component A: 20 parts of polyurethane resin, 70 parts of phase change material; component B: 20 parts of polyurethane curing agent, 70 parts of phase change material, A The weight ratio of component and component B is 1:1, wherein the phase change material is graphite adsorption phase change energy storage powder, wherein the graphite adsorption phase change energy storage powder includes the following parts by weight Components: 100 parts of PE wax and 7 parts of worm-like expanded graphite.
- the worm-like expanded graphite has an expansion rate of 520 ml/g, a particle size of 120 mesh, an expansion ratio of 450 times, and a bulk density of 0.2 g/cm 3 .
- Two-component heat storage potting material including the following components by weight: component A: 30 parts of polyurethane resin, 20 parts of phase change material; component B: 40 parts of polyurethane curing agent, 30 parts of phase change material, A The weight ratio of component and component B is 1:1, wherein the phase change material is graphite adsorption phase change energy storage powder, wherein the graphite adsorption phase change energy storage powder includes the following parts by weight Components: 100 parts of PP wax and 8 parts of worm-like expanded graphite.
- the worm-like expanded graphite has an expansion rate of 550 ml/g, a particle size of 140 mesh, an expansion ratio of 460 times, and a bulk density of 0.2 g/cm 3 .
- Two-component heat storage potting material including the following components by weight: component A: 20 parts of epoxy resin, 20 parts of phase change material; component B: 20 parts of polythiol curing agent, 20 parts of phase change material
- the weight ratio of the A component and the B component is 1:1, wherein the phase change material is graphite adsorption phase change energy storage powder, and the graphite adsorption phase change energy storage powder includes the following parts by weight Components: 100 parts of C40 alkane wax and 8.5 parts of worm-like expanded graphite.
- the worm-like expanded graphite has an expansion rate of 570ml/g, a particle size of 200 mesh, an expansion ratio of 600 times, and a bulk density of 0.3g/cm 3 .
- Two-component heat storage potting material including the following components by weight: component A: 20 parts of epoxy resin, 70 parts of phase change material; component B: 20 parts of polythiol curing agent, 70 parts of phase change material
- the weight ratio of the A component and the B component is 1:1, wherein the phase change material is graphite adsorption phase change energy storage powder, and the graphite adsorption phase change energy storage powder includes the following parts by weight Components: 100 parts of C30 alkane wax and 8.8 parts of worm-like expanded graphite.
- the worm-like expanded graphite has an expansion rate of 500ml/g, a particle size of 100 mesh, an expansion ratio of 400 times, and a bulk density of 0.4g/cm 3 .
- Two-component heat storage potting material including the following components by weight: component A: 70 parts of epoxy resin, 20 parts of phase change material; component B: 70 parts of polycarbonate curing agent, 20 parts of phase change material
- the weight ratio of component A and component B is 1:1, wherein the phase change material is graphite adsorption phase change energy storage powder, graphite adsorption phase change energy storage powder, including the following parts by weight Parts: 100 parts of C20 alkane wax and 7.3 parts of worm-like expanded graphite.
- the worm-like expanded graphite has an expansion rate of 600 ml/g, a particle size of 200 mesh, an expansion ratio of 600 times, and a bulk density of 0.2 g/cm 3 .
- Two-component heat storage potting material including the following components by weight: component A: 30 parts of epoxy resin, 40 parts of phase change material; component B: 30 parts of polythiol curing agent, 40 parts of phase change material
- the weight ratio of component A and component B is 1:1, wherein the phase change material is graphite adsorption phase change energy storage powder, graphite adsorption phase change energy storage powder, including the following parts by weight Parts: 100 parts of C10 alkane wax and 7.3 parts of worm-like expanded graphite.
- the worm-like expanded graphite has an expansion rate of 600 ml/g, a particle size of 200 mesh, an expansion ratio of 600 times, and a bulk density of 0.35 g/cm 3 .
- Two-component heat storage potting material including the following components by weight: component A: 50 parts of epoxy resin, 40 parts of phase change material; component B: 50 parts of polycarbonate curing agent, 40 parts of phase change material
- the weight ratio of component A and component B is 1:1, wherein the phase change material is graphite adsorption phase change energy storage powder, graphite adsorption phase change energy storage powder, including the following parts by weight Parts: 100 parts of C60 alkane wax and 6.2 parts of worm-like expanded graphite.
- the worm-like expanded graphite has an expansion rate of 500 ml/g, a particle size of 150 mesh, an expansion ratio of 400 times, and a bulk density of 0.2 5 g/cm 3 .
- Two-component heat storage potting material including the following components by weight: component A: 50 parts of silicone resin, 30 parts of phase change material, 0.2 part of platinum catalyst; component B: 40 parts of silicone resin, hydrogen-containing silicone oil 10 parts, 30 parts of phase change material, the weight ratio of component A and component B is 1:1, the phase change material is graphite adsorption phase change energy storage powder graphite adsorption phase change energy storage powder, including the following weights Parts of each component: 100 parts of C35 alkane wax and 5.8 parts of worm-like expanded graphite.
- the worm-like expanded graphite has an expansion rate of 600ml/g, a particle size of 200 mesh, an expansion ratio of 600 times, and a bulk density of 0.35g/ cm 3 .
- Two-component heat storage potting material including the following components by weight: component A: 20 parts of epoxy resin, 70 parts of phase change material; component B: 20 parts of polycarbonate curing agent, 70 parts of phase change material
- the weight ratio of component A and component B is 1:1, wherein the phase change material is aerogel adsorption phase change energy storage powder, and the aerogel adsorption phase change energy storage powder includes The components in the following parts by weight: 100 parts of C10 paraffin wax and 50 parts of aerogel, the specific surface area of the aerogel is 300 square meters/g, and the particle size is 5 nm.
- Two-component heat storage potting material including the following components by weight: component A: 30 parts of epoxy resin, 40 parts of phase change material; component B: 20 parts of polycarbonate curing agent, 50 parts of phase change material
- the weight ratio of component A and component B is 1:1, wherein the phase change material is aerogel adsorption phase change energy storage powder, and the aerogel adsorption phase change energy storage powder includes The following parts by weight of each component: 100 parts of C15 alkane wax and 45 parts of aerogel, the specific surface area of the aerogel is 280 square meters/g, and the particle size is 8 nm.
