WO2021035818A1 - 相变化储热沥青及其制备方法 - Google Patents

相变化储热沥青及其制备方法 Download PDF

Info

Publication number
WO2021035818A1
WO2021035818A1 PCT/CN2019/105806 CN2019105806W WO2021035818A1 WO 2021035818 A1 WO2021035818 A1 WO 2021035818A1 CN 2019105806 W CN2019105806 W CN 2019105806W WO 2021035818 A1 WO2021035818 A1 WO 2021035818A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase change
energy storage
parts
aerogel
powder
Prior art date
Application number
PCT/CN2019/105806
Other languages
English (en)
French (fr)
Inventor
张立强
张秋兵
杨小玉
Original Assignee
张立强
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 张立强 filed Critical 张立强
Publication of WO2021035818A1 publication Critical patent/WO2021035818A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/09Carboxylic acids; Metal salts thereof; Anhydrides thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/22Expanded, porous or hollow particles
    • C08K7/24Expanded, porous or hollow particles inorganic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/12Adsorbed ingredients, e.g. ingredients on carriers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/06Polyethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L95/00Compositions of bituminous materials, e.g. asphalt, tar, pitch
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/02Materials undergoing a change of physical state when used
    • C09K5/06Materials undergoing a change of physical state when used the change of state being from liquid to solid or vice versa
    • C09K5/063Materials absorbing or liberating heat during crystallisation; Heat storage materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/20Applications use in electrical or conductive gadgets

