WO2017020574A1 - 一种稳定的无机水合盐基相变储热材料及其制备方法 - Google Patents

一种稳定的无机水合盐基相变储热材料及其制备方法 Download PDF

Info

Publication number
WO2017020574A1
WO2017020574A1 PCT/CN2016/073904 CN2016073904W WO2017020574A1 WO 2017020574 A1 WO2017020574 A1 WO 2017020574A1 CN 2016073904 W CN2016073904 W CN 2016073904W WO 2017020574 A1 WO2017020574 A1 WO 2017020574A1
Authority
WO
WIPO (PCT)
Prior art keywords
storage material
phase change
hydrated salt
heat storage
change heat
Prior art date
Application number
PCT/CN2016/073904
Other languages
English (en)
French (fr)
Inventor
刘硕
曹志华
郑辉
王鋐
Original Assignee
江苏启能新能源材料有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏启能新能源材料有限公司 filed Critical 江苏启能新能源材料有限公司
Publication of WO2017020574A1 publication Critical patent/WO2017020574A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/02Materials undergoing a change of physical state when used
    • C09K5/06Materials undergoing a change of physical state when used the change of state being from liquid to solid or vice versa

Definitions

  • the invention relates to the field of energy-saving and environmentally-friendly materials, in particular to a stable inorganic hydrated salt-based phase change heat storage material and a preparation method thereof.
  • the phase change material is a material having a high latent heat of phase change and a long charge and discharge cycle life.
  • the use of phase change materials to absorb or release a large amount of heat during the phase change process can achieve temperature control and energy storage purposes. This has important applications in the fields of spacecraft temperature control, waste heat recovery, and building temperature regulation. Especially with the increasing distribution of energy sources and application methods, the role of phase change materials in solving the mismatch between space supply and demand in space and time has attracted more and more attention.
  • inorganic hydrated salt phase change materials are a kind of phase change materials that have attracted much attention. Compared with organic phase change materials, they have the advantages of high thermal conductivity (about 0.5 W/m ⁇ °C), large volumetric energy storage density (about 450 kJ/L), non-toxicity, and non-flammability. And its cost is low and the preparation is simple. They have potential applications in the fields of solar energy utilization, waste heat recovery, and cooling and temperature control of buildings, electronic equipment, and human bodies.
  • the phase transition supercooling tends to be large (for example, the supercooling degree of sodium sulfate decahydrate is about 10 ° C)
  • the temperature control effect of the pure inorganic hydrated salt phase change material has a great hysteresis, and it is difficult to satisfy most of the The actual needs of the occasion.
  • the inorganic hydrated salt is melted into an aqueous solution of an inorganic salt
  • the inorganic salt since the inorganic salt is not completely dissolved in the crystallization water and settles to the bottom of the container, a part of the inorganic salt cannot be combined with water to form a hydrated salt during crystallization.
  • the irreversibility of this phase change process leads to the continuous decrease of the active components of these materials as the number of phase change cycles increases, so the actual properties and lifetime of the materials are lower.
  • the thickener is further used to increase the viscosity of the system after melting to ensure good dispersibility of solid particles (such as sodium sulfate).
  • solid particles such as sodium sulfate.
  • These thickeners are mainly organic substances which can form a spatial network structure by a gel reaction, such as sodium carboxymethylcellulose, starch and the like.
  • the stability of this spatial network structure and the practical effects of these thickeners depend heavily on the precise regulation of thickener concentration, system temperature and pH, etc. Sex, the process has a certain complexity.
  • the present invention discloses a stable inorganic hydrated salt-based phase change energy storage material.
  • This material has a degree of subcooling of less than 0.5 ° C by selecting a suitable nucleating agent.
  • a novel anti-phase separation method has been developed, which greatly improves the cycle life of the system by using a stable low-density porous material as a phase separation preventing agent.
  • the method is stable and reliable, and the process is simple, and is suitable for mass production.
  • the phase change temperature of the phase change material developed is 20-30 °C, which is suitable for the fields of building temperature control, waste heat recovery, human body cooling and electronic equipment cooling.
  • the object of the present invention is to provide a phase transition temperature of 20-30 ° C, which is suitable for stable inorganic hydration in the fields of building temperature control, waste heat recovery, human body cooling and electronic equipment cooling, etc., in order to overcome the defects of the prior art mentioned above.
  • Salt-based phase change heat storage material and preparation method thereof is to provide a phase transition temperature of 20-30 ° C, which is suitable for stable inorganic hydration in the fields of building temperature control, waste heat recovery, human body cooling and electronic equipment cooling, etc.
  • a stable inorganic hydrated salt-based phase change heat storage material characterized by comprising the following mass percentage composition:
  • the inorganic energy storage material is one or a eutectic salt of sodium sulfate decahydrate, calcium chloride hexahydrate, sodium carbonate decahydrate and sodium dihydrogen phosphate dodecahydrate.