- Two-component heat storage potting material including the following components by weight: component A: 46 parts of epoxy resin, 55 parts of phase change material; component B: 38 parts of polycarbonate curing agent, 25 parts of phase change material
- the weight ratio of component A and component B is 1:1, wherein the phase change material is aerogel adsorption phase change energy storage powder, and the aerogel adsorption phase change energy storage powder includes The components in the following parts by weight: 100 parts of C20 alkane wax and 40 parts of aerogel, the specific surface area of the aerogel is 220 square meters/g, and the particle size is 15 nm.
- Two-component heat storage potting material including the following components by weight: component A: 60 parts of epoxy resin, 35 parts of phase change material; component B: 40 parts of polycarbonate curing agent, 30 parts of phase change material
- the weight ratio of component A and component B is 1:1, wherein the phase change material is aerogel adsorption phase change energy storage powder, and the aerogel adsorption phase change energy storage powder includes The following parts by weight of each component: 100 parts of C30 alkane wax and 45 parts of aerogel, the specific surface area of the aerogel is 260 square meters/g, and the particle size is 12 nm.
- Two-component heat storage potting material including the following components by weight: component A: 58 parts of epoxy resin, 33 parts of phase change material; component B: 42 parts of polycarbonate curing agent, 27 parts of phase change material
- the weight ratio of component A and component B is 1:1, wherein the phase change material is aerogel adsorption phase change energy storage powder, and the aerogel adsorption phase change energy storage powder includes The following parts by weight of each component: 100 parts of C40 alkane wax and 48 parts of aerogel, the specific surface area of the aerogel is 280 square meters/g, and the particle size is 8 nm.
- Two-component heat storage potting material including the following components by weight: component A: 20 parts of acrylic resin, 20 parts of phase change material and 0.2 part of dibutyl tin dilaurate; component B: polyurethane curing agent 20 parts, 20 parts of the phase change material, the weight ratio of the A component and the B component is 1:1, wherein the phase change material is an aerogel adsorption phase change energy storage powder, and the aerogel adsorption phase
- the variable energy storage powder includes the following components in parts by weight: 100 parts of C60 alkane wax and 5 parts of aerogel. The specific surface area of the aerogel is 100 square meters/g and the particle size is 60 nm.
- Two-component heat storage potting material including the following components by weight: component A: 20 parts of polyurethane resin, 70 parts of phase change material and 0.2 parts of dibutyl tin dilaurate; component B: polyurethane curing agent 20 parts, 70 parts of the phase change material, the weight ratio of the A component and the B component is 1:1, wherein the phase change material is an aerogel adsorption phase change energy storage powder, and the aerogel adsorption phase
- the variable energy storage powder includes the following components in parts by weight: 100 parts of paraffin wax and 45 parts of aerogel, the specific surface area of the aerogel is 280 square meters/g, and the particle size is 10 nm.
- Two-component heat storage potting material including the following components by weight: component A: 50 parts of silicone resin, 30 parts of phase change material, 0.2 parts of platinum catalyst; component B: 40 parts of silicone resin, hydrogen-containing silicone oil , 10 parts, 30 parts of the phase change material, the weight ratio of the A component and the B component is 1:1, wherein the phase change material is aerogel adsorption phase change energy storage powder, and the aerogel adsorption
- the phase change energy storage powder includes the following components in parts by weight: 100 parts of paraffin wax and 5 parts of aerogel, the specific surface area of the aerogel is 300 square meters/g, and the particle size is 5 nm.
- Two-component heat storage potting material including the following components by weight: component A: 40 parts of silicone resin, 25 parts of phase change material, 0.2 parts of platinum catalyst; component B: 40 parts of silicone resin, hydrogen-containing silicone oil 20 parts, 40 parts of the phase change material, the weight ratio of the A component and the B component is 1:1, wherein the phase change material is an aerogel adsorption phase change energy storage powder, and the aerogel adsorption phase
- the variable energy storage powder includes the following components in parts by weight: 100 parts of paraffin wax and 50 parts of aerogel, the specific surface area of the aerogel is 180 square meters/g, and the particle size is 12 nm.
- Two-component heat storage potting material including the following components by weight: component A: 60 parts of silicone resin, 70 parts of phase change material, 2 parts of platinum catalyst; component B: 36 parts of silicone resin, hydrogen-containing silicone oil 24 parts, 70 parts of the phase change material, the weight ratio of the A component and the B component is 1:1, wherein the phase change material is an aerogel adsorption phase change energy storage powder, and the aerogel adsorption phase
- the variable energy storage powder includes the following components by weight: 100 parts of fatty acid and 10 parts of aerogel, the specific surface area of the aerogel is 100 square meters/g, and the particle size is 60 nm.
- Two-component heat storage potting material including the following components by weight: component A: 50 parts of silicone resin, 50 parts of phase change material, 0.5 part of platinum catalyst; component B: 30 parts of silicone resin, hydrogen-containing silicone oil 20 parts, 40 parts of the phase change material, the weight ratio of the A component and the B component is 1:1, wherein the phase change material is aerogel adsorption phase change energy storage powder, and the aerogel adsorption Phase change energy storage powder, aerogel adsorption phase change energy storage powder, including the following components by weight: 100 parts of PE wax and 45 parts of aerogel, the specific surface area of the aerogel is 260m2/g , The particle size is 45nm.
- Two-component heat storage potting material including the following components by weight: component A: 50 parts of silicone resin, 45 parts of phase change material, 0.2 part of platinum catalyst; component B: 22 parts of silicone resin, hydrogen-containing silicone oil 18 parts, 60 parts of the phase change material, the weight ratio of the A component and the B component is 1:1, wherein the phase change material is an aerogel adsorption phase change energy storage powder, wherein the aerogel
- the adsorption phase change energy storage powder includes the following components in parts by weight: 100 parts of PE wax and 50 parts of aerogel.
- the specific surface area of the aerogel is 230 square meters/g and the particle size is 40 nm.
- Two-component heat storage potting material including the following components by weight: Component A: 70 parts of silicone resin, 30 parts of phase change material, 0.3 parts of platinum catalyst; Component B: 42 parts of silicone resin, hydrogen-containing silicone oil 28 parts, 30 parts of the phase change material, the weight ratio of the A component and the B component is 1:1, wherein the phase change material is aerogel adsorption phase change energy storage powder, wherein the aerogel
- the adsorption phase change energy storage powder includes the following components in parts by weight: 100 parts of PP wax and 8 parts of aerogel.