Definitions

  • the invention relates to the technical field of asphalt and a preparation method thereof, in particular to a phase change thermal storage asphalt and a preparation method thereof.
  • the electronic potting glue is liquid before curing and has fluidity.
  • the viscosity of the glue varies according to the material, performance, and production process of the product.
  • the potting glue can only realize its use value after it is completely cured. After curing, it can play the role of waterproof, moisture-proof, dust-proof, insulation, heat conduction, confidentiality, corrosion resistance, temperature resistance and shock resistance.
  • the existing electronic potting glue does not have the function of heat storage and temperature control, and the cost is high.
  • Phase change energy storage technology is a high-density storage technology that can store energy in the form of phase change latent heat. Asphalt has a wide source and low cost. By combining phase change energy storage technology with asphalt, a phase change storage technology has been developed. Hot asphalt can achieve the function of electronic potting glue, and has a unique heat storage and temperature control function, and the cost is low.
  • One of the objectives of the present invention is to provide a phase change heat storage asphalt to solve the shortcomings of the prior art.
  • Another object of the present invention is to provide a method for preparing the above-mentioned phase change heat storage asphalt.
  • Phase change thermal storage asphalt includes the following components by weight:
  • the phase change material is graphite adsorption phase change energy storage powder or aerogel adsorption phase change energy storage powder.
  • the graphite adsorption phase change energy storage powder includes the following components by weight:
  • phase change powder 100 parts of phase change powder and 5-9 parts of vermicular expanded graphite.
  • the worm-like expanded graphite has an expansion ratio of 100-600 ml/g, a particle size of 100-200 mesh, an expansion ratio of 200-600 times, and a bulk density of 0.2-0.5 g/cm3.
  • the aerogel adsorption phase change energy storage powder includes the following components by weight:
  • phase change powder 100 parts of phase change powder and 5-50 parts of aerogel.
  • the specific surface area of the aerogel is 100-300 square meters/g, and the particle size is 5-60 nm.
  • the phase change powder is selected from any one or a combination of alkane wax, paraffin wax, fatty acid, PE wax, and PP wax.
  • the alkane carbon number of the alkane wax is between 10-60.
  • the method for preparing phase change thermal storage asphalt includes the following steps:
  • Step 1 Preparation of graphite adsorption phase change energy storage powder or aerogel adsorption phase change energy storage powder;
  • Step 2 Mixing and banburying: mix asphalt and graphite adsorption phase change energy storage powder or aerogel adsorption phase change energy storage powder, then high-speed mixer for 3-5 min;
  • Step 3 Pelletizing by extruder to obtain phase change heat storage asphalt.
  • the preparation method of the graphite adsorption phase change energy storage powder includes the following steps:
  • Step 1 Weigh each component according to the formula
  • Step 2 Put the phase change powder in the reaction kettle and heat it until it is completely melted, and then slowly heat the worm-like expanded graphite into the liquid phase change powder in batches, and stir while heating. After the addition of the worm-like expanded graphite is completed, Vacuum in the reactor, the vacuum degree is between -0.04 to -0.10MPa, the vacuum time lasts for 5-40min, and the continuous stirring time is 15-90min;
  • Step 3 Take out the graphite adsorption phase change energy storage powder obtained by the process of step 2 and cool it to room temperature, then use a pulverizer to pulverize, and pass through a 10-100 mesh sieve to obtain the graphite adsorption phase change energy storage powder.
  • the preparation method of the aerogel adsorption phase change energy storage powder includes the following steps:
  • Step 1 Weigh each component according to the formula
  • Step 2 Put the phase change powder in the reactor and heat it until it is completely melted, and then slowly heat the aerogel into the liquid phase change powder in batches, and stir while changing the heating. After the aerogel is added, the reaction Vacuum in the kettle, the vacuum degree is between -0.04 to -0.10MPa, the vacuuming time lasts for 5-40min, and the continuous stirring time is 15-90min;
  • Step 3 Take out the aerogel adsorption phase change energy storage powder obtained in step 2 and cool it to room temperature, then use a pulverizer to pulverize, and pass through a 10-100 mesh sieve to obtain the aerogel adsorption phase change energy storage Powder.
  • the phase change heat storage asphalt of the present invention has the following beneficial effects: the phase change heat storage asphalt of the present invention has a specific heat capacity (J/(g ⁇ K)) ⁇ 2.5; phase change enthalpy (J/g) About 30 ⁇ 180; Phase change temperature (°C) 5 ⁇ 90; Specific gravity (g/cc): 0.8 ⁇ 1.5; Phase change material is graphite adsorption phase change energy storage powder or aerogel adsorption phase change energy storage powder;
  • the graphite adsorption phase change energy storage powder uses vermicular expanded graphite as the adsorption material.
  • the vermicular expanded graphite is a loose and porous vermicular substance obtained by intercalation, washing, drying, and high temperature expansion of natural flake graphite.
  • graphite also has softness, compression resilience, adsorption, ecological environment coordination, and biological characteristics that natural graphite does not have.
  • phase change powder Capacitive, radiation resistance and other characteristics, due to loose and porous, large specific surface area, so the adsorption capacity of phase change powder is very strong, only need to use less weight parts of worm-like expanded graphite to complete the adsorption of phase change materials
  • the worm-like expanded graphite cannot be too little, too little can not completely adsorb the phase change material; the worm-like expanded graphite can not be too much, on the one hand, if it is too much, it will increase the cost and reduce the enthalpy value of the product, and at the same time, reduce the graphite
  • the phase change enthalpy of the adsorption phase change energy storage powder reduces the heat storage performance of the product. Therefore, for different powders, the weight ratio of the phase change powder that can be completely absorbed is the optimal;
  • step 2 of its preparation method a vacuum adsorption process is adopted.
  • the molten phase change powder can penetrate into the worm-like expanded graphite more easily.
  • the adsorption effect of the phase change material in the deep hole is far greater than that of conventional immersion or stirring.
  • the phase change material enters the deep hole, it is difficult to overflow under high temperature conditions, and has exceptional adsorption performance.
  • the phase change enthalpy of graphite adsorption phase-change energy storage powder has increased by 5%-10%, and the performance has been greatly improved. Due to the reduction of the worm-like expanded graphite The amount and cost are also greatly reduced;
  • Aerogel adsorption phase change energy storage powder uses aerogel as the adsorption material. Aerogel has low thermal conductivity, good thermal insulation effect, stable physical and chemical properties, non-combustible at high temperature, completely waterproof, non-toxic, green and environmentally friendly, and The specific surface area is large, and the adsorption capacity for phase change powders is very strong. Only a small part of aerogel can be used to complete the adsorption of phase change materials.