  • the nucleating agent is at least one of sodium hexametaphosphate, sodium silicate silicate, sodium pyrophosphate and borax or a combination thereof.
  • the physical phase separation agent is a low density porous material or a floc material having an open cell structure.
  • the physical phase separation agent comprises one or more of asbestos, ceramic wool, glass wool, slag wool, rock wool, non-woven fabric, cotton, porous graphite, silk cotton, and sponge.
  • the method for preparing a stable inorganic hydrated salt-based phase change heat storage material is characterized in that the method comprises the steps of: adding an inorganic energy storage material and a nucleating agent to water in proportion, and stirring in a water bath environment of 40-60 ° C Until a uniform transparent solution is formed; then the phase separation preventing agent is added to the solution, and the mixture is uniformly stirred.
  • the nucleating agent can reduce the activation energy of the crystallization reaction of the inorganic salt and water, thereby reducing the degree of subcooling of the phase change material to less than 0.5 °C.
  • the physical phase separation agent with open-cell structure can form a stable and open space porous structure in water, effectively preventing the undissolved solid particles after the phase change material is melted. Settling, agglomeration and growth of (such as sodium sulfate) ensure the reversibility and cycle stability of the material phase transition.
  • the porous structure is an intrinsic structure of the phase separation preventing agent, and is insensitive to conditions such as pH, temperature and concentration of the system, and does not require precise control of the process conditions. Therefore, the porous structure is widely adaptable and convenient for mass production.
  • the present invention has the following advantages:
  • the phase change energy storage material provided by the invention has a phase transition temperature of 20-30 ° C, a subcooling degree of less than 0.5 ° C, a latent heat of phase change of 150 kJ/kg, and almost no thermal performance degradation of the charge and discharge heat cycle for more than 500 times.
  • the physical phase separation agent provided by the invention is stable and reliable, simple to use, wide in adaptability, and suitable for large-scale production.
  • phase change material provided by the invention is non-toxic and non-flammable, and is suitable for the field of ice pack for human body cooling, heating or temperature control of buildings, and cooling of electronic equipment.
  • Figure 1 is a flow chart of the method of the present invention.
  • the inorganic energy storage material namely inorganic hydrated salt sodium sulfate decahydrate 80mg, nucleating agent sodium hexametaphosphate 10mg
  • inorganic energy storage material namely inorganic hydrated salt sodium sulfate decahydrate 80mg, nucleating agent sodium hexametaphosphate 10mg
  • 10 mg of anti-phase separation agent rock wool is added to the solution, and the phase change material is obtained by stirring uniformly.
  • the product has a phase transition temperature of 20 ° C, a subcooling degree of less than 0.5 ° C, a latent heat of 160 kJ / Kg, has been cycled 500 times without performance degradation, and the expected cycle life can reach thousands of times.
  • the inorganic energy storage material namely inorganic hydrated salt sodium hypocarbonate 95mg, nucleating agent sodium pyrophosphate 0.25mg, is added to the water in proportion and stirred in a water bath environment of 40-60 ° C until a homogeneous molten mixture is formed; 4.75 mg of rock wool was added to the solution, and the phase change material was obtained by stirring uniformly.
  • the product has a phase transition temperature of 23 ° C, a subcooling degree of less than 0.5 ° C, a latent heat of 170 kJ / Kg, has been cycled 500 times without performance degradation, and the expected cycle life can reach thousands of times.
  • the inorganic energy storage material that is, the inorganic hydrated salt calcium chloride hexahydrate 89mg, the nucleating agent sodium silicate sodium 10mg, is added to the water in proportion, and stirred in a water bath environment of 40-60 ° C until a homogeneous molten mixture is formed; 1 mg of phase separator rock wool was added to the solution, and the phase change material was obtained by stirring uniformly.
  • the product has a phase transition temperature of 28 ° C, a subcooling degree of less than 0.5 ° C, a latent heat of 150 kJ / Kg, has been cycled 500 times without performance degradation, and the expected cycle life can reach thousands of times.
  • the most important feature is to use a physical phase separation agent, and the physical phase separation agent having an open pore structure can form a stable and open space porous structure in water. It effectively prevents the sedimentation, aggregation and growth of undissolved solid particles (such as sodium sulfate) after melting of the phase change material, ensuring the reversibility and cycle stability of the material phase transition.
  • the porous structure is an intrinsic structure of the phase separation preventing agent, and is insensitive to conditions such as pH, temperature and concentration of the system, and does not require precise control of the process conditions. Therefore, the porous structure is widely adaptable and convenient for mass production.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Thermal Sciences (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Building Environments (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

