WO2021109067A1 - 相变热熔胶及其制备方法 - Google Patents

相变热熔胶及其制备方法 Download PDF

Info

Publication number
WO2021109067A1
WO2021109067A1 PCT/CN2019/123281 CN2019123281W WO2021109067A1 WO 2021109067 A1 WO2021109067 A1 WO 2021109067A1 CN 2019123281 W CN2019123281 W CN 2019123281W WO 2021109067 A1 WO2021109067 A1 WO 2021109067A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase change
hot melt
melt adhesive
energy storage
parts
Prior art date
Application number
PCT/CN2019/123281
Other languages
English (en)
French (fr)
Inventor
张立强
Original Assignee
张立强
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 张立强 filed Critical 张立强
Publication of WO2021109067A1 publication Critical patent/WO2021109067A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/02Materials undergoing a change of physical state when used
    • C09K5/06Materials undergoing a change of physical state when used the change of state being from liquid to solid or vice versa
    • C09K5/063Materials absorbing or liberating heat during crystallisation; Heat storage materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/08Materials not undergoing a change of physical state when used
    • C09K5/14Solid materials, e.g. powdery or granular

Definitions

  • the invention relates to the technical field of glue and a preparation method thereof, in particular to a phase change hot melt adhesive and a preparation method thereof.
  • the patent number is 201410030353.6, the Chinese invention patent titled "Hot-melt adhesive composition and its preparation method, hot-melt adhesive thermal conductive sheet and its preparation method", including 6-9 parts by weight of thermoplastic resin; the softening point of the thermoplastic resin Between 85-120°C; 0.40-0.60 parts by weight of tackifier; 73-110 parts by weight of thermally conductive particles. Due to the higher softening point temperature of the thermoplastic resin, the hot melt adhesive composition prepared has a softening point temperature It is also relatively high, so that the thermal conductive sheet made of the hot melt adhesive composition will not flow or deform under normal use temperature. It overcomes the defects that the thermal conductive sheet is easy to flow and deform in the prior art.
  • phase change materials are more and more favored by professional designers as materials with superior characteristics such as high heat transfer efficiency and long service life.
  • Phase-change energy storage technology is a technology that can store energy in the form of high-density phase-change latent heat.
  • phase-change materials are usually added to phase-change hot melt adhesives, but phase-change materials have fluidity when heated. Good, it is easy to overflow, resulting in oil. The usual performance is that a layer of oil appears on the surface of the product, causing defects and failing to meet the customer's quality requirements.
  • One of the objectives of the present invention is to provide a phase change hot melt adhesive to solve the shortcomings of the prior art.
  • Another object of the present invention is to provide a method for preparing the above-mentioned phase change hot melt adhesive.
  • Phase change hot melt adhesive including the following components by weight:
  • phase change material is graphite adsorption phase change energy storage powder or aerogel adsorption phase change energy storage powder.
  • the thermally conductive filler is selected from any one or more of alumina, aluminum nitride, boron nitride, silicon carbide, graphite powder, carbon nanotubes and graphene
  • the hot melt adhesive is EVA hot melt adhesive.
  • the graphite adsorption phase change energy storage powder includes the following components by weight: 100 parts of phase change powder and 5-9 parts of vermicular expanded graphite.
  • the worm-like expanded graphite has an expansion ratio of 100-600 ml/g, a particle size of 100-200 mesh, an expansion ratio of 200-600 times, and a bulk density of 0.2-0.5 g/cm3.
  • the aerogel adsorption phase change energy storage powder includes the following components in parts by weight: 100 parts of phase change powder and 5-50 parts of aerogel.
  • the specific surface area of the aerogel is 100-300 m 2 /g, and the particle size is 5-60 nm.
  • the phase change powder is selected from any one or a combination of alkane wax, paraffin wax, fatty acid, PE wax and PP wax, and the alkane carbon number of the alkane wax is between 10-60.
  • the preparation method of the phase change hot melt adhesive includes the following steps:
  • Step 1 Prepare a phase change material, the phase change material is graphite adsorption phase change energy storage powder or aerogel adsorption phase change energy storage powder;
  • Hot melt adhesive melting heat the hot melt adhesive at a temperature of 80°C to 180°C for 10 minutes to 60 minutes to completely melt the hot melt adhesive, then add the phase change material, and then stir at high speed for 30 minutes to 60 minutes to obtain the finished product.
  • the preparation method of the graphite adsorption phase change energy storage powder includes the following steps:
  • Step 1 Weigh each component according to the formula
  • Step 2 Put the phase change powder in the reaction kettle and heat it until it is completely melted, and then slowly heat the worm-like expanded graphite into the liquid phase change powder in batches, and stir while heating. After the addition of the worm-like expanded graphite is completed, Vacuum in the reactor, the vacuum degree is between -0.04 to -0.10MPa, the vacuuming time lasts for 5-40min, and the continuous stirring time is 15-90min;
  • Step 3 Take out the graphite adsorption phase change energy storage powder obtained by the process of step 2 and cool it to room temperature, then use a pulverizer to pulverize, and pass through a 10-100 mesh sieve to obtain the graphite adsorption phase change energy storage powder.
  • the preparation method of the aerogel adsorption phase change energy storage powder includes the following steps:
  • Step 1 Weigh each component according to the formula
  • Step 2 Put the phase change powder in the reactor and heat it until it is completely melted, and then slowly heat the aerogel into the liquid phase change powder in batches, and stir while changing the heating. After the aerogel is added, the reaction Vacuum in the kettle, the vacuum degree is between -0.04 to -0.10MPa, the vacuuming time lasts for 5-40min, and the continuous stirring time is 15-90min;
  • Step 3 Take out the aerogel adsorption phase change energy storage powder obtained in step 2 and cool it to room temperature, then use a pulverizer to pulverize, and pass through a 10-100 mesh sieve to obtain the aerogel adsorption phase change energy storage Powder.
  • the phase change hot melt adhesive of the present invention has the following beneficial effects: the phase change hot melt adhesive of the present invention has the following performance: specific heat capacity (J/(g ⁇ K)) ⁇ 1.5; phase change enthalpy (J /g) about 30 ⁇ 180, which is the endothermic value; phase change temperature (°C) 5 ⁇ 90; specific gravity (g/cc): 0.8 ⁇ 1.8, thermal conductivity of 0.5 ⁇ 3.0W/mk; phase change material is graphite adsorption Phase change energy storage powder or aerogel adsorption phase change energy storage powder;
  • the graphite adsorption phase change energy storage powder uses vermicular expanded graphite as the adsorption material.
  • the vermicular expanded graphite is a loose and porous vermicular substance obtained by intercalation, washing, drying, and high temperature expansion of natural flake graphite.
  • graphite also has softness, compression resilience, adsorption, ecological environment coordination, and biological characteristics that natural graphite does not have.