  • step 2 of its preparation method a vacuum adsorption process is adopted, and the molten phase change powder is more easily penetrated into the fluffy aerogel by stirring under vacuum conditions.
  • the adsorption effect of the phase change material in the deep hole is far greater than that of conventional immersion or stirring. After the phase change material enters the deep hole, it is difficult to overflow under high temperature conditions, and has extraordinary adsorption performance.
  • phase change heat storage asphalt obtained by adopting the above formula and preparation method is used as an electronic potting material, has excellent heat storage and temperature control performance, and the cost is much lower than that of potting glue on the market.
  • the phase change heat storage asphalt includes the following components by weight: 20 parts by weight of asphalt and 20 parts by graphite adsorption phase change energy storage powder, wherein the graphite adsorption phase change energy storage powder includes the following components by weight Parts: 100 parts of paraffin wax and 5 parts of worm-like expanded graphite.
  • the worm-like expanded graphite has an expansion rate of 500 ml/g, a particle size of 100 mesh, an expansion ratio of 400 times, and a bulk density of 0.2 g/cm 3 .
  • the phase change thermal storage asphalt includes the following components by weight: the phase change thermal storage asphalt includes the following components by weight: 70 parts of asphalt and 70 parts of graphite adsorption phase change energy storage powder, of which the graphite adsorption phase
  • the variable energy storage powder includes the following components in parts by weight: 100 parts of paraffin wax and 9 parts of worm-like expanded graphite.
  • the worm-like expanded graphite has an expansion rate of 600ml/g, a particle size of 200 mesh, and an expansion ratio of 600 times.
  • the bulk density is 0.5g/cm 3 .
  • the phase change heat storage asphalt includes the following components by weight: 40 parts of asphalt and 50 parts of graphite adsorption phase change energy storage powder, wherein the graphite adsorption phase change energy storage powder includes the following components by weight: 100 parts of fatty acids and 6 parts of worm-like expanded graphite, the worm-like expanded graphite has an expansion rate of 100 ml/g, a particle size of 150 mesh, an expansion ratio of 500 times, and a bulk density of 0.3 g/cm 3 .
  • the phase change heat storage asphalt includes the following components by weight: 40 parts by weight of asphalt and 50 parts by graphite adsorption phase change energy storage powder, wherein the graphite adsorption phase change energy storage powder includes the following parts by weight Parts: 100 parts of PE wax and 7 parts of worm-like expanded graphite.
  • the worm-like expanded graphite has an expansion rate of 520 ml/g, a particle size of 120 mesh, an expansion ratio of 450 times, and a bulk density of 0.2 g/cm 3 .
  • the phase change heat storage asphalt includes the following components by weight: 40 parts by weight of asphalt and 30 parts by graphite adsorption phase change energy storage powder, wherein the graphite adsorption phase change energy storage powder includes the following components by weight Parts: 100 parts of PP wax and 8 parts of worm-like expanded graphite.
  • the worm-like expanded graphite has an expansion rate of 550 ml/g, a particle size of 140 mesh, an expansion ratio of 460 times, and a bulk density of 0.2 g/cm 3 .
  • the phase change heat storage asphalt includes the following components by weight: 45 parts by weight of asphalt and 30 parts by graphite adsorption phase change energy storage powder, wherein the graphite adsorption phase change energy storage powder includes the following parts by weight Parts: 100 parts of C40 alkane wax and 8.5 parts of worm-like expanded graphite.
  • the worm-like expanded graphite has an expansion rate of 570 ml/g, a particle size of 200 mesh, an expansion ratio of 600 times, and a bulk density of 0.3 g/cm 3 .
  • the phase change heat storage asphalt includes the following components by weight: 60 parts by weight of asphalt and 35 parts by graphite adsorption phase change energy storage powder, wherein the graphite adsorption phase change energy storage powder includes the following components by weight Parts: 100 parts of C30 alkane wax and 8.8 parts of worm-like expanded graphite.
  • the worm-like expanded graphite has an expansion rate of 500 ml/g, a particle size of 100 mesh, an expansion ratio of 400 times, and a bulk density of 0.4 g/cm 3 .
  • the phase change heat storage asphalt includes the following components by weight: 40 parts by weight of asphalt and 25 parts by graphite adsorption phase change energy storage powder, wherein the graphite adsorption phase change energy storage powder includes the following components by weight: 100 parts of C20 alkane wax and 7.3 parts of worm-like expanded graphite, the worm-like expanded graphite has an expansion rate of 600 ml/g, a particle size of 200 mesh, an expansion ratio of 600 times, and a bulk density of 0.2 g/cm 3 .
  • Phase change heat storage asphalt includes the following components by weight: 58.4 parts of asphalt and 25 parts of graphite adsorption phase change energy storage powder, wherein graphite adsorption phase change energy storage powder includes the following components by weight: 100 parts of C10 alkane wax and 7.3 parts of worm-like expanded graphite, the worm-like expanded graphite has an expansion rate of 600 ml/g, a particle size of 200 mesh, an expansion ratio of 600 times, and a bulk density of 0.35 g/cm 3 .
  • the phase change heat storage asphalt includes the following components by weight: 54.4 parts by weight of asphalt and 30 parts by graphite adsorption phase change energy storage powder, wherein the graphite adsorption phase change energy storage powder includes the following components by weight: 100 parts of C60 alkane wax and 6.2 parts of worm-like expanded graphite, the worm-like expanded graphite has an expansion rate of 500 ml/g, a particle size of 150 mesh, an expansion ratio of 400 times, and a bulk density of 0.2 5 g/cm 3 .
  • Phase change heat storage asphalt including the following components by weight: 50.4 parts of asphalt and 30 parts of graphite adsorption phase change energy storage powder, graphite adsorption phase change energy storage powder, including the following components by weight: C35 alkane 100 parts of wax and 5.8 parts of worm-like expanded graphite, the worm-like expanded graphite has an expansion rate of 600 ml/g, a particle size of 200 mesh, an expansion ratio of 600 times, and a bulk density of 0.35 g/cm 3 .
  • the phase change thermal storage asphalt includes the following components by weight: 46.4 parts of asphalt and 40 parts of aerogel adsorption phase change energy storage powder, wherein the aerogel adsorption phase change energy storage powder includes the following parts by weight
  • the components of the aerogel 100 parts of C10 alkane wax and 50 parts of aerogel, the specific surface area of the aerogel is 300 square meters/g, and the particle size is 5nm.
  • the phase change heat storage asphalt includes the following components by weight: 46.4 parts of asphalt and 30 parts of aerogel adsorption phase change energy storage powder, wherein the aerogel adsorption phase change energy storage powder includes the following parts by weight
  • the components of the aerogel 100 parts of C15 alkane wax and 45 parts of aerogel.
  • the specific surface area of the aerogel is 280m2/g and the particle size is 8nm.
  • the phase change heat storage asphalt includes the following components by weight: 42.4 parts of asphalt and 45 parts of aerogel adsorption phase change energy storage powder, wherein the aerogel adsorption phase change energy storage powder includes the following parts by weight