本发明涉及一种稳定的无机水合盐基相变储热材料及其制备方法,包括以下质量百分比的组成:无机储能材料80-95%;成核剂0.25-10%;物理防相分离剂1-10%。将无机储能材料、成核剂按比例加入水中,并在40-60℃水浴环境中搅拌,直至形成均匀透明溶液;再将防相分离剂加入此溶液中,搅拌均匀即可。与现有技术相比,本发明通过采用新型的物理防相分离剂改善无机水合盐相变材料体系的循环稳定性,材料经过充放热循环500次以上几乎无热性能衰减。该类防相分离剂使用简单、适用性广,适合用于大规模生产。

Description

一种稳定的无机水合盐基相变储热材料及其制备方法 技术领域
本发明涉及节能环保材料领域,尤其指一种稳定的无机水合盐基相变储热材料及其制备方法。
背景技术
相变材料是一种具有较高的相变潜热和较长的充放热循环寿命的材料。利用相变材料在相变过程吸收或释放大量热量的特性,可以实现控温和储能目的。这在航天设备控温、余热回收、建筑物调温等领域有重要应用。特别是随着能源的来源和应用方式越来越具有分布式的特征,相变材料对解决能量供需在空间和时间上的不匹配上的作用越来越引起人们的重视。
在中低温控温领域,无机水合盐相变材料是一种备受关注的相变材料。相比于有机相变材料,它们具有导热系数(约0.5W/m·℃)高、体积储能密度(约450kJ/L)大、无毒、不易燃等优点。且其成本低廉、制备简单。它们在太阳能利用、余热回收及建筑物、电子设备和人体等的降温和控温等领域具有应用潜力。然而,由于其相变过冷度往往较大(如十水硫酸钠的过冷度为约10℃),单纯的无机水合盐相变材料的控温效果具有极大滞后性,难以满足大多数场合的实际需求。同时,在无机水合盐融化变成无机盐的水溶液的过程中,由于无机盐不能完全溶解于其结晶水中而沉降至容器底部,导致在结晶过程中部分无机盐不能与水结合形成水合盐。这种相变过程的不可逆性导致了这些材料有效成分随着相变循环次数增加而不断减少,因而材料实际性能和寿命均较低。
通常,人们通过引入成核剂来降低无机水合盐的结晶反应活化能,从而降低其过冷度。同时,进一步利用增稠剂增加体系融化后的粘度以保证不能溶解的固体颗粒(如硫酸钠等)具有良好分散性。这些增稠剂主要为可通过凝胶反应形成空间网络结构的有机物,如羧甲基纤维素钠、淀粉等。然而,由于涉及到微观层面的化学反应,这种空间网络结构的稳定性和这些增稠剂的实际效果严重依赖于对增稠剂浓度、体系温度和PH等的精确调控,其作用具有不易重复性,工艺过程具有一定的复杂性。
本发明公布了一种稳定的无机水合盐基相变储能材料。通过选择合适的成核剂,这种材料的过冷度小于0.5℃。同时,开发了新颖的防相分离方法,通过采用稳定的低密度多孔材料作为防相分离剂,大大提高了体系的循环寿命。该方法稳定可靠,工艺简单,适合大规模生产。所开发的相变材料的相变温度为20-30℃,适用于建筑物控温、余热回收、人体降温和电子设备降温等领域。
发明内容
本发明的目的就是为了克服上述现有技术存在的缺陷而提供一种相变温度为20-30℃,适用于建筑物控温、余热回收、人体降温和电子设备降温等领域的稳定的无机水合盐基相变储热材料及其制备方法。
本发明的目的可以通过以下技术方案来实现:一种稳定的无机水合盐基相变储热材料,其特征在于,包括以下质量百分比的组成:
无机储能材料   80-95%;
成核剂        0.25-10%;
物理防相分离剂   1-10%。
所述的无机储能材料为十水硫酸钠、六水氯化钙、十水碳酸钠和十二水磷酸二氢钠的一种或共晶盐。
所述的成核剂为六偏磷酸钠、十水硅酸钠、焦磷酸钠和硼砂中的至少一种或其组合物。
所述的物理防相分离剂为具有开孔结构的低密度多孔材料或絮状材料。
所述的物理防相分离剂包括石棉、陶瓷棉、玻璃棉、矿渣棉、岩棉、无纺布、棉花、多孔石墨、蚕丝棉、海绵中的一种或几种。