- the specific surface area of the aerogel is 130 square meters/g and the particle size is 53 nm.
- the preparation method of the two-component heat storage potting material of embodiment 1-11 includes the following steps:
- Step 2 Mixing: Place component A and component B in a planetary mixer at a speed of 30 rpm and stir for 1 hour. Mix component A and component B uniformly for later use to obtain the Two-component heat storage potting material.
- the preparation method of the graphite adsorption phase change energy storage powder described in the above step 1 includes the following steps:
- Step 1 Weigh each component according to the formula
- Step 2 Put the phase change powder in the reaction kettle and heat it until it is completely melted, and then slowly heat the worm-like expanded graphite into the liquid phase change powder in batches, and stir while heating. After the addition of the worm-like expanded graphite is completed, Vacuum in the reactor, the vacuum degree is between -0.04 to -0.10MPa, the vacuum time lasts for 5-40min, and the continuous stirring time is 15-90min;
- Step 3 Take out the graphite adsorption phase change energy storage powder obtained by the process of step 2 and cool it to room temperature, then use a pulverizer to pulverize, and pass through a 10-100 mesh sieve to obtain the graphite adsorption phase change energy storage powder.
- the preparation method of the two-component heat storage potting material of Examples 12-24 includes the following steps:
- Step 1 Prepare aerogel adsorption phase change energy storage powder
- Step 2 Mixing: Place component A and component B in a planetary mixer at a speed of 30 rpm and stir for 1 hour. Mix component A and component B uniformly for later use to obtain the Two-component heat storage potting material.
- the method for preparing the aerogel adsorption phase change energy storage powder described in step 1 above includes the following steps:
- Step 1 Weigh each component according to the formula
- Step 2 Put the phase change powder in the reactor and heat it until it is completely melted, and then slowly heat the aerogel into the liquid phase change powder in batches, and stir while changing the heating. After the aerogel is added, the reaction Vacuum in the kettle, the vacuum degree is between -0.04 to -0.10MPa, the vacuuming time lasts for 5-40min, and the continuous stirring time is 15-90min;
- Step 3 Take out the aerogel adsorption phase change energy storage powder obtained in step 2 and cool it to room temperature, then use a pulverizer to pulverize, and pass through a 10-100 mesh sieve to obtain the aerogel adsorption phase change energy storage Powder.
- the two-component thermal storage potting material of the two-component thermal storage potting material of the present invention contains an appropriate amount of phase change material, and the specific heat capacity (J/(g ⁇ K)) ⁇ 2.0 ; Phase transition enthalpy (J/g) is about 30-180; Phase transition temperature (°C) is 25-90; Specific gravity (g/cc): 0.8-1.8, used as potting material, has excellent heat storage and temperature control function.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Chemistry (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Combustion & Propulsion (AREA)