  • Each component of the aerogel 100 parts of C20 alkane wax and 40 parts of aerogel, the specific surface area of the aerogel is 220 square meters/g, and the particle size is 15 nm.
  • the phase change thermal storage asphalt includes the following components by weight: 38.4 parts of asphalt and 50 parts of aerogel adsorption phase change energy storage powder, wherein the aerogel adsorption phase change energy storage powder includes the following parts by weight
  • the components of the aerogel 100 parts of C30 alkane wax and 45 parts of aerogel, the specific surface area of the aerogel is 260 square meters/g, and the particle size is 12 nm.
  • the phase change thermal storage asphalt includes the following components by weight: 20 parts of asphalt and 20 parts of aerogel adsorption phase change energy storage powder, wherein the aerogel adsorption phase change energy storage powder includes the following parts by weight
  • Each component of the aerogel 100 parts of C40 alkane wax and 48 parts of aerogel, the specific surface area of the aerogel is 280 square meters/g, and the particle size is 8nm.
  • the phase change thermal storage asphalt includes the following parts by weight: 20 parts of asphalt and 70 parts of aerogel adsorption phase change energy storage powder, wherein the aerogel adsorption phase change energy storage powder includes the following parts by weight
  • Each component of the aerogel 100 parts of C60 alkane wax and 5 parts of aerogel, the specific surface area of the aerogel is 100 square meters/g, and the particle size is 60 nm.
  • the phase change thermal storage asphalt includes the following components by weight: 70 parts of asphalt and 70 parts of aerogel adsorption phase change energy storage powder, wherein the aerogel adsorption phase change energy storage powder includes the following parts by weight
  • the components of the aerogel 100 parts of paraffin wax and 45 parts of aerogel.
  • the specific surface area of the aerogel is 280m2/g and the particle size is 10nm.
  • the phase change thermal storage asphalt includes the following components by weight: 70 parts of asphalt and 45 parts of aerogel adsorption phase change energy storage powder, wherein the aerogel adsorption phase change energy storage powder includes the following parts by weight
  • the components of the aerogel 100 parts of paraffin wax and 5 parts of aerogel, the specific surface area of the aerogel is 300 square meters/g, and the particle size is 5 nm.
  • the phase change thermal storage asphalt includes the following components by weight: 50 parts of asphalt and 45 parts of aerogel adsorption phase change energy storage powder, wherein the aerogel adsorption phase change energy storage powder includes the following parts by weight Components of:
  • the specific surface area of the aerogel is 180 square meters/g, and the particle size is 12 nm.
  • the phase change thermal storage asphalt includes the following components by weight: 50 parts of asphalt and 35 parts of aerogel adsorption phase change energy storage powder, wherein the aerogel adsorption phase change energy storage powder includes the following parts by weight
  • the components of the aerogel 100 parts of fatty acid and 10 parts of aerogel, the specific surface area of the aerogel is 100 square meters/g, and the particle size is 60 nm.
  • the phase change thermal storage asphalt includes the following components by weight: 50 parts of asphalt and 30 parts of aerogel adsorption phase change energy storage powder, wherein the aerogel adsorption phase change energy storage powder, aerogel adsorption
  • the phase change energy storage powder includes the following components in parts by weight: 100 parts of PE wax and 45 parts of aerogel, the specific surface area of the aerogel is 260 square meters/g, and the particle size is 45 nm.
  • the phase change thermal storage asphalt includes the following components by weight: 30 parts of asphalt and 20 parts of aerogel adsorption phase change energy storage powder, wherein the aerogel adsorption phase change energy storage powder includes the following parts by weight
  • the components of the aerogel 100 parts of PE wax and 50 parts of aerogel, the specific surface area of the aerogel is 230 square meters/g, and the particle size is 40 nm.
  • the phase change thermal storage asphalt includes the following components by weight: 60 parts of asphalt and 55 parts of aerogel adsorption phase change energy storage powder, wherein the aerogel adsorption phase change energy storage powder includes the following parts by weight
  • Each component of the aerogel 100 parts of PP wax and 8 parts of aerogel, the specific surface area of the aerogel is 130 square meters/g, and the particle size is 53 nm.
  • the preparation method of the phase change thermal storage asphalt of embodiment 1-11 includes the following steps:
  • Step 2 Mixing and banburying: mix asphalt and graphite adsorption phase change energy storage powder, then high-speed mixer for 3-5 min;
  • Step 3 Pelletizing by extruder to obtain phase change heat storage asphalt.
  • the preparation method of the graphite adsorption phase change energy storage powder described in the above step 1 includes the following steps:
  • Step 1 Weigh each component according to the formula
  • Step 2 Put the phase change powder in the reaction kettle and heat it until it is completely melted, and then slowly heat the worm-like expanded graphite into the liquid phase change powder in batches, and stir while heating. After the addition of the worm-like expanded graphite is completed, Vacuum in the reactor, the vacuum degree is between -0.04 to -0.10MPa, the vacuum time lasts for 5-40min, and the continuous stirring time is 15-90min;
  • Step 3 Take out the graphite adsorption phase change energy storage powder obtained by the process of step 2 and cool it to room temperature, then use a pulverizer to pulverize, and pass through a 10-100 mesh sieve to obtain the graphite adsorption phase change energy storage powder.
  • the preparation method of the phase change thermal storage asphalt of Examples 12-24 includes the following steps:
  • Step 1 Prepare aerogel adsorption phase change energy storage powder
  • Step 2 Mixing and banburying: mix asphalt and aerogel adsorption phase change energy storage powder, then high-speed mixer for 3-5 min;
  • Step 3 Pelletizing by extruder to obtain phase change heat storage asphalt.
  • the preparation method of the aerogel adsorption phase change energy storage powder described in step 1 above includes the following steps:
  • Step 1 Weigh each component according to the formula
  • Step 2 Put the phase change powder in the reactor and heat it until it is completely melted, and then slowly heat the aerogel into the liquid phase change powder in batches, and stir while changing the heating. After the aerogel is added, the reaction Vacuum in the kettle, the vacuum degree is between -0.04 to -0.10MPa, the vacuuming time lasts for 5-40min, and the continuous stirring time is 15-90min;
  • Step 3 Take out the aerogel adsorption phase change energy storage powder obtained in step 2 and cool it to room temperature, then use a pulverizer to pulverize, and pass through a 10-100 mesh sieve to obtain the aerogel adsorption phase change energy storage Powder.
  • phase change thermal storage asphalt of the phase change thermal storage asphalt of the present invention contains an appropriate amount of phase change material, and the specific heat capacity (J/(g ⁇ K)) ⁇ 2.5; the phase change enthalpy (J /g) About 30 ⁇ 180; Phase transition temperature (°C) 5 ⁇ 90; Specific gravity (g/cc): 0.8 ⁇ 1.5, used as potting material, with excellent heat storage and temperature control function.

