WO2021056870A1 - 一种复合相变调节剂及其复合相变储热材料的制备方法和应用 - Google Patents

一种复合相变调节剂及其复合相变储热材料的制备方法和应用 Download PDF

Info

Publication number
WO2021056870A1
WO2021056870A1 PCT/CN2019/126846 CN2019126846W WO2021056870A1 WO 2021056870 A1 WO2021056870 A1 WO 2021056870A1 CN 2019126846 W CN2019126846 W CN 2019126846W WO 2021056870 A1 WO2021056870 A1 WO 2021056870A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase change
composite phase
heat storage
storage material
change heat
Prior art date
Application number
PCT/CN2019/126846
Other languages
English (en)
French (fr)
Inventor
李传常
张波
陈荐
Original Assignee
长沙理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 长沙理工大学 filed Critical 长沙理工大学
Publication of WO2021056870A1 publication Critical patent/WO2021056870A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/02Materials undergoing a change of physical state when used
    • C09K5/06Materials undergoing a change of physical state when used the change of state being from liquid to solid or vice versa
    • C09K5/063Materials absorbing or liberating heat during crystallisation; Heat storage materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/02Materials undergoing a change of physical state when used
    • C09K5/06Materials undergoing a change of physical state when used the change of state being from liquid to solid or vice versa