上述稳定的无机水合盐基相变储热材料的制备方法,其特征在于,该方法包括以下步骤:将无机储能材料、成核剂按比例加入水中,并在40-60℃水浴环境中搅拌,直至形成均匀透明溶液;再将防相分离剂加入此溶液中,搅拌均匀即可。
在本发明中,成核剂可以降低无机盐和水的结晶反应活化能,从而可将相变材料的过冷度降到0.5℃以下。具有开孔结构的物理防相分离剂可以在水中形成稳定、开放的空间多孔结构,有效阻止了相变材料熔融后未溶解的固体颗粒 (如硫酸钠)的沉降、聚集和长大,保证了材料相变的可逆性和循环稳定性。且该多孔结构为防相分离剂的固有结构,它对体系的pH、温度和浓度等条件不敏感,无需精确控制工艺条件,因此,其适应性广,也方便用于大规模生产。
与现有技术相比,本发明具有如下优点:
(1)本发明提供的相变储能材料相变温度为20-30℃,过冷度小于0.5℃,相变潜热达150kJ/kg,充放热循环500次以上几乎无热性能衰减。
(2)本发明提供的物理防相分离剂稳定可靠,使用简单,适应性广泛,适合大规模生产。
(3)本发明提供的相变材料无毒、不易燃,适用于人体降温用冰袋、建筑物加热或控温、电子设备降温等领域。
附图说明
图1为本发明方法的流程图。
具体实施方式
下面结合附图和具体实施例对本发明进行详细说明。
实施例1
将15g的十水硫酸钠和0.812g的硼砂混合后水浴加热至40℃,得到熔融混合物;将此混合物搅拌均匀,再向其中加入0.855g的破碎好的涤纶无纺布,使混合物充分浸渍到涤纶中,并持续剧烈搅拌至混合物无明显分层现象,即得到了产品。该产品相变温度为30℃,潜热为190kJ/Kg,已循环500次无性能衰减,预期循环寿命可达数千次。
实施例2
将15g的六水氯化钙和0.812g的六偏磷酸钠混合后水浴加热至40℃,得到熔融混合物;将此混合物搅拌均匀,再向其中加入0.855g的破碎好的岩棉,使混合物充分浸渍到岩棉中,并持续剧烈搅拌至混合物无明显分层现象,即得到了产品。该产品相变温度为25℃,潜热为150kJ/Kg,已循环500次无性能衰减,预期循环寿命可达数千次。
实施例3
如图1所示,将无机储能材料即无机水合盐十水硫酸钠80mg、成核剂六偏磷酸钠10mg按比例加入水中,并在40-60℃水浴环境中搅拌,直至形成均匀熔融混合物;再将防相分离剂岩棉10mg加入此溶液中,搅拌均匀即得相变材料。该产品相变温度为20℃,过冷度小于0.5℃,潜热为160kJ/Kg,已循环500次无性能衰减,预期循环寿命可达数千次。
实施例4
将无机储能材料即无机水合盐十水碳酸钠95mg、成核剂焦磷酸钠0.25mg按比例加入水中,并在40-60℃水浴环境中搅拌,直至形成均匀熔融混合物;再将防相分离剂岩棉4.75mg加入此溶液中,搅拌均匀即得相变材料。该产品相变温度为23℃,过冷度小于0.5℃,潜热为170kJ/Kg,已循环500次无性能衰减,预期循环寿命可达数千次。
实施例5
将无机储能材料即无机水合盐六水氯化钙89mg、成核剂十水硅酸钠10mg按比例加入水中,并在40-60℃水浴环境中搅拌,直至形成均匀熔融混合物;再将防相分离剂岩棉1mg加入此溶液中,搅拌均匀即得相变材料。该产品相变温度为28℃,过冷度小于0.5℃,潜热为150kJ/Kg,已循环500次无性能衰减,预期循环寿命可达数千次。
相对于其他纯化学相变材料而言,在本发明中,最主要的特点是采用物理防相分离剂,具有开孔结构的物理防相分离剂可以在水中形成稳定、开放的空间多孔结构,有效阻止了相变材料熔融后未溶解的固体颗粒(如硫酸钠)的沉降、聚集和长大,保证了材料相变的可逆性和循环稳定性。且该多孔结构为防相分离剂的固有结构,它对体系的pH、温度和浓度等条件不敏感,无需精确控制工艺条件,因此,其适应性广,也方便用于大规模生产。
以上仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (6)