- Thermal Sciences (AREA)
- Materials Engineering (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
双组份储热灌封材料,包括以下重量份的各组份:A组分:树脂20~70份、相变材料20~70份;B组份:树脂固化剂20~70份、相变材料20~70份,其中A组分和B组分的重量比为1:1,A组分和B组分中的所述相变材料为石墨吸附相变储能粉体或者气凝胶吸附相变储能粉体,通过上述配方获得的双组份储热灌封材料的性能如下:比热容(J/(g·K))≥2.0;相变焓(J/g)约30~180,即吸热值;相变温度(℃)25~90;比重(g/cc):0.8~1.8表干时间:15min~25min;初步固化时间:1h~2h;完全固化时间≥24h;剪切强度(铝/铝)≥4MPA;通过相变材料释放相变潜热,采用上述配方和制备方法的双组份储热灌封材料具备了优异的储热控温性能。
Description
本发明涉及灌封材料及其制备方法技术领域,尤其涉及双组份储热灌封材料及其制备方法。
电子灌封胶在未固化前属于液体状,具有流动性,胶液黏度根据产品的材质、性能、生产工艺的不同而有所区别。灌封胶完全固化后才能实现它的使用价值,固化后可以起到防水防潮、防尘、绝缘、导热、保密、防腐蚀、耐温、防震的作用。然而,现有的电子灌封胶不具备储热控温功能,而且成本较高。
相变储能技术是一种能够将能量以相变潜热的形式高密度储存的技术,目前通常在灌封材料内加入相变材料,但是相变材料而在受热的情况下,流动性好,容易溢出,导致出油,通常的表现是在产品的表面出现一层油,造成不良,无法满足客户对品质的要求。
发明内容
本发明的目的之一是提供一种双组份储热灌封材料,以解决现有技术的不足。
本发明的另一目的在于提供上述双组份储热灌封材料的制备方法。
为实现上述目的,本发明采用如下的技术方案:
双组份储热灌封材料,包括以下重量份的各组份:
A组分:树脂20~70份、相变材料20~70份;
B组份:树脂固化剂20~70份、相变材料20~70份,其中A组分和B组分的重量比为1:1,A组分和B组分中的所述相变材料为石墨吸附相变储能粉体或 者气凝胶吸附相变储能粉体。
具体地,所述树脂为丙烯酸树脂、聚氨酯树脂、环氧树脂和硅树脂中的任意一种。
具体地,所述石墨吸附相变储能粉体,包括以下重量份的各组份:
相变粉体100份和蠕虫状膨胀石墨5~9份。
具体地,所述蠕虫状膨胀石墨的膨胀率为100-600ml/g,粒度为100-200目,膨胀倍数为200-600倍,堆积密度为0.2~0.5g/cm3。
具体地,所述气凝胶吸附相变储能粉体包括以下重量份的各组份:
相变粉体100份和气凝胶5~50份,所述气凝胶的比表面积为100-300㎡/g,粒径为5-60nm。
具体地,A组分中还包括催化剂0.1-2份,所述催化剂为铂金催化剂、锡化合物催化剂、钛化合物催化剂和胺类化合物中的任意一种。
具体地,所述相变粉体选自烷烃蜡、石蜡、脂肪酸、PE蜡和PP蜡的任意一种或者几种的组合,所述烷烃蜡的烷烃碳原子数介于10-60之间。
所述的双组份储热灌封材料的制备方法,包括以下步骤:
步骤1、制备石墨吸附相变储能粉体或者气凝胶吸附相变储能粉体;
步骤2、混合:分别将A组分和B组份置于行星搅拌机内,速度30转/分钟的条件下,搅拌1小时,将A组分和B组分分别搅拌均匀备用,获得所述的双组份储热灌封材料。
所述石墨吸附相变储能粉体的制备方法包括以下步骤:
步骤1、按配方称取各组份;
步骤2、将相变粉体置于反应釜内加热至全部熔化,然后将蠕虫状膨胀石墨分 批缓慢加热到液态的相变粉体中,变加热边搅拌,蠕虫状膨胀石墨添加完成后,在反应釜内抽真空,真空度介于-0.04至-0.10MPa,抽真空的时间持续5-40min,持续搅拌时间为15-90min;
步骤3、将经过步骤2处理获得的石墨吸附相变储能粉体取出冷却至常温,再使用粉碎机粉碎,过10~100目筛,获得所述的石墨吸附相变储能粉体。
所述气凝胶吸附相变储能粉体的制备方法包括以下步骤:
步骤1、按配方称取各组分;
步骤2、将相变粉体置于反应釜内加热至全部熔化,然后将气凝胶分批缓慢加热到液态的相变粉体中,变加热边搅拌,气凝胶添加完成后,在反应釜内抽真空,真空度介于-0.04至-0.10MPa,抽真空的时间持续5-40min,持续搅拌时间为15-90min;
步骤3、将经过步骤2处理获得的气凝胶吸附相变储能粉体取出冷却至常温,再使用粉碎机粉碎,过10~100目筛,获得所述的气凝胶吸附相变储能粉体。
与现有技术相比,本发明的双组份储热灌封材料具有以下有益效果:本发明的双组份储热灌封材料,性能如下:比热容(J/(g·K))≥2.0;相变焓(J/g)约30~180,即吸热值;相变温度(℃)25~90;比重(g/cc):0.8~1.8表干时间:15min~25min;初步固化时间:1h~2h;完全固化时间≥24h;剪切强度(铝/铝)≥4MPA;相变材料为石墨吸附相变储能粉体或者气凝胶吸附相变储能粉体;
其中,石墨吸附相变储能粉体选用了蠕虫状膨胀石墨作为吸附材料,蠕虫状膨胀石墨由天然鳞片石墨经插层、水洗、干燥、高温膨化得到的一种疏松多孔的蠕虫状物质,膨胀石墨除了具备天然石墨本身的耐冷热、耐腐蚀、自润滑、耐辐射、导电性等优良性能以外,还具有天然石墨所没有的柔软、压缩回弹性、 吸附性、生态环境协调性、生物相容性、耐辐射性等特性,由于疏松多孔,比表面积大,因此对相变粉体的吸附能力非常强,只需要采用较少重量份的蠕虫状膨胀石墨就可以完成对相变材料的吸附,当然,蠕虫状膨胀石墨不能太少,太少无法完全吸附住相变材料;蠕虫状膨胀石墨也不能太多,太多的话一方面增加成本和降低产品的热焓值,同时,降低了石墨吸附相变储能粉体相变焓,降低了产品的储热性能,因此,针对不同的粉体,恰好能够完全吸附完相变粉体的重量比是最优的;
而为了进一步减少蠕虫状膨胀石墨的使用量,在其制备方法的步骤2中,采用了真空吸附的工艺,在真空条件下搅拌,熔化的相变粉体更容易深入地渗透到蠕虫状膨胀石墨蓬松的深孔内,深孔内对相变材料的吸附作用远远大于常规的浸渍或者搅拌,相变材料进入深孔内之后,在高温条件下也难以溢出,具有超常的吸附性能,如此,尽量少的蠕虫状膨胀石墨吸附了更多的相变材料,石墨吸附相变储能粉体的相变焓增加了5%-10%,性能得到了大幅提升,由于减少了蠕虫状膨胀石墨的用量,成本也大幅降低;
气凝胶吸附相变储能粉体选用了气凝胶作为吸附材料,气凝胶导热系数低,保温隔热效果好,理化性质稳定,高温不燃,完全防水,且无毒害,绿色环保,且比表面积大,对相变粉体的吸附能力非常强,只需要采用较少重量份的气凝胶就可以完成对相变材料的吸附,当然,气凝胶不能太少,太少无法完全吸附住相变材料;气凝胶也不能太多,太多的话一方面增加成本和产品的重量,同时,降低了气凝胶吸附相变储能粉体的相变焓,降低了产品的储热性能,因此,针对不同的相变粉体,恰好能够完全吸附完相变粉体的重量比是最优的;