Definitions

  • the invention belongs to the field of heat storage materials, and specifically relates to a composite phase change regulator and a composite phase change heat storage material.
  • heat storage technology has been proven to be an effective way of improving energy utilization and environmentally friendly energy utilization. It uses specific devices and specific materials to store thermal energy for use when needed, which can effectively solve the problems of low energy utilization and resource waste due to time and location restrictions, as well as the mismatch and unevenness of heating and heat use. . Heat storage materials play a key role in the development of heat storage technology and are an important factor in determining the level of heat storage technology.
  • phase change of sodium sulfate decahydrate can store heat and has a large heat storage capacity.
  • As a phase change material it is widely used in the heat storage industry.
  • the phase separation is severe, and the nucleation of hydrated salt crystals leads to high supercooling (>20°C), easy flow and low thermal conductivity (0.544W ⁇ m -1 ⁇ K) -1 ) and other issues.
  • the problems of phase separation and supercooling are mainly improved by adding water and phase change regulators.
  • Porous substrates (such as porous metals, porous minerals, etc.) are loaded with sodium sulfate decahydrate to fix the shape and improve the thermal conductivity.
  • the first object of the present invention is to provide a composite phase change regulator.
  • the second object of the present invention is to provide a composite phase change heat storage material containing the composite phase change regulator.
  • the third object of the present invention is to provide a method for preparing the composite phase change heat storage material.
  • the fourth object of the present invention is to provide the application of the composite phase change heat storage material.
  • a composite phase change regulator includes disodium hydrogen phosphate dodecahydrate, diatomaceous earth, polyacrylamide and sodium dodecylbenzene sulfonate.
  • the inventors have discovered through research that adjusting the ratio of each component in the composite phase change regulator helps to further enhance the synergistic effect of each component.
  • the mass ratio of disodium hydrogen phosphate dodecahydrate, diatomaceous earth, polyacrylamide, and sodium dodecylbenzene sulfonate is 2-4:1-3:1-3: 2-4; more preferably 3:2:2:3.
  • the present invention also provides a composite phase change heat storage material, which includes sodium sulfate decahydrate and the composite phase change regulator.
  • the composite phase change regulator of the present invention and sodium sulfate decahydrate are synergistic, and can effectively improve the phase separation and supercooling problems of sodium sulfate decahydrate; it can change the phase change behavior of sodium sulfate decahydrate and avoid release Thermal closed loop phenomenon.
  • the weight part of sodium sulfate decahydrate is 80-85 parts; the weight part of the composite phase change regulator is 9-11 parts.
  • the porous substrate is expanded graphite.
  • Expanded graphite is preferably used as the porous substrate. Its rich pore structure and high thermal conductivity lightweight carbon skeleton can realize the leakage-free packaging of phase change materials and greatly improve the thermal conductivity of composite phase change heat storage materials. Lightweight building envelope applications provide performance advantages.
  • the weight of the porous substrate is 5-10 parts.
  • the weight part of the porous substrate is 7-10 parts.
  • the present invention is a more preferred composite phase change heat storage material.
  • the composite phase change heat storage material includes expanded graphite, sodium sulfate decahydrate and a composite phase change regulator dispersed in the expanded graphite; the composite phase The variable regulator includes disodium hydrogen phosphate dodecahydrate, diatomaceous earth, polyacrylamide, sodium dodecylbenzene sulfonate with a mass ratio of 3:2:2:3; sodium sulfate decahydrate, composite phase change regulator , The mass ratio of expanded graphite is: 80-85:9-11:7-10.
  • the endothermic temperature range is 25-40°C, and there is an endothermic peak in the endothermic range; the exothermic temperature range of the heat storage material is 15-25°C, and the endothermic temperature range is 15-25°C. There is an exothermic peak in the temperature range, and the subcooling degree of the phase change material does not exceed 10°C.
  • the invention also provides a method for preparing the composite phase change heat storage material, which is obtained by mixing sodium sulfate decahydrate and a composite phase change regulator.
  • a preferred preparation method is to mix sodium sulfate decahydrate with the composite phase change regulator, and then mix with the porous substrate to obtain it.
  • the preparation method includes the following steps:
  • the designed composition take sodium sulfate decahydrate, disodium hydrogen phosphate dodecahydrate, diatomaceous earth, polyacrylamide, sodium dodecylbenzene sulfonate, and expanded graphite; add sodium sulfate decahydrate first Disodium hydrogen phosphate dodecahydrate, diatomaceous earth, polyacrylamide, sodium dodecyl benzene sulfonate, stir evenly, and heat at 40-60°C to obtain mixture A (sodium sulfate decahydrate-hydrogen phosphate dodecahydrate Disodium, diatomaceous earth, polyacrylamide, sodium dodecylbenzene sulfonate composite materials);
  • the use of the mixing method of the present invention can reduce the exothermic closed loop phenomenon of the prepared composite material, improve the supercooling condition of the prepared composite material, and also improve the thermal energy response speed and thermal conductivity.
  • step 1 heating and stirring are performed at 40-60°C for 20-60 minutes, preferably at 50°C for 30 minutes.
  • the negative pressure means that the pressure is less than or equal to -0.1 MPa.
  • step 2 the expanded graphite prepared in step 1 is placed on the bottom of the container, and then the mixture A of step 1 is uniformly covered on the expanded graphite, and after vacuuming until the air pressure in the container is less than or equal to -0.1MPa, the air extraction is stopped.
  • the composite phase change heat storage material is obtained.
  • the time of standing under negative pressure is 2-10 min.
  • step 2 stirring in a hot water bath at 40-60°C for 10-20 minutes, preferably heating and stirring at 50°C for 15 minutes.
  • the present invention also provides an application of the composite phase change heat storage material, which can be applied to a building envelope. For example, it plays a role in adjusting the comfort of the indoor environment in structures such as solar houses, roofs, walls, and heating floors.
  • the present invention finds for the first time that the quaternary compound disodium hydrogen phosphate dodecahydrate, diatomaceous earth, polyacrylamide, and sodium dodecylbenzene sulfonate have good synergy, and they are used as a composite phase change regulator, It can synergistically solve the phase separation and overcooling problems of phase change materials (such as sodium sulfate decahydrate), and assist in improving the phase change behavior of phase change materials.
  • phase change materials such as sodium sulfate decahydrate
  • the present invention has been researched and found that after mixing sodium sulfate decahydrate with a small amount of disodium hydrogen phosphate dodecahydrate, diatomaceous earth, polyacrylamide, and sodium dodecylbenzene sulfonate, a porous substrate such as the preferred expanded graphite is used. Loading can improve the abnormal phase change behavior of the phase change material crystallization exothermic process, overcome the shortcomings of phase separation and high subcooling, and the resulting composite phase change heat storage material due to the carbonaceous pore structure and phase change of the expanded graphite The capillary force and surface tension of the material, the phase change of the material, the easy flow of the material, and the low thermal conductivity are solved.