  1. 一种稳定的无机水合盐基相变储热材料,其特征在于,包括以下质量百分比的组成:
    无机储能材料      80-95%;
    成核剂            0.25-10%;
    物理防相分离剂    1-10%。
  2. 根据权利要求1所述的一种稳定的无机水合盐基相变储热材料,其特征在于,所述的无机储能材料为十水硫酸钠、六水氯化钙、十水碳酸钠和十二水磷酸二氢钠的一种或共晶盐。
  3. 根据权利要求1所述的一种稳定的无机水合盐基相变储热材料,其特征在于,所述的成核剂为六偏磷酸钠、十水硅酸钠、焦磷酸钠和硼砂中的至少一种或其组合物。
  4. 根据权利要求1所述的一种稳定的无机水合盐基相变储热材料,其特征在于,所述的物理防相分离剂为具有开孔结构的低密度多孔材料或絮状材料。
  5. 根据权利要求4所述的一种稳定的无机水合盐基相变储热材料,其特征在于,所述的物理防相分离剂包括石棉、陶瓷棉、玻璃棉、矿渣棉、岩棉、无纺布、棉花、多孔石墨、蚕丝棉、海绵中的一种或几种。
  6. 一种根据权利要求1所述的稳定的无机水合盐基相变储热材料的制备方法,其特征在于,该方法包括以下步骤:将无机储能材料、成核剂按比例加入水中,并在40-60℃水浴环境中搅拌,直至形成均匀透明溶液;再将防相分离剂加入此溶液中,搅拌均匀即可。
PCT/CN2016/073904 2015-07-31 2016-02-17 一种稳定的无机水合盐基相变储热材料及其制备方法 WO2017020574A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510465227.8 2015-07-31
CN201510465227.8A CN105131910A (zh) 2015-07-31 2015-07-31 一种稳定的无机水合盐基相变储热材料及其制备方法

