WO2021033710A1 - ハブユニット軸受の製造方法、揺動かしめ装置、及び車両の製造方法 - Google Patents

ハブユニット軸受の製造方法、揺動かしめ装置、及び車両の製造方法 Download PDF

Info

Publication number
WO2021033710A1
WO2021033710A1 PCT/JP2020/031244 JP2020031244W WO2021033710A1 WO 2021033710 A1 WO2021033710 A1 WO 2021033710A1 JP 2020031244 W JP2020031244 W JP 2020031244W WO 2021033710 A1 WO2021033710 A1 WO 2021033710A1
Authority
WO
WIPO (PCT)
Prior art keywords
hub
inner ring
reference axis
axial direction
holder
Prior art date
Application number
PCT/JP2020/031244
Other languages
English (en)
French (fr)
Inventor
信行 萩原
礼治 平崎
Original Assignee
日本精工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本精工株式会社 filed Critical 日本精工株式会社
Priority to US17/622,498 priority Critical patent/US11796006B2/en
Priority to CN202080053278.9A priority patent/CN114173954A/zh
Priority to EP20855423.8A priority patent/EP3922373B1/en
Priority to KR1020227000992A priority patent/KR20220046547A/ko
Publication of WO2021033710A1 publication Critical patent/WO2021033710A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D39/00Application of procedures in order to connect objects or parts, e.g. coating with sheet metal otherwise than by plating; Tube expanders
    • B21D39/04Application of procedures in order to connect objects or parts, e.g. coating with sheet metal otherwise than by plating; Tube expanders of tubes with tubes; of tubes with rods
    • B21D39/048Application of procedures in order to connect objects or parts, e.g. coating with sheet metal otherwise than by plating; Tube expanders of tubes with tubes; of tubes with rods using presses for radially crimping tubular elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J9/00Forging presses
    • B21J9/02Special design or construction
    • B21J9/025Special design or construction with rolling or wobbling dies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D39/00Application of procedures in order to connect objects or parts, e.g. coating with sheet metal otherwise than by plating; Tube expanders
    • B21D39/04Application of procedures in order to connect objects or parts, e.g. coating with sheet metal otherwise than by plating; Tube expanders of tubes with tubes; of tubes with rods
    • B21D39/046Connecting tubes to tube-like fittings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D53/00Making other particular articles
    • B21D53/10Making other particular articles parts of bearings; sleeves; valve seats or the like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D53/00Making other particular articles
    • B21D53/88Making other particular articles other parts for vehicles, e.g. cowlings, mudguards
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21KMAKING FORGED OR PRESSED METAL PRODUCTS, e.g. HORSE-SHOES, RIVETS, BOLTS OR WHEELS
    • B21K25/00Uniting components to form integral members, e.g. turbine wheels and shafts, caulks with inserts, with or without shaping of the components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P11/00Connecting or disconnecting metal parts or objects by metal-working techniques not otherwise provided for 
    • B23P11/005Connecting or disconnecting metal parts or objects by metal-working techniques not otherwise provided for  by expanding or crimping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60BVEHICLE WHEELS; CASTORS; AXLES FOR WHEELS OR CASTORS; INCREASING WHEEL ADHESION
    • B60B27/00Hubs
    • B60B27/0078Hubs characterised by the fixation of bearings
    • B60B27/0084Hubs characterised by the fixation of bearings caulking to fix inner race
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60BVEHICLE WHEELS; CASTORS; AXLES FOR WHEELS OR CASTORS; INCREASING WHEEL ADHESION
    • B60B35/00Axle units; Parts thereof ; Arrangements for lubrication of axles
    • B60B35/02Dead axles, i.e. not transmitting torque
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/14Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load
    • F16C19/18Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/14Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load
    • F16C19/18Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls
    • F16C19/181Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact
    • F16C19/183Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact with two rows at opposite angles
    • F16C19/184Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact with two rows at opposite angles in O-arrangement
    • F16C19/186Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact with two rows at opposite angles in O-arrangement with three raceways provided integrally on parts other than race rings, e.g. third generation hubs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/22Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings
    • F16C19/34Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load
    • F16C19/38Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load with two or more rows of rollers
    • F16C19/383Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load with two or more rows of rollers with tapered rollers, i.e. rollers having essentially the shape of a truncated cone
    • F16C19/385Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load with two or more rows of rollers with tapered rollers, i.e. rollers having essentially the shape of a truncated cone with two rows, i.e. double-row tapered roller bearings
    • F16C19/386Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load with two or more rows of rollers with tapered rollers, i.e. rollers having essentially the shape of a truncated cone with two rows, i.e. double-row tapered roller bearings in O-arrangement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C35/00Rigid support of bearing units; Housings, e.g. caps, covers
    • F16C35/04Rigid support of bearing units; Housings, e.g. caps, covers in the case of ball or roller bearings
    • F16C35/06Mounting or dismounting of ball or roller bearings; Fixing them onto shaft or in housing
    • F16C35/063Fixing them on the shaft
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C43/00Assembling bearings
    • F16C43/04Assembling rolling-contact bearings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J9/00Forging presses
    • B21J9/02Special design or construction
    • B21J9/06Swaging presses; Upsetting presses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21KMAKING FORGED OR PRESSED METAL PRODUCTS, e.g. HORSE-SHOES, RIVETS, BOLTS OR WHEELS
    • B21K1/00Making machine elements
    • B21K1/28Making machine elements wheels; discs
    • B21K1/40Making machine elements wheels; discs hubs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P2700/00Indexing scheme relating to the articles being treated, e.g. manufactured, repaired, assembled, connected or other operations covered in the subgroups
    • B23P2700/14Suspension elements of automobile vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60BVEHICLE WHEELS; CASTORS; AXLES FOR WHEELS OR CASTORS; INCREASING WHEEL ADHESION
    • B60B2380/00Bearings
    • B60B2380/80Shafts specially adapted to receive bearings
    • B60B2380/82Caulked to fix race
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2220/00Shaping
    • F16C2220/40Shaping by deformation without removing material