  • the mass ratio of sodium sulfate decahydrate composite material and expanded graphite in soil, polyacrylamide, sodium dodecylbenzene sulfonate composite material, and expanded graphite can control the exothermic phase change behavior of sodium sulfate decahydrate and realize its phase change. Change behavior to normalize.
  • the present invention regulates sodium sulfate decahydrate by synthesizing sodium sulfate decahydrate-disodium hydrogen phosphate dodecahydrate, diatomaceous earth, polyacrylamide, sodium dodecylbenzene sulfonate/expanded graphite composite materials with different mass ratios Preparation of composite phase-change heat storage materials with adjustable orientation of heat storage behavior.
  • the special network pore structure of expanded graphite is used to load the composite material of sodium sulfate decahydrate-disodium hydrogen phosphate dodecahydrate, diatomaceous earth, polyacrylamide, and sodium dodecylbenzene sulfonate to improve the phase transition of the latter
  • the heat conduction rate during the heat release process can then adjust the latent heat transfer of the sodium sulfate decahydrate in the composite material during the crystallization process, so as to achieve a large-scale regulation of the heat storage behavior and meet the requirements of more occasions.
  • the invention greatly improves the phase separation and supercooling problems of sodium sulfate decahydrate through the selection of a small amount of phase change regulators, and effectively retains the heat storage capacity of sodium sulfate decahydrate, which improves the application potential and reduces the application potential of sodium sulfate decahydrate. Cost provides the necessary conditions.
  • the present invention has simple processing technology and can directionally control the heat storage behavior of the material; it effectively improves its heat storage capacity and meets the requirements for use in more occasions.
  • Figure 1 is a graph showing the exothermic-endothermic curve of the finished product obtained in Example 1;
  • Figure 2 is a graph showing the exothermic-endothermic curve of the finished product obtained in Example 2;
  • Figure 3 is a heat release-endothermic curve diagram of the finished product obtained in Example 3.
  • Fig. 4 is a heat release-endothermic curve diagram of the finished product obtained in Example 4.
  • Figure 5 is a heat release-endothermic curve diagram of the finished product obtained in Example 5;
  • Fig. 6 is a heat release-endothermic curve diagram of the finished product obtained in Example 6;
  • Figure 7 is a heat release-endothermic curve diagram of the finished product obtained in Example 7.
  • Fig. 8 is a heat release-endothermic curve diagram of the finished product obtained in Example 8.
  • Fig. 9 is an infrared thermal image gray scale diagram and temperature curve of the materials obtained in Comparative Example 1, Example 3 and Example 2;
  • Figure 10 is a graph showing the exothermic-endothermic curve of the finished product obtained in Comparative Example 1;
  • Figure 11 is a heat release-endothermic curve diagram of the finished product obtained in Comparative Example 2.
  • Fig. 12 is a graph showing the exothermic-endothermic curve of the finished product obtained in Comparative Example 3.
  • Figure 13 is a heat release-endothermic curve diagram of the finished product obtained in Comparative Example 4.
  • Figure 14 is a heat release-endothermic curve diagram of the finished product obtained in Comparative Example 5.
  • Figure 15 is a heat release-endothermic curve diagram of the finished product obtained in Comparative Example 6;
  • the polyacrylamide used in the present invention is high molecular weight (700w-1400w) anionic, produced by Shanghai Aladdin Factory, product number P108471;
  • Expanded graphite is 300 mesh expanded graphite worms with 99% carbon content, produced by Qingdao Tengshengda Carbon Machinery Co., Ltd.;
  • Diatomite is produced from Jiapeng diatomite in Jilin province, 325 mesh.
  • the set mass ratio of sodium sulfate decahydrate, disodium hydrogen phosphate dodecahydrate, diatomaceous earth, polyacrylamide, sodium dodecylbenzene sulfonate and expanded graphite is 85:3:2:2:3:5,
  • the specific preparation is as follows:
  • the set mass ratio weigh out sodium sulfate decahydrate crystals, add disodium hydrogen phosphate dodecahydrate particles, add diatomaceous earth, add polyacrylamide dry powder and sodium dodecylbenzene sulfonate powder, and stir at room temperature 30min to obtain the mixture; then place it in a 50°C hot water bath and heat and stir for 30min, and place it in a heated ultrasonic cleaner at 50°C for 5 minutes to obtain a mixture A;
  • the set ratio weigh the expanded graphite with an expansion mesh of 300 meshes, put it into the bottom of an Erlenmeyer flask equipped with a vacuum device, slowly add the mixture A into the Erlenmeyer flask, stir evenly, and vacuum the container to negative After the pressure is -0.1MPa, the conical flask is sealed, the air is stopped, and after maintaining for 5 minutes, the conical flask is placed in a 50°C constant temperature water bath and heated for 30 minutes, and ultrasonicated in a heated ultrasonic cleaner at 50°C for 5 minutes, cooled, and demineralized Press to return the air to the container to obtain a composite phase change heat storage material.
  • Example 1 Compared with Example 1, the mass ratio of sodium sulfate decahydrate, disodium hydrogen phosphate dodecahydrate, diatomaceous earth, polyacrylamide, sodium dodecylbenzene sulfonate and expanded graphite is set to 85:3: 2:2:3:7. According to the set mass ratio described, the preparation process is the same as in Example 1.
  • Example 1 Compared with Example 1, the only difference is that expanded graphite is not added, and other materials, proportions and preparation process are the same as in Example 1.
  • the phase change material obtained in this case with a certain quality is recorded as sample 2 and filled in the metal foil mold. Perform infrared thermal imaging test together with sample 1 and sample 3.
  • the use of the expanded graphite can cooperate with the phase change regulator to help reduce the problem of exothermic closed loop, and further control the content of expanded graphite to avoid the occurrence of exothermic closed loop. In addition, It can improve the response speed of thermal energy and thermal conductivity.
  • the set mass ratio of sodium sulfate decahydrate, disodium hydrogen phosphate dodecahydrate, diatomaceous earth, polyacrylamide, sodium dodecylbenzene sulfonate and expanded graphite is 83:3:2:2: 3:7, the specific preparation process is different from Example 1:
  • the set ratio weigh out the crystals of sodium sulfate decahydrate, add disodium hydrogen phosphate dodecahydrate particles, add diatomaceous earth, add polyacrylamide dry powder and sodium dodecyl benzene sulfonate powder, and stir for 30 minutes at room temperature. Obtain a mixture; then place it in a 50°C hot water bath to heat and stir for 30 minutes, and place it in a heated ultrasonic cleaner at 50°C for 5 minutes to obtain a mixture A;
  • TA instruments DSC Q2000 was used to test the heat storage behavior of the material (its phase change latent heat is 121.6J ⁇ g -1 ), and the results are shown in Figure 5: a normal endothermic peak appears in the endothermic curve; the exothermic interval is 15-25°C, a normal exothermic peak without a closed loop curve appears in the exothermic curve, and the degree of subcooling is less than 10°C.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Thermal Sciences (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Central Heating Systems (AREA)