Publications (1)

Publication Number Publication Date
WO2017020574A1 true WO2017020574A1 (zh) 2017-02-09

Family

ID=54717496

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/073904 WO2017020574A1 (zh) 2015-07-31 2016-02-17 一种稳定的无机水合盐基相变储热材料及其制备方法

Country Status (2)

Country Link
CN (1) CN105131910A (zh)
WO (1) WO2017020574A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10427440B2 (en) 2016-06-21 2019-10-01 Virtual Graphics, Llc Systems and methods for improving color imaging and print head alignment, coordination, registration and/or re-registration
CN113136168A (zh) * 2020-01-20 2021-07-20 中国科学院青海盐湖研究所 基于三重锁定的水合盐-多孔载体复合材料及其制备方法和应用
CN115368876A (zh) * 2022-08-31 2022-11-22 西北大学 一种十二水合磷酸氢二钠复合相变蓄热材料及制备方法
CN115637134A (zh) * 2021-07-17 2023-01-24 纯钧新材料(深圳)有限公司 超低温相变凝胶

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105131910A (zh) * 2015-07-31 2015-12-09 江苏启能新能源材料有限公司 一种稳定的无机水合盐基相变储热材料及其制备方法
CN106634858B (zh) * 2016-12-15 2019-07-23 中国建筑材料科学研究总院 复合相变蓄能材料及其制备方法和应用
CN106641590B (zh) * 2016-12-22 2019-05-17 西北大学 一种用于压力容器保温的蓄热式撬装保护罩及其制作方法
CN108570311B (zh) * 2018-04-23 2020-12-29 西北大学 可用铝封装的三元十二水磷酸氢二钠基相变蓄热材料
CN111154457B (zh) * 2018-11-08 2021-07-09 江苏集萃分子工程研究院有限公司 一种无机复合相变储能材料及其制备方法
CN111394064B (zh) * 2020-03-18 2021-12-07 齐鲁工业大学 一种混合纤维复合的相变控温材料及其制备方法
CN111705390A (zh) * 2020-06-15 2020-09-25 国网河南省电力公司 一种低温耐寒面料的制备方法
CN112552880A (zh) * 2020-12-16 2021-03-26 南通融盛智能科技有限公司 一种相变储能材料及热管理系统
CN112480877A (zh) * 2020-12-24 2021-03-12 西北大学 一种二水合氯化钙复合温室相变蓄热材料
CN114656938A (zh) * 2022-04-20 2022-06-24 北京广顺和科技有限公司 一种热焓395.7J/g,熔融温度8℃的无机蓄冷材料