Definitions

  • the present invention relates to a method for manufacturing a hub unit bearing for rotatably supporting a wheel of a vehicle such as an automobile with respect to a suspension device, a rocking caulking device used for carrying out the manufacturing method, and a method for manufacturing a vehicle. ..
  • FIG. 8 shows an example of a conventionally known hub unit bearing.
  • the hub unit bearing 100 rotatably supports the hub 102 on the inner diameter side of the outer ring 101 via a plurality of rolling elements 103a and 103b.
  • the outside in the axial direction is the left side in the width direction of the vehicle body when the hub unit bearing 100 is assembled to the automobile, and the inside in the axial direction is the hub unit bearing 1 in the automobile. It is the right side of FIG. 8 which is the center side in the width direction of the vehicle body in the state of being assembled to.
  • the outer ring 101 has a double-row outer ring tracks 104a and 104b on the inner peripheral surface, and has a stationary flange 105 for supporting and fixing the outer ring 101 to the knuckle of the suspension device at the intermediate portion in the axial direction.
  • the hub 102 has a double-row inner ring raceways 106a and 106b on the outer peripheral surface, and has a rotary flange 107 and a tubular pilot for supporting and fixing wheels and a rotating body for braking to the hub 102 on the outer side in the axial direction. It has a part 108.
  • the rotary flange 107 projects radially outwardly, and the pilot portion 108 extends axially outward from a portion adjacent to the radial inner side of the rotary flange 107.
  • a plurality of rolling elements 103a and 103b are arranged in each row between the double-row outer ring raceways 104a and 104b and the double-row inner ring raceways 106a and 106b. With such a configuration, the hub 102 is rotatably supported on the inner diameter side of the outer ring 101.
  • the hub 102 is a combination of a hub ring 109 and an inner ring 110.
  • the hub wheel 109 has an inner ring raceway 106a on the outer side in the axial direction among the inner ring raceways 106a and 106b in a double row on the outer peripheral surface of the intermediate portion in the axial direction, and has a rotary flange 107 and a pilot portion 108 on the outer side in the axial direction. ..
  • the hub wheel 109 has a fitting shaft portion 111 having a smaller outer diameter than a portion adjacent to the outer side in the axial direction on the inner side in the axial direction.
  • the inner ring 110 has an inner ring track 106b on the outer peripheral surface in the axial direction.
  • Such an inner ring 110 is fitted into the fitting shaft portion 111 by press fitting in a state where the outer end surface in the axial direction is abutted against the stepped surface 112 existing at the outer end surface in the axial direction of the outer peripheral surface of the fitting shaft portion 111.
  • the caulking portion 113 formed by plastically deforming the cylindrical portion extending inward in the axial direction from the inner end portion in the axial direction of the fitting shaft portion 111 is formed by plastically deforming the inner ring portion 110 in the axial direction.
  • the end face is suppressed.
  • an appropriate preload is applied to the rolling elements 103a and 103b.
  • a swing caulking apparatus 114 as shown in FIG. 9 is known (for example, Japanese Patent Application Laid-Open No. 2012-45612 (Patent Document 1), Patent No. 5261023). No. (Patent Document 2).
  • the rocking caulking device 114 includes a stamp 115 and a holder 116.
  • the holder 116 functions as a receiving tool for receiving the load applied from the stamp 115 to the hub wheel 109, and has a flange receiving surface 117 provided on the upper side surface and an insertion hole 118 opening in the flange receiving surface 117.
  • the pilot portion 108 of the hub ring 109 is inserted into the insertion hole 118 of the holder 116 without any radial rattling, and the axial outer surface of the rotating flange 107 of the hub ring 109 is inserted. , Contact the flange receiving surface 117 of the holder 116. As a result, the hub wheel 109 is supported by the holder 116 in a state where the hub wheel 109 is prevented from moving in the radial direction.
  • the stamp 115 having a rotation axis inclined with respect to the central axis of the hub wheel 109 is pressed against the axially inner end (cylindrical portion) of the hub wheel 109, and the stamp 115 is pressed against the center of the hub wheel 109.
  • the inner end portion in the axial direction of the hub wheel 109 is machined into the crimped portion 113. That is, a processing force is applied from the stamp 115 to a part of the inner end of the hub ring 109 in the circumferential direction in the vertical direction downward and outward in the radial direction.
  • the position where this processing force is applied is continuously changed with respect to the circumferential direction of the axially inner end portion of the hub wheel 109 as the stamp 115 rotates around the central axis of the hub wheel 109.
  • the crimped portion 113 is formed by plastically deforming the axially inner end portion of the hub ring 109 radially outward.
  • the rocking caulking device 114 uses energy for pressing the pressing die 115 against the axially inner end portion of the hub wheel 109, and presses the die 115 against the central axis of the hub wheel 109 ( It generates energy to rotate around the reference axis).
  • input energy E1 in FIG. 10 not all of these energies (input energy E1 in FIG. 10) are consumed as energy for forming the caulking portion 113 (output energy E2 in FIG. 10). That is, a part of the input energy E1 deforms or vibrates, for example, a part other than the axial inner end of the hub wheel 109 among the members constituting the rocking caulking device 114 and the hub unit bearing 100.
  • the pilot portion 108 of the hub wheel 109 is inserted into the insertion hole 118 of the holder 116 without any radial rattling to prevent the hub wheel 109 from moving in the radial direction.
  • the caulking portion 113 is processed in this state. Therefore, there is a problem to be improved that vibration is likely to occur in the rocking caulking device 114 during the processing, and the energy loss E3 is likely to increase accordingly.
  • an object of the present invention is to realize a method for manufacturing a hub unit bearing, a swing crimping device, and a method for manufacturing a vehicle, which can increase the processing efficiency of the crimped portion.
  • the hub unit bearing to be manufactured according to the present invention includes an outer ring having a double row of outer ring races on the inner peripheral surface, a hub having a double row of inner ring races on the outer peripheral surface, the double row outer ring raceway, and the double row.
  • a plurality of rolling elements arranged in each row are provided between the inner ring orbits.
  • the hub has an inner ring and a hub ring.
  • the inner ring has an inner ring orbit on the outer peripheral surface in the axial direction of the double-row inner ring orbits.
  • the hub wheel has a rotary flange protruding radially outward from the axial outer portion, a tubular pilot portion extending axially outward from a portion adjacent to the radial inner side of the rotary flange, and a rotary flange.
  • the inner ring orbit on the outer side of the double row of the inner ring orbits formed on the outer peripheral surface of the portion located on the inner side in the axial direction, or the inner ring orbit on the outer side of the axial direction.
  • the hub wheel is supported by a holder so that the central axis of the hub wheel is arranged coaxially or parallel to the reference axis and the hub wheel can be moved in the radial direction.
  • the stamp is rotated about the reference axis while rotating about the rotation shaft.
  • a caulking step is provided in which the axially inner end portion of the hub wheel is processed into the caulking portion.
  • an insertion having an inner diameter larger than the outer diameter of the pilot portion which is opened in the flange receiving surface of the holder and is arranged coaxially with the reference shaft.
  • the diameter difference which is the difference between the inner diameter of the insertion hole and the outer diameter of the pilot portion, is used to rotate the stamping die around the reference axis in the caulking step. It is determined based on the total energy required, which is the sum of the total energy required and the total energy required to press the stamp against the axially inner end of the hub wheel.
  • the diameter difference is determined within a range in which the sum of energies is equal to or less than a predetermined value. Or, for example, the diameter difference is determined within a range in which the sum of energies is substantially constant. Or, for example, the diameter difference is determined within a range in which the amount of change in the sum of energy with respect to the amount of change in the diameter difference is equal to or less than a predetermined value.
  • the torque for rotating the stamping mold around the reference shaft is integrated at the rotation angle of the stamping mold centered on the reference shaft.
  • the total energy required to rotate the stamp around the reference axis is obtained.
  • a load for pressing the stamp and the axially inner end of the hub wheel in the direction of the reference shaft is applied to the reference shaft of the holder and the stamp.
  • the caulking step is started in a state where the central axis of the hub wheel is arranged coaxially with the reference axis.
  • the central axis of the hub wheel can be fitted to the reference shaft. After that, while maintaining the state in which the central axis of the hub wheel is arranged coaxially with the reference axis, the centering jig is retracted from the pilot portion in the axial direction. The caulking step is started.
  • the pilot portion is inserted into an insertion hole opened in the flange receiving surface of a holder capable of moving in a direction orthogonal to the reference axis, and the pilot portion is inserted.
  • the hub wheel is arranged so that the central axis of the hub wheel is coaxial or parallel to the reference axis, and the hub ring is radially oriented. Supports movement possible.
  • the caulking step is started in a state where the central axis of the hub wheel is arranged coaxially with the reference axis.
  • the first aspect of the swing crimping device of the present invention includes a reference shaft, a holder, a stamp, and a centering jig.
  • the holder is provided on one side surface with respect to the direction of the reference shaft, and is open to the flange receiving surface for contacting the axially outer surface of the rotating flange and the flange receiving surface, and the reference. It has an insertion hole arranged coaxially with the shaft and having an inner diameter larger than the outer diameter of the pilot portion.
  • the stamp is arranged on one side of the holder with respect to the direction of the reference axis, has a rotation axis inclined with respect to the reference axis, and rotates about the reference axis, and the reference axis.
  • the centering jig is a tubular jig arranged coaxially with the reference shaft inside the insertion hole, and the hub wheel is formed by internally fitting the pilot portion inserted into the insertion hole. It is possible to switch between a state in which the central axis of the hub wheel is arranged coaxially with the reference axis and a state in which the hub wheel can be moved in the radial direction by retracting from the pilot portion in the axial direction.
  • a second aspect of the swing crimping device of the present invention includes a reference shaft, a holder, a stamp, and a centering jig.
  • the holder has a flange receiving surface provided on one side surface in the direction of the reference axis for contacting the axially outer surface of the rotating flange, and the pilot portion opened in the flange receiving surface. It has an insertion hole for insertion and is supported so that it can move in a direction orthogonal to the reference axis.
  • the stamp is arranged on one side of the holder with respect to the direction of the reference axis, has a rotation axis inclined with respect to the reference axis, and rotates about the reference axis, and the reference axis. It is possible to move relative to the holder in terms of direction.
  • a support base that is prevented from moving in a direction orthogonal to the reference axis, a movable base, and the movable base with respect to the support base, on the reference axis.
  • An X-direction linear guide that enables movement in the X-direction, which is one orthogonal direction, and a Y-direction movement in which the holder is orthogonal to the reference axis and the X-direction with respect to the movable table. It further includes a Y-direction linear guide that supports it as possible.
  • the central axis of the insertion hole and the reference axis do not match
  • a spring is further provided to urge the holder in the direction in which the holders match.
  • the vehicle to be manufactured according to the present invention includes a hub unit bearing.
  • the vehicle manufacturing method of the present invention manufactures the hub unit bearing by the hub unit bearing manufacturing method of the present invention.
  • the processing efficiency of the crimped portion can be increased.
  • FIG. 1 is a cross-sectional view showing a state in which a hub unit bearing to be manufactured according to the first example of the embodiment is assembled to a vehicle.
  • FIG. 2 is a cross-sectional view showing a state in which the hub unit bearing is set in the swing crimping device with respect to the first example of the embodiment.
  • FIG. 3 is a cross-sectional view showing a situation in which a caulking portion is formed by a rocking caulking device with respect to the first example of the embodiment.
  • FIG. 4 (A) is a diagram showing the relationship between the total die rotation angle and the die rotation torque in the caulking process
  • FIG. 4 (B) shows the amount of displacement in the die axis direction and the die axial load in the caulking process.
  • FIG. 5 is a diagram showing the relationship between the diameter difference, which is the difference between the inner diameter of the insertion hole of the holder and the outer diameter of the pilot portion of the hub wheel, and the sum of energy generated for performing the caulking process.
  • FIG. 6 is a cross-sectional view showing a state in which the hub unit bearing is set in the swing crimping device with respect to the second example of the embodiment.
  • FIG. 7 is a perspective view schematically showing a support portion of a hub unit bearing constituting the swing caulking device and a part of the hub unit bearing with respect to the second example of the embodiment.
  • FIG. 8 is a half cross-sectional view showing an example of a conventionally known hub unit bearing.
  • FIG. 9 is a cross-sectional view showing a conventionally known swing crimping device and hub unit bearing.
  • FIG. 10 is a diagram showing the relationship between the input energy E1, the output energy E2, and the loss energy E3 when forming the crimped portion of the hub unit bearing.
  • the central axis of the hub wheel 22 is arranged coaxially with the reference axis C which is the central axis of the insertion hole 33.
  • FIG. 1 shows the hub unit bearing 1 to be manufactured in this example.
  • the hub unit bearing 1 is for a driven wheel, and includes an outer ring 2, a hub 3, and a plurality of rolling elements 4a and 4b.
  • the outside in the axial direction is the left side in the width direction of the vehicle when assembled to the vehicle, and the inside in the axial direction is the center in the width direction of the vehicle when assembled to the vehicle. It is the right side of FIG. 1 on the side.
  • the outer ring 2 is made of a hard metal such as medium carbon steel, and includes a double-row outer ring track 5a and 5b and a stationary flange 6.
  • the double-row outer ring tracks 5a and 5b are formed on the inner peripheral surface of the axially intermediate portion of the outer ring 2, and are partially conical concave surfaces inclined in a direction in which the diameter increases toward a direction away from each other in the axial direction.
  • the stationary flange 6 projects radially outward from the axial intermediate portion of the outer ring 2, and has support holes 7 which are screw holes at a plurality of positions in the circumferential direction.
  • the outer ring 2 is supported and fixed to the knuckle 8 by screwing and tightening the bolt 10 through which the through hole 9 of the knuckle 8 constituting the suspension device of the vehicle is inserted into the support hole 7 of the stationary flange 6 from the inside in the axial direction. ing.
  • the hub 3 is arranged coaxially with the outer ring 2 on the inner side in the radial direction of the outer ring 2, and includes a double-row inner ring tracks 11a and 11b, a rotary flange 12, and a pilot portion 13.
  • the double-row inner ring raceways 11a and 11b are formed on the outer peripheral surfaces of the hub 3 facing the double-row outer ring raceways 5a and 5b, and the diameter increases as they are separated from each other in the axial direction. It is a partial conical convex surface that is inclined to.
  • the rotary flange 12 projects radially outward from the axially outer portion of the hub 3 located on the axially outer side of the outer ring 2, and has mounting holes 14 at a plurality of positions in the circumferential direction.
  • the pilot portion 13 is a cylindrical portion extending outward in the axial direction from a portion of the outer portion in the axial direction of the hub 3 located outside the outer ring 2 in the axial direction, which is adjacent to the radially inner side of the rotary flange 12.
  • the outer peripheral surface of the pilot portion 13 has a large diameter portion 44 having a cylindrical surface shape forming an inner portion in the axial direction and a small diameter portion having a cylindrical surface shape having an outer diameter smaller than that of the large diameter portion 44 forming the outer portion in the axial direction. It is a stepped cylindrical surface provided with a portion 45.
  • the braking rotating body 15 such as a disc or a drum to the rotating flange 12
  • the braking rotating body 15 is externally attached to the axially inner portion (large diameter portion 44) of the pilot portion 13.
  • the serration portion provided near the base end of the stud 16 is press-fitted into the mounting hole 14, and the intermediate portion of the stud 16 is press-fitted into the through hole 17 of the braking rotating body 15.
  • the wheel 18 is provided on the tip portion of the stud 16 in a state of being externally fitted to the axially outer portion (small diameter portion 45) of the pilot portion 13. With the male threaded portion inserted into the through hole 19 of the wheel 18, the nut 20 is screwed into the male threaded portion and tightened.