Abstract

本发明属于储热材料领域,具体公开了一种复合相变调节剂,其包括十二水合磷酸氢二钠、硅藻土、聚丙烯酰胺和十二烷基苯磺酸钠。本发明还提供了一种包含所述的复合相变调节剂的复合相变储热材料,以及还包含所述的复合相变储热材料的制备和应用。本发明发现,十二水合磷酸氢二钠、硅藻土、聚丙烯酰胺、十二烷基苯磺酸钠的四元活性成分联合具有协同性,可以有效协同改善相变材料相分离、过冷的问题,调控相变材料晶体的结晶行为,辅助改善相变材料的相变行为。本发明组分设置合理、加工工艺简单、可定向调控材料的储热行为,适应性强,便于大规模的规模化应用。

Description

一种复合相变调节剂及其复合相变储热材料的制备方法和应用 技术领域
本发明属于储热材料领域,具体涉及复合相变调节剂及其复合相变储热材料。
背景技术
在能源危机与环境污染双重压力下,提高能源利用效率与保护环境成为世界能源领域内的关注热点。针对大多数的能源都存在着间断性和不稳定性的问题,储热技术被证明是一种能有效提高能源利用率和环境友好型的能源利用方式。其通过特定的装置和特定的材料把热能储存起来,供需要时使用,可有效解决由于时间和地点限制以及供热和用热的不匹配、不均匀导致的能源利用率低、资源浪费等问题。储热材料对储热技术的发展起着关键的作用,是决定储热技术水平的重要因素。
十水硫酸钠发生相变可以储存热量,储热容量大,作为相变材料被广泛应用于储热行业。但是,十水硫酸钠发生相变时相分离严重,且水合盐结晶的成核问题导致过冷度高(>20℃),还存在易流动且导热系数低(0.544W·m -1·K -1)等问题。目前,主要通过采用添加水、相变调节剂的方式改善其相分离、过冷的问题,采用多孔基体(如:多孔金属、多孔矿物等)装载十水硫酸钠固定其形状并提高导热性能,制备定型复合相变储热材料。
技术问题
现有研究中采用调节剂虽能克服十水硫酸钠相分离严重、过冷度高等缺点,但是不能改善其相变(放热)过程的热传导稳定性与均匀性,即不能改变十水硫酸钠的储热行为,无法满足不同应用场合的需求,从而使十水硫酸钠的应用受到限制。因此,在克服其现有缺点的基础上,需定根据应用需求,定向调控十水硫酸钠的储热行为。
问题的解决方案
技术解决方案
本发明第一目的在于,提供一种复合相变调节剂。
本发明第二目的在于,提供一种包含所述的复合相变调节剂的复合相变储热材料。
本发明第三目的在于,提供所述的复合相变储热材料的制备方法。
本发明第四目的在于,提供所述的复合相变储热材料的应用。
一种复合相变调节剂,包括十二水合磷酸氢二钠、硅藻土、聚丙烯酰胺和十二烷基苯磺酸钠。
本发明发现,十二水合磷酸氢二钠、硅藻土、聚丙烯酰胺、十二烷基苯磺酸钠的四元活性成分联合具有协同性,可以有效协同改善相变材料相分离、过冷的问题,调控相变材料晶体的结晶行为,辅助改善相变材料的相变行为。
本发明人研究发现,对复合相变调节剂中的各成分的比例进行调控,有助于进一步提升各成分的协同效果。
作为优选,复合相变调节剂中,十二水合磷酸氢二钠、硅藻土、聚丙烯酰胺、十二烷基苯磺酸钠的质量比为2-4∶1-3∶1-3∶2-4;进一步优选为3∶2∶2∶3。
本发明还提供了一种复合相变储热材料,包括十水硫酸钠和所述的复合相变调节剂。
研究发现,本发明所述的复合相变调节剂和十水硫酸钠具有协同性,可以有效改善十水硫酸钠的相分离、过冷的问题;可以改变十水硫酸钠相变行为,避免放热闭环现象。
研究发现,控制十水硫酸钠、复合相变调节剂的比例,有助于进一步提升协同性,调控相变行为。
作为优选,十水硫酸钠的重量份为80-85份;复合相变调节剂的重量份为9-11份。
作为优选,所述的复合相变储热材料中,还包含多孔基底。所述的多孔基底可以为行业内所熟知的具有多孔特性的材料。优选的复合相变储热材料,包括多孔基底,以及分散在多孔基底中的十水硫酸钠和复合相变调节剂。研究发现,该优选的复合相变储热材料能够进一步改善十水硫酸钠的相分离、过冷的问题 ;进一步避免放热闭环现象。
作为优选,所述的多孔基底为膨胀石墨。
优选采用的膨胀石墨作为多孔基底,其丰富的孔隙结构与高导热性能的轻质碳骨架,可实现相变材料的无泄漏封装及复合相变储热材料的导热能力的大幅提升,为其在轻质建筑围护结构上的应用提供性能优势。
作为优选:多孔基底的重量份为5-10份。
进一步优选,多孔基底的重量份为7-10份。本发明人研究意外发现,所述比例下的多孔基底,配合所述的复合相变调节剂,可以显著改善相变行为,有效避免放热闭环现象;此外,在避免放热闭环的前提下,还能够改善热能响应速度和热传导能力。
本发明一种更优选的复合相变储热材料,所述的复合相变储热材料包括膨胀石墨,以及分散在膨胀石墨中的十水硫酸钠和复合相变调节剂;所述的复合相变调节剂包括质量比为3∶2∶2∶3的十二水合磷酸氢二钠、硅藻土、聚丙烯酰胺、十二烷基苯磺酸钠;十水硫酸钠、复合相变调节剂、膨胀石墨的质量比为:80-85∶9-11∶7-10。
本发明优选的复合相变储热材料,吸热温度区间为25-40℃,在吸热区间存在一个吸热峰;所述储热材料的放热温度区间为15-25℃,在放热温度区间存在1个放热峰,相变材料的过冷度不超过10℃。
本发明还提供了一种复合相变储热材料的制备方法,将十水硫酸钠和复合相变调节剂混合得到。
优选的制备方法,将十水硫酸钠和复合相变调节剂混合,随后再和多孔基底混合,即得。
进一步优选,所述的制备方法包括下述步骤:
步骤一
按设计的组分配取十水硫酸钠、十二水合磷酸氢二钠、硅藻土、聚丙烯酰胺、十二烷基苯磺酸钠、膨胀石墨;先在配取的十水硫酸钠中加入十二水合磷酸氢二钠、硅藻土、聚丙烯酰胺、十二烷基苯磺酸钠,搅拌均匀,在40-60℃下加热,得到混合物A(十水硫酸钠-十二水合磷酸氢二钠、硅藻土、聚丙烯酰胺、十 二烷基苯磺酸钠复合材料);
步骤二
先将步骤一配取膨胀石墨置于容器底部,再将步骤一所得混合物A均匀覆盖于膨胀石墨上并搅拌均匀,在负压条件下控制温度为40-60℃,得到所述复合相变储热材料。
研究发现,采用本发明所述的混料方法,能够降低制得的复合材料的放热闭环现象,改善制得的复合材料的过冷情况,此外,还能够改善热能响应速度和热传导能力。
作为优选,步骤一中,在40-60℃加热搅拌20-60min,优选为50℃下加热搅拌30min。
作为优选,步骤二中,所述的负压指压强小于或等于-0.1MPa。
作为优选,步骤二中,先将步骤一配取膨胀石墨置于容器底部,再将步骤一混合物A均匀覆盖于膨胀石墨上,抽真空至容器内气压小于等于-0.1MPa后,停止抽气,使容器保持负压状态静置后置于恒温水浴锅中于40-60℃维持30-50min,于超声处理3-8min后,冷却,去负压使空气返回容器中,取出容器中的混合物,得到复合相变储热材料。