Abstract

相变化储热沥青,包括以下重量份的各组份:沥青20~70份和相变材料20~70份,所述相变材料为石墨吸附相变储能粉体或者气凝胶吸附相变储能粉体,上述相变化储热沥青的比热容(J/(g·K))≥2.5;相变焓(J/g)约30~180;相变温度(℃)5~90;比重(g/cc):0.8~1.5,用作电子灌封材料,通过相变材料释放相变潜热,采用上述配方和制备方法的相变化储热沥青具备了优异的储热控温性能,而且成本远低于市场上的灌封胶。

Description

相变化储热沥青及其制备方法 技术领域
本发明涉及沥青及其制备方法技术领域,尤其涉及相变化储热沥青及其制备方法。
背景技术
电子灌封胶在未固化前属于液体状,具有流动性,胶液黏度根据产品的材质、性能、生产工艺的不同而有所区别。灌封胶完全固化后才能实现它的使用价值,固化后可以起到防水防潮、防尘、绝缘、导热、保密、防腐蚀、耐温、防震的作用。然而,现有的电子灌封胶不具备储热控温功能,而且成本较高。
相变储能技术是一种能够将能量以相变潜热的形式高密度储存的技术,而沥青来源广,成本低,通过将相变储能技术与沥青进行结合,研发出一种相变化储热沥青,可以达到电子灌封胶的功能,且具备独特的储热控温功能,而且成本低廉。
发明内容
本发明的目的之一是提供一种相变化储热沥青,以解决现有技术的不足。
本发明的另一目的在于提供上述相变化储热沥青的制备方法。
为实现上述目的,本发明采用如下的技术方案:
相变化储热沥青,包括以下重量份的各组份:
沥青20~70份和相变材料20~70份,所述相变材料为石墨吸附相变储能粉体或者气凝胶吸附相变储能粉体。
具体地,所述石墨吸附相变储能粉体,包括以下重量份的各组份:
相变粉体100份和蠕虫状膨胀石墨5~9份。
具体地,所述蠕虫状膨胀石墨的膨胀率为100-600ml/g,粒度为100-200目,膨胀倍数为200-600倍,堆积密度为0.2~0.5g/cm3。
具体地,所述气凝胶吸附相变储能粉体包括以下重量份的各组份:
相变粉体100份和气凝胶5~50份。
具体地,所述气凝胶的比表面积为100-300㎡/g,粒径为5-60nm。
具体地,所述相变粉体选自烷烃蜡、石蜡、脂肪酸、PE蜡、PP蜡的任意一种或者几种的组合。
具体地,所述烷烃蜡的烷烃碳原子数介于10-60之间。
所述的相变化储热沥青的制备方法,包括以下步骤:
步骤1、制备石墨吸附相变储能粉体或者气凝胶吸附相变储能粉体;
步骤2、混合密炼:将沥青和石墨吸附相变储能粉体或者气凝胶吸附相变储能粉体混合,然后高速搅拌机3-5min;
步骤3、挤出机造粒获得相变化储热沥青。
所述石墨吸附相变储能粉体的制备方法包括以下步骤:
步骤1、按配方称取各组份;
步骤2、将相变粉体置于反应釜内加热至全部熔化,然后将蠕虫状膨胀石墨分批缓慢加热到液态的相变粉体中,变加热边搅拌,蠕虫状膨胀石墨添加完成后,在反应釜内抽真空,真空度介于-0.04至-0.10MPa,抽真空的时间持续5-40min,持续搅拌时间为15-90min;
步骤3、将经过步骤2处理获得的石墨吸附相变储能粉体取出冷却至常温,再使用粉碎机粉碎,过10~100目筛,获得所述的石墨吸附相变储能粉体。
所述气凝胶吸附相变储能粉体的制备方法包括以下步骤:
步骤1、按配方称取各组分;
步骤2、将相变粉体置于反应釜内加热至全部熔化,然后将气凝胶分批缓慢加热到液态的相变粉体中,变加热边搅拌,气凝胶添加完成后,在反应釜内抽真空,真空度介于-0.04至-0.10MPa,抽真空的时间持续5-40min,持续搅拌时间为15-90min;
步骤3、将经过步骤2处理获得的气凝胶吸附相变储能粉体取出冷却至常温,再使用粉碎机粉碎,过10~100目筛,获得所述的气凝胶吸附相变储能粉体。
与现有技术相比,本发明的相变化储热沥青具有以下有益效果:本发明的相变化储热沥青,比热容(J/(g·K))≥2.5;相变焓(J/g)约30~180;相变温度(℃)5~90;比重(g/cc):0.8~1.5;相变材料为石墨吸附相变储能粉体或者气凝胶吸附相变储能粉体;
其中,石墨吸附相变储能粉体选用了蠕虫状膨胀石墨作为吸附材料,蠕虫状膨胀石墨由天然鳞片石墨经插层、水洗、干燥、高温膨化得到的一种疏松多孔的蠕虫状物质,膨胀石墨除了具备天然石墨本身的耐冷热、耐腐蚀、自润滑、耐辐射、导电性等优良性能以外,还具有天然石墨所没有的柔软、压缩回弹性、吸附性、生态环境协调性、生物相容性、耐辐射性等特性,由于疏松多孔,比表面积大,因此对相变粉体的吸附能力非常强,只需要采用较少重量份的蠕虫状膨胀石墨就可以完成对相变材料的吸附,当然,蠕虫状膨胀石墨不能太少,太少无法完全吸附住相变材料;蠕虫状膨胀石墨也不能太多,太多的话一方面增加成本和降低产品的热焓值,同时,降低了石墨吸附相变储能粉体相变焓,降低了产品的储热性能,因此,针对不同的粉体,恰好能够完全吸附完相变粉体的重量比是最优的;
而为了进一步减少蠕虫状膨胀石墨的使用量,在其制备方法的步骤2中,采用了真空吸附的工艺,在真空条件下搅拌,熔化的相变粉体更容易深入地渗透到蠕虫状膨胀石墨蓬松的深孔内,深孔内对相变材料的吸附作用远远大于常规的浸渍或者搅拌,相变材料进入深孔内之后,在高温条件下也难以溢出,具有超常的吸附性能,如此,尽量少的蠕虫状膨胀石墨吸附了更多的相变材料,石墨吸附相变储能粉体的相变焓增加了5%-10%,性能得到了大幅提升,由于减少了蠕虫状膨胀石墨的用量,成本也大幅降低;
气凝胶吸附相变储能粉体选用了气凝胶作为吸附材料,气凝胶导热系数低,保温隔热效果好,理化性质稳定,高温不燃,完全防水,且无毒害,绿色环保,且比表面积大,对相变粉体的吸附能力非常强,只需要采用较少重量份的气凝胶就可以完成对相变材料的吸附,当然,气凝胶不能太少,太少无法完全吸附住相变材料;气凝胶也不能太多,太多的话一方面增加成本和产品的重量,同时,降低了气凝胶吸附相变储能粉体的相变焓,降低了产品的储热性能,因此,针对不同的相变粉体,恰好能够完全吸附完相变粉体的重量比是最优的;
而为了进一步减少气凝胶的使用量,在其制备方法的步骤2中,采用了真空吸附的工艺,在真空条件下搅拌,熔化的相变粉体更容易深入地渗透到气凝胶蓬松的深孔内,深孔内对相变材料的吸附作用远远大于常规的浸渍或者搅拌,相变材料进入深孔内之后,在高温条件下也难以溢出,具有超常的吸附性能,如此,尽量少的气凝胶吸附了更多的相变材料,气凝胶吸附相变储能粉体的密度提高了10-15%,而气凝胶吸附相变储能粉体的相变焓增加了5-15%左右,性能得到了大幅提升,由于减少了气凝胶的用量,成本也大幅降低;
采用上述配方和制备方法获得的相变化储热沥青,用作电子灌封材料,具备了优异的储热控温性能,而且成本远低于市场上的灌封胶。
具体实施方式
下面结合实施例对本发明作进一步的说明,这是本发明的较佳实施例。
实施例1
相变化储热沥青,包括以下重量份的各组份:沥青20份和石墨吸附相变储能粉体20份,其中,所述石墨吸附相变储能粉体,包括以下重量份的各组份:石蜡100份和蠕虫状膨胀石墨5份,所述蠕虫状膨胀石墨的膨胀率为500ml/g,粒度为100目,膨胀倍数为400倍,堆积密度为0.2g/cm 3
实施例2
相变化储热沥青,包括以下重量份的各组份:相变化储热沥青,包括以下重量份的各组份:沥青70份和石墨吸附相变储能粉体70份,其中,石墨吸附相变储能粉体,包括以下重量份的各组份:石蜡100份和蠕虫状膨胀石墨9份,所述蠕虫状膨胀石墨的膨胀率为600ml/g,粒度为200目,膨胀倍数为600倍,堆积密度为0.5g/cm 3
实施例3
相变化储热沥青,包括以下重量份的各组份:沥青40份和石墨吸附相变储能粉体50份,其中,石墨吸附相变储能粉体,包括以下重量份的各组份:脂肪酸100份和蠕虫状膨胀石墨6份,所述蠕虫状膨胀石墨的膨胀率为100ml/g,粒度为 150目,膨胀倍数为500倍,堆积密度为0.3g/cm 3
实施例4
相变化储热沥青,包括以下重量份的各组份:沥青40份和石墨吸附相变储能粉体50份,其中,所述石墨吸附相变储能粉体,包括以下重量份的各组份:PE蜡100份和蠕虫状膨胀石墨7份,所述蠕虫状膨胀石墨的膨胀率为520ml/g,粒度为120目,膨胀倍数为450倍,堆积密度为0.2g/cm 3
实施例5
相变化储热沥青,包括以下重量份的各组份:沥青40份和石墨吸附相变储能粉体30份,其中,所述石墨吸附相变储能粉体,包括以下重量份的各组份:PP蜡100份和蠕虫状膨胀石墨8份,所述蠕虫状膨胀石墨的膨胀率为550ml/g,粒度为140目,膨胀倍数为460倍,堆积密度为0.2g/cm 3
实施例6