  • the rolling elements 4a and 4b are each made of hard metal such as bearing steel or ceramics, and a plurality of rolling elements 4a and 4b are arranged in each row between the double-row outer ring races 5a and 5b and the double-row inner ring races 11a and 11b. Has been done. Further, the rolling elements 4a and 4b are rotatably held by the cages 21a and 21b for each row. In this example, each of the rolling elements 4a and 4b is a tapered roller.
  • the hub 3 is formed by combining a hub ring 22 made of hard metal such as medium carbon steel and an inner ring 23 made of hard metal such as bearing steel.
  • the hub wheel 22 has an inner ring raceway 11a on the outer side in the axial direction among the inner ring raceways 11a and 11b in a double row on the outer peripheral surface of the intermediate portion in the axial direction, and has a rotary flange 12 and a pilot portion 13 on the outer side in the axial direction. .. Further, the hub ring 22 has a fitting shaft portion 24 having an outer diameter smaller than that of a portion adjacent to the outer side in the axial direction in the inner portion in the axial direction located inside the inner ring track 11a on the outer side in the axial direction.
  • the inner ring 23 has an inner ring track 11b on the outer peripheral surface, which is inside in the axial direction among the double-row inner ring tracks 11a and 11b.
  • Such an inner ring 23 is externally fitted to the fitting shaft portion 24 by press fitting in a state where the outer end surface in the axial direction is abutted against the stepped surface 25 existing at the outer end surface in the axial direction of the outer peripheral surface of the fitting shaft portion 24. Will be done.
  • the caulking portion 26 formed by plastically deforming the cylindrical portion 27 extending in the axial direction from the axially inner end portion of the fitting shaft portion 24 in the radial direction causes the inner ring 23 to be axially inside. The end face is suppressed. Then, by pressing the inner end surface of the inner ring 23 in the axial direction by the caulking portion 26 in this way, an appropriate preload is applied to the rolling elements 4a and 4b.
  • the rocking caulking device 28 includes a reference shaft C in the vertical direction, a holder 29, a stamping die 31, and a centering jig 30.
  • the holder 29 is a member that functions as a receiver that receives the load applied to the hub wheel 22 from the stamp 31 when the caulking portion 26 is formed.
  • the holder 29 has a flange receiving surface 32 provided on the upper side surface and an insertion hole 33 opening in the flange receiving surface 32.
  • the flange receiving surface 32 is a flat surface orthogonal to the reference axis C.
  • the insertion hole 33 is a bottomed hole having a cylindrical inner peripheral surface arranged coaxially with the reference axis C.
  • the inner diameter D of the insertion hole 33 is larger than the outer diameter d of the pilot portion 13 of the hub wheel 22 (D> d).
  • the outer diameter d is the outer diameter of the large diameter portion 44 of the pilot portion 13.
  • the axial depth of the insertion hole 33 is larger than the axial dimension of the pilot portion 13 of the hub wheel 22.
  • the holder 29 having such a configuration is supported by a support base (not shown) in a state where the movement in the direction orthogonal to the reference axis C and the movement in the vertical direction along the reference axis C are prevented.
  • the holder 29 can support the movement in the vertical direction along the reference axis C, and may generate a load for forming the crimped portion 26 by moving upward. it can.
  • the stamp 31 is a tool for forming the crimped portion 26, and is arranged above the holder 29.
  • the stamp 31 has a rotation axis ⁇ inclined by an angle ⁇ with respect to the reference axis C, and has a machined surface portion 36 at the lower end, which is an annular concave surface coaxial with the rotation axis ⁇ .
  • the stamp 31 is capable of moving in the vertical direction along the reference axis C and rotating about the reference axis C, and is free to rotate about the rotation axis ⁇ . In the case of carrying out the present invention, when a load for forming the caulking portion 26 is generated by moving the holder 29 upward as described above, the stamp 31 is moved in the vertical direction along the reference axis C. It can also be supported while the movement is blocked.
  • the centering jig 30 is a jig for arranging the central axis of the hub wheel 22 coaxially with the reference axis C before starting the formation of the caulking portion 26.
  • the centering jig 30 is formed in a cylindrical shape, is arranged coaxially with the reference axis C inside the insertion hole 33 of the holder 29, and is capable of moving in the vertical direction along the reference axis C. There is. For this reason, in the illustrated example, the centering jig 30 is internally fitted inside the insertion hole 33 so that it can move in the axial direction (vertical direction) without rattling in the radial direction (horizontal direction). Has been done.
  • the lower end portion of the centering jig 30 penetrates the central portion of the holder 29 in the vertical direction, and the holder 29 It is connected to the upper end of the actuator rod 34, which is capable of moving in the vertical direction with respect to the above, via a connecting member 35.
  • the centering jig 30, the actuator rod 34, and the connecting member 35 are integrally formed, but they can also be formed separately.
  • the centering jig 30 has an inner diameter capable of internally fitting the large diameter portion 44 of the pilot portion 13 of the hub wheel 22 without rattling in the radial direction.
  • the centering jig 30 may have an inner diameter that allows the small diameter portion 45 of the pilot portion 13 of the hub wheel 22 to be internally fitted without rattling in the radial direction.
  • the axial distance between the upper end surface of the centering jig 30 and the flange receiving surface 32 is the hub ring 22. It is larger than the axial dimension of the pilot unit 13.
  • the work of forming the caulking portion 26 is performed in a state where the hub unit bearing 1 before the caulking portion 26 is formed is assembled. Therefore, the hub unit bearing 1 before the caulking portion 26 is formed is assembled in advance.
  • the hub unit bearing 1 before the caulking portion 26 is formed can be assembled by an appropriate procedure, and for example, it can be assembled by the following procedure.
  • the moving body 4a is arranged in a state of being held by the cage 21a on the outer side in the axial direction, and the outer ring 2 is further arranged around the intermediate portion in the axial direction of the hub wheel 22.
  • the rolling elements 4b in the inner row in the axial direction are arranged around the inner ring track 11b on the inner side in the axial direction in a state of being held by the cage 21b on the inner side in the axial direction.
  • the inner ring 23 is fitted onto the fitting shaft portion 24 of the hub ring 22 before the caulking portion 26 is formed, and the axially outer end surface of the inner ring 23 is brought into contact with the stepped surface 25.
  • the hub unit bearing 1 before the caulking portion 26 is formed is set in the holder 29.
  • the stamping die 31 is retracted upward, and the centering jig 30 is arranged in the upper part inside the insertion hole 33 of the holder 29.
  • the pilot portion 13 of the hub wheel 22 is inserted inside the insertion hole 33 of the holder 29.
  • the large diameter portion 44 of the pilot portion 13 is fitted inside the centering jig 30 without any radial rattling.
  • the central axis of the hub wheel 22 is arranged coaxially with the reference axis C. Further, the axially outer surface of the rotating flange 12 of the hub wheel 22 is brought into contact with the flange receiving surface 32 of the holder 29.
  • the centering jig 30 is retracted downward from the periphery of the pilot portion 13 while maintaining the state in which the central axis of the hub wheel 22 is coaxially arranged with the reference axis C. ..
  • a radial gap 37 is provided over the entire circumference between the inner peripheral surface of the insertion hole 33 and the outer peripheral surface of the large diameter portion 44 of the pilot portion 13.
  • the hub wheel 22 is arranged coaxially with the reference axis C at the start of processing for forming the caulking portion 26 described below.
  • the hub ring 22 is allowed to move in the radial direction with respect to the holder 29 based on the presence of the gap 37 during the processing for forming the caulking portion 26 described below.
  • the caulking process is started. That is, as shown in FIGS. 2 to 3, by moving the stamp 31 downward, the stamp 31 is rotated about the reference axis C while pressing the machined surface portion 36 of the stamp 31 against the cylindrical portion 27 of the hub wheel 22. By letting the cylinder portion 27 be processed into the crimped portion 26. That is, a machining force is applied from the machined surface portion 36 of the stamp 31 to a part of the cylindrical portion 27 in the circumferential direction, which is directed downward in the vertical direction and outward in the radial direction. Further, the position where the processing force is applied is continuously changed with respect to the circumferential direction of the cylindrical portion 27 as the stamp 31 rotates around the reference axis C. As a result, the caulked portion 26 is formed by plastically deforming the cylindrical portion 27 in the radial direction.
  • the hub ring 22 moves in the radial direction with respect to the holder 29 based on the existence of the gap 37 during the processing for forming the crimped portion 26. it can. Therefore, such movement of the hub wheel 22 can reduce deformation and vibration that occur in the holder 29 that constitutes the rocking crimping device 28, the support base that supports the holder 29 (not shown), and the like. That is, according to this example, the energy consumed other than the formation of the caulking portion 26 (loss energy E3 in FIG. 10) can be reduced, and the processing efficiency of the caulking portion 26 (input energy E1 in FIG. 10) can be reduced accordingly. The ratio of the output energy E2 to the ratio (E2 / E1)) can be increased.
  • the hub wheel 22 is arranged coaxially with the reference shaft C at the start of processing for forming the crimped portion 26.
  • the variation in the radial position of the hub ring 22 at the start of processing for forming the crimped portion 26 is sufficiently suppressed. Therefore, variations in quality characteristics due to the formation of the crimped portion 26 (for example, the axial force applied from the crimped portion 26 to the inner ring 23, the characteristics related to the expansion amount of the inner ring 23 due to the formation of the crimped portion 26, etc.) can be sufficiently suppressed. ..
  • FIG. 4A is a diagram (virtual example) showing the relationship (curve f1) between the “total stamping rotation angle” and the “stamping rotation torque” measured in this way.
  • the “total rotation angle of the stamp” can be measured using, for example, a rotary encoder or the like. Further, the "pushing rotation torque” can be measured based on, for example, the current value of the electric motor for rotating the pushing die 31 around the reference axis C.
  • FIG. 4B is a diagram (virtual example) showing the relationship (curve f2) between the “pushing axial movement amount” and the “pushing axial load” measured in this way.
  • the “amount of movement in the stamping axis direction” can be measured using, for example, a linear scale.
  • the "pressing die axial load” can be measured based on, for example, the oil pressure in the hydraulic mechanism for moving the stamping die 31 in the axial direction.
  • is the diameter difference ⁇ .
  • a value larger than the parameter S when the curve represented by the above equation (1) is fitted to the curve f3 representing the relationship of FIG. 5 for example, the diameter at which the curve f3 of FIG. 5 looks almost constant.
  • the horizontal vibration width of the support base of the holder is about 0.5 mm when processing for forming the crimped portion by the above-mentioned conventional method. There is. Therefore, in consideration of such circumstances, it is desirable that the lower limit value ⁇ m is a value of 0.5 mm or more.
  • processing is performed to form the crimped portion 26 in the state before the stud 16 (see FIG. 1) is attached to the attachment hole 14 of the rotary flange 12.
  • processing for forming the crimped portion 26 can be performed with the stud 16 attached to the mounting hole 14 of the rotary flange 12.
  • the shape of the holder is such that the stud 16 does not collide with the stud 16 during the processing (for example, a stud insertion capable of loosely inserting a portion of the stud 16 protruding outward from the axial outer surface of the rotary flange 12 Shape with holes).
  • the structure of the holder 29a and its peripheral portion constituting the rocking caulking device 28a is different from that of the first example of the embodiment. That is, in this example, the insertion hole 33a of the holder 29a can insert (internally fit) the pilot portion 13 of the hub wheel 22 without rattling in the radial direction.
  • the holder 29a is supported so as to be able to move in a direction orthogonal to the reference axis C.
  • the swing crimping device 28a of this example includes a support base 40, a movable base 38, an X-direction linear guide 39, and a Y-direction linear guide 41.
  • the reference axis C is the central axis of the insertion hole 33a formed in the holder 29a in the neutral position before movement.
  • the support base 40 is arranged below the holder 29a, and is prevented from moving in a direction orthogonal to the reference axis C.
  • the movable base 38 is arranged between the holder 29a and the support base 40 in the vertical direction. Further, the movable base 38 is supported on the upper side surface of the support base 40 via an X-direction linear guide 39.
  • the X-direction linear guide 39 is a guide device that enables the movable base 38 to move with respect to the support base 40 in the X direction, which is one direction orthogonal to the reference axis C. Further, the holder 29a is supported on the upper surface of the movable base 38 via a Y-direction linear guide 41.
  • the Y-direction linear guide 41 is a guide device that enables movement of the holder 29a with respect to the movable base 38 in the Y direction, which is orthogonal to the reference axis C and also orthogonal to the X direction. Therefore, the holder 29a is allowed to move with respect to the support base 40 in all directions orthogonal to the reference axis C by the X-direction linear guide 39 and the Y-direction linear guide 41.
  • the elasticity in the direction of returning the movable base 38 to the neutral position in the X direction is provided.
  • the X-direction spring 42 to be applied is assembled.
  • Y is provided to give elasticity in the direction of returning the holder 29a to the neutral position in the Y direction.
  • the directional spring 43 is assembled.
  • the movable base 38 is arranged at the neutral position in the X direction, and the holder 29a is arranged at the neutral position in the Y direction.
  • the central axis of the insertion hole 33a of the holder 29a coincides with the reference axis C.
  • the machining force acting on the hub wheel 22 from the stamp 31 in the radial direction is larger than the machining force in the X direction.
  • the elasticity of the spring 42 and the Y-direction spring 43 is sufficiently reduced (for example, 1/10 or less of the processing force).
  • the pilot portion 13 of the hub wheel 22 is not rattled in the insertion hole 33a of the holder 29a in the radial direction.
  • the central axis of the hub wheel 22 is arranged coaxially with the reference axis C.
  • the axially outer surface of the rotary flange 12 of the hub wheel 22 is brought into contact with the flange receiving surface 32 of the holder 29a.
  • the cylindrical portion 27 is processed into the crimped portion 26 by using the stamp 31 as in the first example of the embodiment.
  • the reference axis C is based on the presence of the X-direction linear guide 39 and the Y-direction linear guide 41 during processing for forming the crimped portion 26.
  • the hub wheel 22 can move in the radial direction. Then, during the processing for forming the caulking portion 26, the hub wheel 22 moves in the radial direction with respect to the reference shaft C to support the holder 29a and the holder 29a constituting the swing caulking device 28a. It is possible to reduce deformation and vibration of the support base 40 and the like.
  • the amount of elastic deformation of the X-direction spring 42 and the Y-direction spring 43 changes as the hub ring 22 moves in the radial direction with respect to the reference axis C, but the X-direction spring 42 and Y Since the elasticity of the directional spring 43 is sufficiently small, the energy for changing the amount of elastic deformation of the X-direction spring 42 and the Y-direction spring 43 can be sufficiently suppressed. Therefore, in this example, the energy consumed other than the formation of the caulking portion 26 (loss energy E3 in FIG. 10) can be reduced, and the processing efficiency of the caulking portion 26 (output with respect to the input energy E1 in FIG. 10) can be reduced accordingly. The ratio of energy E2 (E2 / E1)) can be increased.
  • the hub wheel 22 is arranged coaxially with the reference shaft C at the start of processing for forming the crimped portion 26.
  • the variation in the radial position of the hub ring 22 at the start of processing for forming the crimped portion 26 is sufficiently suppressed. Therefore, variations in quality characteristics due to the formation of the crimped portion 26 (for example, the axial force applied from the crimped portion 26 to the inner ring 23, the characteristics related to the expansion amount of the inner ring 23 due to the formation of the crimped portion 26, etc.) can be sufficiently suppressed. ..
  • Other configurations and effects are the same as in the first example of the embodiment.
  • the present invention is not limited to hub unit bearings for driven wheels, but hub unit bearings for drive wheels can also be manufactured. Further, the present invention is not limited to a hub unit bearing that uses tapered rollers as a rolling element, but can also be used to manufacture a hub unit bearing that uses a ball as a rolling element. Further, the present invention is not limited to the hub unit bearing in which the inner ring raceway on the outer side in the axial direction is directly formed on the outer peripheral surface of the intermediate portion in the axial direction of the hub ring, and the inner ring raceway on the outer side in the axial direction is in the middle direction in the axial direction of the hub ring. A hub unit bearing formed on the outer peripheral surface of the second inner ring, which is a separate member externally fitted to the portion, can also be manufactured.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Rolling Contact Bearings (AREA)
  • Mounting Of Bearings Or Others (AREA)
  • Forging (AREA)