  • phase change powder Capacitive, radiation resistance and other characteristics, due to loose and porous, large specific surface area, so the adsorption capacity of phase change powder is very strong, only need to use less weight parts of worm-like expanded graphite to complete the adsorption of phase change materials
  • the worm-like expanded graphite cannot be too little, too little can not completely adsorb the phase change material; the worm-like expanded graphite can not be too much, on the one hand, if it is too much, it will increase the cost and reduce the enthalpy value of the product, and at the same time, it will reduce the graphite.
  • the phase change enthalpy of the adsorption phase change energy storage powder reduces the heat storage performance of the product. Therefore, for different powders, the weight ratio of the phase change powder that can be completely absorbed is the optimal;
  • the heat-conducting powder is added to the composition, so that the heat storage potting material has excellent thermal conductivity;
  • step 2 of its preparation method a vacuum adsorption process is adopted.
  • the molten phase change powder can penetrate into the worm-like expanded graphite more easily.
  • the adsorption effect of the phase change material in the deep hole is far greater than that of conventional immersion or stirring.
  • the phase change material enters the deep hole, it is difficult to overflow under high temperature conditions, and has exceptional adsorption performance.
  • the phase change enthalpy of graphite adsorption phase-change energy storage powder has increased by 5%-10%, and the performance has been greatly improved. Due to the reduction of the worm-like expanded graphite The amount and cost are also greatly reduced;
  • Aerogel is used as the adsorption material for the aerogel adsorption phase change energy storage powder.
  • the aerogel has low thermal conductivity, good thermal insulation effect, stable physical and chemical properties, non-combustible at high temperature, completely waterproof, non-toxic, green and environmentally friendly, and The specific surface area is large, and the adsorption capacity for phase change powders is very strong. Only a small part of aerogel can be used to complete the adsorption of phase change materials.
  • step 2 of its preparation method a vacuum adsorption process is adopted, and the molten phase change powder is more easily penetrated into the fluffy aerogel by stirring under vacuum conditions.
  • the adsorption effect of the phase change material in the deep hole is far greater than that of conventional immersion or stirring. After the phase change material enters the deep hole, it is difficult to overflow under high temperature conditions, and has extraordinary adsorption performance.
  • the phase change hot melt adhesive adopting the above formula and preparation method has excellent heat storage and temperature control performance, and can be widely used for heat conduction and heat dissipation of the battery and heat storage and temperature control, thereby prolonging the service life of the battery.
  • the phase change hot melt adhesive includes the following components by weight: 20 parts of EVA hot melt adhesive and 30 parts of phase change material, wherein the phase change material is graphite adsorption phase change energy storage powder, and the graphite adsorption phase Variable energy storage powder, including the following components by weight: 100 parts of paraffin wax and 5 parts of worm-like expanded graphite, the expansion rate of the worm-like expanded graphite is 500ml/g, the particle size is 100 mesh, and the expansion ratio is 400 times , The bulk density is 0.2g/cm 3 .
  • the phase change hot melt adhesive includes the following components by weight: 50 parts EVA hot melt adhesive and 70 parts phase change material, wherein the phase change material is graphite adsorption phase change energy storage powder, wherein the graphite adsorption phase
  • the variable energy storage powder includes the following components in parts by weight: 100 parts of paraffin wax and 9 parts of worm-like expanded graphite.
  • the worm-like expanded graphite has an expansion rate of 600ml/g, a particle size of 200 mesh, and an expansion ratio of 600 times.
  • the bulk density is 0.5 g/cm 3 .
  • the phase change hot melt adhesive includes the following components in parts by weight: 30 parts EVA hot melt adhesive and 40 parts phase change material, wherein the phase change material is graphite adsorption phase change energy storage powder, wherein graphite adsorption
  • the phase change energy storage powder includes the following components by weight: 100 parts of fatty acid and 6 parts of worm-like expanded graphite, the expansion rate of the worm-like expanded graphite is 100ml/g, the particle size is 150 mesh, and the expansion ratio is 500
  • the bulk density is 0.3g/cm 3 .
  • the phase change hot melt adhesive includes the following components in parts by weight: 34 parts EVA hot melt adhesive and 50 parts phase change material, wherein the phase change material is graphite adsorption phase change energy storage powder, wherein the graphite
  • the adsorption phase change energy storage powder includes the following components by weight: 100 parts of PE wax and 7 parts of worm-like expanded graphite.
  • the expansion rate of the worm-like expanded graphite is 520ml/g, the particle size is 120 mesh, and the expansion ratio It is 450 times and the bulk density is 0.2g/cm 3 .
  • the phase change hot melt adhesive includes the following components in parts by weight: 45 parts of EVA hot melt adhesive and 45 parts of phase change material, wherein the phase change material is graphite adsorption phase change energy storage powder, wherein the graphite
  • the adsorption phase change energy storage powder includes the following components by weight: 100 parts of PP wax and 8 parts of worm-like expanded graphite.
  • the expansion rate of the worm-like expanded graphite is 550ml/g, the particle size is 140 mesh, and the expansion ratio It is 460 times, and the bulk density is 0.2g/cm 3 .
  • the phase change hot melt adhesive includes the following components in parts by weight: 25 parts of EVA hot melt adhesive and 35 parts of phase change material, wherein the phase change material is graphite adsorption phase change energy storage powder, and the graphite adsorption phase Variable energy storage powder, including the following components by weight: 100 parts of C40 alkane wax and 8.5 parts of worm-like expanded graphite.
  • the worm-like expanded graphite has an expansion rate of 570ml/g, a particle size of 200 mesh, and an expansion ratio of 600 times, the bulk density is 0.3g/cm 3 .
  • the phase change hot melt adhesive includes the following components in parts by weight: 30 parts EVA hot melt adhesive, 30 parts carbon nanotubes and 40 parts phase change material, wherein the phase change material is graphite adsorption phase change energy storage powder
  • the graphite adsorption phase change energy storage powder includes the following components by weight: 100 parts of C30 alkane wax and 8.8 parts of worm-like expanded graphite.
  • the worm-like expanded graphite has an expansion rate of 500 ml/g and a particle size of 100 mesh, expansion ratio of 400 times, and bulk density of 0.4g/cm 3 .
  • the phase change hot melt adhesive includes the following components by weight: 35 parts of EVA hot melt adhesive, 20 parts of carbon nanotubes, and 45 parts of phase change materials, wherein the phase change material is graphite adsorption phase change energy storage powder , Graphite adsorption phase change energy storage powder, including the following components by weight: 100 parts of C20 alkane wax and 7.3 parts of worm-like expanded graphite.