而为了进一步减少气凝胶的使用量,在其制备方法的步骤2中,采用了真空吸附的工艺,在真空条件下搅拌,熔化的相变粉体更容易深入地渗透到气凝胶蓬松的深孔内,深孔内对相变材料的吸附作用远远大于常规的浸渍或者搅拌,相变材料进入深孔内之后,在高温条件下也难以溢出,具有超常的吸附性能,如此,尽量少的气凝胶吸附了更多的相变材料,气凝胶吸附相变储能粉体的密度提高了10-15%,而气凝胶吸附相变储能粉体的相变焓增加了5-15%左右,性能得到了大幅提升,由于减少了气凝胶的用量,成本也大幅降低。
采用上述配方和制备方法的双组份储热灌封材料具备了优异的储热控温性能,而且成本远低于市场上的灌封胶。
下面结合实施例对本发明作进一步的说明,这是本发明的较佳实施例。
实施例1
双组份储热灌封材料,包括以下重量份的各组份:A组分:丙烯酸树脂20份、相变材料20份和辛酸亚锡0.2份;B组份:聚氨酯固化剂20份、相变材料20份,A组分和B组分的重量比为1:1,其中,所述相变材料为石墨吸附相变储能粉体,所述石墨吸附相变储能粉体,包括以下重量份的各组份:石蜡100份和蠕虫状膨胀石墨5份,所述蠕虫状膨胀石墨的膨胀率为500ml/g,粒度为100目,膨胀倍数为400倍,堆积密度为0.2g/cm
3。
实施例2
双组份储热灌封材料,包括以下重量份的各组份:A组分:丙烯酸树脂70份、 相变材料70份和辛酸亚锡0.6份;B组份:聚氨酯固化剂70份、相变材料70份,A组分和B组分的重量比为1:1,其中,所述相变材料为石墨吸附相变储能粉体,其中,石墨吸附相变储能粉体,包括以下重量份的各组份:石蜡100份和蠕虫状膨胀石墨9份,所述蠕虫状膨胀石墨的膨胀率为600ml/g,粒度为200目,膨胀倍数为600倍,堆积密度为0.5g/cm
3。
实施例3
双组份储热灌封材料,包括以下重量份的各组份:A组分:聚氨酯树脂20份、相变材料20份和辛酸亚锡0.2份;B组份:聚氨酯固化剂20份、相变材料20份,A组分和B组分的重量比为1:1,其中,所述相变材料为石墨吸附相变储能粉体,其中,石墨吸附相变储能粉体,包括以下重量份的各组份:脂肪酸100份和蠕虫状膨胀石墨6份,所述蠕虫状膨胀石墨的膨胀率为100ml/g,粒度为150目,膨胀倍数为500倍,堆积密度为0.3g/cm
3。
实施例4
双组份储热灌封材料,包括以下重量份的各组份:A组分:聚氨酯树脂20份、相变材料70份;B组份:聚氨酯固化剂20份、相变材料70份,A组分和B组分的重量比为1:1,其中,所述相变材料为石墨吸附相变储能粉体,其中,所述石墨吸附相变储能粉体,包括以下重量份的各组份:PE蜡100份和蠕虫状膨胀石墨7份,所述蠕虫状膨胀石墨的膨胀率为520ml/g,粒度为120目,膨胀倍数为450倍,堆积密度为0.2g/cm
3。
实施例5
双组份储热灌封材料,包括以下重量份的各组份:A组分:聚氨酯树脂30份、相变材料20份;B组份:聚氨酯固化剂40份、相变材料30份,A组分和B 组分的重量比为1:1,其中,所述相变材料为石墨吸附相变储能粉体,其中,所述石墨吸附相变储能粉体,包括以下重量份的各组份:PP蜡100份和蠕虫状膨胀石墨8份,所述蠕虫状膨胀石墨的膨胀率为550ml/g,粒度为140目,膨胀倍数为460倍,堆积密度为0.2g/cm
3。
实施例6
双组份储热灌封材料,包括以下重量份的各组份:A组分:环氧树脂20份、相变材料20份;B组份:聚硫醇固化剂20份、相变材料20份,A组分和B组分的重量比为1:1,其中,所述相变材料为石墨吸附相变储能粉体,所述石墨吸附相变储能粉体,包括以下重量份的各组份:C40烷烃蜡100份和蠕虫状膨胀石墨8.5份,所述蠕虫状膨胀石墨的膨胀率为570ml/g,粒度为200目,膨胀倍数为600倍,堆积密度为0.3g/cm
3。
实施例7
双组份储热灌封材料,包括以下重量份的各组份:A组分:环氧树脂20份、相变材料70份;B组份:聚硫醇固化剂20份、相变材料70份,A组分和B组分的重量比为1:1,其中,所述相变材料为石墨吸附相变储能粉体,所述石墨吸附相变储能粉体,包括以下重量份的各组份:C30烷烃蜡100份和蠕虫状膨胀石墨8.8份,所述蠕虫状膨胀石墨的膨胀率为500ml/g,粒度为100目,膨胀倍数为400倍,堆积密度为0.4g/cm
3。
实施例8
双组份储热灌封材料,包括以下重量份的各组份:A组分:环氧树脂70份、 相变材料20份;B组份:聚碳酸酯固化剂70份、相变材料20份,A组分和B组分的重量比为1:1,其中,所述相变材料为石墨吸附相变储能粉体,石墨吸附相变储能粉体,包括以下重量份的各组份:C20烷烃蜡100份和蠕虫状膨胀石墨7.3份,所述蠕虫状膨胀石墨的膨胀率为600ml/g,粒度为200目,膨胀倍数为600倍,堆积密度为0.2g/cm
3。
实施例9
双组份储热灌封材料,包括以下重量份的各组份:A组分:环氧树脂30份、相变材料40份;B组份:聚硫醇固化剂30份、相变材料40份,A组分和B组分的重量比为1:1,其中,所述相变材料为石墨吸附相变储能粉体,石墨吸附相变储能粉体,包括以下重量份的各组份:C10烷烃蜡100份和蠕虫状膨胀石墨7.3份,所述蠕虫状膨胀石墨的膨胀率为600ml/g,粒度为200目,膨胀倍数为600倍,堆积密度为0.35g/cm
3。
实施例10
双组份储热灌封材料,包括以下重量份的各组份:A组分:环氧树脂50份、相变材料40份;B组份:聚碳酸酯固化剂50份、相变材料40份,A组分和B组分的重量比为1:1,其中,所述相变材料为石墨吸附相变储能粉体,石墨吸附相变储能粉体,包括以下重量份的各组份:C60烷烃蜡100份和蠕虫状膨胀石墨6.2份,所述蠕虫状膨胀石墨的膨胀率为500ml/g,粒度为150目,膨胀倍数为400倍,堆积密度为0.2 5g/cm
3。
实施例11
双组份储热灌封材料,包括以下重量份的各组份:A组分:硅树脂50份、相 变材料30份,铂金催化剂0.2份;B组份:硅树脂40份,含氢硅油10份、相变材料30份,A组分和B组分的重量比为1:1,所述相变材料为石墨吸附相变储能粉体石墨吸附相变储能粉体,包括以下重量份的各组份:C35烷烃蜡100份和蠕虫状膨胀石墨5.8份,所述蠕虫状膨胀石墨的膨胀率为600ml/g,粒度为200目,膨胀倍数为600倍,堆积密度为0.35g/cm
3。
实施例12
双组份储热灌封材料,包括以下重量份的各组份:A组分:环氧树脂20份、相变材料70份;B组份:聚碳酸酯固化剂20份、相变材料70份,A组分和B组分的重量比为1:1,其中,所述相变材料为气凝胶吸附相变储能粉体,所述气凝胶吸附相变储能粉体,包括以下重量份的各组份:C10烷烃蜡100份和气凝胶50份,所述气凝胶的比表面积300㎡/g,粒径为5nm。
实施例13
双组份储热灌封材料,包括以下重量份的各组份:A组分:环氧树脂30份、相变材料40份;B组份:聚碳酸酯固化剂20份、相变材料50份,A组分和B组分的重量比为1:1,其中,所述相变材料为气凝胶吸附相变储能粉体,所述气凝胶吸附相变储能粉体,包括以下重量份的各组份:C15烷烃蜡100份和气凝胶45份,所述气凝胶的比表面积为280㎡/g,粒径为8nm。
实施例14
双组份储热灌封材料,包括以下重量份的各组份:A组分:环氧树脂46份、相变材料55份;B组份:聚碳酸酯固化剂38份、相变材料25份,A组分和B组分的重量比为1:1,其中,所述相变材料为气凝胶吸附相变储能粉体,所述气 凝胶吸附相变储能粉体,包括以下重量份的各组份:C20烷烃蜡100份和气凝胶40份,所述气凝胶的比表面积为220㎡/g,粒径为15nm。