Abstract

【要約】【課題】かしめ部の加工効率を高くすることができるハブユニット軸受の製造方法を実現する。【解決手段】ハブ輪(22)を、該ハブ輪(22)の中心軸を基準軸Cと同軸乃至平行に配置し、かつ、該ハブ輪(22)の径方向の移動を可能に支持した状態で、基準軸Cに対して傾斜した自転軸αを有する押型(31)をハブ輪(22)の軸方向内側端部に押し付けつつ、押型(31)を基準軸Cを中心に回転させることにより、ハブ輪(22)の軸方向内側端部をかしめ部(26)に加工する。【選択図】図3

Description

ハブユニット軸受の製造方法、揺動かしめ装置、及び車両の製造方法
本発明は、自動車などの車両の車輪を懸架装置に対して回転可能に支持するためのハブユニット軸受の製造方法、該製造方法を実施するために用いる揺動かしめ装置、及び車両の製造方法に関する。
自動車の車輪及び制動用回転体は、ハブユニット軸受により、懸架装置に対して回転自在に支持される。図8は、従来から知られているハブユニット軸受の1例を示している。ハブユニット軸受100は、外輪101の内径側にハブ102を、複数個の転動体103a、103bを介して、回転可能に支持してなる。 
なお、ハブユニット軸受100に関して、軸方向外側は、ハブユニット軸受100を自動車に組み付けた状態で車体の幅方向外側となる、図8の左側であり、軸方向内側は、ハブユニット軸受1を自動車に組み付けた状態で車体の幅方向中央側となる、図8の右側である。 
外輪101は、内周面に複列の外輪軌道104a、104bを有し、かつ、軸方向中間部に、外輪101を懸架装置のナックルに支持固定するための静止フランジ105を有する。ハブ102は、外周面に複列の内輪軌道106a、106bを有し、かつ、軸方向外側部に、車輪及び制動用回転体をハブ102に支持固定するための回転フランジ107及び筒状のパイロット部108を有する。ハブ102の軸方向外側部において、回転フランジ107は、径方向外方に突出しており、パイロット部108は、回転フランジ107の径方向内側に隣接する部分から軸方向外側に延びている。転動体103a、103bは、複列の外輪軌道104a、104bと複列の内輪軌道106a、106bとの間に、列ごとに複数個ずつ配置されている。このような構成により、ハブ102が、外輪101の内径側に回転自在に支持されている。 
図示の例では、ハブ102は、ハブ輪109と、内輪110とを組み合わせてなる。ハブ輪109は、軸方向中間部外周面に複列の内輪軌道106a、106bのうちの軸方向外側の内輪軌道106aを有し、かつ、軸方向外側部に回転フランジ107及びパイロット部108を有する。また、ハブ輪109は、軸方向内側部に、軸方向外側に隣接する部分よりも外径が小さい嵌合軸部111を有する。内輪110は、外周面に、軸方向内側の内輪軌道106bを有する。このような内輪110は、軸方向外側端面を、嵌合軸部111の外周面の軸方向外側端部に存在する段差面112に突き当てた状態で、嵌合軸部111に圧入により外嵌されている。この状態で、嵌合軸部111の軸方向内側端部から軸方向内側に伸長した円筒部を、径方向外方に塑性変形させることにより形成されたかしめ部113により、内輪110の軸方向内側端面が抑え付けられている。そして、このようにかしめ部113により内輪110の軸方向内側端面を抑え付けることで、転動体103a、103bに適正な予圧が付与されている。 
上述のようなかしめ部113を形成するための装置として、図9に示すような揺動かしめ装置114が知られている(例えば、特開2012-45612号公報(特許文献1)、特許第5261023号公報(特許文献2)参照)。揺動かしめ装置114は、押型115と、ホルダ116とを備える。ホルダ116は、押型115からハブ輪109に加えられる荷重を支承する受具として機能するもので、上側面に備えられたフランジ受面117と、フランジ受面117に開口する挿入孔118を有する。 
かしめ部113を形成する際には、ハブ輪109のパイロット部108を、ホルダ116の挿入孔118に径方向のがたつきなく挿入するとともに、ハブ輪109の回転フランジ107の軸方向外側面を、ホルダ116のフランジ受面117に接触させる。これにより、ハブ輪109を、該ハブ輪109の径方向の移動を阻止した状態で、ホルダ116によって支持する。 
そして、この状態で、ハブ輪109の中心軸に対して傾斜した自転軸を有する押型115を、ハブ輪109の軸方向内側端部(円筒部)に押し付けつつ、押型115をハブ輪109の中心軸を中心に回転させることにより、ハブ輪109の軸方向内側端部をかしめ部113に加工する。すなわち、押型115からハブ輪109の軸方向内側端部の円周方向一部に、上下方向に関して下方に向き、かつ、径方向に関して外方に向いた加工力を加える。また、この加工力を加える位置を、ハブ輪109の中心軸を中心とする押型115の回転に伴って、ハブ輪109の軸方向内側端部の円周方向に関して連続的に変化させる。これにより、ハブ輪109の軸方向内側端部を径方向外方に塑性変形させることで、かしめ部113を形成する。
特開2012-45612号公報 特許第5261023号公報
ところで、上述のようにかしめ部113を形成する場合、揺動かしめ装置114は、押型115をハブ輪109の軸方向内側端部に押し付けるためのエネルギーと、押型115をハブ輪109の中心軸(基準軸)を中心に回転させるためのエネルギーとを発生する。ただし、これらのエネルギー(図10の入力エネルギーE1)は、そのすべてが、かしめ部113を形成するためのエネルギー(図10の出力エネルギーE2)として消費されるわけではない。すなわち、入力エネルギーE1の一部は、例えば、揺動かしめ装置114を構成する部材やハブユニット軸受100を構成する部材のうちハブ輪109の軸方向内側端部以外の部分を変形させたり、振動させたりするエネルギー(図10の損失エネルギーE3)として消費される。このため、かしめ部113の加工効率を高くする、すなわち、入力エネルギーE1に対する出力エネルギーE2の割合(E2/E1)を大きくするためには、損失エネルギーE3を小さくすることが望まれる。 
これに対して、上述した従来方法では、ハブ輪109のパイロット部108を、ホルダ116の挿入孔118に径方向のがたつきなく挿入することにより、ハブ輪109の径方向の移動を阻止した状態でかしめ部113の加工を行う。このため、該加工中に、揺動かしめ装置114に振動が生じやすく、その分、損失エネルギーE3が大きくなりやすいという、改善すべき問題がある。 
本発明は、上述のような事情に鑑み、かしめ部の加工効率を高くすることができるハブユニット軸受の製造方法、揺動かしめ装置、及び車両の製造方法を実現することを目的とする。
本発明の製造対象となるハブユニット軸受は、内周面に複列の外輪軌道を有する外輪と、外周面に複列の内輪軌道を有するハブと、前記複列の外輪軌道と前記複列の内輪軌道との間に、列ごとに複数個ずつ配置された転動体とを備える。 前記ハブは、内輪と、ハブ輪とを有する。 前記内輪は、外周面に、前記複列の内輪軌道のうちの軸方向内側の内輪軌道を有する。 前記ハブ輪は、軸方向外側部から径方向外方に突出した回転フランジと、該回転フランジの径方向内側に隣接する部分から軸方向外側に延びる筒状のパイロット部と、前記回転フランジよりも軸方向内側に位置する部分の外周面に直接又は他の部材を介して形成された、前記複列の内輪軌道のうちの軸方向外側の内輪軌道と、該軸方向外側の内輪軌道よりも軸方向内側に位置し、前記内輪を外嵌した嵌合軸部と、該嵌合軸部よりも軸方向内側に位置する筒状の軸方向内側端部を径方向外方に塑性変形させることで形成され、前記内輪の軸方向内側端面を抑え付けるかしめ部とを有する。 
本発明のハブユニット軸受の製造方法は、前記ハブ輪を、該ハブ輪の中心軸を基準軸と同軸乃至平行に配置し、かつ、該ハブ輪の径方向の移動を可能にホルダで支持した状態で、前記基準軸に対して傾斜した自転軸を有する押型を前記ハブ輪の軸方向内側端部に押し付けつつ、該押型を、前記自転軸を中心に回転させながら前記基準軸を中心に回転させることにより、前記ハブ輪の軸方向内側端部を前記かしめ部に加工するかしめ工程を備える。 
本発明のハブユニット軸受の製造方法の第1の態様では、ホルダのフランジ受面に開口し、かつ、前記基準軸と同軸に配置された、前記パイロット部の外径よりも大きい内径を有する挿入孔に、前記パイロット部を挿入するとともに、前記フランジ受面に前記回転フランジの軸方向外側面を接触させることにより、前記ハブ輪を、該ハブ輪の中心軸を前記基準軸と同軸乃至平行に配置し、かつ、該ハブ輪の径方向の移動を可能に支持する。 
前記製造方法の第1の態様では、例えば、前記挿入孔の内径と前記パイロット部の外径との差である直径差を、前記かしめ工程において前記押型を前記基準軸を中心に回転させるのに要する総エネルギーと、前記押型を前記ハブ輪の軸方向内側端部に押し付けるのに要する総エネルギーとの和であるエネルギー和に基づいて決定する。 
この場合に、例えば、前記エネルギー和が所定値以下となる範囲で、前記直径差を決定する。 又は、例えば、前記エネルギー和がほぼ一定となる範囲で、前記直径差を決定する。 又は、例えば、前記直径差の変化量に対する前記エネルギー和の変化量が所定値以下となる範囲で、前記直径差を決定する。 
前記製造方法の第1の態様では、例えば、前記押型を前記基準軸を中心に回転させるためのトルクを、前記基準軸を中心とする前記押型の回転角度で積分することにより、前記かしめ工程において前記押型を前記基準軸を中心に回転させるのに要する総エネルギーを求める。 
前記製造方法の第1の態様では、例えば、前記押型と前記ハブ輪の軸方向内側端部とを前記基準軸の方向に押し付け合うための荷重を、前記ホルダと前記押型との前記基準軸の方向に関する相対移動量で積分することにより、前記かしめ工程において前記押型を前記ハブ輪の軸方向内側端部に押し付けるのに要する総エネルギーを求める。 
前記製造方法の第1の態様では、例えば、前記ハブ輪の中心軸を前記基準軸と同軸に配置した状態で、前記かしめ工程を開始する。 
この場合に、例えば、前記挿入孔に挿入した前記パイロット部を、前記基準軸と同軸に配置された筒状の芯合わせ治具に内嵌することで、前記ハブ輪の中心軸を前記基準軸と同軸に配置した状態とし、その後、前記ハブ輪の中心軸を前記基準軸と同軸に配置した状態を維持しつつ、前記芯合わせ治具を前記パイロット部から軸方向に退避させた状態で、前記かしめ工程を開始する。 
本発明のハブユニット軸受の製造方法の第2の態様では、前記基準軸に直交する方向の移動を可能とされたホルダのフランジ受面に開口する挿入孔に前記パイロット部を挿入するとともに、前記フランジ受面に前記回転フランジの軸方向外側面を接触させることにより、前記ハブ輪を、該ハブ輪の中心軸を前記基準軸と同軸乃至平行に配置し、かつ、該ハブ輪の径方向の移動を可能に支持する。 
前記製造方法の第2の態様では、例えば、前記ハブ輪の中心軸を前記基準軸と同軸に配置した状態で、前記かしめ工程を開始する。 
本発明の揺動かしめ装置の第1の態様は、基準軸と、ホルダと、押型と、芯合わせ治具とを備える。 前記ホルダは、前記基準軸の方向に関する一方側の側面に備えられた、前記回転フランジの軸方向外側面を接触させるためのフランジ受面、及び、該フランジ受面に開口し、かつ、前記基準軸と同軸に配置された、前記パイロット部の外径よりも大きい内径を有する挿入孔を有する。 前記押型は、前記基準軸の方向に関して前記ホルダの一方側に配置され、前記基準軸に対して傾斜した自転軸を有し、かつ、前記基準軸を中心とする回転、及び、前記基準軸の方向に関する前記ホルダとの相対移動が可能である。 前記芯合わせ治具は、前記挿入孔の内側で前記基準軸と同軸に配置された筒状の治具であり、前記挿入孔に挿入
された前記パイロット部を内嵌することにより、前記ハブ輪の中心軸を前記基準軸と同軸に配置する状態と、該パイロット部から軸方向に退避することにより、前記ハブ輪の径方向の移動を可能とする状態とを、切り換え可能である。 
本発明の揺動かしめ装置の第2の態様は、基準軸と、ホルダと、押型と、芯合わせ治具とを備える。 前記ホルダは、前記基準軸の方向に関する一方側の側面に備えられた、前記回転フランジの軸方向外側面を接触させるためのフランジ受面、及び、該フランジ受面に開口した、前記パイロット部を挿入するための挿入孔を有し、かつ、前記基準軸に直交する方向の移動を可能に支持されている。 前記押型は、前記基準軸の方向に関して前記ホルダの一方側に配置され、前記基準軸に対して傾斜した自転軸を有し、かつ、前記基準軸を中心とする回転、及び、前記基準軸の方向に関する前記ホルダとの相対移動が可能である。 
前記揺動かしめ装置の第2の態様では、例えば、前記基準軸に直交する方向の移動を阻止された支持台と、可動台と、該可動台を前記支持台に対して、前記基準軸に直交する1の方向であるX方向の移動を可能に支持するX方向リニアガイドと、前記ホルダを前記可動台に対して、前記基準軸と前記X方向とのそれぞれに直交するY方向の移動を可能に支持するY方向リニアガイドと、をさらに備える。 
前記揺動かしめ装置の第2の態様では、例えば、前記挿入孔の中心軸と前記基準軸とが不一致となるように前記ホルダが移動した場合に、前記挿入孔の中心軸と前記基準軸とが一致する方向に前記ホルダを付勢するばねをさらに備える。 
本発明の製造対象となる車両は、ハブユニット軸受を備える。 本発明の車両の製造方法は、本発明のハブユニット軸受の製造方法により、前記ハブユニット軸受を製造する。
本発明によれば、かしめ部の加工効率を高くすることができる。