  • the worm-like expanded graphite has an expansion rate of 600ml/g and a particle size of 200 mesh. , The expansion ratio is 600 times, and the bulk density is 0.2g/cm 3 .
  • the phase change hot melt adhesive includes the following components in parts by weight: 40 parts EVA hot melt adhesive, 40 parts carbon nanotubes, and 50 parts phase change material, wherein the phase change material is graphite adsorption phase change energy storage powder , Graphite adsorption phase change energy storage powder, including the following components by weight: 100 parts of C10 alkane wax and 7.3 parts of worm-like expanded graphite, the expansion rate of the worm-like expanded graphite is 600ml/g, and the particle size is 200 mesh , The expansion ratio is 600 times, and the bulk density is 0.35g/cm 3 .
  • the phase change hot melt adhesive includes the following components in parts by weight: 45 parts of EVA hot melt adhesive, 35 parts of carbon nanotubes, and 55 parts of phase change materials, wherein the phase change material is graphite adsorption phase change energy storage powder , Graphite adsorption phase change energy storage powder, including the following components by weight: 100 parts of C60 alkane wax and 6.2 parts of worm-like expanded graphite, the expansion rate of the worm-like expanded graphite is 500ml/g, and the particle size is 150 mesh , The expansion ratio is 400 times, and the bulk density is 0.25g/cm 3 .
  • Phase change hot melt adhesive including the following parts by weight: 50 parts of EVA hot melt adhesive, 20 parts of methyl trimethoxysilane, 1.8 parts of dibutyl tin dilaurate, 15 parts of boron nitride and phase change materials 70 parts
  • the phase change material is graphite adsorption phase change energy storage powder graphite adsorption phase change energy storage powder, including the following components by weight: 100 parts of C35 alkane wax and 5.8 parts of worm-like expanded graphite, so The worm-like expanded graphite has an expansion rate of 600 ml/g, a particle size of 200 mesh, an expansion ratio of 600 times, and a bulk density of 0.35 g/cm 3 .
  • the phase change hot melt adhesive includes the following components by weight: 20 parts of EVA hot melt adhesive, 35 parts of magnesium oxide and 30 parts of phase change material, wherein the phase change material is aerogel adsorption phase change energy storage powder
  • the aerogel adsorption phase change energy storage powder includes the following components in parts by weight: 100 parts of C10 alkane wax and 50 parts of aerogel, the specific surface area of the aerogel is 300m 2 /g, and the particle size It is 5nm.
  • the phase change hot melt adhesive includes the following components by weight: 45 parts of EVA hot melt adhesive, 15 parts of silicon carbide and 65 parts of phase change material, wherein the phase change material is aerogel adsorption phase change energy storage powder
  • the aerogel adsorption phase change energy storage powder includes the following components by weight: 100 parts of C15 alkane wax and 45 parts of aerogel, the specific surface area of the aerogel is 280m 2 /g, The diameter is 8nm.
  • the phase change hot melt adhesive includes the following components by weight: 28 parts EVA hot melt adhesive, 45 parts silicon carbide and 35 parts phase change material, wherein the phase change material is aerogel adsorption phase change energy storage powder
  • the aerogel adsorption phase change energy storage powder includes the following components in parts by weight: 100 parts of C20 alkane wax and 40 parts of aerogel, the specific surface area of the aerogel is 220m 2 /g, particles The diameter is 15nm.
  • the phase change hot melt adhesive includes the following components by weight: 33 parts of EVA hot melt adhesive, 25 parts of silicon carbide and 52 parts of phase change material, wherein the phase change material is aerogel adsorption phase change energy storage powder
  • the aerogel adsorption phase change energy storage powder includes the following components in parts by weight: 100 parts of C30 alkane wax and 45 parts of aerogel, the specific surface area of the aerogel is 260m 2 /g, particles The diameter is 12nm.
  • the preparation method of the phase change hot melt adhesive of embodiment 1-11 includes the following steps:
  • Step 1 Prepare a phase change material, the phase change material is graphite adsorption phase change energy storage powder;
  • Step 2 Hot melt adhesive melting: Heat the hot melt adhesive at a temperature of 8°C for 60 minutes to completely melt the hot melt adhesive, then add phase change materials and thermal conductive fillers, and stir at high speed for 60 minutes to obtain the finished product.
  • the preparation method of the graphite adsorption phase change energy storage powder described in the above step 1 includes the following steps:
  • Step 1 Weigh each component according to the formula
  • Step 2 Put the phase change powder in the reaction kettle and heat it until it is completely melted, and then slowly heat the worm-like expanded graphite into the liquid phase change powder in batches, and stir while heating. After the addition of the worm-like expanded graphite is completed, Vacuum in the reactor, the vacuum degree is between -0.04 to -0.10MPa, the vacuuming time lasts for 5-40min, and the continuous stirring time is 15-90min;
  • Step 3 Take out the graphite adsorption phase change energy storage powder obtained by the process of step 2 and cool it to room temperature, then use a pulverizer to pulverize, and pass through a 10-100 mesh sieve to obtain the graphite adsorption phase change energy storage powder.
  • the preparation method of the phase change hot melt adhesive of Examples 12-15 includes the following steps:
  • Step 1 Prepare a phase change material, the phase change material is aerogel adsorption phase change energy storage powder;
  • Hot melt adhesive melting heat the hot melt adhesive at a temperature of 180°C for 10 minutes to completely melt the hot melt adhesive, then add phase change materials and thermal conductive fillers, and stir at high speed for 30 minutes to obtain a finished product.
  • the preparation method of the aerogel adsorption phase change energy storage powder described in step 1 above includes the following steps:
  • Step 1 Weigh each component according to the formula
  • Step 2 Put the phase change powder in the reactor and heat it until it is completely melted, and then slowly heat the aerogel into the liquid phase change powder in batches, and stir while changing the heating. After the aerogel is added, the reaction Vacuum in the kettle, the vacuum degree is between -0.04 to -0.10MPa, the vacuuming time lasts for 5-40min, and the continuous stirring time is 15-90min;
  • Step 3 Take out the aerogel adsorption phase change energy storage powder obtained in step 2 and cool it to room temperature, then use a pulverizer to pulverize, and pass through a 10-100 mesh sieve to obtain the aerogel adsorption phase change energy storage Powder.
  • phase change hot melt adhesive of the present invention contains an appropriate amount of phase change material, the specific heat capacity (J/(g ⁇ K)) ⁇ 1.5; the phase change enthalpy (J/g) is about 30 ⁇ 180, the endothermic value; phase transition temperature (°C) 5 ⁇ 90; specific gravity (g/cc): 0.8 ⁇ 1.8, thermal conductivity of 0.5 ⁇ 3.0W/mk, used as hot melt adhesive, with excellent heat storage control Temperature function and thermal conductivity.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Thermal Sciences (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Adhesives Or Adhesive Processes (AREA)