作为优选,步骤二中,负压下静置的时间为2-10min。
作为优选,步骤二中,在40-60℃热水浴中搅拌10-20min,优选为50℃下加热搅拌15min。
本发明还提供了一种所述的复合相变储热材料的应用,其可应用于建筑围护结构中。例如,在太阳房、屋顶、墙体、取暖式地板等结构中起到调节室内环境舒适度的作用。
发明的有益效果
有益效果
1、本发明首次发现四元复配的十二水合磷酸氢二钠、硅藻土、聚丙烯酰胺、十二烷基苯磺酸钠具有良好的协同性,将其作为复合相变调节剂,能够协同解决相变材料(例如十水硫酸钠)的相分离、过冷的问题,辅助改善相变材料的相变行为。
2、本发明经过研究发现将十水硫酸钠与少量十二水合磷酸氢二钠、硅藻土、聚丙烯酰胺、十二烷基苯磺酸钠混合后,再采用多孔基底例如优选的膨胀石墨装载,可以改善相变材料结晶放热过程的不正常相变行为,克服相分离与高过冷度的缺点,同时所得到的复合相变储热材料由于膨胀石墨的碳质孔隙结构与相变材料的毛细作用力及表面张力作用,材料的相变易流动、导热系数低等问题得到解决,通过合理的组分设计后,用调节十水硫酸钠-十二水合磷酸氢二钠、硅藻土、聚丙烯酰胺、十二烷基苯磺酸钠复合材料、膨胀石墨中十水硫酸钠复合材料和膨胀石墨的质量比的手段即可调控十水硫酸钠放热相变行为,实现其相变行为正常化。
3、本发明通过合成不同质量比的十水硫酸钠-十二水合磷酸氢二钠、硅藻土、聚丙烯酰胺、十二烷基苯磺酸钠/膨胀石墨复合材料,调控十水硫酸钠的储热行为,制备储热行为定向可调的复合相变储热材料。本发明中利用膨胀石墨特殊的网状孔隙结构装载十水硫酸钠-十二水合磷酸氢二钠、硅藻土、聚丙烯酰胺、十二烷基苯磺酸钠复合材料,提升后者相变放热过程中的热传导速率,进而调节结晶过程中复合材料中十水硫酸钠的潜热传递,实现大幅度调控储热行为,满足更多场合使用的要求。同时本发明通过少量相变调节剂的选用,大大改善十水硫酸钠的相分离与过冷问题,有效保留十水硫酸钠的储热能力,这为提升十水硫酸钠的应用潜力、降低应用成本,提供了必要条件。
综上所述,本发明加工工艺简单、可定向调控材料的储热行为;有效提高了其储热能力,满足更多场合使用的要求。
对附图的简要说明
附图说明
附图1为实施例1所得成品的放热-吸热曲线图;
附图2为实施例2所得成品的放热-吸热曲线图;
附图3为实施例3所得成品的放热-吸热曲线图;
附图4为实施例4所得成品的放热-吸热曲线图;
附图5为实施例5所得成品的放热-吸热曲线图;
附图6为实施例6所得成品的放热-吸热曲线图;
附图7为实施例7所得成品的放热-吸热曲线图;
附图8为实施例8所得成品的放热-吸热曲线图;
附图9为对比例1、实施例3与实施例2所得材料的红外热像灰度图及温度曲线;
附图10为对比例1所得成品的放热-吸热曲线图;
附图11为对比例2所得成品的放热-吸热曲线图;
附图12为对比例3所得成品的放热-吸热曲线图。
附图13为对比例4所得成品的放热-吸热曲线图;
附图14为对比例5所得成品的放热-吸热曲线图;
附图15为对比例6所得成品的放热-吸热曲线图;
发明实施例
本发明的实施方式
下面的实施例仅为了进一步说明本发明,而不是限制本发明。本发明可以按发明内容所述的任一种方式实施。
本发明所用聚丙烯酰胺为高分子量(700w-1400w)阴离子型,上海阿拉丁厂产,产品编号P108471;
膨胀石墨为300目膨胀石墨蠕虫,含碳量之99%,产自青岛腾盛达碳素机械有限公司;
硅藻土产自吉林省嘉鹏硅藻土,325目。
实施例1:
十水硫酸钠、十二水合磷酸氢二钠、硅藻土、聚丙烯酰胺、十二烷基苯磺酸钠与膨胀石墨的设定质量比为85∶3∶2∶2∶3∶5,具体制备如下:
按所述的设置质量比,称取十水硫酸钠结晶,加入十二水合磷酸氢二钠颗粒,添加硅藻土,加入聚丙烯酰胺干粉和十二烷基苯磺酸钠粉末,常温下搅拌30min,得到混合物;然后置于50℃热水浴中加热并搅拌30min,置于加热型超声波清洗器中50℃维持5min,得到混合物A;
按设定的比例,称取膨胀目数为300目的膨胀石墨,放入配置有抽真空装置的 锥形瓶底部,将混合物A缓慢加入至锥形瓶中,搅拌均匀,将容器抽真空至负压-0.1MPa后,将锥形瓶密封,停止抽气,维持5min后,将锥形瓶置于50℃恒温水浴中加热30min,于加热型超声波清洗器中50℃超声5min,冷却,去负压,使空气返回容器中,得到复合相变储热材料。采用TA instruments DSC Q2000测试材料的储热行为(其相变潜热为147.6J·g -1),结果如图1所示:吸热曲线中出现了1个正常吸热峰;放热区间为20-25℃,放热曲线中出现了1个具有较小闭环的放热峰,过冷度小于10℃。
实施例2:
与实施例1相比,将十水硫酸钠、十二水合磷酸氢二钠、硅藻土、聚丙烯酰胺、十二烷基苯磺酸钠与膨胀石墨的质量比设定为85∶3∶2∶2∶3∶7。按所述的设置质量比,制备过程同实施例1。
采用TA instruments DSC Q2000测试材料的储热行为(其相变潜热为132.7J·g -1),结果如图2所示:在吸热曲线中出现了1个正常吸热峰;放热区间为15-25℃,在放热曲线中出现了1个无闭环曲线的正常放热峰,过冷度小于10℃。采用红外热像仪Fluke Thermography TiS50测试其温度变化情况结果如图9所示。测试方法为:将所得复合相变材料(样品3)与对比例1中纯相变材料(样品1)、实施例3中混合物材料(样品2)装金属锡纸模具内置于55-70℃矩形恒温板上,并跟随拍摄红外热像图。第一次记录数据时样品3的中心温度T c=23.6℃比样品1T c=17.9℃、样品2T c=17.5℃要高,样品3平均温度T a=25.5℃比样品1T a=20.2℃、样品2T a=20.9℃更高,样品3对热能的响应速度更快;且温度曲线表明样品3的升温与降温趋势更明显,热传导能力更强。因而较样品1、样品2而言,样品3具有更好的热能响应速度和热传导能力。
实施例3
和实施例1相比,区别仅在于,不添加膨胀石墨,其他物料、比例和制备过程同实施例1;取一定质量该案例制得的相变材料记为样品2装填于金属锡纸模具内,与样品1、样品3一同进行红外热像测试。
采用TA instruments DSC Q2000测试该案例制得的相变材料的储热行为(其相变潜热为142.2J·g -1),结果如图3所示:在吸热曲线中出现了1个吸热峰;放热区间为20-25℃,在放热曲线中出现了1个有较大闭环的放热峰,过冷度小于10℃。
通过实施例1~3可知,所述的膨胀石墨的使用,能够配合所述的相变调节剂,辅助降低放热闭环问题,进一步控制膨胀石墨的含量,能够避免放热闭环出现,此外,还能够改善热能响应速度和热传导能力。