図1は、実施の形態の第1例の製造対象となるハブユニット軸受を車両に組み付けた状態で示す断面図である。 図2は、実施の形態の第1例に関して、ハブユニット軸受を揺動かしめ装置にセットした状態を示す断面図である。 図3は、実施の形態の第1例に関して、揺動かしめ装置によりかしめ部を形成する状況を示す断面図である。 図4(A)は、かしめ工程における押型総回転角度と押型回転トルクとの関係を表す線図であり、図4(B)は、かしめ工程における押型軸方向変位量と押型軸方向荷重との関係を表す線図である。 図5は、ホルダの挿入孔の内径とハブ輪のパイロット部の外径との差である直径差と、かしめ工程を行うために発生したエネルギー和との関係を示す線図である。 図6は、実施の形態の第2例に関して、ハブユニット軸受を揺動かしめ装置にセットした状態を示す断面図である。 図7は、実施の形態の第2例に関して、揺動かしめ装置を構成するハブユニット軸受の支持部、及び、ハブユニット軸受の一部を概略的に示す斜視図である。 図8は、従来から知られているハブユニット軸受の1例を示す半部断面図である。 図9は、従来から知られている揺動かしめ装置及びハブユニット軸受を示す断面図である。 図10は、ハブユニット軸受のかしめ部を形成する際の入力エネルギーE1と出力エネルギーE2と損失エネルギーE3との関係を示す図である。
[実施の形態の第1例] 本発明の実施の形態の第1例について、図1~図5を用いて説明する。 
(本例の概要) 本例では、図1に示すようなハブユニット軸受1を構成するハブ輪22のかしめ部26を形成するために、図2及び図3に示すような揺動かしめ装置28を用いる。また、かしめ部26の加工効率を高めるために、図3に示すように、揺動かしめ装置28を構成するホルダ29の挿入孔33の内径Dを、ハブ輪22のパイロット部13の外径dよりも大きくする(D>d)ことにより、ホルダ29の挿入孔33の内周面と、ハブ輪22のパイロット部13の外周面との間に、径方向の隙間37を設けることで、かしめ部26を形成するための加工中に、ホルダ29に対してハブ輪22が径方向に移動できるようにする。ただし、かしめ部26を形成するための加工開始時は、ハブ輪22の中心軸を、挿入孔33の中心軸である基準軸Cと同軸に配置しておく。 
以下、本例の製造対象となるハブユニット軸受1の構成と、かしめ部26を形成するための揺動かしめ装置28の構成と、ハブユニット軸受1の製造方法とを説明した後、かしめ部26の加工効率を十分に高くすることができる直径差δ(=挿入孔33の内径Dとパイロット部13の外径dとの差D-d)の設定方法について説明する。 
(ハブユニット軸受1の構成) 図1は、本例の製造対象となるハブユニット軸受1を示している。ハブユニット軸受1は、従動輪用であり、外輪2と、ハブ3と、複数個の転動体4a、4bとを備える。 
なお、ハブユニット軸受1に関して、軸方向外側は、車両への組み付け状態で車両の幅方向外側となる、図1の左側であり、軸方向内側は、車両への組み付け状態で車両の幅方向中央側となる、図1の右側である。 
外輪2は、中炭素鋼などの硬質金属製で、複列の外輪軌道5a、5bと、静止フランジ6とを備える。複列の外輪軌道5a、5bは、外輪2の軸方向中間部内周面に形成されており、軸方向に関して互いに離れる方向に向かうほど直径が大きくなる方向に傾斜した部分円すい状の凹面である。静止フランジ6は、外輪2の軸方向中間部から径方向外方に突出しており、円周方向複数箇所にねじ孔である支持孔7を有する。 
外輪2は、車両の懸架装置を構成するナックル8の通孔9を挿通したボルト10を、静止フランジ6の支持孔7に軸方向内側から螺合して締め付けることで、ナックル8に支持固定されている。 
ハブ3は、外輪2の径方向内側に、外輪2と同軸に配置されており、複列の内輪軌道11a、11bと、回転フランジ12と、パイロット部13とを備える。複列の内輪軌道11a、11bは、ハブ3の外周面のうち、複列の外輪軌道5a、5bに対向する部分に形成されており、軸方向に関して互いに離れる方向に向かうほど直径が大きくなる方向に傾斜した部分円すい状の凸面である。回転フランジ12は、外輪2よりも軸方向外側に位置するハブ3の軸方向外側部から径方向外方に突出しており、円周方向複数箇所に取付孔14を有する。パイロット部13は、外輪2よりも軸方向外側に位置するハブ3の軸方向外側部のうち、回転フランジ12の径方向内側に隣接する部分から軸方向外側に延びる円筒状の部位である。また、パイロット部13の外周面は、軸方向内側部を構成する円筒面状の大径部44と、軸方向外側部を構成する、大径部44よりも外径が小さい円筒面状の小径部45とを備えた、段付円筒面である。 
また、図示の例では、ディスクやドラムなどの制動用回転体15を回転フランジ12に結合固定するために、制動用回転体15をパイロット部13の軸方向内側部(大径部44)に外嵌した状態で、スタッド16の基端寄り部分に備えられたセレーション部を、取付孔14に圧入するとともに、スタッド16の中間部を、制動用回転体15の通孔17に圧入している。さらに、車輪を構成するホイール18を回転フランジ12に固定するために、ホイール18をパイロット部13の軸方向外側部(小径部45)に外嵌した状態で、スタッド16の先端部に備えられた雄ねじ部を、ホイール18の通孔19に挿通した状態で、該雄ねじ部にナット20を螺合して締め付けている。 
転動体4a、4bは、それぞれが軸受鋼などの硬質金属製あるいはセラミックス製で、複列の外輪軌道5a、5bと複列の内輪軌道11a、11bとの間に、列ごとに複数個ずつ配置されている。また、転動体4a、4bは、列ごとに、保持器21a、21bにより転動自在に保持されている。なお、本例では、転動体4a、4bのそれぞれは、円すいころである。 
本例では、ハブ3は、中炭素鋼などの硬質金属製のハブ輪22と、軸受鋼などの硬質金属製の内輪23とを組み合わせてなる。 
ハブ輪22は、軸方向中間部外周面に複列の内輪軌道11a、11bのうちの軸方向外側の内輪軌道11aを有し、かつ、軸方向外側部に回転フランジ12及びパイロット部13を有する。また、ハブ輪22は、軸方向外側の内輪軌道11aよりも軸方向内側に位置する軸方向内側部に、軸方向外側に隣接する部分よりも外径が小さい嵌合軸部24を有する。内輪23は、外周面に、複列の内輪軌道11a、11bのうちの軸方向内側の内輪軌道11bを有する。このような内輪23は、軸方向外側端面を、嵌合軸部24の外周面の軸方向外側端部に存在する段差面25に突き当てた状態で、嵌合軸部24に圧入により外嵌される。この状態で、嵌合軸部24の軸方向内側端部から軸方向に伸長する円筒部27を、径方向外方に塑性変形させることにより形成されたかしめ部26により、内輪23の軸方向内側端面が抑え付けられている。そして、このようにかしめ部26により内輪23の軸方向内側端面を抑え付けることで、転動体4a、4bに適正な予圧が付与されている。 
(揺動かしめ装置28の構成) 次に、かしめ部26を形成するための揺動かしめ装置28について、図2及び図3を参照しつつ説明する。揺動かしめ装置28は、上下方向の基準軸Cと、ホルダ29と、押型31と、芯合わせ治具30とを備える。 
ホルダ29は、かしめ部26を形成する際に押型31からハブ輪22に加えられる荷重を支承する受具として機能する部材である。ホルダ29は、上側面に備えられたフランジ受面32と、フランジ受面32に開口する挿入孔33とを有する。フランジ受面32は、基準軸Cに直交する平坦面である。挿入孔33は、基準軸Cと同軸に配置された円筒状の内周面を有する、有底の孔である。挿入孔33の内径Dは、ハブ輪22のパイロット部13の外径dよりも大きい(D>d)。ここで、外径dは、パイロット部13の大径部44の外径である。また、挿入孔33の軸方向深さは、ハブ輪22のパイロット部13の軸方向寸法よりも大きい。このような構成を有するホルダ29は、基準軸Cに直交する方向の移動、及び、基準軸Cに沿う上下方向の移動を阻止された状態で、図示しない支持台に支持されている。ただし、本発明を実施する場合、ホルダ29は、基準軸Cに沿う上下方向の移動を可能に支持し、かつ、上方への移動によって、かしめ部26を形成するための荷重を発生させることもできる。 
押型31は、かしめ部26を形成するための工具であり、ホルダ29の上方に配置されている。押型31は、基準軸Cに対して角度θだけ傾斜した自転軸αを有し、かつ、下端部に自転軸αと同軸の円環状の凹面である加工面部36を有する。押型31は、基準軸Cに沿った上下方向の移動及び基準軸Cを中心とする回転を可能とされており、かつ、自転軸βを中心とする自転を自在とされている。なお、本発明を実施する場合、上述のようにホルダ29の上方への移動によって、かしめ部26を形成するための荷重を発生させる場合には、押型31を、基準軸Cに沿う上下方向の移動を阻止した状態で支持することもできる。 
芯合わせ治具30は、かしめ部26の形成を開始する前に、ハブ輪22の中心軸を基準軸Cと同軸に配置するための治具である。芯合わせ治具30は、円筒状に構成されており、ホルダ29の挿入孔33の内側で、基準軸Cと同軸に配置され、かつ、基準軸Cに沿う上下方向の移動を可能とされている。このために、図示の例では、芯合わせ治具30は、挿入孔33の内側に、径方向(水平方向)のがたつきなく、かつ、軸方向(上下方向)の移動を可能に内嵌されている。また、芯合わせ治具30の下端部は、ホルダ29の中心部を上下方向に貫通し、かつ、ホルダ29
に対する上下方向の移動を可能とされたアクチュエータロッド34の上端部に、連結部材35を介して連結されている。なお、図示の例では、芯合わせ治具30とアクチュエータロッド34と連結部材35とは、一体に造られているが、別体に造ることもできる。 
また、芯合わせ治具30は、ハブ輪22のパイロット部13の大径部44を、径方向のがたつきなく内嵌することが可能な内径を有する。ただし、芯合わせ治具30は、ハブ輪22のパイロット部13の小径部45を径方向のがたつきなく内嵌することが可能な内径を有する構成とすることもできる。また、芯合わせ治具30を、挿入孔33の内側の下端位置まで移動させた状態で、芯合わせ治具30の上端面とフランジ受面32との間の軸方向距離は、ハブ輪22のパイロット部13の軸方向寸法よりも大きい。 
(ハブユニット軸受1の製造方法) 次に、ハブユニット軸受1を製造する際に、揺動かしめ装置28を用いてかしめ部26を形成する方法について説明する。 
かしめ部26の形成作業は、かしめ部26が形成される前のハブユニット軸受1を組み立てた状態で行う。このため、予め、かしめ部26が形成される前のハブユニット軸受1を組み立てておく。 
かしめ部26が形成される前のハブユニット軸受1は、適宜の手順で組み立てることができるが、例えば、次のような手順で組み立てることができる。まず、かしめ部26が形成される前のハブ輪22(軸方向内側端部に円筒部27を有するハブ輪22)のうち、軸方向外側の内輪軌道11aの周囲に、軸方向外側列の転動体4aを、軸方向外側の保持器21aにより保持した状態で配置し、さらに、該ハブ輪22の軸方向中間部の周囲に、外輪2を配置する。次に、内輪23のうち、軸方向内側の内輪軌道11bの周囲に、軸方向内側列の転動体4bを、軸方向内側の保持器21bにより保持した状態で配置する。そして、内輪23を、かしめ部26が形成される前のハブ輪22の嵌合軸部24に外嵌し、内輪23の軸方向外側端面を段差面25に当接させる。 
揺動かしめ装置28を用いてかしめ部26を形成する際には、まず、かしめ部26が形成される前のハブユニット軸受1を、ホルダ29にセットする。 
具体的には、図2に示すように、押型31を上方に退避させ、かつ、芯合わせ治具30を、ホルダ29の挿入孔33の内側の上部に配置する。そして、この状態で、図2に示すように、ハブ輪22のパイロット部13を、ホルダ29の挿入孔33の内側に挿入する。これとともに、パイロット部13の大径部44を、芯合わせ治具30の内側に、径方向のがたつきなく内嵌する。これにより、ハブ輪22の中心軸を基準軸Cと同軸に配置する。さらに、ハブ輪22の回転フランジ12の軸方向外側面を、ホルダ29のフランジ受面32に接触させる。 
続いて、図2→図3に示すように、ハブ輪22の中心軸を基準軸Cと同軸に配置した状態を維持しつつ、芯合わせ治具30をパイロット部13の周囲から下方に退避させる。これにより、挿入孔33の内周面とパイロット部13の大径部44の外周面との間に、全周にわたり径方向の隙間37を存在させた状態とする。 
つまり、本例では、次述するかしめ部26を形成するための加工開始時に、ハブ輪22が基準軸Cと同軸に配置された状態にしておく。これとともに、次述するかしめ部26を形成するための加工中に、隙間37の存在に基づいて、ホルダ29に対してハブ輪22が径方向に移動できるようにしておく。 
次に、この状態で、かしめ工程を開始する。すなわち、図2→図3に示すように、押型31を下方に移動させることで、押型31の加工面部36をハブ輪22の円筒部27に押し付けつつ、押型31を基準軸Cを中心に回転させることにより、円筒部27をかしめ部26に加工する。すなわち、押型31の加工面部36から円筒部27の円周方向一部に、上下方向に関して下方に向き、かつ、径方向に関して外方に向いた加工力を加える。また、この加工力を加える位置を、基準軸Cを中心とする押型31の回転に伴って、円筒部27の円周方向に関して連続的に変化させる。これにより、円筒部27を径方向外方に塑性変形させることで、かしめ部26を形成する。 
以上のような本例のハブユニット軸受1の製造方法では、かしめ部26を形成するための加工中に、隙間37の存在に基づいて、ホルダ29に対してハブ輪22が径方向に移動ができる。このため、このようなハブ輪22の移動によって、揺動かしめ装置28を構成するホルダ29や、ホルダ29を支持する図示しない支持台などに生じる、変形や振動を低減することができる。すなわち、本例によれば、かしめ部26の形成以外に消費されるエネルギー(図10の損失エネルギーE3)を小さくすることができ、その分、かしめ部26の加工効率(図10の入力エネルギーE1に対する出力エネルギーE2の割合(E2/E1))を高くすることができる。 
また、本例では、かしめ部26を形成するための加工開始時に、ハブ輪22が基準軸Cと同軸に配置されている。換言すれば、かしめ部26を形成するための加工開始時における、ハブ輪22の径方向位置のばらつきが十分に抑えられている。このため、かしめ部26の形成による品質特性(例えば、かしめ部26から内輪23に加わる軸力、かしめ部26の形成に伴う内輪23の膨張量に関する特性など)のばらつきを十分に抑えることができる。 
(直径差δの設定方法) 次に、かしめ部26の加工効率を高くすることができる直径差δ(=D-d)(隙間37の大きさ)の設定方法について説明する。 