Abstract

相变热熔胶,包括以下重量份的各组份:EVA热熔胶20~50份、相变材料10~70份;所述相变材料为石墨吸附相变储能粉体或者气凝胶吸附相变储能粉体;获得的相变热熔胶的性能如下:比热容(J/(g·K))≥1.5;相变焓(J/g)约30~180,即吸热值;相变温度(℃)5~90;比重(g/cc):0.8~1.8;导热系数为0.5~3.0W;通过相变材料释放相变潜热,采用上述配方的相变热熔胶具备了优异的储热控温性能。

Description

相变热熔胶及其制备方法 技术领域
本发明涉及胶水及其制备方法技术领域,尤其涉及相变热熔胶及其制备方法。
背景技术
专利号为201410030353.6,名称为“热熔胶组合物及其制备方法、热熔胶导热片及其制备方法”的中国发明专利,包括6-9重量份的热塑性树脂;所述热塑性树脂的软化点在85-120℃之间;0.40-0.60重量份的增粘剂;73-110重量份的导热粒子,由于热塑性树脂的软化点温度较高,使得制备出的热熔胶组合物的软化点温度也较高,进而使得由该热熔胶组合物制成的导热片在正常使用温度下不会发生流淌、变型。克服了现有技术中导热片容易流淌、变型的缺陷。
在导热界面材料的种类中,相变材料作为一种传热效率高、使用寿命长等优越特性的材料越来越受到专业设计人员的青睐。相变储能技术是一种能够将能量以相变潜热的形式高密度储存的技术,目前通常在相变热熔胶内加入相变材料,但是相变材料而在受热的情况下,流动性好,容易溢出,导致出油,通常的表现是在产品的表面出现一层油,造成不良,无法满足客户对品质的要求。
发明内容
本发明的目的之一是提供一种相变热熔胶,以解决现有技术的不足。
本发明的另一目的在于提供上述相变热熔胶的制备方法。
为实现上述目的,本发明采用如下的技术方案:
相变热熔胶,包括以下重量份的各组份:
热熔胶10~50份、相变材料10~70份;所述相变材料为石墨吸附相变储能粉体或者气凝胶吸附相变储能粉体。
具体地,还包括导热填料10~70份,所述导热填料选自氧化铝、氮化铝、氮化硼、碳化硅、石墨粉、碳纳米管和石墨烯中的任意一种或者几种的混合物,所述热熔胶为EVA热熔胶。
具体地,所述石墨吸附相变储能粉体,包括以下重量份的各组份:相变粉体100份和蠕虫状膨胀石墨5~9份。
具体地,所述蠕虫状膨胀石墨的膨胀率为100-600ml/g,粒度为100-200目,膨胀倍数为200-600倍,堆积密度为0.2~0.5g/cm3。
具体地,所述气凝胶吸附相变储能粉体包括以下重量份的各组份:相变粉体100份和气凝胶5~50份。
具体地,所述气凝胶的比表面积为100-300m 2/g,粒径为5-60nm。
具体地,所述相变粉体选自烷烃蜡、石蜡、脂肪酸、PE蜡和PP蜡的任意一种或者几种的组合,所述烷烃蜡的烷烃碳原子数介于10-60之间。
所述的相变热熔胶的制备方法,包括以下步骤:
步骤1、制备相变材料,所述相变材料为石墨吸附相变储能粉体或者气凝胶吸附相变储能粉体;
步骤2、热熔胶熔融:将热熔胶在温度80℃~180℃下,加热10min~60min,使热熔胶完全熔融,再加入相变材料,再高速搅拌30min~60min,获得成品。
所述石墨吸附相变储能粉体的制备方法,包括以下步骤:
步骤1、按配方称取各组份;
步骤2、将相变粉体置于反应釜内加热至全部熔化,然后将蠕虫状膨胀石墨分批缓慢加热到液态的相变粉体中,变加热边搅拌,蠕虫状膨胀石墨添加完成后, 在反应釜内抽真空,真空度介于-0.04至-0.10MPa,抽真空的时间持续5-40min,持续搅拌时间为15-90min;
步骤3、将经过步骤2处理获得的石墨吸附相变储能粉体取出冷却至常温,再使用粉碎机粉碎,过10~100目筛,获得所述的石墨吸附相变储能粉体。
所述气凝胶吸附相变储能粉体的制备方法包括以下步骤:
步骤1、按配方称取各组分;
步骤2、将相变粉体置于反应釜内加热至全部熔化,然后将气凝胶分批缓慢加热到液态的相变粉体中,变加热边搅拌,气凝胶添加完成后,在反应釜内抽真空,真空度介于-0.04至-0.10MPa,抽真空的时间持续5-40min,持续搅拌时间为15-90min;
步骤3、将经过步骤2处理获得的气凝胶吸附相变储能粉体取出冷却至常温,再使用粉碎机粉碎,过10~100目筛,获得所述的气凝胶吸附相变储能粉体。与现有技术相比,本发明的相变热熔胶具有以下有益效果:本发明的相变热熔胶,性能如下:比热容(J/(g·K))≥1.5;相变焓(J/g)约30~180,即吸热值;相变温度(℃)5~90;比重(g/cc):0.8~1.8,导热系数为0.5~3.0W/mk;相变材料为石墨吸附相变储能粉体或者气凝胶吸附相变储能粉体;
其中,石墨吸附相变储能粉体选用了蠕虫状膨胀石墨作为吸附材料,蠕虫状膨胀石墨由天然鳞片石墨经插层、水洗、干燥、高温膨化得到的一种疏松多孔的蠕虫状物质,膨胀石墨除了具备天然石墨本身的耐冷热、耐腐蚀、自润滑、耐辐射、导电性等优良性能以外,还具有天然石墨所没有的柔软、压缩回弹性、吸附性、生态环境协调性、生物相容性、耐辐射性等特性,由于疏松多孔,比表面积大,因此对相变粉体的吸附能力非常强,只需要采用较少重量份的蠕虫 状膨胀石墨就可以完成对相变材料的吸附,当然,蠕虫状膨胀石墨不能太少,太少无法完全吸附住相变材料;蠕虫状膨胀石墨也不能太多,太多的话一方面增加成本和降低产品的热焓值,同时,降低了石墨吸附相变储能粉体相变焓,降低了产品的储热性能,因此,针对不同的粉体,恰好能够完全吸附完相变粉体的重量比是最优的;