实施例4
十水硫酸钠、十二水合磷酸氢二钠、硅藻土、聚丙烯酰胺、十二烷基苯磺酸钠与膨胀石墨的设定质量比同实施例1为83∶3∶2∶2∶3∶7,具体制备流程不同于实施例1:
按设定的比例,称取十水硫酸钠结晶,加入十二水合磷酸氢二钠颗粒,添加硅藻土,加入聚丙烯酰胺干粉和十二烷基苯磺酸钠粉末,常温下搅拌30min,得到混合物;然后置于50℃热水浴中加热并搅拌30min,置于加热型超声波清洗器中50℃维持5min,得到混合物A;
按设定的比例,称取膨胀目数为300目的膨胀石墨,放入锥形瓶底部,将混合物A缓慢加入至锥形瓶中,搅拌均匀,直接将锥形瓶密封,瓶置于50℃恒温水浴中加热30min,于加热型超声波清洗器中50℃超声5min,冷却,得到复合相变储热材料。采用TA instruments DSC Q2000测试材料的储热行为(其相变潜热为53.38J·g -1),结果如图4所示:在吸热曲线中出现了1个正常吸热峰,放热区间为15-25℃,在放热曲线中出现了1个无闭环曲线的正常放热峰,过冷度小于10℃;但吸、放热峰峰高高降低,峰面积大大减少。和实施例2相比,未采用本发明的方法,制得的材料的相变潜热有所下降。
实施例5:
十水硫酸钠、相变调节剂与膨胀石墨的设定质量比为83∶10∶7,其中相变调节剂 组分比例按十二水合磷酸氢二钠∶硅藻土∶聚丙烯酰胺∶十二烷基苯磺酸钠=2.5∶2.5∶2.5∶2.5,按所述的设置质量比,制备过程同实施例1。
采用TA instruments DSC Q2000测试材料的储热行为(其相变潜热为121.6J·g -1),结果如图5所示:在吸热曲线中出现了1个正常吸热峰;放热区间为15-25℃,在放热曲线中出现了1个无闭环曲线的正常放热峰,过冷度小于10℃。
实施例6:
十水硫酸钠、相变调节剂与膨胀石墨的设定质量比同实施例3为:83∶10∶7,其中相变调节剂组分比例按十二水合磷酸氢二钠∶硅藻土∶聚丙烯酰胺∶十二烷基苯磺酸钠=2.5∶2∶2.5∶3,按所述的设置质量比,制备过程同实施例1。
采用TA instruments DSC Q2000测试材料的储热行为(其相变潜热为118.3J·g -1),结果如图6所示:在吸热曲线中出现了1个正常吸热峰;放热区间为15-25℃,在放热曲线中出现了1个无闭环曲线的正常放热峰,过冷度小于10℃。
实施例7:
十水硫酸钠、相变调节剂与膨胀石墨的设定质量比为83∶9∶8,其中相变调节剂组分比例同实施例2按十二水合磷酸氢二钠∶硅藻土∶聚丙烯酰胺∶十二烷基苯磺酸钠=3∶2∶2∶3,按所述的设置质量比,制备过程同实施例1。
采用TA instruments DSC Q2000测试材料的储热行为(其相变潜热为117.9J·g -1),结果如图7所示:在吸热曲线中出现了1个正常吸热峰;放热区间为15-25℃,在放热曲线中出现了1个无闭环曲线的正常放热峰,过冷度小于10℃。
实施例8:
十水硫酸钠、相变调节剂与膨胀石墨的设定质量比为80∶11∶9,其中相变调节剂组分比例按十二水合磷酸氢二钠∶硅藻土∶聚丙烯酰胺∶十二烷基苯磺酸钠=3∶2∶2∶3,按所述的设置质量比,制备过程同实施例1。
采用TA instruments DSC Q2000测试材料的储热行为(其相变潜热为99.01J·g -1),结果如图8所示:在吸热曲线中出现了1个正常吸热峰;放热区间为15-25℃ ,在放热曲线中出现了1个无闭环曲线的正常放热峰,过冷度小于10℃。
对比例1:
采用TA instruments DSC Q2000测试十水硫酸钠的储热行为(其相变潜热为169.3J·g -1),结果如图10所示:在吸热曲线中出现了1个吸热峰;放热区间为0-10℃,在放热曲线中出现了1个具有大闭环的放热峰,相变材料过冷度大于25℃。此外,十水硫酸钠的红外热像测试结果见图9。
对比例2
和实施例1相比,区别仅在于,不添加复合相变调节剂,其他物料比例为十水硫酸钠∶膨胀石墨=93∶7。
采用TA instruments DSC Q2000测试该案例的复合相变材料的储热行为(其相变潜热为146.4J·g -1),结果如图11所示:在吸热曲线中出现了1个吸热峰;无放热曲线,说明其过冷度大于30℃。
对比例3
和实施例1相比,区别在于,不添加复合相变调节剂中的十二水磷酸氢二钠,其他物料比例为十水硫酸钠∶硅藻土∶聚丙烯酰胺∶十二烷基苯磺酸钠∶膨胀石墨=86∶2∶2∶3∶7和制备过程同实施例1。
采用TA instruments DSC Q2000测试该案例的复合相变材料的储热行为(其相变潜热为48.97J·g -1),结果如图12所示:在吸热曲线中出现了1个吸热峰;放热区间为0-10℃,放热曲线中出现了2个放热峰,无闭环,过冷度大于25℃。
对比例4
和实施例1相比,区别在于,不添加复合相变调节剂中的十二烷基苯磺酸钠,其他物料比例为十水硫酸钠∶十二水磷酸氢二钠∶硅藻土∶聚丙烯酰胺∶膨胀 石墨=86∶3∶2∶2∶7和制备过程同实施例1。
采用TA instruments DSC Q2000测试该案例的复合相变材料的储热行为(其相变潜热为93.08J·g -1),结果如图13所示:在吸热曲线中出现了1个吸热峰,吸热峰峰高较实施例2低,其吸热峰峰面积(相变潜热)经分析较实施例2降低30%,储热能力降低明显;放热区间为10-25℃,在放热曲线中出现了1个无闭环曲线的正常放热峰,过冷度小于10℃。
对比例5
和实施例1相比,区别在于,不添加复合相变调节剂中的十二水磷酸氢二钠和十二烷基苯磺酸钠,其他物料比例为十水硫酸钠∶∶硅藻土∶聚丙烯酰胺∶膨胀石墨=89∶2∶2∶7和制备过程同实施例1。
采用TA instruments DSC Q2000测试该案例的复合相变材料的储热行为(其相变潜热为67.47J·g -1),结果如图14所示:在吸热曲线中出现了1个吸热峰,峰面积(相变潜热)较同等十水硫酸钠含量大大减小;放热区间为5-15℃,在放热曲线中出现了1个无闭环曲线的正常放热峰,过冷度大于15℃。
对比例6
和实施例1相比,区别在于,仅添加复合相变调节剂中的硅藻土,其物料比例为十水硫酸钠∶∶硅藻土∶膨胀石墨=91∶2∶7和制备过程同实施例1。
采用TA instruments DSC Q2000测试该案例的复合相变材料的储热行为(其相变潜热为18.44J·g -1),结果如图15所示:在吸热曲线中出现了1个吸热峰,峰面积(相变潜热)较同等十水硫酸钠含量大大减小;放热区间为0-15℃,在放热曲线中出现了1个无闭环曲线的正常放热峰,过冷度大于15℃。