まず、製造対象となるハブユニット軸受1との関係で、直径差δ(=D-d)が異なる複数のホルダ29を用意する。そして、用意したホルダ29ごとに、該ホルダ29を含む揺動かしめ装置28を用いて、ハブ輪22の円筒部27をかしめ部26に加工する(かしめ工程を行う)。そして、該かしめ工程において、具体的には、かしめ部26を形成するための加工開始時から加工終了時までの間に、押型31を基準軸Cを中心に回転させるのに要した総エネルギーEtと、押型31をハブ輪22の軸方向内側端部(円筒部27)に押し付けるのに要した総エネルギーEzとを求め、さらに、これらの和であるエネルギー和E(=Et+Ez)を求める。 
本例では、かしめ工程において押型31を基準軸Cを中心に回転させるのに要した総エネルギーEtを求めるために、かしめ工程中の、押型31の総回転角度である「押型総回転角度」、及び、押型31を基準軸Cを中心に回転させるためのトルクである「押型回転トルク」を測定する。図4(A)は、このように測定した「押型総回転角度」と「押型回転トルク」との関係(曲線f1)を表す線図(仮想例)である。そして、本例では、該線図において、曲線f1と横軸(「押型回転トルク」=0を表す直線)との間に挟まれた領域の面積を、総エネルギーEtとして求める。すなわち、「押型回転トルク」を「押型総回転角度」で積分する(数値計算を行う)ことにより、前記面積(総エネルギーEt)を求める。なお、「押型総回転角度」は、例えば、ロータリーエンコーダなどを用いて測定することができる。また、「押型回転トルク」は、例えば、押型31を基準軸Cを中心に回転させるための電動モータの電流値などに基づいて測定することができる。 
また、本例では、かしめ工程において押型31をハブ輪22の軸方向内側端部に押し付けるのに要した総エネルギーEzを求めるために、かしめ工程中の、ホルダ29と押型31との基準軸Cの方向に関する相対移動量である「押型軸方向移動量」及び、押型31とハブ輪22の軸方向内側端部とを基準軸Cの方向に押し付け合うための荷重である「押型軸方向荷重」を測定する。図4(B)は、このように測定した「押型軸方向移動量」と「押型軸方向荷重」との関係(曲線f2)を表す線図(仮想例)である。そして、本例では、該線図において、曲線f2と横軸(「押型軸方向荷重」=0を表す直線)との間に挟まれた領域の面積を、総エネルギーEzとして求める。すなわち、「押型軸方向荷重」を「押型軸方向移動量」で積分する(数値計算を行う)ことにより、前記面積(総エネルギーEz)を求める。なお、「押型軸方向移動量」は、例えば、リニアスケールなどを用いて測定することができる。また、「押型軸方向荷重」は、例えば、押型31を軸方向に移動させるための油圧機構内の油圧などに基づいて測定することができる。 
次に、上述のように直径差δ(=D-d)が異なるホルダ29ごとに求めたエネルギー和E(=Et+Ez)を利用して、図5に例示するような、直径差δ(=D-d)とエネルギー和E(=Et+Ez)との関係(曲線f3)を求める。 
該関係において、直径差δ(=D-d)を0から徐々に大きくしていくと、エネルギー和E(=Et+Ez)は、初めのうちは徐々に小さくなるが、途中からほぼ一定になる。エネルギー和Eがほぼ一定になる範囲では、直径差δ(=D-d)の値にかかわらず、かしめ加工中のハブ輪22の径方向の移動量がほぼ一定になると考えられる。なお、直径差δ(=D-d)を大きくしても、かしめ部26の形成による品質特性(例えば、かしめ部26から内輪23に加わる軸力、かしめ部26の形成に伴う内輪23の膨張量に関する特性など)が悪くなることはない。 
ところで、かしめ部26を形成するためのエネルギー(図10の出力エネルギーE2)は、ほぼ一定である。このため、上述のように直径差δ(=D-d)の増大に伴ってエネルギー和E(=Et+Ez)(図10の入力エネルギーE1)が小さくなるということは、かしめ部26の形成以外に消費されるエネルギー(図10の損失エネルギーE3)が小さくなるということ、すなわち、かしめ部26の加工効率が高くなることを意味する。 
したがって、かしめ部26の加工効率を高くするためには、図5の関係を利用して、エネルギー和E(=Et+Ez)が所望とする所定値以下となる範囲で、直径差δ(=D-d)を設定(決定)すれば良い。この場合に、好ましくは、エネルギー和E(=Et+Ez)がほぼ一定になる範囲で、直径差δ(=D-d)を設定するのが良い。 
なお、エネルギー和E(=Et+Ez)がほぼ一定になる範囲における、直径差δ(=D-d)の下限値δmの選択の仕方は、任意である。例えば、図5の関係を表す曲線f3に対して、次の定数A、Sをもつ(1)式で表される曲線をフィッティングさせた場合の定数Sを、下限値δmとすることができる。  E=A×exp(-δ/S)   -----(1) ここで、(1)式中、Eは、エネルギー和E(=Et+Ez)を表す変数であり、δは、直径差δ(=D-d)を表す変数であり、Aは、直径差δ(=D-d)が0のときのエネルギー和E(=Et+Ez)の値であり、Sは、時定数と同じ考え方の定数である。 
あるいは、図5の関係を表す曲線f3に対して、上記(1)式で表される曲線をフィッティングさせた場合のパラメータSよりも大きい値(例えば、図5の曲線f3がほぼ一定に見える直径差δ(=D-d)の範囲の下限値)を、下限値δmとして選択することもできる。 
なお、本発明者の経験から、前述した従来方法でかしめ部を形成するための加工を行う際には、ホルダの支持台の水平方向の振動幅が0.5mm程度になることが確認されている。したがって、このような事情を考慮すると、下限値δmは、0.5mm以上の値とすることが望ましい。 
あるいは、図5の関係を表す曲線f3に関して、直径差δ(=D-d)の変化量(増大量)に対するエネルギー和E(=Et+Ez)の変化量(減少量)が所定値以下となる範囲で、直径差δ(=D-d)を決定することもできる。 
ただし、直径差δ(=D-d)を過度に大きくすると、すなわち、ホルダ29の挿入孔33の内径を過度に大きくすると、かしめ部26を形成するた
めの加工時に回転フランジ12が軸方向内側に向けて倒れるように変形しやすくなる可能性がある。このため、このような不都合が生じることを防止するために、直径差δ(=D-d)は、下限値δmの2~10倍以下とすることが望ましい。 
なお、図2及び図3に示した例では、回転フランジ12の取付孔14にスタッド16(図1参照)を取り付ける前の状態でかしめ部26を形成するための加工を行っている。ただし、本発明を実施する場合には、回転フランジ12の取付孔14にスタッド16を取り付けた状態でかしめ部26を形成するための加工を行うこともできる。この場合には、ホルダの形状を、該加工中にスタッド16がぶつからない形状(例えば、スタッド16のうち回転フランジ12の軸方向外側面から軸方向外側に突出した部分を緩く挿入できるスタッド用挿入孔を有する形状)とする。 
[実施の形態の第2例] 本発明の実施の形態の第2例について、図6及び図7を用いて説明する。 
本例では、揺動かしめ装置28aを構成するホルダ29a及びその周辺部の構造が、実施の形態の第1例の場合と異なる。すなわち、本例では、ホルダ29aの挿入孔33aは、ハブ輪22のパイロット部13を径方向のがたつきなく挿入(内嵌)可能である。 
また、ホルダ29aは、基準軸Cに直交する方向の移動を可能に支持されている。このために、本例の揺動かしめ装置28aは、支持台40と、可動台38と、X方向リニアガイド39と、Y方向リニアガイド41とを備える。なお、本例においては、基準軸Cは、移動前の中立位置にあるホルダ29aに形成された挿入孔33aの中心軸である。 
支持台40は、ホルダ29aの下方に配置されており、基準軸Cに直交する方向の移動を阻止されている。可動台38は、上下方向に関して、ホルダ29aと支持台40との間に配置されている。また、可動台38は、支持台40の上側面に、X方向リニアガイド39を介して支持されている。X方向リニアガイド39は、支持台40に対する可動台38の、基準軸Cに直交する1方向であるX方向の移動を可能とするガイド装置である。また、ホルダ29aは、可動台38の上面に、Y方向リニアガイド41を介して支持されている。Y方向リニアガイド41は、可動台38に対するホルダ29aの、基準軸Cに直交し、かつ、X方向にも直交する方向である、Y方向の移動を可能とするガイド装置である。したがって、ホルダ29aは、X方向リニアガイド39及びY方向リニアガイド41により、支持台40に対し、基準軸Cに直交する全方向の移動が許容されるようになっている。 
また、可動台38がX方向の中立位置に配置され、かつ、ホルダ29aがY方向の中立位置に配置された状態で、ホルダ29aの挿入孔33aの中心軸は、基準軸Cと一致するようになっている。 
また、可動台38と図示しない固定の部分との間には、可動台38がX方向の中立位置からX方向に移動した場合に、可動台38をX方向の中立位置に戻す方向の弾力を付与するX方向ばね42が組み付けられている。また、ホルダ29aと図示しない固定の部分との間には、ホルダ29aがY方向の中立位置からY方向に移動した場合に、ホルダ29aをY方向の中立位置に戻す方向の弾力を付与するY方向ばね43が組み付けられている。したがって、可動台38にX方向の外力が作用しておらず、かつ、ホルダ29aにY方向の外力が作用していない状態(例えば、後述するかしめ部26(図1参照)を形成するための加工開始以前の状態)で、可動台38はX方向の中立位置に配置され、かつ、ホルダ29aはY方向の中立位置に配置されるようになっている。その結果、ホルダ29aの挿入孔33aの中心軸は、基準軸Cと一致するようになっている。つまり、X方向ばね42及びY方向ばね43は、挿入孔33aの中心軸と基準軸Cとが不一致になるようにホルダ29aが移動した場合に、挿入孔33aの中心軸と基準軸Cとが一致する方向にホルダ29aを付勢する機能を有する。 
また、本例では、後述するように揺動かしめ装置28aを用いてかしめ部26を形成する際に、押型31からハブ輪22に作用する径方向外方に向いた加工力よりも、X方向ばね42及びY方向ばね43の弾力を十分に小さくしている(例えば、該加工力の1/10以下としている)。 
揺動かしめ装置28aを用いてかしめ部26を形成する際には、まず、図6に示すように、ハブ輪22のパイロット部13を、ホルダ29aの挿入孔33aに径方向のがたつきなく挿入することにより、ハブ輪22の中心軸を基準軸Cと同軸に配置する。これとともに、ハブ輪22の回転フランジ12の軸方向外側面を、ホルダ29aのフランジ受面32に接触させる。そして、この状態で、実施の形態の第1例と同様に、押型31を用いて円筒部27をかしめ部26に加工する。 
以上のような本例のハブユニット軸受1の製造方法では、かしめ部26を形成するための加工中に、X方向リニアガイド39及びY方向リニアガイド41の存在に基づいて、基準軸Cに対してハブ輪22が径方向に移動できる。そして、このように、かしめ部26を形成するための加工中、基準軸Cに対してハブ輪22が径方向に移動することにより、揺動かしめ装置28aを構成するホルダ29aやホルダ29aを支持する支持台40などの、変形や振動を低減することができる。また、本例では、基準軸Cに対してハブ輪22が径方向に移動することに伴って、X方向ばね42及びY方向ばね43の弾性変形量が変化するが、X方向ばね42及びY方向ばね43の弾力は十分に小さいため、X方向ばね42及びY方向ばね43の弾性変形量を変化させるためのエネルギーを十分に抑えられる。したがって、本例では、かしめ部26の形成以外に消費されるエネルギー(図10の損失エネルギーE3)を小さくすることができ、その分、かしめ部26の加工効率(図10の入力エネルギーE1に対する出力エネルギーE2の割合(E2/E1))を高くすることができる。 
また、本例では、かしめ部26を形成するための加工開始時に、ハブ輪22が基準軸Cと同軸に配置されている。換言すれば、かしめ部26を形成するための加工開始時における、ハブ輪22の径方向位置のばらつきが十分に抑えられている。このため、かしめ部26の形成による品質特性(例えば、かしめ部26から内輪23に加わる軸力、かしめ部26の形成に伴う内輪23の膨張量に関する特性など)のばらつきを十分に抑えることができる。 その他の構成及び作用効果は、実施の形態の第1例と同様である。 
なお、本発明は、従動輪用のハブユニット軸受に限らず、駆動輪用のハブユニット軸受を製造対象とすることもできる。 また、本発明は、転動体として円すいころを使用したハブユニット軸受に限らず、転動体として玉を使用したハブユニット軸受を製造対象とすることもできる。 また、本発明は、軸方向外側の内輪軌道を、ハブ輪の軸方向中間部外周面に直接形成しているハブユニット軸受に限らず、軸方向外側の内輪軌道を、ハブ輪の軸方向中間部に外嵌した別部材である第2の内輪の外周面に形成しているハブユニット軸受を製造対象とすることもできる。
1 ハブユニット軸受 2 外輪 3 ハブ 4a、4b 転動体 5a、5b 外輪軌道 6 静止フランジ 7 支持孔 8 ナックル 9 通孔 10 ボルト 11a、11b 内輪軌道 12 回転フランジ 13 パイロット部 14 取付孔 15 制動用回転体 16 スタッド 17 通孔 18 ホイール 19 通孔 20 ナット 21a、21b 保持器 22 ハブ輪 23 内輪 24 嵌合軸部 25 段差面 26 かしめ部 27 円筒部 28、28a 揺動かしめ装置 29、29a ホルダ 30 芯合わせ治具 31 押型 32 フランジ受面 33、33a 挿入孔 34 アクチュエータロッド 35 連結部材 36 加工面部 37 隙間 38 可動台 39 X方向リニアガイド 40 支持台 41 Y方向リニアガイド 42 X方向ばね 43 Y方向ばね 44 大径部 45 小径部 100 ハブユニット軸受 101 外輪 102 ハブ 103a、103b 転動体 104a、104b 外輪軌道 105 静止フランジ 106a、106b 内輪軌道 107 回転フランジ 108 パイロット部 109 ハブ輪 110 内輪 111 嵌合軸部 112 段差面 113 かしめ部 114 揺動かしめ装置 115 押型 116 ホルダ 117 フランジ受面 118 挿入孔