组份中加入了导热粉体,使得储热灌封材料具备了优异的导热性能;
而为了进一步减少蠕虫状膨胀石墨的使用量,在其制备方法的步骤2中,采用了真空吸附的工艺,在真空条件下搅拌,熔化的相变粉体更容易深入地渗透到蠕虫状膨胀石墨蓬松的深孔内,深孔内对相变材料的吸附作用远远大于常规的浸渍或者搅拌,相变材料进入深孔内之后,在高温条件下也难以溢出,具有超常的吸附性能,如此,尽量少的蠕虫状膨胀石墨吸附了更多的相变材料,石墨吸附相变储能粉体的相变焓增加了5%-10%,性能得到了大幅提升,由于减少了蠕虫状膨胀石墨的用量,成本也大幅降低;
气凝胶吸附相变储能粉体选用了气凝胶作为吸附材料,气凝胶导热系数低,保温隔热效果好,理化性质稳定,高温不燃,完全防水,且无毒害,绿色环保,且比表面积大,对相变粉体的吸附能力非常强,只需要采用较少重量份的气凝胶就可以完成对相变材料的吸附,当然,气凝胶不能太少,太少无法完全吸附住相变材料;气凝胶也不能太多,太多的话一方面增加成本和产品的重量,同时,降低了气凝胶吸附相变储能粉体的相变焓,降低了产品的储热性能,因此,针对不同的相变粉体,恰好能够完全吸附完相变粉体的重量比是最优的;
而为了进一步减少气凝胶的使用量,在其制备方法的步骤2中,采用了真 空吸附的工艺,在真空条件下搅拌,熔化的相变粉体更容易深入地渗透到气凝胶蓬松的深孔内,深孔内对相变材料的吸附作用远远大于常规的浸渍或者搅拌,相变材料进入深孔内之后,在高温条件下也难以溢出,具有超常的吸附性能,如此,尽量少的气凝胶吸附了更多的相变材料,气凝胶吸附相变储能粉体的密度提高了10-15%,而气凝胶吸附相变储能粉体的相变焓增加了5-15%左右,性能得到了大幅提升,由于减少了气凝胶的用量,成本也大幅降低。
采用上述配方和制备方法的相变热熔胶具备了优异的储热控温性能,可以广泛用于电池的导热散热和储热控温,延长电池的使用寿命。
具体实施方式
下面结合实施例对本发明作进一步的说明,这是本发明的较佳实施例。
实施例1
相变热熔胶,包括以下重量份的各组份:EVA热熔胶20份、相变材料30份,其中,所述相变材料为石墨吸附相变储能粉体,所述石墨吸附相变储能粉体,包括以下重量份的各组份:石蜡100份和蠕虫状膨胀石墨5份,所述蠕虫状膨胀石墨的膨胀率为500ml/g,粒度为100目,膨胀倍数为400倍,堆积密度为0.2g/cm 3
实施例2
相变热熔胶,包括以下重量份的各组份:EVA热熔胶50份和相变材料70份,其中,所述相变材料为石墨吸附相变储能粉体,其中,石墨吸附相变储能粉体,包括以下重量份的各组份:石蜡100份和蠕虫状膨胀石墨9份,所述蠕虫状膨胀石墨的膨胀率为600ml/g,粒度为200目,膨胀倍数为600倍,堆积密度为0.5 g/cm 3
实施例3
相变热熔胶,包括以下重量份的各组份:EVA热熔胶30份份和相变材料40份,其中,所述相变材料为石墨吸附相变储能粉体,其中,石墨吸附相变储能粉体,包括以下重量份的各组份:脂肪酸100份和蠕虫状膨胀石墨6份,所述蠕虫状膨胀石墨的膨胀率为100ml/g,粒度为150目,膨胀倍数为500倍,堆积密度为0.3g/cm 3
实施例4
相变热熔胶,包括以下重量份的各组份:EVA热熔胶34份和相变材料50份,其中,所述相变材料为石墨吸附相变储能粉体,其中,所述石墨吸附相变储能粉体,包括以下重量份的各组份:PE蜡100份和蠕虫状膨胀石墨7份,所述蠕虫状膨胀石墨的膨胀率为520ml/g,粒度为120目,膨胀倍数为450倍,堆积密度为0.2g/cm 3
实施例5
相变热熔胶,包括以下重量份的各组份:EVA热熔胶45份和相变材料45份,其中,所述相变材料为石墨吸附相变储能粉体,其中,所述石墨吸附相变储能粉体,包括以下重量份的各组份:PP蜡100份和蠕虫状膨胀石墨8份,所述蠕虫状膨胀石墨的膨胀率为550ml/g,粒度为140目,膨胀倍数为460倍,堆积密度为0.2g/cm 3
实施例6
相变热熔胶,包括以下重量份的各组份:EVA热熔胶25份和相变材料35份,其中,所述相变材料为石墨吸附相变储能粉体,所述石墨吸附相变储能粉体,包 括以下重量份的各组份:C40烷烃蜡100份和蠕虫状膨胀石墨8.5份,所述蠕虫状膨胀石墨的膨胀率为570ml/g,粒度为200目,膨胀倍数为600倍,堆积密度为0.3g/cm 3
实施例7
相变热熔胶,包括以下重量份的各组份:EVA热熔胶30份、碳纳米管30份和相变材料40份,其中,所述相变材料为石墨吸附相变储能粉体,所述石墨吸附相变储能粉体,包括以下重量份的各组份:C30烷烃蜡100份和蠕虫状膨胀石墨8.8份,所述蠕虫状膨胀石墨的膨胀率为500ml/g,粒度为100目,膨胀倍数为400倍,堆积密度为0.4g/cm 3
实施例8
相变热熔胶,包括以下重量份的各组份:EVA热熔胶35份、碳纳米管20份和相变材料45份,其中,所述相变材料为石墨吸附相变储能粉体,石墨吸附相变储能粉体,包括以下重量份的各组份:C20烷烃蜡100份和蠕虫状膨胀石墨7.3份,所述蠕虫状膨胀石墨的膨胀率为600ml/g,粒度为200目,膨胀倍数为600倍,堆积密度为0.2g/cm 3
实施例9