相变化储热沥青,包括以下重量份的各组份:沥青45份和石墨吸附相变储能粉体30份,其中,所述石墨吸附相变储能粉体,包括以下重量份的各组份:C40烷烃蜡100份和蠕虫状膨胀石墨8.5份,所述蠕虫状膨胀石墨的膨胀率为570ml/g,粒度为200目,膨胀倍数为600倍,堆积密度为0.3g/cm 3
实施例7
相变化储热沥青,包括以下重量份的各组份:沥青60份和石墨吸附相变储能粉体35份,其中,所述石墨吸附相变储能粉体,包括以下重量份的各组份:C30烷烃蜡100份和蠕虫状膨胀石墨8.8份,所述蠕虫状膨胀石墨的膨胀率为500ml/g,粒度为100目,膨胀倍数为400倍,堆积密度为0.4g/cm 3
实施例8
相变化储热沥青,包括以下重量份的各组份:沥青40份和石墨吸附相变储能粉体25份,其中,石墨吸附相变储能粉体,包括以下重量份的各组份:C20烷烃蜡100份和蠕虫状膨胀石墨7.3份,所述蠕虫状膨胀石墨的膨胀率为600ml/g,粒度为200目,膨胀倍数为600倍,堆积密度为0.2g/cm 3
实施例9
相变化储热沥青,包括以下重量份的各组份:沥青58.4份和石墨吸附相变储能粉体25份,其中,石墨吸附相变储能粉体,包括以下重量份的各组份:C10烷烃蜡100份和蠕虫状膨胀石墨7.3份,所述蠕虫状膨胀石墨的膨胀率为600ml/g,粒度为200目,膨胀倍数为600倍,堆积密度为0.35g/cm 3
实施例10
相变化储热沥青,包括以下重量份的各组份:沥青54.4份和石墨吸附相变储能粉体30份,其中,石墨吸附相变储能粉体,包括以下重量份的各组份:C60烷烃蜡100份和蠕虫状膨胀石墨6.2份,所述蠕虫状膨胀石墨的膨胀率为500ml/g,粒度为150目,膨胀倍数为400倍,堆积密度为0.2 5g/cm 3
实施例11
相变化储热沥青,包括以下重量份的各组份:沥青50.4份和石墨吸附相变储能粉体30份,石墨吸附相变储能粉体,包括以下重量份的各组份:C35烷烃蜡100份和蠕虫状膨胀石墨5.8份,所述蠕虫状膨胀石墨的膨胀率为600ml/g,粒度为200目,膨胀倍数为600倍,堆积密度为0.35g/cm 3
实施例12
相变化储热沥青,包括以下重量份的各组份:沥青46.4份和气凝胶吸附相变储能粉体40份,其中,所述气凝胶吸附相变储能粉体,包括以下重量份的各组份:C10烷烃蜡100份和气凝胶50份,所述气凝胶的比表面积300㎡/g,粒径为5nm。
实施例13
相变化储热沥青,包括以下重量份的各组份:沥青46.4份和气凝胶吸附相变储能粉体30份,其中,所述气凝胶吸附相变储能粉体,包括以下重量份的各组份:C15烷烃蜡100份和气凝胶45份,所述气凝胶的比表面积为280㎡/g,粒径为8nm。
实施例14
相变化储热沥青,包括以下重量份的各组份:沥青42.4份和气凝胶吸附相变储能粉体45份,其中,所述气凝胶吸附相变储能粉体,包括以下重量份的各组份:C20烷烃蜡100份和气凝胶40份,所述气凝胶的比表面积为220㎡/g,粒径为15nm。
实施例15
相变化储热沥青,包括以下重量份的各组份:沥青38.4份和气凝胶吸附相变储能粉体50份,其中,所述气凝胶吸附相变储能粉体,包括以下重量份的各组份:C30烷烃蜡100份和气凝胶45份,所述气凝胶的比表面积为260㎡/g,粒径为12nm。
实施例16
相变化储热沥青,包括以下重量份的各组份:沥青20份和气凝胶吸附相变储能粉体20份,其中,所述气凝胶吸附相变储能粉体,包括以下重量份的各组份:C40烷烃蜡100份和气凝胶48份,所述气凝胶的比表面积为280㎡/g,粒径为8nm。
实施例17
相变化储热沥青,包括以下重量份的各组份:沥青20份和气凝胶吸附相变储能粉体70份,其中,所述气凝胶吸附相变储能粉体,包括以下重量份的各组份:C60烷烃蜡100份和气凝胶5份,所述气凝胶的比表面积为100㎡/g,粒径为60nm。
实施例18
相变化储热沥青,包括以下重量份的各组份:沥青70份和气凝胶吸附相变储能粉体70份,其中,所述气凝胶吸附相变储能粉体,包括以下重量份的各组份:石蜡100份和气凝胶45份,所述气凝胶的比表面积为280㎡/g,粒径为10nm。
实施例19
相变化储热沥青,包括以下重量份的各组份:沥青70份和气凝胶吸附相变储能粉体45份,其中,所述气凝胶吸附相变储能粉体,包括以下重量份的各组份:石蜡100份和气凝胶5份,所述气凝胶的比表面积为300㎡/g,粒径为5nm。
实施例20
相变化储热沥青,包括以下重量份的各组份:沥青50份和气凝胶吸附相变储 能粉体45份,其中,所述气凝胶吸附相变储能粉体,包括以下重量份的各组份:
石蜡100份和气凝胶50份,所述气凝胶的比表面积为180㎡/g,粒径为12nm。
实施例21
相变化储热沥青,包括以下重量份的各组份:沥青50份和气凝胶吸附相变储能粉体35份,其中,所述气凝胶吸附相变储能粉体,包括以下重量份的各组份:脂肪酸100份和气凝胶10份,所述气凝胶的比表面积为100㎡/g,粒径为60nm。
实施例22
相变化储热沥青,包括以下重量份的各组份:沥青50份和气凝胶吸附相变储能粉体30份,其中,所述气凝胶吸附相变储能粉体,气凝胶吸附相变储能粉体,包括以下重量份的各组份:PE蜡100份和气凝胶45份,所述气凝胶的比表面积为260㎡/g,粒径为45nm。
实施例23
相变化储热沥青,包括以下重量份的各组份:沥青30份和气凝胶吸附相变储能粉体20份,其中,所述气凝胶吸附相变储能粉体,包括以下重量份的各组份:PE蜡100份和气凝胶50份,所述气凝胶的比表面积为230㎡/g,粒径为40nm。
实施例24
相变化储热沥青,包括以下重量份的各组份:沥青60份和气凝胶吸附相变储能粉体55份,其中,所述气凝胶吸附相变储能粉体,包括以下重量份的各组份:PP蜡100份和气凝胶8份,所述气凝胶的比表面积为130㎡/g,粒径为53nm。
实施例25
实施例1-11的相变化储热沥青的制备方法,包括以下步骤:
步骤1、制备石墨吸附相变储能粉体;
步骤2、混合密炼:将沥青和石墨吸附相变储能粉体混合,然后高速搅拌机3-5min;
步骤3、挤出机造粒获得相变化储热沥青。
其中,上述步骤1中所述石墨吸附相变储能粉体的制备方法包括以下步骤:
步骤1、按配方称取各组份;
步骤2、将相变粉体置于反应釜内加热至全部熔化,然后将蠕虫状膨胀石墨分批缓慢加热到液态的相变粉体中,变加热边搅拌,蠕虫状膨胀石墨添加完成后,在反应釜内抽真空,真空度介于-0.04至-0.10MPa,抽真空的时间持续5-40min,持续搅拌时间为15-90min;
步骤3、将经过步骤2处理获得的石墨吸附相变储能粉体取出冷却至常温,再使用粉碎机粉碎,过10~100目筛,获得所述的石墨吸附相变储能粉体。
实施例26
实施例12-24的相变化储热沥青的制备方法,包括以下步骤:
步骤1、制备气凝胶吸附相变储能粉体;
步骤2、混合密炼:将沥青和气凝胶吸附相变储能粉体混合,然后高速搅拌机3-5min;
步骤3、挤出机造粒获得相变化储热沥青。
其中,上述步骤1中所述气凝胶吸附相变储能粉体的制备方法包括以下步 骤:
步骤1、按配方称取各组分;
步骤2、将相变粉体置于反应釜内加热至全部熔化,然后将气凝胶分批缓慢加热到液态的相变粉体中,变加热边搅拌,气凝胶添加完成后,在反应釜内抽真空,真空度介于-0.04至-0.10MPa,抽真空的时间持续5-40min,持续搅拌时间为15-90min;
步骤3、将经过步骤2处理获得的气凝胶吸附相变储能粉体取出冷却至常温,再使用粉碎机粉碎,过10~100目筛,获得所述的气凝胶吸附相变储能粉体。
实施例1-11所述的相变化储热沥青,各项指标测试结果如表1所示,在相同环境温度下测试性能如下(0.1mm):
Figure PCTCN2019105806-appb-000001
表1
实施例12-24所述的相变化储热沥青,各项指标测试结果如表1所示,在相同环境温度下测试性能如下(0.1mm):
Figure PCTCN2019105806-appb-000002
表2
由表1-表2的数据可知,本发明的相变化储热沥青的相变化储热沥青,含有适量的相变材料,比热容(J/(g·K))≥2.5;相变焓(J/g)约30~180;相变温 度(℃)5~90;比重(g/cc):0.8~1.5,用作灌封材料,具有优异的储热控温功能。
最后应当说明的是,以上实施例仅用以说明本发明的技术方案,而非对本发明保护范围的限制,尽管参照较佳实施例对本发明作了详细地说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的实质和范围。