Claims (17)

  1. 内周面に複列の外輪軌道を有する外輪と、 外周面に複列の内輪軌道を有するハブと、 前記複列の外輪軌道と前記複列の内輪軌道との間に、列ごとに複数個ずつ配置された転動体と、を備え、 前記ハブは、内輪と、ハブ輪とを有し、 前記内輪は、外周面に、前記複列の内輪軌道のうちの軸方向内側の内輪軌道を有し、 前記ハブ輪は、軸方向外側部から径方向外方に突出した回転フランジと、該回転フランジの径方向内側に隣接する部分から軸方向外側に延びる筒状のパイロット部と、前記回転フランジよりも軸方向内側に位置する部分の外周面に直接又は他の部材を介して形成された、前記複列の内輪軌道のうちの軸方向外側の内輪軌道と、該軸方向外側の内輪軌道よりも軸方向内側に位置し、前記内輪を外嵌した嵌合軸部と、該嵌合軸部よりも軸方向内側に位置する筒状の軸方向内側端部を径方向外方に塑性変形させることで形成され、前記内輪の軸方向内側端面を抑え付けるかしめ部とを有する、 ハブユニット軸受の製造方法であって、 前記ハブ輪を、該ハブ輪の中心軸を基準軸と同軸乃至平行に配置し、かつ、該ハブ輪の径方向の移動を可能にホルダで支持した状態で、前記基準軸に対して傾斜した自転軸を有する押型を前記ハブ輪の軸方向内側端部に押し付けつつ、該押型を、前記自転軸を中心に回転させながら前記基準軸を中心に回転させることにより、前記ハブ輪の軸方向内側端部を前記かしめ部に加工するかしめ工程を備える、 ハブユニット軸受の製造方法。
  2. ホルダのフランジ受面に開口し、かつ、前記基準軸と同軸に配置された、前記パイロット部の外径よりも大きい内径を有する挿入孔に、前記パイロット部を挿入するとともに、前記フランジ受面に前記回転フランジの軸方向外側面を接触させることにより、前記ハブ輪を、該ハブ輪の中心軸を前記基準軸と同軸乃至平行に配置し、かつ、該ハブ輪の径方向の移動を可能に支持する、 請求項1に記載のハブユニット軸受の製造方法。
  3. 前記挿入孔の内径と前記パイロット部の外径との差である直径差を、前記かしめ工程において前記押型を前記基準軸を中心に回転させるのに要する総エネルギーと、前記押型を前記ハブ輪の軸方向内側端部に押し付けるのに要する総エネルギーとの和であるエネルギー和に基づいて決定する、 請求項2に記載のハブユニット軸受の製造方法。
  4. 前記エネルギー和が所定値以下となる範囲で、前記直径差を決定する、 請求項3に記載のハブユニット軸受の製造方法。
  5. 前記エネルギー和がほぼ一定となる範囲で、前記直径差を決定する、 請求項3に記載のハブユニット軸受の製造方法。
  6. 前記直径差の変化量に対する前記エネルギー和の変化量が所定値以下となる範囲で、前記直径差を決定する、 請求項3に記載のハブユニット軸受の製造方法。
  7. 前記押型を前記基準軸を中心に回転させるためのトルクを、前記基準軸を中心とする前記押型の回転角度で積分することにより、前記かしめ工程において前記押型を前記基準軸を中心に回転させるのに要する総エネルギーを求める、 請求項3~6のうちのいずれかに記載のハブユニット軸受の製造方法。
  8. 前記押型と前記ハブ輪の軸方向内側端部とを前記基準軸の方向に押し付け合うための荷重を、前記ホルダと前記押型との前記基準軸の方向に関する相対移動量で積分することにより、前記かしめ工程において前記押型
    を前記ハブ輪の軸方向内側端部に押し付けるのに要する総エネルギーを求める、 請求項3~7のうちのいずれかに記載のハブユニット軸受の製造方法。
  9. 前記ハブ輪の中心軸を前記基準軸と同軸に配置した状態で、前記かしめ工程を開始する、 請求項2~8のうちのいずれかに記載のハブユニット軸受の製造方法。
  10. 前記挿入孔に挿入した前記パイロット部を、前記基準軸と同軸に配置された筒状の芯合わせ治具に内嵌することで、前記ハブ輪の中心軸を前記基準軸と同軸に配置した状態とし、その後、前記ハブ輪の中心軸を前記基準軸と同軸に配置した状態を維持しつつ、前記芯合わせ治具を前記パイロット部から軸方向に退避させた状態で、前記かしめ工程を開始する、 請求項9に記載のハブユニット軸受の製造方法。
  11. 前記基準軸に直交する方向の移動を可能とされたホルダのフランジ受面に開口する挿入孔に前記パイロット部を挿入するとともに、前記フランジ受面に前記回転フランジの軸方向外側面を接触させることにより、前記ハブ輪を、該ハブ輪の中心軸を前記基準軸と同軸乃至平行に配置し、かつ、該ハブ輪の径方向の移動を可能に支持する、 請求項1に記載のハブユニット軸受の製造方法。
  12. 前記ハブ輪の中心軸を前記基準軸と同軸に配置した状態で、前記かしめ工程を開始する、 請求項11に記載のハブユニット軸受の製造方法。
  13. 内周面に複列の外輪軌道を有する外輪と、 外周面に複列の内輪軌道を有するハブと、 前記複列の外輪軌道と前記複列の内輪軌道との間に、列ごとに複数個ずつ配置された転動体と、を備え、 前記ハブは、内輪と、ハブ輪とを有し、 前記内輪は、外周面に、前記複列の内輪軌道のうちの軸方向内側の内輪軌道を有し、 前記ハブ輪は、軸方向外側部から径方向外方に突出した回転フランジと、該回転フランジの径方向内側に隣接する部分から軸方向外側に延びる筒状のパイロット部と、前記回転フランジよりも軸方向内側に位置する部分の外周面に直接又は他の部材を介して形成された、前記複列の内輪軌道のうちの軸方向外側の内輪軌道と、該軸方向外側の内輪軌道よりも軸方向内側に位置し、前記内輪を外嵌した嵌合軸部と、該嵌合軸部よりも軸方向内側に位置する筒状の軸方向内側端部を径方向外方に塑性変形させることで形成され、前記内輪の軸方向内側端面を抑え付けるかしめ部とを有する、 ハブユニット軸受を製造するために用いられる揺動かしめ装置であって、 基準軸と、 該基準軸の方向に関する一方側の側面に備えられた、前記回転フランジの軸方向外側面を接触させるためのフランジ受面、及び、該フランジ受面に開口し、かつ、前記基準軸と同軸に配置された、前記パイロット部の外径よりも大きい内径を有する挿入孔を有するホルダと、 前記基準軸の方向に関して前記ホルダの一方側に配置され、前記基準軸に対して傾斜した自転軸を有し、かつ、前記基準軸を中心とする回転、及び、前記基準軸の方向に関する記ホルダとの相対移動が可能な押型と、 前記挿入孔の内側で前記基準軸と同軸に配置された筒状の芯合わせ治具と、を備え、 前記芯合わせ治具は、前記挿入孔に挿入された前記パイロット部を内嵌することにより、前記ハブ輪の中心軸を前記基準軸と同軸に配置する状態と、該パイロット部から軸方向に退避することにより、前記ハブ輪の径方向の移動を可能とする状態とを、切り換え可能である、 揺動かしめ装置。
  14. 内周面に複列の外輪軌道を有する外輪と、 外周面に複列の内輪軌道を有するハブと、 前記複列の外輪軌道と前記複列の内輪軌道との間に、列ごとに複数個ずつ配置された転動体と、を備え、 前記ハブは、内輪と、ハブ輪とを有し、 前記内輪は、外周面に、前記複列の内輪軌道のうちの軸方向内側の内輪軌道を有し、 前記ハブ輪は、軸方向外側部から径方向外方に突出した回転フランジと、該回転フランジの径方向内側に隣接する部分から軸方向外側に延びる筒状のパイロット部と、前記回転フランジよりも軸方向内側に位置する部分の外周面に直接又は他の部材を介して形成された、前記複列の内輪軌道のうちの軸方向外側の内輪軌道と、該軸方向外側の内輪軌道よりも軸方向内側に位置し、前記内輪を外嵌した嵌合軸部と、該嵌合軸部よりも軸方向内側に位置する筒状の軸方向内側端部を径方向外方に塑性変形させることで形成され、前記内輪の軸方向内側端面を抑え付けるかしめ部とを有する、 ハブユニット軸受を製造するために用いられる揺動かしめ装置であって、 基準軸と、 該基準軸の方向に関する一方側の側面に備えられた、前記回転フランジの軸方向外側面を接触させるためのフランジ受面、及び、該フランジ受面に開口した、前記パイロット部を挿入するための挿入孔を有し、かつ、前記基準軸に直交する方向の移動を可能に支持されたホルダと、 前記基準軸の方向に関して前記ホルダの一方側に配置され、前記基準軸に対して傾斜した自転軸を有し、かつ、前記基準軸を中心とする回転、及び、前記基準軸の方向に関する前記ホルダとの相対移動が可能な押型と、を備える、揺動かしめ装置。
  15. 前記基準軸に直交する方向の移動を阻止された支持台と、可動台と、該可動台を前記支持台に対して、前記基準軸に直交する1の方向であるX方向の移動を可能に支持するX方向リニアガイドと、前記ホルダを前記可動台に対して、前記基準軸と前記X方向とのそれぞれに直交するY方向の移動を可能に支持するY方向リニアガイドと、をさらに備える、 請求項14に記載の揺動かしめ装置。
  16. 前記挿入孔の中心軸と前記基準軸とが不一致となるように前記ホルダが移動した場合に、前記挿入孔の中心軸と前記基準軸とが一致する方向に前記ホルダを付勢するばねをさらに備える、 請求項14又は15に記載の揺動かしめ装置。
  17. ハブユニット軸受を備えた車両の製造方法であって、 請求項1~12のうちのいずれかに記載のハブユニット軸受の製造方法により、前記ハブユニット軸受を製造する、 車両の製造方法。
PCT/JP2020/031244 2019-08-20 2020-08-19 ハブユニット軸受の製造方法、揺動かしめ装置、及び車両の製造方法 WO2021033710A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US17/622,498 US11796006B2 (en) 2019-08-20 2020-08-19 Method for manufacturing hub unit bearing, swaging device, and method for manufacturing vehicle
CN202080053278.9A CN114173954A (zh) 2019-08-20 2020-08-19 轮毂单元轴承的制造方法、摆动压紧装置及车辆的制造方法
EP20855423.8A EP3922373B1 (en) 2019-08-20 2020-08-19 Method for manufacturing hub unit bearing, swinging crimping device, and method for manufacturing vehicle
KR1020227000992A KR20220046547A (ko) 2019-08-20 2020-08-19 허브 유닛 베어링의 제조 방법, 요동 크림핑 장치, 및 차량의 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-150197 2019-08-20
JP2019150197A JP6930560B2 (ja) 2019-08-20 2019-08-20 ハブユニット軸受の製造方法、揺動かしめ装置、及び車両の製造方法