实施例15
双组份储热灌封材料,包括以下重量份的各组份:A组分:环氧树脂60份、相变材料35份;B组份:聚碳酸酯固化剂40份、相变材料30份,A组分和B组分的重量比为1:1,其中,所述相变材料为气凝胶吸附相变储能粉体,所述气凝胶吸附相变储能粉体,包括以下重量份的各组份:C30烷烃蜡100份和气凝胶45份,所述气凝胶的比表面积为260㎡/g,粒径为12nm。
实施例16
双组份储热灌封材料,包括以下重量份的各组份:A组分:环氧树脂58份、相变材料33份;B组份:聚碳酸酯固化剂42份、相变材料27份,A组分和B组分的重量比为1:1,其中,所述相变材料为气凝胶吸附相变储能粉体,所述气凝胶吸附相变储能粉体,包括以下重量份的各组份:C40烷烃蜡100份和气凝胶48份,所述气凝胶的比表面积为280㎡/g,粒径为8nm。
实施例17
双组份储热灌封材料,包括以下重量份的各组份:A组分:丙烯酸树脂20份、相变材料20份和二丁基二月桂酸锡0.2份;B组份:聚氨酯固化剂20份、相变材料20份,A组分和B组分的重量比为1:1,其中,所述相变材料为气凝胶吸附相变储能粉体,所述气凝胶吸附相变储能粉体,包括以下重量份的各组份:C60烷烃蜡100份和气凝胶5份,所述气凝胶的比表面积为100㎡/g,粒径为 60nm。
实施例18
双组份储热灌封材料,包括以下重量份的各组份:A组分:聚氨酯树脂20份、相变材料70份和二丁基二月桂酸锡0.2份;B组份:聚氨酯固化剂20份、相变材料70份,A组分和B组分的重量比为1:1,其中,所述相变材料为气凝胶吸附相变储能粉体,所述气凝胶吸附相变储能粉体,包括以下重量份的各组份:石蜡100份和气凝胶45份,所述气凝胶的比表面积为280㎡/g,粒径为10nm。
实施例19
双组份储热灌封材料,包括以下重量份的各组份:A组分:硅树脂50份、相变材料30份、铂金催化剂0.2份;B组份:硅树脂40份、含氢硅油,10份、相变材料30份,A组分和B组分的重量比为1:1,其中,所述相变材料为气凝胶吸附相变储能粉体,所述气凝胶吸附相变储能粉体,包括以下重量份的各组份:石蜡100份和气凝胶5份,所述气凝胶的比表面积为300㎡/g,粒径为5nm。
实施例20
双组份储热灌封材料,包括以下重量份的各组份:A组分:硅树脂40份、相变材料25份、铂金催化剂0.2份;B组份:硅树脂40份、含氢硅油20份、相变材料40份,A组分和B组分的重量比为1:1,其中,所述相变材料为气凝胶吸附相变储能粉体,所述气凝胶吸附相变储能粉体,包括以下重量份的各组份:石蜡100份和气凝胶50份,所述气凝胶的比表面积为180㎡/g,粒径为12nm。
实施例21
双组份储热灌封材料,包括以下重量份的各组份:A组分:硅树脂60份、相变材料70份、铂金催化剂2份;B组份:硅树脂36份、含氢硅油24份、相变材料70份,A组分和B组分的重量比为1:1,其中,所述相变材料为气凝胶吸附相变储能粉体,所述气凝胶吸附相变储能粉体,包括以下重量份的各组份:脂肪酸100份和气凝胶10份,所述气凝胶的比表面积为100㎡/g,粒径为60nm。
实施例22
双组份储热灌封材料,包括以下重量份的各组份:A组分:硅树脂50份、相变材料50份,铂金催化剂0.5份;B组份:硅树脂30份、含氢硅油20份、相变材料40份,A组分和B组分的重量比为1:1,其中,所述相变材料为气凝胶吸附相变储能粉体,其所述气凝胶吸附相变储能粉体,气凝胶吸附相变储能粉体,包括以下重量份的各组份:PE蜡100份和气凝胶45份,所述气凝胶的比表面积为260㎡/g,粒径为45nm。
实施例23
双组份储热灌封材料,包括以下重量份的各组份:A组分:硅树脂50份、相变材料45份,铂金催化剂0.2份;B组份:硅树脂22份、含氢硅油18份、相变材料60份,A组分和B组分的重量比为1:1,其中,所述相变材料为气凝胶吸附相变储能粉体,其中,所述气凝胶吸附相变储能粉体,包括以下重量份的各组份:PE蜡100份和气凝胶50份,所述气凝胶的比表面积为230㎡/g,粒径为40nm。
实施例24
双组份储热灌封材料,包括以下重量份的各组份:A组分:硅树脂70份、相变材料30份、铂金催化剂0.3份;B组份:硅树脂42份、含氢硅油28份、相变材料30份,A组分和B组分的重量比为1:1,其中,所述相变材料为气凝胶吸附相变储能粉体,其中,所述气凝胶吸附相变储能粉体,包括以下重量份的各组份:PP蜡100份和气凝胶8份,所述气凝胶的比表面积为130㎡/g,粒径为53nm。
实施例25
实施例1-11的双组份储热灌封材料的制备方法,包括以下步骤:
步骤1、制备石墨吸附相变储能粉体;
步骤2、混合:分别将A组分和B组份置于行星搅拌机内,速度30转/分钟的条件下,搅拌1小时,将A组分和B组分分别搅拌均匀备用,获得所述的双组份储热灌封材料。
其中,上述步骤1中所述石墨吸附相变储能粉体的制备方法包括以下步骤:
步骤1、按配方称取各组份;
步骤2、将相变粉体置于反应釜内加热至全部熔化,然后将蠕虫状膨胀石墨分批缓慢加热到液态的相变粉体中,变加热边搅拌,蠕虫状膨胀石墨添加完成后,在反应釜内抽真空,真空度介于-0.04至-0.10MPa,抽真空的时间持续5-40min,持续搅拌时间为15-90min;
步骤3、将经过步骤2处理获得的石墨吸附相变储能粉体取出冷却至常温,再使用粉碎机粉碎,过10~100目筛,获得所述的石墨吸附相变储能粉体。
实施例26
实施例12-24的双组份储热灌封材料的制备方法,包括以下步骤:
步骤1、制备气凝胶吸附相变储能粉体;
步骤2、混合:分别将A组分和B组份置于行星搅拌机内,速度30转/分钟的条件下,搅拌1小时,将A组分和B组分分别搅拌均匀备用,获得所述的双组份储热灌封材料。
其中,上述步骤1中所述气凝胶吸附相变储能粉体的制备方法包括以下步骤:
步骤1、按配方称取各组分;
步骤2、将相变粉体置于反应釜内加热至全部熔化,然后将气凝胶分批缓慢加热到液态的相变粉体中,变加热边搅拌,气凝胶添加完成后,在反应釜内抽真空,真空度介于-0.04至-0.10MPa,抽真空的时间持续5-40min,持续搅拌时间为15-90min;
步骤3、将经过步骤2处理获得的气凝胶吸附相变储能粉体取出冷却至常温,再使用粉碎机粉碎,过10~100目筛,获得所述的气凝胶吸附相变储能粉体。
实施例1-24所述的双组份储热灌封材料,各项指标测试结果如表1所示,在相同环境温度下测试性能如下(0.1mm):
表1
表2
由表1-表2的数据可知,本发明的双组份储热灌封材料的双组份储热灌封材料,含有适量的相变材料,比热容(J/(g·K))≥2.0;相变焓(J/g)约30~180;相变温度(℃)25~90;比重(g/cc):0.8~1.8,用作灌封材料,具有优异的储热控温功能。
最后应当说明的是,以上实施例仅用以说明本发明的技术方案,而非对本发明保护范围的限制,尽管参照较佳实施例对本发明作了详细地说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的实质和范围。
Claims (10)
- 双组份储热灌封材料,其特征在于,包括以下重量份的各组份:A组分:树脂20~70份、相变材料20~70份;B组份:树脂固化剂20~70份、相变材料20~70份,其中A组分和B组分的重量比为1:1,A组分和B组分中的所述相变材料为石墨吸附相变储能粉体或者气凝胶吸附相变储能粉体。