相变热熔胶,包括以下重量份的各组份:EVA热熔胶40份、碳纳米管40份和相变材料50份,其中,所述相变材料为石墨吸附相变储能粉体,石墨吸附相变储能粉体,包括以下重量份的各组份:C10烷烃蜡100份和蠕虫状膨胀石墨7.3份,所述蠕虫状膨胀石墨的膨胀率为600ml/g,粒度为200目,膨胀倍数为600 倍,堆积密度为0.35g/cm 3
实施例10
相变热熔胶,包括以下重量份的各组份:EVA热熔胶45份、碳纳米管35份和相变材料55份,其中,所述相变材料为石墨吸附相变储能粉体,石墨吸附相变储能粉体,包括以下重量份的各组份:C60烷烃蜡100份和蠕虫状膨胀石墨6.2份,所述蠕虫状膨胀石墨的膨胀率为500ml/g,粒度为150目,膨胀倍数为400倍,堆积密度为0.25g/cm 3
实施例11
相变热熔胶,包括以下重量份的各组份:EVA热熔胶50份、甲基三甲氧基硅烷20份、二丁基二月桂酸锡1.8份、氮化硼15份和相变材料70份,,所述相变材料为石墨吸附相变储能粉体石墨吸附相变储能粉体,包括以下重量份的各组份:C35烷烃蜡100份和蠕虫状膨胀石墨5.8份,所述蠕虫状膨胀石墨的膨胀率为600ml/g,粒度为200目,膨胀倍数为600倍,堆积密度为0.35g/cm 3
实施例12
相变热熔胶,包括以下重量份的各组份:EVA热熔胶20份、氧化镁35份和相变材料30份,其中,所述相变材料为气凝胶吸附相变储能粉体,所述气凝胶吸附相变储能粉体,包括以下重量份的各组份:C10烷烃蜡100份和气凝胶50份,所述气凝胶的比表面积300m 2/g,粒径为5nm。
实施例13
相变热熔胶,包括以下重量份的各组份:EVA热熔胶45份、碳化硅15份和相变材料65份,其中,所述相变材料为气凝胶吸附相变储能粉体,所述气凝胶吸 附相变储能粉体,包括以下重量份的各组份:C15烷烃蜡100份和气凝胶45份,所述气凝胶的比表面积为280m 2/g,粒径为8nm。
实施例14
相变热熔胶,包括以下重量份的各组份:EVA热熔胶28份、碳化硅45份和相变材料35份,其中,所述相变材料为气凝胶吸附相变储能粉体,所述气凝胶吸附相变储能粉体,包括以下重量份的各组份:C20烷烃蜡100份和气凝胶40份,所述气凝胶的比表面积为220m 2/g,粒径为15nm。
实施例15
相变热熔胶,包括以下重量份的各组份:EVA热熔胶33份、碳化硅25份和相变材料52份,其中,所述相变材料为气凝胶吸附相变储能粉体,所述气凝胶吸附相变储能粉体,包括以下重量份的各组份:C30烷烃蜡100份和气凝胶45份,所述气凝胶的比表面积为260m 2/g,粒径为12nm。
实施例16
实施例1-11的相变热熔胶的制备方法,包括以下步骤:
步骤1、制备相变材料,所述相变材料为石墨吸附相变储能粉体;
步骤2、热熔胶熔融:将热熔胶在温度8℃下,加热60min,使热熔胶完全熔融,再加入相变材料和导热填料,再高速搅60min,获得成品。
其中,上述步骤1中所述石墨吸附相变储能粉体的制备方法包括以下步骤:
步骤1、按配方称取各组份;
步骤2、将相变粉体置于反应釜内加热至全部熔化,然后将蠕虫状膨胀石墨分 批缓慢加热到液态的相变粉体中,变加热边搅拌,蠕虫状膨胀石墨添加完成后,在反应釜内抽真空,真空度介于-0.04至-0.10MPa,抽真空的时间持续5-40min,持续搅拌时间为15-90min;
步骤3、将经过步骤2处理获得的石墨吸附相变储能粉体取出冷却至常温,再使用粉碎机粉碎,过10~100目筛,获得所述的石墨吸附相变储能粉体。
实施例17
实施例12-15的相变热熔胶的制备方法,包括以下步骤:
步骤1、制备相变材料,所述相变材料为气凝胶吸附相变储能粉体;
步骤2、热熔胶熔融:将热熔胶在温度180℃下,加热10min,使热熔胶完全熔融,再加入相变材料和导热填料,再高速搅拌30min,获得成品。
其中,上述步骤1中所述气凝胶吸附相变储能粉体的制备方法包括以下步骤:
步骤1、按配方称取各组分;
步骤2、将相变粉体置于反应釜内加热至全部熔化,然后将气凝胶分批缓慢加热到液态的相变粉体中,变加热边搅拌,气凝胶添加完成后,在反应釜内抽真空,真空度介于-0.04至-0.10MPa,抽真空的时间持续5-40min,持续搅拌时间为15-90min;
步骤3、将经过步骤2处理获得的气凝胶吸附相变储能粉体取出冷却至常温,再使用粉碎机粉碎,过10~100目筛,获得所述的气凝胶吸附相变储能粉体。
实施例1-15所述的相变热熔胶,各项指标测试结果如表1所示,在相同环境温度下测试性能如下(0.1mm):
Figure PCTCN2019123281-appb-000001
表1
Figure PCTCN2019123281-appb-000002
表2
由表1-表2的数据可知,本发明的相变热熔胶,含有适量的相变材料,比热容(J/(g·K))≥1.5;相变焓(J/g)约30~180,即吸热值;相变温度(℃)5~90;比重(g/cc):0.8~1.8,导热系数为0.5~3.0W/mk,用作热熔胶,具有优异的储热控温功能和导热性能。
最后应当说明的是,以上实施例仅用以说明本发明的技术方案,而非对本发明保护范围的限制,尽管参照较佳实施例对本发明作了详细地说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的实质和范围。