Claims (10)

  1. 相变化储热沥青,其特征在于,包括以下重量份的各组份:
    沥青20~70份和相变材料20~70份,所述相变材料为石墨吸附相变储能粉体或者气凝胶吸附相变储能粉体。
  2. 根据权利要求1所述的相变化储热沥青,其特征在于:所述石墨吸附相变储能粉体,包括以下重量份的各组份:
    相变粉体100份和蠕虫状膨胀石墨5~9份。
  3. 根据权利要求2所述的相变化储热沥青,其特征在于:所述蠕虫状膨胀石墨的膨胀率为100-600ml/g,粒度为100-200目,膨胀倍数为200-600倍,堆积密度为0.2~0.5g/cm 3
  4. 根据权利要求1所述的相变化储热沥青,其特征在于:所述气凝胶吸附相变储能粉体包括以下重量份的各组份:
    相变粉体100份和气凝胶5~50份。
  5. 根据权利要求4所述的相变化储热沥青,其特征在于:
    所述气凝胶的比表面积为100-300㎡/g,粒径为5-60nm。
  6. 根据权利要求2或5所述的相变化储热沥青,其特征在于:所述相变粉体选自烷烃蜡、石蜡、脂肪酸、PE蜡和PP蜡的任意一种或者几种的组合。
  7. 根据权利要求6所述的相变化储热沥青,其特征在于:所述烷烃蜡的烷烃碳原子数介于10-60之间。
  8. 根据权利要求1-6任一项所述的相变化储热沥青的制备方法,其特征在于,包括以下步骤:
    步骤1、制备石墨吸附相变储能粉体或者气凝胶吸附相变储能粉体;
    步骤2、混合密炼:将沥青和石墨吸附相变储能粉体或者气凝胶吸附相变储能粉体混合,然后高速搅拌机3-5min;
    步骤3、挤出机造粒获得相变化储热沥青。
  9. 根据权利要求8所述的相变化储热沥青的制备方法,其特征在于,所述石墨吸附相变储能粉体的制备方法包括以下步骤:
    步骤1、按配方称取各组份;
    步骤2、将相变粉体置于反应釜内加热至全部熔化,然后将蠕虫状膨胀石墨分批缓慢加热到液态的相变粉体中,变加热边搅拌,蠕虫状膨胀石墨添加完成后,在反应釜内抽真空,真空度介于-0.04至-0.10MPa,抽真空的时间持续5-40min,持续搅拌时间为15-90min;
    步骤3、将经过步骤2处理获得的石墨吸附相变储能粉体取出冷却至常温,再使用粉碎机粉碎,过10~100目筛,获得所述的石墨吸附相变储能粉体。
  10. 根据权利要求8所述的相变化储热沥青的制备方法,其特征在于,所述气凝胶吸附相变储能粉体的制备方法包括以下步骤:
    步骤1、按配方称取各组分;
    步骤2、将相变粉体置于反应釜内加热至全部熔化,然后将气凝胶分批缓慢加热到液态的相变粉体中,变加热边搅拌,气凝胶添加完成后,在反应釜内抽真空,真空度介于-0.04至-0.10MPa,抽真空的时间持续5-40min,持续搅拌时间为15-90min;
    步骤3、将经过步骤2处理获得的气凝胶吸附相变储能粉体取出冷却至常温,再使用粉碎机粉碎,过10~100目筛,获得所述的气凝胶吸附相变储能粉体。
PCT/CN2019/105806 2019-08-26 2019-09-12 相变化储热沥青及其制备方法 WO2021035818A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910792824.X 2019-08-26
CN201910792824.XA CN110437637A (zh) 2019-08-26 2019-08-26 相变化储热沥青及其制备方法