- 根据权利要求1所述的双组份储热灌封材料,其特征在于:所述树脂为丙烯酸树脂、聚氨酯树脂、环氧树脂和硅树脂中的任意一种。
- 根据权利要求1所述的双组份储热灌封材料,其特征在于:所述石墨吸附相变储能粉体,包括以下重量份的各组份:相变粉体100份和蠕虫状膨胀石墨5~9份。
- 根据权利要求3所述的双组份储热灌封材料,其特征在于:所述蠕虫状膨胀石墨的膨胀率为100-600ml/g,粒度为100-200目,膨胀倍数为200-600倍,堆积密度为0.2~0.5g/cm 3。
- 根据权利要求1所述的双组份储热灌封材料,其特征在于:所述气凝胶吸附相变储能粉体包括以下重量份的各组份:相变粉体100份和气凝胶5~50份,所述气凝胶的比表面积为100-300㎡/g,粒径为5-60nm。
- 根据权利要求2所述的双组份储热灌封材料,其特征在于:A组分中还包括催化剂0.1-2份,所述催化剂为铂金催化剂、锡化合物催化剂、钛化合物催化剂和胺类化合物中的任意一种。
- 根据权利要求3或5所述的双组份储热灌封材料,其特征在于:所述相变 粉体选自烷烃蜡、石蜡、脂肪酸、PE蜡和PP蜡的任意一种或者几种的组合,其中,所述烷烃蜡的烷烃碳原子数介于10-60之间。
- 根据权利要求1-7任一项所述的双组份储热灌封材料的制备方法,其特征在于,包括以下步骤:步骤1、制备石墨吸附相变储能粉体或者气凝胶吸附相变储能粉体;步骤2、混合:分别将A组分和B组份置于行星搅拌机内,速度30转/分钟的条件下,搅拌1小时,将A组分和B组分分别搅拌均匀备用,获得所述的双组份储热灌封材料。
- 根据权利要求8所述的双组份储热灌封材料的制备方法,其特征在于,所述石墨吸附相变储能粉体的制备方法包括以下步骤:步骤1、按配方称取各组份;步骤2、将相变粉体置于反应釜内加热至全部熔化,然后将蠕虫状膨胀石墨分批缓慢加热到液态的相变粉体中,变加热边搅拌,蠕虫状膨胀石墨添加完成后,在反应釜内抽真空,真空度介于-0.04至-0.10MPa,抽真空的时间持续5-40min,持续搅拌时间为15-90min;步骤3、将经过步骤2处理获得的石墨吸附相变储能粉体取出冷却至常温,再使用粉碎机粉碎,过10~100目筛,获得所述的石墨吸附相变储能粉体。
- 根据权利要求8所述的双组份储热灌封材料的制备方法,其特征在于,所述气凝胶吸附相变储能粉体的制备方法包括以下步骤:步骤1、按配方称取各组分;步骤2、将相变粉体置于反应釜内加热至全部熔化,然后将气凝胶分批缓慢加热到液态的相变粉体中,变加热边搅拌,气凝胶添加完成后,在反应釜内抽 真空,真空度介于-0.04至-0.10MPa,抽真空的时间持续5-40min,持续搅拌时间为15-90min;步骤3、将经过步骤2处理获得的气凝胶吸附相变储能粉体取出冷却至常温,再使用粉碎机粉碎,过10~100目筛,获得所述的气凝胶吸附相变储能粉体。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910792826.9A CN110408157A (zh) | 2019-08-26 | 2019-08-26 | 双组份储热灌封材料及其制备方法 |
CN201910792826.9 | 2019-08-26 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021035816A1 true WO2021035816A1 (zh) | 2021-03-04 |
Family
ID=68369066
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2019/105804 WO2021035816A1 (zh) | 2019-08-26 | 2019-09-12 | 双组份储热灌封材料及其制备方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN110408157A (zh) |
WO (1) | WO2021035816A1 (zh) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110746939B (zh) * | 2019-11-07 | 2020-07-31 | 四川大学 | 一种以pva为骨架材料的复合相变材料及其制备方法 |
WO2021097853A1 (zh) * | 2019-11-22 | 2021-05-27 | 张立强 | 单组分常温固化灌封材料 |
CN110922918A (zh) * | 2019-12-17 | 2020-03-27 | 张立强 | 双组份储热灌封材料及其制备方法 |
CN110951445A (zh) * | 2019-12-17 | 2020-04-03 | 张立强 | 单组份储热灌封材料及其制备方法 |
CN111286307A (zh) * | 2020-03-06 | 2020-06-16 | 平湖阿莱德实业有限公司 | 一种可固化型双组份导热储热硅凝胶 |
CN111303821A (zh) * | 2020-03-14 | 2020-06-19 | 广东力王新材料有限公司 | 单组分储热灌封材料 |
CN111234740A (zh) * | 2020-03-14 | 2020-06-05 | 广东力王新材料有限公司 | 双组分储热灌封材料 |
CN111944458A (zh) * | 2020-08-20 | 2020-11-17 | 广东力王新材料有限公司 | 一种结构导热胶及其制备方法 |
CN114149690A (zh) * | 2021-12-29 | 2022-03-08 | 碳元科技股份有限公司 | 一种相变导热结构件及其制备方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20140187676A1 (en) * | 2012-12-28 | 2014-07-03 | Samsung Electro-Mechanics Co., Ltd. | Epoxy resin composition for sealing geomagnetic sensor module, and geomagnetic sensor module sealed with the composition |
CN107974225A (zh) * | 2017-12-07 | 2018-05-01 | 深圳市力邦新材料科技有限公司 | 一种电子贴片胶及其制备方法 |
CN108048043A (zh) * | 2017-12-06 | 2018-05-18 | 中国科学院山西煤炭化学研究所 | 一种具有多层次封装结构的定形相变材料及其制备方法 |
CN109722215A (zh) * | 2017-10-27 | 2019-05-07 | 宁德时代新能源科技股份有限公司 | 一种吸热灌封胶及其电池 |
-
2019
- 2019-08-26 CN CN201910792826.9A patent/CN110408157A/zh not_active Withdrawn