Publications (1)

Publication Number Publication Date
WO2021033710A1 true WO2021033710A1 (ja) 2021-02-25

Family

ID=74660899

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/031244 WO2021033710A1 (ja) 2019-08-20 2020-08-19 ハブユニット軸受の製造方法、揺動かしめ装置、及び車両の製造方法

Country Status (6)

Country Link
US (1) US11796006B2 (ja)
EP (1) EP3922373B1 (ja)
JP (2) JP6930560B2 (ja)
KR (1) KR20220046547A (ja)
CN (1) CN114173954A (ja)
WO (1) WO2021033710A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102667612B1 (ko) 2021-10-05 2024-05-22 주식회사 현대케피코 전 둘레 고정식 볼 베어링 조립체 및 이를 위한 코킹식 볼 베어링 조립 방법

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000211302A (ja) * 1999-01-26 2000-08-02 Nsk Ltd 車輪支持用転がり軸受ユニット
JP2003113848A (ja) * 2001-10-09 2003-04-18 Koyo Seiko Co Ltd 軸受装置の製造方法および軸受装置
JP2004162913A (ja) * 2002-10-21 2004-06-10 Nsk Ltd 車輪支持用転がり軸受ユニットの製造方法及び製造装置
JP2005257034A (ja) * 2004-03-15 2005-09-22 Nsk Ltd 車輪支持用ハブユニットの製造方法
JP2006116550A (ja) * 2004-10-19 2006-05-11 Nsk Ltd 押型
JP2012045612A (ja) 2010-08-30 2012-03-08 Jtekt Corp 車両用ハブユニットの製造方法
JP5261023B2 (ja) 2008-05-13 2013-08-14 Ntn株式会社 車輪用軸受装置の加工方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003148499A (ja) * 2000-12-05 2003-05-21 Koyo Seiko Co Ltd 車両用軸受装置
US8096045B2 (en) * 2008-12-17 2012-01-17 Il Jin Global Co., Ltd. Device and method for manufacturing wheel bearing assembly

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000211302A (ja) * 1999-01-26 2000-08-02 Nsk Ltd 車輪支持用転がり軸受ユニット
JP2003113848A (ja) * 2001-10-09 2003-04-18 Koyo Seiko Co Ltd 軸受装置の製造方法および軸受装置
JP2004162913A (ja) * 2002-10-21 2004-06-10 Nsk Ltd 車輪支持用転がり軸受ユニットの製造方法及び製造装置
JP2005257034A (ja) * 2004-03-15 2005-09-22 Nsk Ltd 車輪支持用ハブユニットの製造方法
JP2006116550A (ja) * 2004-10-19 2006-05-11 Nsk Ltd 押型
JP5261023B2 (ja) 2008-05-13 2013-08-14 Ntn株式会社 車輪用軸受装置の加工方法
JP2012045612A (ja) 2010-08-30 2012-03-08 Jtekt Corp 車両用ハブユニットの製造方法

Also Published As

Publication number Publication date
EP3922373A4 (en) 2022-05-18
EP3922373A1 (en) 2021-12-15
US20220243772A1 (en) 2022-08-04
JP2022000588A (ja) 2022-01-04
JP2021032269A (ja) 2021-03-01
JP6930560B2 (ja) 2021-09-01
US11796006B2 (en) 2023-10-24
CN114173954A (zh) 2022-03-11
KR20220046547A (ko) 2022-04-14
EP3922373B1 (en) 2023-06-14

Similar Documents

Publication Publication Date Title
JP4263993B2 (ja) 蓋付きクロスローラ軸受の製造方法
JP7188305B2 (ja) 揺動鍛造装置の荷重測定方法、荷重測定装置、揺動鍛造装置の校正方法、ハブユニット軸受の製造方法、車両の製造方法
JP7476850B2 (ja) ハブユニット軸受の製造方法及び車両の製造方法
JP7512977B2 (ja) かしめアセンブリの製造方法、ハブユニット軸受の製造方法、かしめ装置、及び車両の製造方法
JP2019211084A (ja) ハブユニット軸受およびその製造方法、並びに、自動車およびその製造方法
WO2021033710A1 (ja) ハブユニット軸受の製造方法、揺動かしめ装置、及び車両の製造方法
US20090154856A1 (en) Wheel Support Bearing Assembly and Method of Manufacturing the Same
JP7201025B2 (ja) ハブユニット軸受及び車両
JP6940011B2 (ja) かしめアセンブリの製造方法、ハブユニット軸受の製造方法、かしめ装置、かしめアセンブリ、及び車両の製造方法
JP4715172B2 (ja) 軸受装置の組み付け装置およびその組み付け方法
JP2019116917A (ja) ハブユニット軸受の製造方法
JP2005195084A (ja) 軸受装置のかしめ加工方法
JP2021025634A (ja) 転がり軸受、転がり軸受の製造方法、及び軸受構造
US12123466B2 (en) Staking apparatus and staking method for bearing unit, manufacturing method and manufacturing apparatus of hub unit bearing, and manufacturing method of vehicle
JP7290086B2 (ja) ハブユニット軸受およびその製造方法
EP4000758A1 (en) Swaging device and swaging method for bearing unit, hub unit bearing manufacturing method and manufacturing device, and vehicle manufacturing method
JP4798051B2 (ja) 車輪用転がり軸受装置の組み付け方法
KR20210149693A (ko) 코킹 어셈블리의 제조 방법, 허브 유닛 베어링의 제조 방법 및 차량의 제조 방법
JP2005163978A (ja) 軸受装置
JP2020097999A (ja) ハブユニット軸受
JP2020002998A (ja) ハブユニット軸受及びその組立方法
JP2007232174A (ja) 軸受ユニット製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20855423

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020855423

Country of ref document: EP

Effective date: 20210908

NENP Non-entry into the national phase

Ref country code: DE