Claims (14)

  1. 一种复合相变调节剂,其特征在于:包括十二水合磷酸氢二钠、硅藻土、聚丙烯酰胺和十二烷基苯磺酸钠。
  2. 如权利要求1所述的复合相变调节剂,其特征在于:十二水合磷酸氢二钠、硅藻土、聚丙烯酰胺、十二烷基苯磺酸钠的质量比为2-4∶1-3∶1-3∶2-4。
  3. 如权利要求1所述的复合相变调节剂,其特征在于:十二水合磷酸氢二钠、硅藻土、聚丙烯酰胺、十二烷基苯磺酸钠的质量比为3∶2∶2∶3。
  4. 一种复合相变储热材料,其特征在于:包括十水硫酸钠和权利要求1-3任一项所述的复合相变调节剂。
  5. 如权利要求4所述的复合相变储热材料,其特征在于:十水硫酸钠的重量份为80-85份;
    复合相变调节剂的重量份为8-11份。
  6. 如权利要求4或5所述的复合相变储热材料,其特征在于:还包含多孔基底。
  7. 如权利要求6所述的复合相变储热材料,其特征在于:所述的多孔基底为膨胀石墨。
  8. 如权利要求6所述的复合相变储热材料,其特征在于:多孔基底的重量份为5-10份。
  9. 如权利要求8所述的复合相变储热材料,其特征在于:多孔基底的重量份为7-10份。
  10. 一种如权利要求4-9任一项所述的复合相变储热材料的制备方法,其特征在于,将十水硫酸钠和复合相变调节剂混合得到。
  11. 如权利要求10所述的复合相变储热材料的制备方法,其特征在于,将十水硫酸钠和复合相变调节剂,随后再和多孔基底混合,即得。
  12. 如权利要求11所述的复合相变储热材料的制备方法,其特征在于 ,包括下述步骤:
    步骤一
    按设计的组分配取十水硫酸钠、十二水合磷酸氢二钠、硅藻土、聚丙烯酰胺、十二烷基苯磺酸钠、膨胀石墨;先在配取的十水硫酸钠中加入十二水合磷酸氢二钠、硅藻土、聚丙烯酰胺、十二烷基苯磺酸钠,搅拌均匀,在40-60℃下加热,得到混合物A;
    步骤二
    先将步骤一配取膨胀石墨置于容器底部,再将步骤一所得混合物A均匀覆盖于膨胀石墨上,在负压条件下控制温度为40-60℃,得到所述复合相变储热材料。
  13. 如权利要求12所述的复合相变储热材料的制备方法,其特征在于,步骤二中,先将步骤一配取膨胀石墨置于容器底部,再将步骤一混合物A均匀覆盖于膨胀石墨上,抽真空至容器内气压小于等于-0.1MPa后,停止抽气,使容器保持负压状态静置后置于恒温水浴锅中于40-60℃维持30-50min,于超声处理3-8min后,冷却,去负压使空气返回容器中,取出容器中的混合物,得到复合相变储热材料。
  14. 一种权利要求4-9任一项所述的复合相变储热材料,或权利要求10-13任一项所述制备方法制得的复合相变储热材料的应用,其特征在于,应用于建筑围护结构。
PCT/CN2019/126846 2019-09-29 2019-12-20 一种复合相变调节剂及其复合相变储热材料的制备方法和应用 WO2021056870A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910934014.3A CN112574716B (zh) 2019-09-29 2019-09-29 一种复合相变调节剂及其复合相变储热材料的制备方法和应用
CN201910934014.3 2019-09-29

Publications (1)

Publication Number Publication Date
WO2021056870A1 true WO2021056870A1 (zh) 2021-04-01

Family

ID=75110993

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/126846 WO2021056870A1 (zh) 2019-09-29 2019-12-20 一种复合相变调节剂及其复合相变储热材料的制备方法和应用

Country Status (2)

Country Link
CN (1) CN112574716B (zh)
WO (1) WO2021056870A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113555065A (zh) * 2021-06-04 2021-10-26 南方科技大学 一种三元相图绘制方法
CN114836176A (zh) * 2022-04-13 2022-08-02 合肥学院 一种定型高导热复合相变材料及其制备方法
CN115368876A (zh) * 2022-08-31 2022-11-22 西北大学 一种十二水合磷酸氢二钠复合相变蓄热材料及制备方法
CN115467439A (zh) * 2022-08-31 2022-12-13 河北工业大学 复层相变通风墙和建筑物
CN117050510A (zh) * 2023-09-27 2023-11-14 中国矿业大学 一种低放热聚氨酯泡沫材料及其制备方法与应用

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1896173A (zh) * 2006-06-24 2007-01-17 浙江华特实业集团华特化工有限公司 膜包覆多孔吸附型无机相变复合材料生产方法
CN102173114A (zh) * 2010-12-10 2011-09-07 北京工业大学 一种相变储能热垫及其制备方法
CN102827588A (zh) * 2012-09-19 2012-12-19 杨宁 一种节能控温相变材料
CN103242806A (zh) * 2013-05-08 2013-08-14 杭州鲁尔能源科技有限公司 无机盐相变蓄冷材料
CN103525373A (zh) * 2012-07-05 2014-01-22 中国科学院大连化学物理研究所 一种复合定形相变储热材料及其制备方法
CN105950120A (zh) * 2016-06-17 2016-09-21 北京宇田相变储能科技有限公司 一种用于太阳能蓄热的相变储能材料
CN106928908A (zh) * 2017-02-19 2017-07-07 广州市芯检康生物科技有限公司 一种新型的气凝胶多功能材料及其制备方法
CN107201215A (zh) * 2017-07-06 2017-09-26 贺迈新能源科技(上海)有限公司 一种低温无机相变储能材料及其制备方法
CN108531136A (zh) * 2018-04-08 2018-09-14 曹斌斌 一种高效复合相变材料及其制备方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1136397A (en) * 1981-03-19 1982-11-30 Gaston J. Despault Thermal energy storage
CN1255501C (zh) * 2003-07-16 2006-05-10 中国科学院大连化学物理研究所 一种Na2HPO4·12H2O储热材料及其制备方法
CN100334179C (zh) * 2006-03-23 2007-08-29 南京大学 太阳能热水器相变储热材料及其制备方法
CN100595253C (zh) * 2008-02-15 2010-03-24 上海海事大学 一种相变蓄热材料及其制备方法
CN103045175A (zh) * 2012-12-18 2013-04-17 天津科技大学 一种高性能中温相变储能材料及其制备方法
CN103194179A (zh) * 2013-04-01 2013-07-10 河南理工大学 一种复合相变蓄热材料及其制备方法
CN104004500A (zh) * 2014-05-20 2014-08-27 西北农林科技大学 一种低温无机相变蓄热材料及制备方法
CN104357020B (zh) * 2014-11-28 2017-08-25 巴彦淖尔市卓越建筑材料有限公司 一种纳米改性无机室温相变储热材料及其制备方法
CN104479634A (zh) * 2014-12-18 2015-04-01 青海大学 一种低温相变储能材料
CN105238363B (zh) * 2015-10-28 2018-12-25 中国科学院青海盐湖研究所 一种相变储能介质
CN105623621A (zh) * 2016-02-25 2016-06-01 北京佳华泰科技有限公司 无机相变材料及其制备方法、用途和试剂盒
CN105733517B (zh) * 2016-03-17 2019-02-22 江苏省农业科学院 一种农用低温相变蓄热材料及制备方法
CN105694823A (zh) * 2016-04-08 2016-06-22 新疆农业大学 一种适用于温室应用的磷酸氢二钠蓄热体系的制备方法
CN108531138A (zh) * 2018-04-23 2018-09-14 西北大学 低过冷度四元十二水磷酸氢二钠基相变蓄热材料