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100116457A1 (en) * 2007-05-16 2010-05-13 Sgl Carbon Se Method for producing a latent heat storage material
CN104357023A (zh) * 2014-10-31 2015-02-18 镇江新梦溪能源科技有限公司 一种无机水合盐储热材料及其制备方法
CN104531077A (zh) * 2015-01-27 2015-04-22 云南师范大学 膨胀石墨基水合盐复合固-固相变储能材料的制备方法
CN105131910A (zh) * 2015-07-31 2015-12-09 江苏启能新能源材料有限公司 一种稳定的无机水合盐基相变储热材料及其制备方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101294064A (zh) * 2008-06-24 2008-10-29 武汉理工大学 一种多孔复合无机相变材料的制备方法
CN101880520B (zh) * 2010-06-09 2013-04-17 中国科学院深圳先进技术研究院 无机水合盐二氧化硅相变材料及其制备方法
CN103923614A (zh) * 2014-04-18 2014-07-16 北京科技大学 一种有序多孔基定形复合相变材料的制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100116457A1 (en) * 2007-05-16 2010-05-13 Sgl Carbon Se Method for producing a latent heat storage material
CN104357023A (zh) * 2014-10-31 2015-02-18 镇江新梦溪能源科技有限公司 一种无机水合盐储热材料及其制备方法
CN104531077A (zh) * 2015-01-27 2015-04-22 云南师范大学 膨胀石墨基水合盐复合固-固相变储能材料的制备方法
CN105131910A (zh) * 2015-07-31 2015-12-09 江苏启能新能源材料有限公司 一种稳定的无机水合盐基相变储热材料及其制备方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10427440B2 (en) 2016-06-21 2019-10-01 Virtual Graphics, Llc Systems and methods for improving color imaging and print head alignment, coordination, registration and/or re-registration
CN113136168A (zh) * 2020-01-20 2021-07-20 中国科学院青海盐湖研究所 基于三重锁定的水合盐-多孔载体复合材料及其制备方法和应用
CN113136168B (zh) * 2020-01-20 2022-10-04 中国科学院青海盐湖研究所 基于三重锁定的水合盐-多孔载体复合材料及其制备方法和应用
CN115637134A (zh) * 2021-07-17 2023-01-24 纯钧新材料(深圳)有限公司 超低温相变凝胶
CN115368876A (zh) * 2022-08-31 2022-11-22 西北大学 一种十二水合磷酸氢二钠复合相变蓄热材料及制备方法
CN115368876B (zh) * 2022-08-31 2023-12-26 西北大学 一种十二水合磷酸氢二钠复合相变蓄热材料及制备方法

Also Published As

Publication number Publication date
CN105131910A (zh) 2015-12-09

Similar Documents

Publication Publication Date Title
WO2017020574A1 (zh) 一种稳定的无机水合盐基相变储热材料及其制备方法
Li et al. Tailored phase change behavior of Na2SO4· 10H2O/expanded graphite composite for thermal energy storage
Dixit et al. Salt hydrate phase change materials: Current state of art and the road ahead
Purohit et al. Inorganic salt hydrate for thermal energy storage application: A review
CN104087254A (zh) 一种高导热无机相变储能材料
EP3330340B1 (en) Powder phase change energy storage material and preparation method therefor
CN103666381A (zh) 一种相变储能材料
CN103113854B (zh) 一种移动供热用复合相变材料及其制备方法
CN101982518A (zh) 纳米复合固液相变蓄能材料
Chen et al. A review of the application of hydrated salt phase change materials in building temperature control
CN107523272B (zh) 一种高导热二元低共融水合盐相变材料及其制备方法
WO2018168340A1 (ja) 潜熱蓄熱材組成物、及び潜熱蓄熱槽
CN109609098B (zh) 一种复合相变储热材料及其制备
CN103059818A (zh) 一种相变储能材料的制备方法
CN102877553B (zh) 一种储能保温建筑材料
CN107266047B (zh) 一种稀土陶瓷高温相变蓄放能材料及其制备方法
CN106318330A (zh) 一种相变储能材料的制备方法和相变储能材料
CN107488020A (zh) 一种相变胶凝保温材料及其制备方法
CN105368403A (zh) 一种相变储能材料
CN112940685A (zh) 一种相变储能材料及制备方法
CN110564373A (zh) 无机水合盐复合相变储热材料及制备使用方法
CN112812748B (zh) 一种储能控温材料及其制备方法和作为房屋建筑保温层的应用
Zhu et al. Mechanically strong hectorite aerogel encapsulated octadecane as shape-stabilized phase change materials for thermal energy storage and management
CN105349108A (zh) 一种相变储能材料的制备方法
CN105441033B (zh) 一种离子液体-水体系相变储能材料及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16832063

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16832063

Country of ref document: EP

Kind code of ref document: A1