Claims (10)

  1. 相变热熔胶,其特征在于,包括以下重量份的各组份:
    热熔胶10~50份、相变材料10~70份、;所述相变材料为石墨吸附相变储能粉体或者气凝胶吸附相变储能粉体。
  2. 根据权利要求1所述的相变热熔胶,其特征在于:还包括导热填料10~70份,所述导热填料选自氧化铝、氮化铝、氮化硼、碳化硅、石墨粉、碳纳米管和石墨烯中的任意一种或者几种的混合物,所述热熔胶为EVA热熔胶。
  3. 根据权利要求1所述的相变热熔胶,其特征在于:所述石墨吸附相变储能粉体,包括以下重量份的各组份:
    相变粉体100份和蠕虫状膨胀石墨5~9份。
  4. 根据权利要求3所述的相变热熔胶,其特征在于:所述蠕虫状膨胀石墨的膨胀率为100-600ml/g,粒度为100-200目,膨胀倍数为200-600倍,堆积密度为0.2~0.5g/cm 3
  5. 根据权利要求1所述的相变热熔胶,其特征在于:所述气凝胶吸附相变储能粉体包括以下重量份的各组份:
    相变粉体100份和气凝胶5~50份。
  6. 根据权利要求5所述的相变热熔胶,其特征在于:
    所述气凝胶的比表面积为100-300㎡/g,粒径为5-60nm。
  7. 根据权利要求3或6所述的相变热熔胶,其特征在于:所述相变粉体选自烷烃蜡、石蜡、脂肪酸、PE蜡和PP蜡的任意一种或者几种的组合,其中,所述烷烃蜡的烷烃碳原子数介于10-60之间。
  8. 根据权利要求1-7任一项所述的相变热熔胶的制备方法,其特征在于,包括以下步骤:
    步骤1、制备相变材料,所述相变材料为石墨吸附相变储能粉体或者气凝胶吸附相变储能粉体;
    步骤2、热熔胶熔融:将热熔胶在温度80℃~180℃下,加热10min~60min,使热熔胶完全熔融,再加入相变材料,再高速搅拌30min~60min,获得成品。
  9. 根据权利要求8所述的相变热熔胶的制备方法,其特征在于,所述石墨吸附相变储能粉体的制备方法包括以下步骤:
    步骤1、按配方称取各组份;
    步骤2、将相变粉体置于反应釜内加热至全部熔化,然后将蠕虫状膨胀石墨分批缓慢加热到液态的相变粉体中,变加热边搅拌,蠕虫状膨胀石墨添加完成后,在反应釜内抽真空,真空度介于-0.04至-0.10MPa,抽真空的时间持续5-40min,持续搅拌时间为15-90min;
    步骤3、将经过步骤2处理获得的石墨吸附相变储能粉体取出冷却至常温,再使用粉碎机粉碎,过10~100目筛,获得所述的石墨吸附相变储能粉体。
  10. 根据权利要求8所述的相变热熔胶的制备方法,其特征在于,所述气凝胶吸附相变储能粉体的制备方法包括以下步骤:
    步骤1、按配方称取各组分;
    步骤2、将相变粉体置于反应釜内加热至全部熔化,然后将气凝胶分批缓慢加热到液态的相变粉体中,变加热边搅拌,气凝胶添加完成后,在反应釜内抽真空,真空度介于-0.04至-0.10MPa,抽真空的时间持续5-40min,持续搅拌时间为15-90min;
    步骤3、将经过步骤2处理获得的气凝胶吸附相变储能粉体取出冷却至常温,再使用粉碎机粉碎,过10~100目筛,获得所述的气凝胶吸附相变储能粉体。
PCT/CN2019/123281 2019-12-03 2019-12-05 相变热熔胶及其制备方法 WO2021109067A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911222172.2 2019-12-03
CN201911222172.2A CN110872489A (zh) 2019-12-03 2019-12-03 相变热熔胶及其制备方法