- 2019-09-12 WO PCT/CN2019/105804 patent/WO2021035816A1/zh active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20140187676A1 (en) * | 2012-12-28 | 2014-07-03 | Samsung Electro-Mechanics Co., Ltd. | Epoxy resin composition for sealing geomagnetic sensor module, and geomagnetic sensor module sealed with the composition |
CN109722215A (zh) * | 2017-10-27 | 2019-05-07 | 宁德时代新能源科技股份有限公司 | 一种吸热灌封胶及其电池 |
CN108048043A (zh) * | 2017-12-06 | 2018-05-18 | 中国科学院山西煤炭化学研究所 | 一种具有多层次封装结构的定形相变材料及其制备方法 |
CN107974225A (zh) * | 2017-12-07 | 2018-05-01 | 深圳市力邦新材料科技有限公司 | 一种电子贴片胶及其制备方法 |
Also Published As
Publication number | Publication date |
---|---|
CN110408157A (zh) | 2019-11-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2021035816A1 (zh) | 双组份储热灌封材料及其制备方法 | |
Li et al. | Hierarchical 3D reduced graphene porous-carbon-based PCMs for superior thermal energy storage performance | |
Sun et al. | Photo-triggered hierarchical porous carbon-based composite phase-change materials with superior thermal energy conversion capacity | |
Shen et al. | Biomass-based carbon aerogel/Fe3O4@ PEG phase change composites with satisfactory electromagnetic interference shielding and multi-source driven thermal management in thermal energy storage | |
Lu et al. | Multifunctional paraffin wax/carbon nanotube sponge composites with simultaneous high-efficient thermal management and electromagnetic interference shielding efficiencies for electronic devices | |
WO2021035820A1 (zh) | 石墨吸附相变储能粉体、制备方法及其应用 | |
Xie et al. | Bio-based radish@ PDA/PEG sandwich composite with high efficiency solar thermal energy storage | |
Fashandi et al. | Sodium acetate trihydrate-chitin nanowhisker nanocomposites with enhanced phase change performance for thermal energy storage | |
WO2021035819A1 (zh) | 气凝胶吸附相变储能粉体、制备方法及其应用 | |
CN112094625A (zh) | 一种氮化硼纳米管气凝胶/相变导热复合材料及其制备方法 | |
WO2021035818A1 (zh) | 相变化储热沥青及其制备方法 | |
WO2021109067A1 (zh) | 相变热熔胶及其制备方法 | |
Ding et al. | Novel shape-stabilized phase change materials based on paraffin/EPDM@ graphene with high thermal conductivity and low leakage rate | |
TW200844166A (en) | Composition comprising hydrogen-absorbing alloy and resin | |
CN104559936A (zh) | 一种中温用相变蓄热材料及其制备方法 | |
CN110903666A (zh) | 相变化储热沥青及其制备方法 | |
CN110724489A (zh) | 单组分常温固化灌封材料 | |
CN110922944A (zh) | 一种柔性定形复合相变材料及其制备方法 | |
Gao et al. | Thermal property enhancement of paraffin-wax-based hydroxyl-terminated polybutadiene binder with a novel nanoSiO2-expanded graphite-PW ternary form-stable phase change material | |
Xiang et al. | Preparation and properties of polyurethane rigid foam materials modified by microencapsulated phase change materials | |
Zou et al. | Biomass derived carbon aerogel as an ultrastable skeleton of form-stable phase change materials for efficient thermal energy storage | |
CN107142088A (zh) | 一种新的储热颗粒及其制备方法 | |
Liu et al. | Recent Advances in Polymer‐Containing Multifunctional Phase‐Change Materials | |
CN110922918A (zh) | 双组份储热灌封材料及其制备方法 | |
CN115785911A (zh) | 一种基于气凝胶多孔骨架的导热复合peg相变材料及其制备方法和应用 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19943088 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19943088 Country of ref document: EP Kind code of ref document: A1 |