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1896173A (zh) * 2006-06-24 2007-01-17 浙江华特实业集团华特化工有限公司 膜包覆多孔吸附型无机相变复合材料生产方法
CN102173114A (zh) * 2010-12-10 2011-09-07 北京工业大学 一种相变储能热垫及其制备方法
CN103525373A (zh) * 2012-07-05 2014-01-22 中国科学院大连化学物理研究所 一种复合定形相变储热材料及其制备方法
CN102827588A (zh) * 2012-09-19 2012-12-19 杨宁 一种节能控温相变材料
CN103242806A (zh) * 2013-05-08 2013-08-14 杭州鲁尔能源科技有限公司 无机盐相变蓄冷材料
CN105950120A (zh) * 2016-06-17 2016-09-21 北京宇田相变储能科技有限公司 一种用于太阳能蓄热的相变储能材料
CN106928908A (zh) * 2017-02-19 2017-07-07 广州市芯检康生物科技有限公司 一种新型的气凝胶多功能材料及其制备方法
CN107201215A (zh) * 2017-07-06 2017-09-26 贺迈新能源科技(上海)有限公司 一种低温无机相变储能材料及其制备方法
CN108531136A (zh) * 2018-04-08 2018-09-14 曹斌斌 一种高效复合相变材料及其制备方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113555065A (zh) * 2021-06-04 2021-10-26 南方科技大学 一种三元相图绘制方法
CN114836176A (zh) * 2022-04-13 2022-08-02 合肥学院 一种定型高导热复合相变材料及其制备方法
CN114836176B (zh) * 2022-04-13 2024-01-26 合肥学院 一种定型高导热复合相变材料及其制备方法
CN115368876A (zh) * 2022-08-31 2022-11-22 西北大学 一种十二水合磷酸氢二钠复合相变蓄热材料及制备方法
CN115467439A (zh) * 2022-08-31 2022-12-13 河北工业大学 复层相变通风墙和建筑物
CN115368876B (zh) * 2022-08-31 2023-12-26 西北大学 一种十二水合磷酸氢二钠复合相变蓄热材料及制备方法
CN115467439B (zh) * 2022-08-31 2024-05-28 河北工业大学 复层相变通风墙和建筑物
CN117050510A (zh) * 2023-09-27 2023-11-14 中国矿业大学 一种低放热聚氨酯泡沫材料及其制备方法与应用

Also Published As

Publication number Publication date
CN112574716B (zh) 2022-02-25
CN112574716A (zh) 2021-03-30

Similar Documents

Publication Publication Date Title
WO2021056870A1 (zh) 一种复合相变调节剂及其复合相变储热材料的制备方法和应用
CN109337653B (zh) 一种分段储热复合相变材料及其制备方法
Li et al. Review on tailored phase change behavior of hydrated salt as phase change materials for energy storage
WO2020253094A1 (zh) 一种氮化硼纳米管气凝胶/相变导热复合材料及其制备方法
CN102827583B (zh) 相变复合材料及其制备方法
CN106905928B (zh) 具有超高热导率的封装式相变储能复合材料及其加工工艺
WO2017020574A1 (zh) 一种稳定的无机水合盐基相变储热材料及其制备方法
CN101671136A (zh) 一种基于相变蓄热的新型储能保温砂浆的制备方法
CN106967390A (zh) 一种低温无机复合相变储热材料及其制备方法
CN112574718B (zh) 一种中低温用水合盐/改性膨胀石墨定型相变蓄热材料及其制备方法
CN106118610B (zh) 聚乙二醇/石墨烯定型相变材料的制备方法
CN105647482A (zh) 一种三元脂肪酸/改性膨胀蛭石复合相变储能材料
CN111560236A (zh) 一种相变储热材料及其制备方法和应用
Man et al. Review on the thermal property enhancement of inorganic salt hydrate phase change materials
CN101747868B (zh) 一种复合相变储能材料及其制备方法
CN113429941A (zh) 一种复合相变材料及其制备方法
CN114214039A (zh) 一种水合盐多孔材料复合相变板材及其制备方法
Zhu et al. Mechanically strong hectorite aerogel encapsulated octadecane as shape-stabilized phase change materials for thermal energy storage and management
CN111440598A (zh) 一种冷暖两用的分段式相变储能材料及其制备方法和应用
CN104650815A (zh) 一种复合定形相变储冷材料及其制备方法
CN101798497A (zh) 复合相变储能材料及其制备方法
CN111073601A (zh) 一种高强导热相变储能材料及其制备方法
CN105567174B (zh) 一种矿物基化学储热复合材料及其制备方法
CN107523266B (zh) 一种环保型节能建筑材料的制备方法
CN106892589A (zh) 一种可温度调控软瓷材料的加工方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19946856

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19946856

Country of ref document: EP

Kind code of ref document: A1