Publications (1)

Publication Number Publication Date
WO2021109067A1 true WO2021109067A1 (zh) 2021-06-10

Family

ID=69717494

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/123281 WO2021109067A1 (zh) 2019-12-03 2019-12-05 相变热熔胶及其制备方法

Country Status (2)

Country Link
CN (1) CN110872489A (zh)
WO (1) WO2021109067A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112877036B (zh) * 2021-01-26 2022-11-04 深圳市大通创新科技有限公司 一种相变材料及其制备方法与应用
CN113511837B (zh) * 2021-07-27 2022-04-01 广州恩沣新材料科技有限公司 一种气凝胶eva复合隔热材料及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5330797A (en) * 1976-09-02 1978-03-23 Toshiba Corp Conductive wax
WO2018005949A1 (en) * 2016-07-01 2018-01-04 H.B. Fuller Company Propylene polymer-based hot melt adhesive composition exhibiting fast set time and articles including the same
CN107538842A (zh) * 2017-05-19 2018-01-05 上海叹止新材料科技有限公司 一种储能散热复合胶片及其制备方法
CN109486473A (zh) * 2019-01-23 2019-03-19 深圳航美新材料科技有限公司 一种多功能相变复合材料及其制备方法
CN110205100A (zh) * 2019-05-16 2019-09-06 同济大学 氧化石墨烯/膨胀石墨气凝胶相变复合材料及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5330797A (en) * 1976-09-02 1978-03-23 Toshiba Corp Conductive wax
WO2018005949A1 (en) * 2016-07-01 2018-01-04 H.B. Fuller Company Propylene polymer-based hot melt adhesive composition exhibiting fast set time and articles including the same
CN107538842A (zh) * 2017-05-19 2018-01-05 上海叹止新材料科技有限公司 一种储能散热复合胶片及其制备方法
CN109486473A (zh) * 2019-01-23 2019-03-19 深圳航美新材料科技有限公司 一种多功能相变复合材料及其制备方法
CN110205100A (zh) * 2019-05-16 2019-09-06 同济大学 氧化石墨烯/膨胀石墨气凝胶相变复合材料及其制备方法

Also Published As

Publication number Publication date
CN110872489A (zh) 2020-03-10

Similar Documents

Publication Publication Date Title
WO2021035816A1 (zh) 双组份储热灌封材料及其制备方法
Weng et al. Safety issue on PCM-based battery thermal management: material thermal stability and system hazard mitigation
Li et al. Hierarchical 3D reduced graphene porous-carbon-based PCMs for superior thermal energy storage performance
Fashandi et al. Sodium acetate trihydrate-chitin nanowhisker nanocomposites with enhanced phase change performance for thermal energy storage
Shen et al. Biomass-based carbon aerogel/Fe3O4@ PEG phase change composites with satisfactory electromagnetic interference shielding and multi-source driven thermal management in thermal energy storage
Mehrali et al. Effect of carbon nanospheres on shape stabilization and thermal behavior of phase change materials for thermal energy storage
Liu et al. Highly efficient thermal energy storage using a hybrid hypercrosslinked polymer
WO2020253094A1 (zh) 一种氮化硼纳米管气凝胶/相变导热复合材料及其制备方法
Liu et al. Bamboo derived SiC ceramics-phase change composites for efficient, rapid, and compact solar thermal energy storage
CN107216858B (zh) 一种导热相变储能界面组合物制备方法
CN105623619B (zh) 一种柔性导热/储热双功能复合材料及其制备方法与用途
WO2021035818A1 (zh) 相变化储热沥青及其制备方法
CN109181649A (zh) 用于太阳能热水器的高导热光-热转化复合相变储热材料及其制备方法
WO2021109067A1 (zh) 相变热熔胶及其制备方法
Cui et al. Enhancing the heat transfer and photothermal conversion of salt hydrate phase change material for efficient solar energy utilization
WO2021035820A1 (zh) 石墨吸附相变储能粉体、制备方法及其应用
WO2021035819A1 (zh) 气凝胶吸附相变储能粉体、制备方法及其应用
CN104559936A (zh) 一种中温用相变蓄热材料及其制备方法
CN113088030B (zh) 一种具有交联网络结构的柔性相变复合材料及其制备方法
CN110903666A (zh) 相变化储热沥青及其制备方法
CN109722215A (zh) 一种吸热灌封胶及其电池
Liang et al. Sponge gourd-bioinspired phase change material with high thermal conductivity and excellent shape-stability
CN111978679A (zh) 一种结晶水合盐相变材料及其制备方法
Zhang et al. Enhanced Thermal Energy Storage Performance of Polyethylene Glycol by Using Interfacial Interaction of Copper‐Based Metal Oxide
Alvar et al. Influence of graphite nano powder on ethylene propylene diene monomer/paraffin wax phase change material composite: Shape stability and thermal applications

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19955371

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19955371

Country of ref document: EP

Kind code of ref document: A1