Publications (1)

Publication Number Publication Date
WO2021035818A1 true WO2021035818A1 (zh) 2021-03-04

Family

ID=68437764

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/105806 WO2021035818A1 (zh) 2019-08-26 2019-09-12 相变化储热沥青及其制备方法

Country Status (2)

Country Link
CN (1) CN110437637A (zh)
WO (1) WO2021035818A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110922918A (zh) * 2019-12-17 2020-03-27 张立强 双组份储热灌封材料及其制备方法
CN110903666A (zh) * 2019-12-17 2020-03-24 张立强 相变化储热沥青及其制备方法
CN111303821A (zh) * 2020-03-14 2020-06-19 广东力王新材料有限公司 单组分储热灌封材料

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100999657A (zh) * 2006-12-22 2007-07-18 华南理工大学 有机物/膨胀石墨复合相变储热材料及其制备方法与储热装置
CN101649187A (zh) * 2009-09-03 2010-02-17 宁波博浪热能设备有限公司 应用于热水器的相变材料及其制备方法
CN102181270A (zh) * 2011-04-28 2011-09-14 华南理工大学 一种用于锂电池散热的复合相变材料及装置
CN103374338A (zh) * 2012-04-17 2013-10-30 夏华松 多孔品质大鳞片石墨基相变储能复合材料及制备方法
CN105018038A (zh) * 2014-04-16 2015-11-04 上海艾尔派克包装材料有限公司 一种有机相变储热材料及其制备方法
US20160168439A1 (en) * 2014-12-11 2016-06-16 Henry Company, Llc Phase-change materials from wax-based colloidal dispersions and their process of making
CN108163851A (zh) * 2017-12-25 2018-06-15 杭州龙灿液态金属科技有限公司 一种高频感应加热装置、制备石墨蠕虫的方法以及石墨蠕虫的应用
CN109233307A (zh) * 2018-07-16 2019-01-18 湖南大学 温度自调节道路沥青材料及其制备方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100999657A (zh) * 2006-12-22 2007-07-18 华南理工大学 有机物/膨胀石墨复合相变储热材料及其制备方法与储热装置
CN101649187A (zh) * 2009-09-03 2010-02-17 宁波博浪热能设备有限公司 应用于热水器的相变材料及其制备方法
CN102181270A (zh) * 2011-04-28 2011-09-14 华南理工大学 一种用于锂电池散热的复合相变材料及装置
CN103374338A (zh) * 2012-04-17 2013-10-30 夏华松 多孔品质大鳞片石墨基相变储能复合材料及制备方法
CN105018038A (zh) * 2014-04-16 2015-11-04 上海艾尔派克包装材料有限公司 一种有机相变储热材料及其制备方法
US20160168439A1 (en) * 2014-12-11 2016-06-16 Henry Company, Llc Phase-change materials from wax-based colloidal dispersions and their process of making
CN108163851A (zh) * 2017-12-25 2018-06-15 杭州龙灿液态金属科技有限公司 一种高频感应加热装置、制备石墨蠕虫的方法以及石墨蠕虫的应用
CN109233307A (zh) * 2018-07-16 2019-01-18 湖南大学 温度自调节道路沥青材料及其制备方法

Also Published As

Publication number Publication date
CN110437637A (zh) 2019-11-12

Similar Documents

Publication Publication Date Title
WO2021035816A1 (zh) 双组份储热灌封材料及其制备方法
Li et al. Hierarchical 3D reduced graphene porous-carbon-based PCMs for superior thermal energy storage performance
Chen et al. Carbon‐based composite phase change materials for thermal energy storage, transfer, and conversion
Sun et al. Photo-triggered hierarchical porous carbon-based composite phase-change materials with superior thermal energy conversion capacity
WO2021035818A1 (zh) 相变化储热沥青及其制备方法
Fashandi et al. Sodium acetate trihydrate-chitin nanowhisker nanocomposites with enhanced phase change performance for thermal energy storage
CN112094625A (zh) 一种氮化硼纳米管气凝胶/相变导热复合材料及其制备方法
Mehrali et al. Effect of carbon nanospheres on shape stabilization and thermal behavior of phase change materials for thermal energy storage
Mehrali et al. Preparation of nitrogen-doped graphene/palmitic acid shape stabilized composite phase change material with remarkable thermal properties for thermal energy storage
Ma et al. Preparation and characterization of modified porous wood flour/lauric-myristic acid eutectic mixture as a form-stable phase change material
WO2021035820A1 (zh) 石墨吸附相变储能粉体、制备方法及其应用
WO2021035819A1 (zh) 气凝胶吸附相变储能粉体、制备方法及其应用
Yin et al. Shape-stable hydrated salts/polyacrylamide phase-change organohydrogels for smart temperature management
Liu et al. Highly efficient thermal energy storage using a hybrid hypercrosslinked polymer
WO2021109067A1 (zh) 相变热熔胶及其制备方法
CN108997977A (zh) 一种导热增强有机相变储能材料及其制备方法
CN104559936A (zh) 一种中温用相变蓄热材料及其制备方法
CN110903666A (zh) 相变化储热沥青及其制备方法
CN110079277A (zh) 相变复合材料粒料及其制备方法和应用以及电池散热器件
CN107142088A (zh) 一种新的储热颗粒及其制备方法
CN110724489A (zh) 单组分常温固化灌封材料
Zhang et al. Enhanced Thermal Energy Storage Performance of Polyethylene Glycol by Using Interfacial Interaction of Copper‐Based Metal Oxide
CN113088030A (zh) 一种具有交联网络结构的柔性相变复合材料及其制备方法
CN110922918A (zh) 双组份储热灌封材料及其制备方法
CN110922944A (zh) 一种柔性定形复合相变材料及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19942871

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19942871

Country of ref document: EP

Kind code of ref document: A1